i915_gem.c 134 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/swap.h>
  34. #include <linux/pci.h>
  35. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  36. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  39. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  40. int write);
  41. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  49. static int i915_gem_evict_something(struct drm_device *dev, int min_size);
  50. static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static LIST_HEAD(shrink_list);
  55. static DEFINE_SPINLOCK(shrink_list_lock);
  56. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  57. unsigned long end)
  58. {
  59. drm_i915_private_t *dev_priv = dev->dev_private;
  60. if (start >= end ||
  61. (start & (PAGE_SIZE - 1)) != 0 ||
  62. (end & (PAGE_SIZE - 1)) != 0) {
  63. return -EINVAL;
  64. }
  65. drm_mm_init(&dev_priv->mm.gtt_space, start,
  66. end - start);
  67. dev->gtt_total = (uint32_t) (end - start);
  68. return 0;
  69. }
  70. int
  71. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  72. struct drm_file *file_priv)
  73. {
  74. struct drm_i915_gem_init *args = data;
  75. int ret;
  76. mutex_lock(&dev->struct_mutex);
  77. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  78. mutex_unlock(&dev->struct_mutex);
  79. return ret;
  80. }
  81. int
  82. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  83. struct drm_file *file_priv)
  84. {
  85. struct drm_i915_gem_get_aperture *args = data;
  86. if (!(dev->driver->driver_features & DRIVER_GEM))
  87. return -ENODEV;
  88. args->aper_size = dev->gtt_total;
  89. args->aper_available_size = (args->aper_size -
  90. atomic_read(&dev->pin_memory));
  91. return 0;
  92. }
  93. /**
  94. * Creates a new mm object and returns a handle to it.
  95. */
  96. int
  97. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  98. struct drm_file *file_priv)
  99. {
  100. struct drm_i915_gem_create *args = data;
  101. struct drm_gem_object *obj;
  102. int ret;
  103. u32 handle;
  104. args->size = roundup(args->size, PAGE_SIZE);
  105. /* Allocate the new object */
  106. obj = drm_gem_object_alloc(dev, args->size);
  107. if (obj == NULL)
  108. return -ENOMEM;
  109. ret = drm_gem_handle_create(file_priv, obj, &handle);
  110. mutex_lock(&dev->struct_mutex);
  111. drm_gem_object_handle_unreference(obj);
  112. mutex_unlock(&dev->struct_mutex);
  113. if (ret)
  114. return ret;
  115. args->handle = handle;
  116. return 0;
  117. }
  118. static inline int
  119. fast_shmem_read(struct page **pages,
  120. loff_t page_base, int page_offset,
  121. char __user *data,
  122. int length)
  123. {
  124. char __iomem *vaddr;
  125. int unwritten;
  126. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  127. if (vaddr == NULL)
  128. return -ENOMEM;
  129. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  130. kunmap_atomic(vaddr, KM_USER0);
  131. if (unwritten)
  132. return -EFAULT;
  133. return 0;
  134. }
  135. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  136. {
  137. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  139. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  140. obj_priv->tiling_mode != I915_TILING_NONE;
  141. }
  142. static inline int
  143. slow_shmem_copy(struct page *dst_page,
  144. int dst_offset,
  145. struct page *src_page,
  146. int src_offset,
  147. int length)
  148. {
  149. char *dst_vaddr, *src_vaddr;
  150. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  151. if (dst_vaddr == NULL)
  152. return -ENOMEM;
  153. src_vaddr = kmap_atomic(src_page, KM_USER1);
  154. if (src_vaddr == NULL) {
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return -ENOMEM;
  157. }
  158. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  159. kunmap_atomic(src_vaddr, KM_USER1);
  160. kunmap_atomic(dst_vaddr, KM_USER0);
  161. return 0;
  162. }
  163. static inline int
  164. slow_shmem_bit17_copy(struct page *gpu_page,
  165. int gpu_offset,
  166. struct page *cpu_page,
  167. int cpu_offset,
  168. int length,
  169. int is_read)
  170. {
  171. char *gpu_vaddr, *cpu_vaddr;
  172. /* Use the unswizzled path if this page isn't affected. */
  173. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  174. if (is_read)
  175. return slow_shmem_copy(cpu_page, cpu_offset,
  176. gpu_page, gpu_offset, length);
  177. else
  178. return slow_shmem_copy(gpu_page, gpu_offset,
  179. cpu_page, cpu_offset, length);
  180. }
  181. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  182. if (gpu_vaddr == NULL)
  183. return -ENOMEM;
  184. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  185. if (cpu_vaddr == NULL) {
  186. kunmap_atomic(gpu_vaddr, KM_USER0);
  187. return -ENOMEM;
  188. }
  189. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  190. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  191. */
  192. while (length > 0) {
  193. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  194. int this_length = min(cacheline_end - gpu_offset, length);
  195. int swizzled_gpu_offset = gpu_offset ^ 64;
  196. if (is_read) {
  197. memcpy(cpu_vaddr + cpu_offset,
  198. gpu_vaddr + swizzled_gpu_offset,
  199. this_length);
  200. } else {
  201. memcpy(gpu_vaddr + swizzled_gpu_offset,
  202. cpu_vaddr + cpu_offset,
  203. this_length);
  204. }
  205. cpu_offset += this_length;
  206. gpu_offset += this_length;
  207. length -= this_length;
  208. }
  209. kunmap_atomic(cpu_vaddr, KM_USER1);
  210. kunmap_atomic(gpu_vaddr, KM_USER0);
  211. return 0;
  212. }
  213. /**
  214. * This is the fast shmem pread path, which attempts to copy_from_user directly
  215. * from the backing pages of the object to the user's address space. On a
  216. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  217. */
  218. static int
  219. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  220. struct drm_i915_gem_pread *args,
  221. struct drm_file *file_priv)
  222. {
  223. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  224. ssize_t remain;
  225. loff_t offset, page_base;
  226. char __user *user_data;
  227. int page_offset, page_length;
  228. int ret;
  229. user_data = (char __user *) (uintptr_t) args->data_ptr;
  230. remain = args->size;
  231. mutex_lock(&dev->struct_mutex);
  232. ret = i915_gem_object_get_pages(obj);
  233. if (ret != 0)
  234. goto fail_unlock;
  235. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  236. args->size);
  237. if (ret != 0)
  238. goto fail_put_pages;
  239. obj_priv = obj->driver_private;
  240. offset = args->offset;
  241. while (remain > 0) {
  242. /* Operation in this page
  243. *
  244. * page_base = page offset within aperture
  245. * page_offset = offset within page
  246. * page_length = bytes to copy for this page
  247. */
  248. page_base = (offset & ~(PAGE_SIZE-1));
  249. page_offset = offset & (PAGE_SIZE-1);
  250. page_length = remain;
  251. if ((page_offset + remain) > PAGE_SIZE)
  252. page_length = PAGE_SIZE - page_offset;
  253. ret = fast_shmem_read(obj_priv->pages,
  254. page_base, page_offset,
  255. user_data, page_length);
  256. if (ret)
  257. goto fail_put_pages;
  258. remain -= page_length;
  259. user_data += page_length;
  260. offset += page_length;
  261. }
  262. fail_put_pages:
  263. i915_gem_object_put_pages(obj);
  264. fail_unlock:
  265. mutex_unlock(&dev->struct_mutex);
  266. return ret;
  267. }
  268. static inline gfp_t
  269. i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
  270. {
  271. return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
  272. }
  273. static inline void
  274. i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
  275. {
  276. mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
  277. }
  278. static int
  279. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  280. {
  281. int ret;
  282. ret = i915_gem_object_get_pages(obj);
  283. /* If we've insufficient memory to map in the pages, attempt
  284. * to make some space by throwing out some old buffers.
  285. */
  286. if (ret == -ENOMEM) {
  287. struct drm_device *dev = obj->dev;
  288. gfp_t gfp;
  289. ret = i915_gem_evict_something(dev, obj->size);
  290. if (ret)
  291. return ret;
  292. gfp = i915_gem_object_get_page_gfp_mask(obj);
  293. i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
  294. ret = i915_gem_object_get_pages(obj);
  295. i915_gem_object_set_page_gfp_mask (obj, gfp);
  296. }
  297. return ret;
  298. }
  299. /**
  300. * This is the fallback shmem pread path, which allocates temporary storage
  301. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  302. * can copy out of the object's backing pages while holding the struct mutex
  303. * and not take page faults.
  304. */
  305. static int
  306. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  307. struct drm_i915_gem_pread *args,
  308. struct drm_file *file_priv)
  309. {
  310. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  311. struct mm_struct *mm = current->mm;
  312. struct page **user_pages;
  313. ssize_t remain;
  314. loff_t offset, pinned_pages, i;
  315. loff_t first_data_page, last_data_page, num_pages;
  316. int shmem_page_index, shmem_page_offset;
  317. int data_page_index, data_page_offset;
  318. int page_length;
  319. int ret;
  320. uint64_t data_ptr = args->data_ptr;
  321. int do_bit17_swizzling;
  322. remain = args->size;
  323. /* Pin the user pages containing the data. We can't fault while
  324. * holding the struct mutex, yet we want to hold it while
  325. * dereferencing the user data.
  326. */
  327. first_data_page = data_ptr / PAGE_SIZE;
  328. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  329. num_pages = last_data_page - first_data_page + 1;
  330. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  331. if (user_pages == NULL)
  332. return -ENOMEM;
  333. down_read(&mm->mmap_sem);
  334. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  335. num_pages, 1, 0, user_pages, NULL);
  336. up_read(&mm->mmap_sem);
  337. if (pinned_pages < num_pages) {
  338. ret = -EFAULT;
  339. goto fail_put_user_pages;
  340. }
  341. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  342. mutex_lock(&dev->struct_mutex);
  343. ret = i915_gem_object_get_pages_or_evict(obj);
  344. if (ret)
  345. goto fail_unlock;
  346. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  347. args->size);
  348. if (ret != 0)
  349. goto fail_put_pages;
  350. obj_priv = obj->driver_private;
  351. offset = args->offset;
  352. while (remain > 0) {
  353. /* Operation in this page
  354. *
  355. * shmem_page_index = page number within shmem file
  356. * shmem_page_offset = offset within page in shmem file
  357. * data_page_index = page number in get_user_pages return
  358. * data_page_offset = offset with data_page_index page.
  359. * page_length = bytes to copy for this page
  360. */
  361. shmem_page_index = offset / PAGE_SIZE;
  362. shmem_page_offset = offset & ~PAGE_MASK;
  363. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  364. data_page_offset = data_ptr & ~PAGE_MASK;
  365. page_length = remain;
  366. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  367. page_length = PAGE_SIZE - shmem_page_offset;
  368. if ((data_page_offset + page_length) > PAGE_SIZE)
  369. page_length = PAGE_SIZE - data_page_offset;
  370. if (do_bit17_swizzling) {
  371. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  372. shmem_page_offset,
  373. user_pages[data_page_index],
  374. data_page_offset,
  375. page_length,
  376. 1);
  377. } else {
  378. ret = slow_shmem_copy(user_pages[data_page_index],
  379. data_page_offset,
  380. obj_priv->pages[shmem_page_index],
  381. shmem_page_offset,
  382. page_length);
  383. }
  384. if (ret)
  385. goto fail_put_pages;
  386. remain -= page_length;
  387. data_ptr += page_length;
  388. offset += page_length;
  389. }
  390. fail_put_pages:
  391. i915_gem_object_put_pages(obj);
  392. fail_unlock:
  393. mutex_unlock(&dev->struct_mutex);
  394. fail_put_user_pages:
  395. for (i = 0; i < pinned_pages; i++) {
  396. SetPageDirty(user_pages[i]);
  397. page_cache_release(user_pages[i]);
  398. }
  399. drm_free_large(user_pages);
  400. return ret;
  401. }
  402. /**
  403. * Reads data from the object referenced by handle.
  404. *
  405. * On error, the contents of *data are undefined.
  406. */
  407. int
  408. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  409. struct drm_file *file_priv)
  410. {
  411. struct drm_i915_gem_pread *args = data;
  412. struct drm_gem_object *obj;
  413. struct drm_i915_gem_object *obj_priv;
  414. int ret;
  415. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  416. if (obj == NULL)
  417. return -EBADF;
  418. obj_priv = obj->driver_private;
  419. /* Bounds check source.
  420. *
  421. * XXX: This could use review for overflow issues...
  422. */
  423. if (args->offset > obj->size || args->size > obj->size ||
  424. args->offset + args->size > obj->size) {
  425. drm_gem_object_unreference(obj);
  426. return -EINVAL;
  427. }
  428. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  429. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  430. } else {
  431. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  432. if (ret != 0)
  433. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  434. file_priv);
  435. }
  436. drm_gem_object_unreference(obj);
  437. return ret;
  438. }
  439. /* This is the fast write path which cannot handle
  440. * page faults in the source data
  441. */
  442. static inline int
  443. fast_user_write(struct io_mapping *mapping,
  444. loff_t page_base, int page_offset,
  445. char __user *user_data,
  446. int length)
  447. {
  448. char *vaddr_atomic;
  449. unsigned long unwritten;
  450. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  451. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  452. user_data, length);
  453. io_mapping_unmap_atomic(vaddr_atomic);
  454. if (unwritten)
  455. return -EFAULT;
  456. return 0;
  457. }
  458. /* Here's the write path which can sleep for
  459. * page faults
  460. */
  461. static inline int
  462. slow_kernel_write(struct io_mapping *mapping,
  463. loff_t gtt_base, int gtt_offset,
  464. struct page *user_page, int user_offset,
  465. int length)
  466. {
  467. char *src_vaddr, *dst_vaddr;
  468. unsigned long unwritten;
  469. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  470. src_vaddr = kmap_atomic(user_page, KM_USER1);
  471. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  472. src_vaddr + user_offset,
  473. length);
  474. kunmap_atomic(src_vaddr, KM_USER1);
  475. io_mapping_unmap_atomic(dst_vaddr);
  476. if (unwritten)
  477. return -EFAULT;
  478. return 0;
  479. }
  480. static inline int
  481. fast_shmem_write(struct page **pages,
  482. loff_t page_base, int page_offset,
  483. char __user *data,
  484. int length)
  485. {
  486. char __iomem *vaddr;
  487. unsigned long unwritten;
  488. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  489. if (vaddr == NULL)
  490. return -ENOMEM;
  491. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  492. kunmap_atomic(vaddr, KM_USER0);
  493. if (unwritten)
  494. return -EFAULT;
  495. return 0;
  496. }
  497. /**
  498. * This is the fast pwrite path, where we copy the data directly from the
  499. * user into the GTT, uncached.
  500. */
  501. static int
  502. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  503. struct drm_i915_gem_pwrite *args,
  504. struct drm_file *file_priv)
  505. {
  506. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  507. drm_i915_private_t *dev_priv = dev->dev_private;
  508. ssize_t remain;
  509. loff_t offset, page_base;
  510. char __user *user_data;
  511. int page_offset, page_length;
  512. int ret;
  513. user_data = (char __user *) (uintptr_t) args->data_ptr;
  514. remain = args->size;
  515. if (!access_ok(VERIFY_READ, user_data, remain))
  516. return -EFAULT;
  517. mutex_lock(&dev->struct_mutex);
  518. ret = i915_gem_object_pin(obj, 0);
  519. if (ret) {
  520. mutex_unlock(&dev->struct_mutex);
  521. return ret;
  522. }
  523. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  524. if (ret)
  525. goto fail;
  526. obj_priv = obj->driver_private;
  527. offset = obj_priv->gtt_offset + args->offset;
  528. while (remain > 0) {
  529. /* Operation in this page
  530. *
  531. * page_base = page offset within aperture
  532. * page_offset = offset within page
  533. * page_length = bytes to copy for this page
  534. */
  535. page_base = (offset & ~(PAGE_SIZE-1));
  536. page_offset = offset & (PAGE_SIZE-1);
  537. page_length = remain;
  538. if ((page_offset + remain) > PAGE_SIZE)
  539. page_length = PAGE_SIZE - page_offset;
  540. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  541. page_offset, user_data, page_length);
  542. /* If we get a fault while copying data, then (presumably) our
  543. * source page isn't available. Return the error and we'll
  544. * retry in the slow path.
  545. */
  546. if (ret)
  547. goto fail;
  548. remain -= page_length;
  549. user_data += page_length;
  550. offset += page_length;
  551. }
  552. fail:
  553. i915_gem_object_unpin(obj);
  554. mutex_unlock(&dev->struct_mutex);
  555. return ret;
  556. }
  557. /**
  558. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  559. * the memory and maps it using kmap_atomic for copying.
  560. *
  561. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  562. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  563. */
  564. static int
  565. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  566. struct drm_i915_gem_pwrite *args,
  567. struct drm_file *file_priv)
  568. {
  569. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  570. drm_i915_private_t *dev_priv = dev->dev_private;
  571. ssize_t remain;
  572. loff_t gtt_page_base, offset;
  573. loff_t first_data_page, last_data_page, num_pages;
  574. loff_t pinned_pages, i;
  575. struct page **user_pages;
  576. struct mm_struct *mm = current->mm;
  577. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  578. int ret;
  579. uint64_t data_ptr = args->data_ptr;
  580. remain = args->size;
  581. /* Pin the user pages containing the data. We can't fault while
  582. * holding the struct mutex, and all of the pwrite implementations
  583. * want to hold it while dereferencing the user data.
  584. */
  585. first_data_page = data_ptr / PAGE_SIZE;
  586. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  587. num_pages = last_data_page - first_data_page + 1;
  588. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  589. if (user_pages == NULL)
  590. return -ENOMEM;
  591. down_read(&mm->mmap_sem);
  592. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  593. num_pages, 0, 0, user_pages, NULL);
  594. up_read(&mm->mmap_sem);
  595. if (pinned_pages < num_pages) {
  596. ret = -EFAULT;
  597. goto out_unpin_pages;
  598. }
  599. mutex_lock(&dev->struct_mutex);
  600. ret = i915_gem_object_pin(obj, 0);
  601. if (ret)
  602. goto out_unlock;
  603. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  604. if (ret)
  605. goto out_unpin_object;
  606. obj_priv = obj->driver_private;
  607. offset = obj_priv->gtt_offset + args->offset;
  608. while (remain > 0) {
  609. /* Operation in this page
  610. *
  611. * gtt_page_base = page offset within aperture
  612. * gtt_page_offset = offset within page in aperture
  613. * data_page_index = page number in get_user_pages return
  614. * data_page_offset = offset with data_page_index page.
  615. * page_length = bytes to copy for this page
  616. */
  617. gtt_page_base = offset & PAGE_MASK;
  618. gtt_page_offset = offset & ~PAGE_MASK;
  619. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  620. data_page_offset = data_ptr & ~PAGE_MASK;
  621. page_length = remain;
  622. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  623. page_length = PAGE_SIZE - gtt_page_offset;
  624. if ((data_page_offset + page_length) > PAGE_SIZE)
  625. page_length = PAGE_SIZE - data_page_offset;
  626. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  627. gtt_page_base, gtt_page_offset,
  628. user_pages[data_page_index],
  629. data_page_offset,
  630. page_length);
  631. /* If we get a fault while copying data, then (presumably) our
  632. * source page isn't available. Return the error and we'll
  633. * retry in the slow path.
  634. */
  635. if (ret)
  636. goto out_unpin_object;
  637. remain -= page_length;
  638. offset += page_length;
  639. data_ptr += page_length;
  640. }
  641. out_unpin_object:
  642. i915_gem_object_unpin(obj);
  643. out_unlock:
  644. mutex_unlock(&dev->struct_mutex);
  645. out_unpin_pages:
  646. for (i = 0; i < pinned_pages; i++)
  647. page_cache_release(user_pages[i]);
  648. drm_free_large(user_pages);
  649. return ret;
  650. }
  651. /**
  652. * This is the fast shmem pwrite path, which attempts to directly
  653. * copy_from_user into the kmapped pages backing the object.
  654. */
  655. static int
  656. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  657. struct drm_i915_gem_pwrite *args,
  658. struct drm_file *file_priv)
  659. {
  660. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  661. ssize_t remain;
  662. loff_t offset, page_base;
  663. char __user *user_data;
  664. int page_offset, page_length;
  665. int ret;
  666. user_data = (char __user *) (uintptr_t) args->data_ptr;
  667. remain = args->size;
  668. mutex_lock(&dev->struct_mutex);
  669. ret = i915_gem_object_get_pages(obj);
  670. if (ret != 0)
  671. goto fail_unlock;
  672. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  673. if (ret != 0)
  674. goto fail_put_pages;
  675. obj_priv = obj->driver_private;
  676. offset = args->offset;
  677. obj_priv->dirty = 1;
  678. while (remain > 0) {
  679. /* Operation in this page
  680. *
  681. * page_base = page offset within aperture
  682. * page_offset = offset within page
  683. * page_length = bytes to copy for this page
  684. */
  685. page_base = (offset & ~(PAGE_SIZE-1));
  686. page_offset = offset & (PAGE_SIZE-1);
  687. page_length = remain;
  688. if ((page_offset + remain) > PAGE_SIZE)
  689. page_length = PAGE_SIZE - page_offset;
  690. ret = fast_shmem_write(obj_priv->pages,
  691. page_base, page_offset,
  692. user_data, page_length);
  693. if (ret)
  694. goto fail_put_pages;
  695. remain -= page_length;
  696. user_data += page_length;
  697. offset += page_length;
  698. }
  699. fail_put_pages:
  700. i915_gem_object_put_pages(obj);
  701. fail_unlock:
  702. mutex_unlock(&dev->struct_mutex);
  703. return ret;
  704. }
  705. /**
  706. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  707. * the memory and maps it using kmap_atomic for copying.
  708. *
  709. * This avoids taking mmap_sem for faulting on the user's address while the
  710. * struct_mutex is held.
  711. */
  712. static int
  713. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  714. struct drm_i915_gem_pwrite *args,
  715. struct drm_file *file_priv)
  716. {
  717. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  718. struct mm_struct *mm = current->mm;
  719. struct page **user_pages;
  720. ssize_t remain;
  721. loff_t offset, pinned_pages, i;
  722. loff_t first_data_page, last_data_page, num_pages;
  723. int shmem_page_index, shmem_page_offset;
  724. int data_page_index, data_page_offset;
  725. int page_length;
  726. int ret;
  727. uint64_t data_ptr = args->data_ptr;
  728. int do_bit17_swizzling;
  729. remain = args->size;
  730. /* Pin the user pages containing the data. We can't fault while
  731. * holding the struct mutex, and all of the pwrite implementations
  732. * want to hold it while dereferencing the user data.
  733. */
  734. first_data_page = data_ptr / PAGE_SIZE;
  735. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  736. num_pages = last_data_page - first_data_page + 1;
  737. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  738. if (user_pages == NULL)
  739. return -ENOMEM;
  740. down_read(&mm->mmap_sem);
  741. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  742. num_pages, 0, 0, user_pages, NULL);
  743. up_read(&mm->mmap_sem);
  744. if (pinned_pages < num_pages) {
  745. ret = -EFAULT;
  746. goto fail_put_user_pages;
  747. }
  748. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  749. mutex_lock(&dev->struct_mutex);
  750. ret = i915_gem_object_get_pages_or_evict(obj);
  751. if (ret)
  752. goto fail_unlock;
  753. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  754. if (ret != 0)
  755. goto fail_put_pages;
  756. obj_priv = obj->driver_private;
  757. offset = args->offset;
  758. obj_priv->dirty = 1;
  759. while (remain > 0) {
  760. /* Operation in this page
  761. *
  762. * shmem_page_index = page number within shmem file
  763. * shmem_page_offset = offset within page in shmem file
  764. * data_page_index = page number in get_user_pages return
  765. * data_page_offset = offset with data_page_index page.
  766. * page_length = bytes to copy for this page
  767. */
  768. shmem_page_index = offset / PAGE_SIZE;
  769. shmem_page_offset = offset & ~PAGE_MASK;
  770. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  771. data_page_offset = data_ptr & ~PAGE_MASK;
  772. page_length = remain;
  773. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  774. page_length = PAGE_SIZE - shmem_page_offset;
  775. if ((data_page_offset + page_length) > PAGE_SIZE)
  776. page_length = PAGE_SIZE - data_page_offset;
  777. if (do_bit17_swizzling) {
  778. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  779. shmem_page_offset,
  780. user_pages[data_page_index],
  781. data_page_offset,
  782. page_length,
  783. 0);
  784. } else {
  785. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  786. shmem_page_offset,
  787. user_pages[data_page_index],
  788. data_page_offset,
  789. page_length);
  790. }
  791. if (ret)
  792. goto fail_put_pages;
  793. remain -= page_length;
  794. data_ptr += page_length;
  795. offset += page_length;
  796. }
  797. fail_put_pages:
  798. i915_gem_object_put_pages(obj);
  799. fail_unlock:
  800. mutex_unlock(&dev->struct_mutex);
  801. fail_put_user_pages:
  802. for (i = 0; i < pinned_pages; i++)
  803. page_cache_release(user_pages[i]);
  804. drm_free_large(user_pages);
  805. return ret;
  806. }
  807. /**
  808. * Writes data to the object referenced by handle.
  809. *
  810. * On error, the contents of the buffer that were to be modified are undefined.
  811. */
  812. int
  813. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  814. struct drm_file *file_priv)
  815. {
  816. struct drm_i915_gem_pwrite *args = data;
  817. struct drm_gem_object *obj;
  818. struct drm_i915_gem_object *obj_priv;
  819. int ret = 0;
  820. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  821. if (obj == NULL)
  822. return -EBADF;
  823. obj_priv = obj->driver_private;
  824. /* Bounds check destination.
  825. *
  826. * XXX: This could use review for overflow issues...
  827. */
  828. if (args->offset > obj->size || args->size > obj->size ||
  829. args->offset + args->size > obj->size) {
  830. drm_gem_object_unreference(obj);
  831. return -EINVAL;
  832. }
  833. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  834. * it would end up going through the fenced access, and we'll get
  835. * different detiling behavior between reading and writing.
  836. * pread/pwrite currently are reading and writing from the CPU
  837. * perspective, requiring manual detiling by the client.
  838. */
  839. if (obj_priv->phys_obj)
  840. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  841. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  842. dev->gtt_total != 0) {
  843. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  844. if (ret == -EFAULT) {
  845. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  846. file_priv);
  847. }
  848. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  849. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  850. } else {
  851. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  852. if (ret == -EFAULT) {
  853. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  854. file_priv);
  855. }
  856. }
  857. #if WATCH_PWRITE
  858. if (ret)
  859. DRM_INFO("pwrite failed %d\n", ret);
  860. #endif
  861. drm_gem_object_unreference(obj);
  862. return ret;
  863. }
  864. /**
  865. * Called when user space prepares to use an object with the CPU, either
  866. * through the mmap ioctl's mapping or a GTT mapping.
  867. */
  868. int
  869. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  870. struct drm_file *file_priv)
  871. {
  872. struct drm_i915_private *dev_priv = dev->dev_private;
  873. struct drm_i915_gem_set_domain *args = data;
  874. struct drm_gem_object *obj;
  875. struct drm_i915_gem_object *obj_priv;
  876. uint32_t read_domains = args->read_domains;
  877. uint32_t write_domain = args->write_domain;
  878. int ret;
  879. if (!(dev->driver->driver_features & DRIVER_GEM))
  880. return -ENODEV;
  881. /* Only handle setting domains to types used by the CPU. */
  882. if (write_domain & I915_GEM_GPU_DOMAINS)
  883. return -EINVAL;
  884. if (read_domains & I915_GEM_GPU_DOMAINS)
  885. return -EINVAL;
  886. /* Having something in the write domain implies it's in the read
  887. * domain, and only that read domain. Enforce that in the request.
  888. */
  889. if (write_domain != 0 && read_domains != write_domain)
  890. return -EINVAL;
  891. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  892. if (obj == NULL)
  893. return -EBADF;
  894. obj_priv = obj->driver_private;
  895. mutex_lock(&dev->struct_mutex);
  896. intel_mark_busy(dev, obj);
  897. #if WATCH_BUF
  898. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  899. obj, obj->size, read_domains, write_domain);
  900. #endif
  901. if (read_domains & I915_GEM_DOMAIN_GTT) {
  902. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  903. /* Update the LRU on the fence for the CPU access that's
  904. * about to occur.
  905. */
  906. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  907. list_move_tail(&obj_priv->fence_list,
  908. &dev_priv->mm.fence_list);
  909. }
  910. /* Silently promote "you're not bound, there was nothing to do"
  911. * to success, since the client was just asking us to
  912. * make sure everything was done.
  913. */
  914. if (ret == -EINVAL)
  915. ret = 0;
  916. } else {
  917. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  918. }
  919. drm_gem_object_unreference(obj);
  920. mutex_unlock(&dev->struct_mutex);
  921. return ret;
  922. }
  923. /**
  924. * Called when user space has done writes to this buffer
  925. */
  926. int
  927. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  928. struct drm_file *file_priv)
  929. {
  930. struct drm_i915_gem_sw_finish *args = data;
  931. struct drm_gem_object *obj;
  932. struct drm_i915_gem_object *obj_priv;
  933. int ret = 0;
  934. if (!(dev->driver->driver_features & DRIVER_GEM))
  935. return -ENODEV;
  936. mutex_lock(&dev->struct_mutex);
  937. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  938. if (obj == NULL) {
  939. mutex_unlock(&dev->struct_mutex);
  940. return -EBADF;
  941. }
  942. #if WATCH_BUF
  943. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  944. __func__, args->handle, obj, obj->size);
  945. #endif
  946. obj_priv = obj->driver_private;
  947. /* Pinned buffers may be scanout, so flush the cache */
  948. if (obj_priv->pin_count)
  949. i915_gem_object_flush_cpu_write_domain(obj);
  950. drm_gem_object_unreference(obj);
  951. mutex_unlock(&dev->struct_mutex);
  952. return ret;
  953. }
  954. /**
  955. * Maps the contents of an object, returning the address it is mapped
  956. * into.
  957. *
  958. * While the mapping holds a reference on the contents of the object, it doesn't
  959. * imply a ref on the object itself.
  960. */
  961. int
  962. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  963. struct drm_file *file_priv)
  964. {
  965. struct drm_i915_gem_mmap *args = data;
  966. struct drm_gem_object *obj;
  967. loff_t offset;
  968. unsigned long addr;
  969. if (!(dev->driver->driver_features & DRIVER_GEM))
  970. return -ENODEV;
  971. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  972. if (obj == NULL)
  973. return -EBADF;
  974. offset = args->offset;
  975. down_write(&current->mm->mmap_sem);
  976. addr = do_mmap(obj->filp, 0, args->size,
  977. PROT_READ | PROT_WRITE, MAP_SHARED,
  978. args->offset);
  979. up_write(&current->mm->mmap_sem);
  980. mutex_lock(&dev->struct_mutex);
  981. drm_gem_object_unreference(obj);
  982. mutex_unlock(&dev->struct_mutex);
  983. if (IS_ERR((void *)addr))
  984. return addr;
  985. args->addr_ptr = (uint64_t) addr;
  986. return 0;
  987. }
  988. /**
  989. * i915_gem_fault - fault a page into the GTT
  990. * vma: VMA in question
  991. * vmf: fault info
  992. *
  993. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  994. * from userspace. The fault handler takes care of binding the object to
  995. * the GTT (if needed), allocating and programming a fence register (again,
  996. * only if needed based on whether the old reg is still valid or the object
  997. * is tiled) and inserting a new PTE into the faulting process.
  998. *
  999. * Note that the faulting process may involve evicting existing objects
  1000. * from the GTT and/or fence registers to make room. So performance may
  1001. * suffer if the GTT working set is large or there are few fence registers
  1002. * left.
  1003. */
  1004. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1005. {
  1006. struct drm_gem_object *obj = vma->vm_private_data;
  1007. struct drm_device *dev = obj->dev;
  1008. struct drm_i915_private *dev_priv = dev->dev_private;
  1009. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1010. pgoff_t page_offset;
  1011. unsigned long pfn;
  1012. int ret = 0;
  1013. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1014. /* We don't use vmf->pgoff since that has the fake offset */
  1015. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1016. PAGE_SHIFT;
  1017. /* Now bind it into the GTT if needed */
  1018. mutex_lock(&dev->struct_mutex);
  1019. if (!obj_priv->gtt_space) {
  1020. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1021. if (ret)
  1022. goto unlock;
  1023. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1024. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1025. if (ret)
  1026. goto unlock;
  1027. }
  1028. /* Need a new fence register? */
  1029. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1030. ret = i915_gem_object_get_fence_reg(obj);
  1031. if (ret)
  1032. goto unlock;
  1033. }
  1034. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1035. page_offset;
  1036. /* Finally, remap it using the new GTT offset */
  1037. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1038. unlock:
  1039. mutex_unlock(&dev->struct_mutex);
  1040. switch (ret) {
  1041. case 0:
  1042. case -ERESTARTSYS:
  1043. return VM_FAULT_NOPAGE;
  1044. case -ENOMEM:
  1045. case -EAGAIN:
  1046. return VM_FAULT_OOM;
  1047. default:
  1048. return VM_FAULT_SIGBUS;
  1049. }
  1050. }
  1051. /**
  1052. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1053. * @obj: obj in question
  1054. *
  1055. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1056. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1057. * up the object based on the offset and sets up the various memory mapping
  1058. * structures.
  1059. *
  1060. * This routine allocates and attaches a fake offset for @obj.
  1061. */
  1062. static int
  1063. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1064. {
  1065. struct drm_device *dev = obj->dev;
  1066. struct drm_gem_mm *mm = dev->mm_private;
  1067. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1068. struct drm_map_list *list;
  1069. struct drm_local_map *map;
  1070. int ret = 0;
  1071. /* Set the object up for mmap'ing */
  1072. list = &obj->map_list;
  1073. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1074. if (!list->map)
  1075. return -ENOMEM;
  1076. map = list->map;
  1077. map->type = _DRM_GEM;
  1078. map->size = obj->size;
  1079. map->handle = obj;
  1080. /* Get a DRM GEM mmap offset allocated... */
  1081. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1082. obj->size / PAGE_SIZE, 0, 0);
  1083. if (!list->file_offset_node) {
  1084. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1085. ret = -ENOMEM;
  1086. goto out_free_list;
  1087. }
  1088. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1089. obj->size / PAGE_SIZE, 0);
  1090. if (!list->file_offset_node) {
  1091. ret = -ENOMEM;
  1092. goto out_free_list;
  1093. }
  1094. list->hash.key = list->file_offset_node->start;
  1095. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1096. DRM_ERROR("failed to add to map hash\n");
  1097. ret = -ENOMEM;
  1098. goto out_free_mm;
  1099. }
  1100. /* By now we should be all set, any drm_mmap request on the offset
  1101. * below will get to our mmap & fault handler */
  1102. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1103. return 0;
  1104. out_free_mm:
  1105. drm_mm_put_block(list->file_offset_node);
  1106. out_free_list:
  1107. kfree(list->map);
  1108. return ret;
  1109. }
  1110. /**
  1111. * i915_gem_release_mmap - remove physical page mappings
  1112. * @obj: obj in question
  1113. *
  1114. * Preserve the reservation of the mmapping with the DRM core code, but
  1115. * relinquish ownership of the pages back to the system.
  1116. *
  1117. * It is vital that we remove the page mapping if we have mapped a tiled
  1118. * object through the GTT and then lose the fence register due to
  1119. * resource pressure. Similarly if the object has been moved out of the
  1120. * aperture, than pages mapped into userspace must be revoked. Removing the
  1121. * mapping will then trigger a page fault on the next user access, allowing
  1122. * fixup by i915_gem_fault().
  1123. */
  1124. void
  1125. i915_gem_release_mmap(struct drm_gem_object *obj)
  1126. {
  1127. struct drm_device *dev = obj->dev;
  1128. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1129. if (dev->dev_mapping)
  1130. unmap_mapping_range(dev->dev_mapping,
  1131. obj_priv->mmap_offset, obj->size, 1);
  1132. }
  1133. static void
  1134. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->dev;
  1137. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1138. struct drm_gem_mm *mm = dev->mm_private;
  1139. struct drm_map_list *list;
  1140. list = &obj->map_list;
  1141. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1142. if (list->file_offset_node) {
  1143. drm_mm_put_block(list->file_offset_node);
  1144. list->file_offset_node = NULL;
  1145. }
  1146. if (list->map) {
  1147. kfree(list->map);
  1148. list->map = NULL;
  1149. }
  1150. obj_priv->mmap_offset = 0;
  1151. }
  1152. /**
  1153. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1154. * @obj: object to check
  1155. *
  1156. * Return the required GTT alignment for an object, taking into account
  1157. * potential fence register mapping if needed.
  1158. */
  1159. static uint32_t
  1160. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1161. {
  1162. struct drm_device *dev = obj->dev;
  1163. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1164. int start, i;
  1165. /*
  1166. * Minimum alignment is 4k (GTT page size), but might be greater
  1167. * if a fence register is needed for the object.
  1168. */
  1169. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1170. return 4096;
  1171. /*
  1172. * Previous chips need to be aligned to the size of the smallest
  1173. * fence register that can contain the object.
  1174. */
  1175. if (IS_I9XX(dev))
  1176. start = 1024*1024;
  1177. else
  1178. start = 512*1024;
  1179. for (i = start; i < obj->size; i <<= 1)
  1180. ;
  1181. return i;
  1182. }
  1183. /**
  1184. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1185. * @dev: DRM device
  1186. * @data: GTT mapping ioctl data
  1187. * @file_priv: GEM object info
  1188. *
  1189. * Simply returns the fake offset to userspace so it can mmap it.
  1190. * The mmap call will end up in drm_gem_mmap(), which will set things
  1191. * up so we can get faults in the handler above.
  1192. *
  1193. * The fault handler will take care of binding the object into the GTT
  1194. * (since it may have been evicted to make room for something), allocating
  1195. * a fence register, and mapping the appropriate aperture address into
  1196. * userspace.
  1197. */
  1198. int
  1199. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1200. struct drm_file *file_priv)
  1201. {
  1202. struct drm_i915_gem_mmap_gtt *args = data;
  1203. struct drm_i915_private *dev_priv = dev->dev_private;
  1204. struct drm_gem_object *obj;
  1205. struct drm_i915_gem_object *obj_priv;
  1206. int ret;
  1207. if (!(dev->driver->driver_features & DRIVER_GEM))
  1208. return -ENODEV;
  1209. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1210. if (obj == NULL)
  1211. return -EBADF;
  1212. mutex_lock(&dev->struct_mutex);
  1213. obj_priv = obj->driver_private;
  1214. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1215. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1216. drm_gem_object_unreference(obj);
  1217. mutex_unlock(&dev->struct_mutex);
  1218. return -EINVAL;
  1219. }
  1220. if (!obj_priv->mmap_offset) {
  1221. ret = i915_gem_create_mmap_offset(obj);
  1222. if (ret) {
  1223. drm_gem_object_unreference(obj);
  1224. mutex_unlock(&dev->struct_mutex);
  1225. return ret;
  1226. }
  1227. }
  1228. args->offset = obj_priv->mmap_offset;
  1229. /*
  1230. * Pull it into the GTT so that we have a page list (makes the
  1231. * initial fault faster and any subsequent flushing possible).
  1232. */
  1233. if (!obj_priv->agp_mem) {
  1234. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1235. if (ret) {
  1236. drm_gem_object_unreference(obj);
  1237. mutex_unlock(&dev->struct_mutex);
  1238. return ret;
  1239. }
  1240. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1241. }
  1242. drm_gem_object_unreference(obj);
  1243. mutex_unlock(&dev->struct_mutex);
  1244. return 0;
  1245. }
  1246. void
  1247. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1248. {
  1249. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1250. int page_count = obj->size / PAGE_SIZE;
  1251. int i;
  1252. BUG_ON(obj_priv->pages_refcount == 0);
  1253. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1254. if (--obj_priv->pages_refcount != 0)
  1255. return;
  1256. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1257. i915_gem_object_save_bit_17_swizzle(obj);
  1258. if (obj_priv->madv == I915_MADV_DONTNEED)
  1259. obj_priv->dirty = 0;
  1260. for (i = 0; i < page_count; i++) {
  1261. if (obj_priv->pages[i] == NULL)
  1262. break;
  1263. if (obj_priv->dirty)
  1264. set_page_dirty(obj_priv->pages[i]);
  1265. if (obj_priv->madv == I915_MADV_WILLNEED)
  1266. mark_page_accessed(obj_priv->pages[i]);
  1267. page_cache_release(obj_priv->pages[i]);
  1268. }
  1269. obj_priv->dirty = 0;
  1270. drm_free_large(obj_priv->pages);
  1271. obj_priv->pages = NULL;
  1272. }
  1273. static void
  1274. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1275. {
  1276. struct drm_device *dev = obj->dev;
  1277. drm_i915_private_t *dev_priv = dev->dev_private;
  1278. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1279. /* Add a reference if we're newly entering the active list. */
  1280. if (!obj_priv->active) {
  1281. drm_gem_object_reference(obj);
  1282. obj_priv->active = 1;
  1283. }
  1284. /* Move from whatever list we were on to the tail of execution. */
  1285. spin_lock(&dev_priv->mm.active_list_lock);
  1286. list_move_tail(&obj_priv->list,
  1287. &dev_priv->mm.active_list);
  1288. spin_unlock(&dev_priv->mm.active_list_lock);
  1289. obj_priv->last_rendering_seqno = seqno;
  1290. }
  1291. static void
  1292. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1293. {
  1294. struct drm_device *dev = obj->dev;
  1295. drm_i915_private_t *dev_priv = dev->dev_private;
  1296. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1297. BUG_ON(!obj_priv->active);
  1298. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1299. obj_priv->last_rendering_seqno = 0;
  1300. }
  1301. /* Immediately discard the backing storage */
  1302. static void
  1303. i915_gem_object_truncate(struct drm_gem_object *obj)
  1304. {
  1305. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1306. struct inode *inode;
  1307. inode = obj->filp->f_path.dentry->d_inode;
  1308. if (inode->i_op->truncate)
  1309. inode->i_op->truncate (inode);
  1310. obj_priv->madv = __I915_MADV_PURGED;
  1311. }
  1312. static inline int
  1313. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1314. {
  1315. return obj_priv->madv == I915_MADV_DONTNEED;
  1316. }
  1317. static void
  1318. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1319. {
  1320. struct drm_device *dev = obj->dev;
  1321. drm_i915_private_t *dev_priv = dev->dev_private;
  1322. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1323. i915_verify_inactive(dev, __FILE__, __LINE__);
  1324. if (obj_priv->pin_count != 0)
  1325. list_del_init(&obj_priv->list);
  1326. else
  1327. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1328. obj_priv->last_rendering_seqno = 0;
  1329. if (obj_priv->active) {
  1330. obj_priv->active = 0;
  1331. drm_gem_object_unreference(obj);
  1332. }
  1333. i915_verify_inactive(dev, __FILE__, __LINE__);
  1334. }
  1335. /**
  1336. * Creates a new sequence number, emitting a write of it to the status page
  1337. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1338. *
  1339. * Must be called with struct_lock held.
  1340. *
  1341. * Returned sequence numbers are nonzero on success.
  1342. */
  1343. uint32_t
  1344. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1345. uint32_t flush_domains)
  1346. {
  1347. drm_i915_private_t *dev_priv = dev->dev_private;
  1348. struct drm_i915_file_private *i915_file_priv = NULL;
  1349. struct drm_i915_gem_request *request;
  1350. uint32_t seqno;
  1351. int was_empty;
  1352. RING_LOCALS;
  1353. if (file_priv != NULL)
  1354. i915_file_priv = file_priv->driver_priv;
  1355. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1356. if (request == NULL)
  1357. return 0;
  1358. /* Grab the seqno we're going to make this request be, and bump the
  1359. * next (skipping 0 so it can be the reserved no-seqno value).
  1360. */
  1361. seqno = dev_priv->mm.next_gem_seqno;
  1362. dev_priv->mm.next_gem_seqno++;
  1363. if (dev_priv->mm.next_gem_seqno == 0)
  1364. dev_priv->mm.next_gem_seqno++;
  1365. BEGIN_LP_RING(4);
  1366. OUT_RING(MI_STORE_DWORD_INDEX);
  1367. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1368. OUT_RING(seqno);
  1369. OUT_RING(MI_USER_INTERRUPT);
  1370. ADVANCE_LP_RING();
  1371. DRM_DEBUG_DRIVER("%d\n", seqno);
  1372. request->seqno = seqno;
  1373. request->emitted_jiffies = jiffies;
  1374. was_empty = list_empty(&dev_priv->mm.request_list);
  1375. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1376. if (i915_file_priv) {
  1377. list_add_tail(&request->client_list,
  1378. &i915_file_priv->mm.request_list);
  1379. } else {
  1380. INIT_LIST_HEAD(&request->client_list);
  1381. }
  1382. /* Associate any objects on the flushing list matching the write
  1383. * domain we're flushing with our flush.
  1384. */
  1385. if (flush_domains != 0) {
  1386. struct drm_i915_gem_object *obj_priv, *next;
  1387. list_for_each_entry_safe(obj_priv, next,
  1388. &dev_priv->mm.flushing_list, list) {
  1389. struct drm_gem_object *obj = obj_priv->obj;
  1390. if ((obj->write_domain & flush_domains) ==
  1391. obj->write_domain) {
  1392. uint32_t old_write_domain = obj->write_domain;
  1393. obj->write_domain = 0;
  1394. i915_gem_object_move_to_active(obj, seqno);
  1395. trace_i915_gem_object_change_domain(obj,
  1396. obj->read_domains,
  1397. old_write_domain);
  1398. }
  1399. }
  1400. }
  1401. if (!dev_priv->mm.suspended) {
  1402. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1403. if (was_empty)
  1404. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1405. }
  1406. return seqno;
  1407. }
  1408. /**
  1409. * Command execution barrier
  1410. *
  1411. * Ensures that all commands in the ring are finished
  1412. * before signalling the CPU
  1413. */
  1414. static uint32_t
  1415. i915_retire_commands(struct drm_device *dev)
  1416. {
  1417. drm_i915_private_t *dev_priv = dev->dev_private;
  1418. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1419. uint32_t flush_domains = 0;
  1420. RING_LOCALS;
  1421. /* The sampler always gets flushed on i965 (sigh) */
  1422. if (IS_I965G(dev))
  1423. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1424. BEGIN_LP_RING(2);
  1425. OUT_RING(cmd);
  1426. OUT_RING(0); /* noop */
  1427. ADVANCE_LP_RING();
  1428. return flush_domains;
  1429. }
  1430. /**
  1431. * Moves buffers associated only with the given active seqno from the active
  1432. * to inactive list, potentially freeing them.
  1433. */
  1434. static void
  1435. i915_gem_retire_request(struct drm_device *dev,
  1436. struct drm_i915_gem_request *request)
  1437. {
  1438. drm_i915_private_t *dev_priv = dev->dev_private;
  1439. trace_i915_gem_request_retire(dev, request->seqno);
  1440. /* Move any buffers on the active list that are no longer referenced
  1441. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1442. */
  1443. spin_lock(&dev_priv->mm.active_list_lock);
  1444. while (!list_empty(&dev_priv->mm.active_list)) {
  1445. struct drm_gem_object *obj;
  1446. struct drm_i915_gem_object *obj_priv;
  1447. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1448. struct drm_i915_gem_object,
  1449. list);
  1450. obj = obj_priv->obj;
  1451. /* If the seqno being retired doesn't match the oldest in the
  1452. * list, then the oldest in the list must still be newer than
  1453. * this seqno.
  1454. */
  1455. if (obj_priv->last_rendering_seqno != request->seqno)
  1456. goto out;
  1457. #if WATCH_LRU
  1458. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1459. __func__, request->seqno, obj);
  1460. #endif
  1461. if (obj->write_domain != 0)
  1462. i915_gem_object_move_to_flushing(obj);
  1463. else {
  1464. /* Take a reference on the object so it won't be
  1465. * freed while the spinlock is held. The list
  1466. * protection for this spinlock is safe when breaking
  1467. * the lock like this since the next thing we do
  1468. * is just get the head of the list again.
  1469. */
  1470. drm_gem_object_reference(obj);
  1471. i915_gem_object_move_to_inactive(obj);
  1472. spin_unlock(&dev_priv->mm.active_list_lock);
  1473. drm_gem_object_unreference(obj);
  1474. spin_lock(&dev_priv->mm.active_list_lock);
  1475. }
  1476. }
  1477. out:
  1478. spin_unlock(&dev_priv->mm.active_list_lock);
  1479. }
  1480. /**
  1481. * Returns true if seq1 is later than seq2.
  1482. */
  1483. bool
  1484. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1485. {
  1486. return (int32_t)(seq1 - seq2) >= 0;
  1487. }
  1488. uint32_t
  1489. i915_get_gem_seqno(struct drm_device *dev)
  1490. {
  1491. drm_i915_private_t *dev_priv = dev->dev_private;
  1492. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1493. }
  1494. /**
  1495. * This function clears the request list as sequence numbers are passed.
  1496. */
  1497. void
  1498. i915_gem_retire_requests(struct drm_device *dev)
  1499. {
  1500. drm_i915_private_t *dev_priv = dev->dev_private;
  1501. uint32_t seqno;
  1502. if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
  1503. return;
  1504. seqno = i915_get_gem_seqno(dev);
  1505. while (!list_empty(&dev_priv->mm.request_list)) {
  1506. struct drm_i915_gem_request *request;
  1507. uint32_t retiring_seqno;
  1508. request = list_first_entry(&dev_priv->mm.request_list,
  1509. struct drm_i915_gem_request,
  1510. list);
  1511. retiring_seqno = request->seqno;
  1512. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1513. atomic_read(&dev_priv->mm.wedged)) {
  1514. i915_gem_retire_request(dev, request);
  1515. list_del(&request->list);
  1516. list_del(&request->client_list);
  1517. kfree(request);
  1518. } else
  1519. break;
  1520. }
  1521. if (unlikely (dev_priv->trace_irq_seqno &&
  1522. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1523. i915_user_irq_put(dev);
  1524. dev_priv->trace_irq_seqno = 0;
  1525. }
  1526. }
  1527. void
  1528. i915_gem_retire_work_handler(struct work_struct *work)
  1529. {
  1530. drm_i915_private_t *dev_priv;
  1531. struct drm_device *dev;
  1532. dev_priv = container_of(work, drm_i915_private_t,
  1533. mm.retire_work.work);
  1534. dev = dev_priv->dev;
  1535. mutex_lock(&dev->struct_mutex);
  1536. i915_gem_retire_requests(dev);
  1537. if (!dev_priv->mm.suspended &&
  1538. !list_empty(&dev_priv->mm.request_list))
  1539. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1540. mutex_unlock(&dev->struct_mutex);
  1541. }
  1542. int
  1543. i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
  1544. {
  1545. drm_i915_private_t *dev_priv = dev->dev_private;
  1546. u32 ier;
  1547. int ret = 0;
  1548. BUG_ON(seqno == 0);
  1549. if (atomic_read(&dev_priv->mm.wedged))
  1550. return -EIO;
  1551. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1552. if (IS_IRONLAKE(dev))
  1553. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1554. else
  1555. ier = I915_READ(IER);
  1556. if (!ier) {
  1557. DRM_ERROR("something (likely vbetool) disabled "
  1558. "interrupts, re-enabling\n");
  1559. i915_driver_irq_preinstall(dev);
  1560. i915_driver_irq_postinstall(dev);
  1561. }
  1562. trace_i915_gem_request_wait_begin(dev, seqno);
  1563. dev_priv->mm.waiting_gem_seqno = seqno;
  1564. i915_user_irq_get(dev);
  1565. if (interruptible)
  1566. ret = wait_event_interruptible(dev_priv->irq_queue,
  1567. i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
  1568. atomic_read(&dev_priv->mm.wedged));
  1569. else
  1570. wait_event(dev_priv->irq_queue,
  1571. i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
  1572. atomic_read(&dev_priv->mm.wedged));
  1573. i915_user_irq_put(dev);
  1574. dev_priv->mm.waiting_gem_seqno = 0;
  1575. trace_i915_gem_request_wait_end(dev, seqno);
  1576. }
  1577. if (atomic_read(&dev_priv->mm.wedged))
  1578. ret = -EIO;
  1579. if (ret && ret != -ERESTARTSYS)
  1580. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1581. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1582. /* Directly dispatch request retiring. While we have the work queue
  1583. * to handle this, the waiter on a request often wants an associated
  1584. * buffer to have made it to the inactive list, and we would need
  1585. * a separate wait queue to handle that.
  1586. */
  1587. if (ret == 0)
  1588. i915_gem_retire_requests(dev);
  1589. return ret;
  1590. }
  1591. /**
  1592. * Waits for a sequence number to be signaled, and cleans up the
  1593. * request and object lists appropriately for that event.
  1594. */
  1595. static int
  1596. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1597. {
  1598. return i915_do_wait_request(dev, seqno, 1);
  1599. }
  1600. static void
  1601. i915_gem_flush(struct drm_device *dev,
  1602. uint32_t invalidate_domains,
  1603. uint32_t flush_domains)
  1604. {
  1605. drm_i915_private_t *dev_priv = dev->dev_private;
  1606. uint32_t cmd;
  1607. RING_LOCALS;
  1608. #if WATCH_EXEC
  1609. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1610. invalidate_domains, flush_domains);
  1611. #endif
  1612. trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
  1613. invalidate_domains, flush_domains);
  1614. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1615. drm_agp_chipset_flush(dev);
  1616. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1617. /*
  1618. * read/write caches:
  1619. *
  1620. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1621. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1622. * also flushed at 2d versus 3d pipeline switches.
  1623. *
  1624. * read-only caches:
  1625. *
  1626. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1627. * MI_READ_FLUSH is set, and is always flushed on 965.
  1628. *
  1629. * I915_GEM_DOMAIN_COMMAND may not exist?
  1630. *
  1631. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1632. * invalidated when MI_EXE_FLUSH is set.
  1633. *
  1634. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1635. * invalidated with every MI_FLUSH.
  1636. *
  1637. * TLBs:
  1638. *
  1639. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1640. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1641. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1642. * are flushed at any MI_FLUSH.
  1643. */
  1644. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1645. if ((invalidate_domains|flush_domains) &
  1646. I915_GEM_DOMAIN_RENDER)
  1647. cmd &= ~MI_NO_WRITE_FLUSH;
  1648. if (!IS_I965G(dev)) {
  1649. /*
  1650. * On the 965, the sampler cache always gets flushed
  1651. * and this bit is reserved.
  1652. */
  1653. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1654. cmd |= MI_READ_FLUSH;
  1655. }
  1656. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1657. cmd |= MI_EXE_FLUSH;
  1658. #if WATCH_EXEC
  1659. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1660. #endif
  1661. BEGIN_LP_RING(2);
  1662. OUT_RING(cmd);
  1663. OUT_RING(MI_NOOP);
  1664. ADVANCE_LP_RING();
  1665. }
  1666. }
  1667. /**
  1668. * Ensures that all rendering to the object has completed and the object is
  1669. * safe to unbind from the GTT or access from the CPU.
  1670. */
  1671. static int
  1672. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1673. {
  1674. struct drm_device *dev = obj->dev;
  1675. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1676. int ret;
  1677. /* This function only exists to support waiting for existing rendering,
  1678. * not for emitting required flushes.
  1679. */
  1680. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1681. /* If there is rendering queued on the buffer being evicted, wait for
  1682. * it.
  1683. */
  1684. if (obj_priv->active) {
  1685. #if WATCH_BUF
  1686. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1687. __func__, obj, obj_priv->last_rendering_seqno);
  1688. #endif
  1689. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1690. if (ret != 0)
  1691. return ret;
  1692. }
  1693. return 0;
  1694. }
  1695. /**
  1696. * Unbinds an object from the GTT aperture.
  1697. */
  1698. int
  1699. i915_gem_object_unbind(struct drm_gem_object *obj)
  1700. {
  1701. struct drm_device *dev = obj->dev;
  1702. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1703. int ret = 0;
  1704. #if WATCH_BUF
  1705. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1706. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1707. #endif
  1708. if (obj_priv->gtt_space == NULL)
  1709. return 0;
  1710. if (obj_priv->pin_count != 0) {
  1711. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1712. return -EINVAL;
  1713. }
  1714. /* blow away mappings if mapped through GTT */
  1715. i915_gem_release_mmap(obj);
  1716. /* Move the object to the CPU domain to ensure that
  1717. * any possible CPU writes while it's not in the GTT
  1718. * are flushed when we go to remap it. This will
  1719. * also ensure that all pending GPU writes are finished
  1720. * before we unbind.
  1721. */
  1722. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1723. if (ret) {
  1724. if (ret != -ERESTARTSYS)
  1725. DRM_ERROR("set_domain failed: %d\n", ret);
  1726. return ret;
  1727. }
  1728. BUG_ON(obj_priv->active);
  1729. /* release the fence reg _after_ flushing */
  1730. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1731. i915_gem_clear_fence_reg(obj);
  1732. if (obj_priv->agp_mem != NULL) {
  1733. drm_unbind_agp(obj_priv->agp_mem);
  1734. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1735. obj_priv->agp_mem = NULL;
  1736. }
  1737. i915_gem_object_put_pages(obj);
  1738. BUG_ON(obj_priv->pages_refcount);
  1739. if (obj_priv->gtt_space) {
  1740. atomic_dec(&dev->gtt_count);
  1741. atomic_sub(obj->size, &dev->gtt_memory);
  1742. drm_mm_put_block(obj_priv->gtt_space);
  1743. obj_priv->gtt_space = NULL;
  1744. }
  1745. /* Remove ourselves from the LRU list if present. */
  1746. if (!list_empty(&obj_priv->list))
  1747. list_del_init(&obj_priv->list);
  1748. if (i915_gem_object_is_purgeable(obj_priv))
  1749. i915_gem_object_truncate(obj);
  1750. trace_i915_gem_object_unbind(obj);
  1751. return 0;
  1752. }
  1753. static struct drm_gem_object *
  1754. i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
  1755. {
  1756. drm_i915_private_t *dev_priv = dev->dev_private;
  1757. struct drm_i915_gem_object *obj_priv;
  1758. struct drm_gem_object *best = NULL;
  1759. struct drm_gem_object *first = NULL;
  1760. /* Try to find the smallest clean object */
  1761. list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
  1762. struct drm_gem_object *obj = obj_priv->obj;
  1763. if (obj->size >= min_size) {
  1764. if ((!obj_priv->dirty ||
  1765. i915_gem_object_is_purgeable(obj_priv)) &&
  1766. (!best || obj->size < best->size)) {
  1767. best = obj;
  1768. if (best->size == min_size)
  1769. return best;
  1770. }
  1771. if (!first)
  1772. first = obj;
  1773. }
  1774. }
  1775. return best ? best : first;
  1776. }
  1777. static int
  1778. i915_gem_evict_everything(struct drm_device *dev)
  1779. {
  1780. drm_i915_private_t *dev_priv = dev->dev_private;
  1781. uint32_t seqno;
  1782. int ret;
  1783. bool lists_empty;
  1784. spin_lock(&dev_priv->mm.active_list_lock);
  1785. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1786. list_empty(&dev_priv->mm.flushing_list) &&
  1787. list_empty(&dev_priv->mm.active_list));
  1788. spin_unlock(&dev_priv->mm.active_list_lock);
  1789. if (lists_empty)
  1790. return -ENOSPC;
  1791. /* Flush everything (on to the inactive lists) and evict */
  1792. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1793. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  1794. if (seqno == 0)
  1795. return -ENOMEM;
  1796. ret = i915_wait_request(dev, seqno);
  1797. if (ret)
  1798. return ret;
  1799. ret = i915_gem_evict_from_inactive_list(dev);
  1800. if (ret)
  1801. return ret;
  1802. spin_lock(&dev_priv->mm.active_list_lock);
  1803. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1804. list_empty(&dev_priv->mm.flushing_list) &&
  1805. list_empty(&dev_priv->mm.active_list));
  1806. spin_unlock(&dev_priv->mm.active_list_lock);
  1807. BUG_ON(!lists_empty);
  1808. return 0;
  1809. }
  1810. static int
  1811. i915_gem_evict_something(struct drm_device *dev, int min_size)
  1812. {
  1813. drm_i915_private_t *dev_priv = dev->dev_private;
  1814. struct drm_gem_object *obj;
  1815. int ret;
  1816. for (;;) {
  1817. i915_gem_retire_requests(dev);
  1818. /* If there's an inactive buffer available now, grab it
  1819. * and be done.
  1820. */
  1821. obj = i915_gem_find_inactive_object(dev, min_size);
  1822. if (obj) {
  1823. struct drm_i915_gem_object *obj_priv;
  1824. #if WATCH_LRU
  1825. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1826. #endif
  1827. obj_priv = obj->driver_private;
  1828. BUG_ON(obj_priv->pin_count != 0);
  1829. BUG_ON(obj_priv->active);
  1830. /* Wait on the rendering and unbind the buffer. */
  1831. return i915_gem_object_unbind(obj);
  1832. }
  1833. /* If we didn't get anything, but the ring is still processing
  1834. * things, wait for the next to finish and hopefully leave us
  1835. * a buffer to evict.
  1836. */
  1837. if (!list_empty(&dev_priv->mm.request_list)) {
  1838. struct drm_i915_gem_request *request;
  1839. request = list_first_entry(&dev_priv->mm.request_list,
  1840. struct drm_i915_gem_request,
  1841. list);
  1842. ret = i915_wait_request(dev, request->seqno);
  1843. if (ret)
  1844. return ret;
  1845. continue;
  1846. }
  1847. /* If we didn't have anything on the request list but there
  1848. * are buffers awaiting a flush, emit one and try again.
  1849. * When we wait on it, those buffers waiting for that flush
  1850. * will get moved to inactive.
  1851. */
  1852. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1853. struct drm_i915_gem_object *obj_priv;
  1854. /* Find an object that we can immediately reuse */
  1855. list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
  1856. obj = obj_priv->obj;
  1857. if (obj->size >= min_size)
  1858. break;
  1859. obj = NULL;
  1860. }
  1861. if (obj != NULL) {
  1862. uint32_t seqno;
  1863. i915_gem_flush(dev,
  1864. obj->write_domain,
  1865. obj->write_domain);
  1866. seqno = i915_add_request(dev, NULL, obj->write_domain);
  1867. if (seqno == 0)
  1868. return -ENOMEM;
  1869. ret = i915_wait_request(dev, seqno);
  1870. if (ret)
  1871. return ret;
  1872. continue;
  1873. }
  1874. }
  1875. /* If we didn't do any of the above, there's no single buffer
  1876. * large enough to swap out for the new one, so just evict
  1877. * everything and start again. (This should be rare.)
  1878. */
  1879. if (!list_empty (&dev_priv->mm.inactive_list))
  1880. return i915_gem_evict_from_inactive_list(dev);
  1881. else
  1882. return i915_gem_evict_everything(dev);
  1883. }
  1884. }
  1885. int
  1886. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1887. {
  1888. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1889. int page_count, i;
  1890. struct address_space *mapping;
  1891. struct inode *inode;
  1892. struct page *page;
  1893. int ret;
  1894. if (obj_priv->pages_refcount++ != 0)
  1895. return 0;
  1896. /* Get the list of pages out of our struct file. They'll be pinned
  1897. * at this point until we release them.
  1898. */
  1899. page_count = obj->size / PAGE_SIZE;
  1900. BUG_ON(obj_priv->pages != NULL);
  1901. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1902. if (obj_priv->pages == NULL) {
  1903. obj_priv->pages_refcount--;
  1904. return -ENOMEM;
  1905. }
  1906. inode = obj->filp->f_path.dentry->d_inode;
  1907. mapping = inode->i_mapping;
  1908. for (i = 0; i < page_count; i++) {
  1909. page = read_mapping_page(mapping, i, NULL);
  1910. if (IS_ERR(page)) {
  1911. ret = PTR_ERR(page);
  1912. i915_gem_object_put_pages(obj);
  1913. return ret;
  1914. }
  1915. obj_priv->pages[i] = page;
  1916. }
  1917. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1918. i915_gem_object_do_bit_17_swizzle(obj);
  1919. return 0;
  1920. }
  1921. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1922. {
  1923. struct drm_gem_object *obj = reg->obj;
  1924. struct drm_device *dev = obj->dev;
  1925. drm_i915_private_t *dev_priv = dev->dev_private;
  1926. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1927. int regnum = obj_priv->fence_reg;
  1928. uint64_t val;
  1929. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1930. 0xfffff000) << 32;
  1931. val |= obj_priv->gtt_offset & 0xfffff000;
  1932. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1933. if (obj_priv->tiling_mode == I915_TILING_Y)
  1934. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1935. val |= I965_FENCE_REG_VALID;
  1936. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1937. }
  1938. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1939. {
  1940. struct drm_gem_object *obj = reg->obj;
  1941. struct drm_device *dev = obj->dev;
  1942. drm_i915_private_t *dev_priv = dev->dev_private;
  1943. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1944. int regnum = obj_priv->fence_reg;
  1945. int tile_width;
  1946. uint32_t fence_reg, val;
  1947. uint32_t pitch_val;
  1948. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1949. (obj_priv->gtt_offset & (obj->size - 1))) {
  1950. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1951. __func__, obj_priv->gtt_offset, obj->size);
  1952. return;
  1953. }
  1954. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1955. HAS_128_BYTE_Y_TILING(dev))
  1956. tile_width = 128;
  1957. else
  1958. tile_width = 512;
  1959. /* Note: pitch better be a power of two tile widths */
  1960. pitch_val = obj_priv->stride / tile_width;
  1961. pitch_val = ffs(pitch_val) - 1;
  1962. val = obj_priv->gtt_offset;
  1963. if (obj_priv->tiling_mode == I915_TILING_Y)
  1964. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1965. val |= I915_FENCE_SIZE_BITS(obj->size);
  1966. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1967. val |= I830_FENCE_REG_VALID;
  1968. if (regnum < 8)
  1969. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1970. else
  1971. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1972. I915_WRITE(fence_reg, val);
  1973. }
  1974. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1975. {
  1976. struct drm_gem_object *obj = reg->obj;
  1977. struct drm_device *dev = obj->dev;
  1978. drm_i915_private_t *dev_priv = dev->dev_private;
  1979. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1980. int regnum = obj_priv->fence_reg;
  1981. uint32_t val;
  1982. uint32_t pitch_val;
  1983. uint32_t fence_size_bits;
  1984. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1985. (obj_priv->gtt_offset & (obj->size - 1))) {
  1986. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1987. __func__, obj_priv->gtt_offset);
  1988. return;
  1989. }
  1990. pitch_val = obj_priv->stride / 128;
  1991. pitch_val = ffs(pitch_val) - 1;
  1992. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1993. val = obj_priv->gtt_offset;
  1994. if (obj_priv->tiling_mode == I915_TILING_Y)
  1995. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1996. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1997. WARN_ON(fence_size_bits & ~0x00000f00);
  1998. val |= fence_size_bits;
  1999. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2000. val |= I830_FENCE_REG_VALID;
  2001. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2002. }
  2003. /**
  2004. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2005. * @obj: object to map through a fence reg
  2006. *
  2007. * When mapping objects through the GTT, userspace wants to be able to write
  2008. * to them without having to worry about swizzling if the object is tiled.
  2009. *
  2010. * This function walks the fence regs looking for a free one for @obj,
  2011. * stealing one if it can't find any.
  2012. *
  2013. * It then sets up the reg based on the object's properties: address, pitch
  2014. * and tiling format.
  2015. */
  2016. int
  2017. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  2018. {
  2019. struct drm_device *dev = obj->dev;
  2020. struct drm_i915_private *dev_priv = dev->dev_private;
  2021. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2022. struct drm_i915_fence_reg *reg = NULL;
  2023. struct drm_i915_gem_object *old_obj_priv = NULL;
  2024. int i, ret, avail;
  2025. /* Just update our place in the LRU if our fence is getting used. */
  2026. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2027. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2028. return 0;
  2029. }
  2030. switch (obj_priv->tiling_mode) {
  2031. case I915_TILING_NONE:
  2032. WARN(1, "allocating a fence for non-tiled object?\n");
  2033. break;
  2034. case I915_TILING_X:
  2035. if (!obj_priv->stride)
  2036. return -EINVAL;
  2037. WARN((obj_priv->stride & (512 - 1)),
  2038. "object 0x%08x is X tiled but has non-512B pitch\n",
  2039. obj_priv->gtt_offset);
  2040. break;
  2041. case I915_TILING_Y:
  2042. if (!obj_priv->stride)
  2043. return -EINVAL;
  2044. WARN((obj_priv->stride & (128 - 1)),
  2045. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2046. obj_priv->gtt_offset);
  2047. break;
  2048. }
  2049. /* First try to find a free reg */
  2050. avail = 0;
  2051. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2052. reg = &dev_priv->fence_regs[i];
  2053. if (!reg->obj)
  2054. break;
  2055. old_obj_priv = reg->obj->driver_private;
  2056. if (!old_obj_priv->pin_count)
  2057. avail++;
  2058. }
  2059. /* None available, try to steal one or wait for a user to finish */
  2060. if (i == dev_priv->num_fence_regs) {
  2061. struct drm_gem_object *old_obj = NULL;
  2062. if (avail == 0)
  2063. return -ENOSPC;
  2064. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  2065. fence_list) {
  2066. old_obj = old_obj_priv->obj;
  2067. if (old_obj_priv->pin_count)
  2068. continue;
  2069. /* Take a reference, as otherwise the wait_rendering
  2070. * below may cause the object to get freed out from
  2071. * under us.
  2072. */
  2073. drm_gem_object_reference(old_obj);
  2074. /* i915 uses fences for GPU access to tiled buffers */
  2075. if (IS_I965G(dev) || !old_obj_priv->active)
  2076. break;
  2077. /* This brings the object to the head of the LRU if it
  2078. * had been written to. The only way this should
  2079. * result in us waiting longer than the expected
  2080. * optimal amount of time is if there was a
  2081. * fence-using buffer later that was read-only.
  2082. */
  2083. i915_gem_object_flush_gpu_write_domain(old_obj);
  2084. ret = i915_gem_object_wait_rendering(old_obj);
  2085. if (ret != 0) {
  2086. drm_gem_object_unreference(old_obj);
  2087. return ret;
  2088. }
  2089. break;
  2090. }
  2091. /*
  2092. * Zap this virtual mapping so we can set up a fence again
  2093. * for this object next time we need it.
  2094. */
  2095. i915_gem_release_mmap(old_obj);
  2096. i = old_obj_priv->fence_reg;
  2097. reg = &dev_priv->fence_regs[i];
  2098. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2099. list_del_init(&old_obj_priv->fence_list);
  2100. drm_gem_object_unreference(old_obj);
  2101. }
  2102. obj_priv->fence_reg = i;
  2103. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  2104. reg->obj = obj;
  2105. if (IS_I965G(dev))
  2106. i965_write_fence_reg(reg);
  2107. else if (IS_I9XX(dev))
  2108. i915_write_fence_reg(reg);
  2109. else
  2110. i830_write_fence_reg(reg);
  2111. trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
  2112. return 0;
  2113. }
  2114. /**
  2115. * i915_gem_clear_fence_reg - clear out fence register info
  2116. * @obj: object to clear
  2117. *
  2118. * Zeroes out the fence register itself and clears out the associated
  2119. * data structures in dev_priv and obj_priv.
  2120. */
  2121. static void
  2122. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2123. {
  2124. struct drm_device *dev = obj->dev;
  2125. drm_i915_private_t *dev_priv = dev->dev_private;
  2126. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2127. if (IS_I965G(dev))
  2128. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2129. else {
  2130. uint32_t fence_reg;
  2131. if (obj_priv->fence_reg < 8)
  2132. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2133. else
  2134. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2135. 8) * 4;
  2136. I915_WRITE(fence_reg, 0);
  2137. }
  2138. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2139. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2140. list_del_init(&obj_priv->fence_list);
  2141. }
  2142. /**
  2143. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2144. * to the buffer to finish, and then resets the fence register.
  2145. * @obj: tiled object holding a fence register.
  2146. *
  2147. * Zeroes out the fence register itself and clears out the associated
  2148. * data structures in dev_priv and obj_priv.
  2149. */
  2150. int
  2151. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2152. {
  2153. struct drm_device *dev = obj->dev;
  2154. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2155. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2156. return 0;
  2157. /* On the i915, GPU access to tiled buffers is via a fence,
  2158. * therefore we must wait for any outstanding access to complete
  2159. * before clearing the fence.
  2160. */
  2161. if (!IS_I965G(dev)) {
  2162. int ret;
  2163. i915_gem_object_flush_gpu_write_domain(obj);
  2164. i915_gem_object_flush_gtt_write_domain(obj);
  2165. ret = i915_gem_object_wait_rendering(obj);
  2166. if (ret != 0)
  2167. return ret;
  2168. }
  2169. i915_gem_clear_fence_reg (obj);
  2170. return 0;
  2171. }
  2172. /**
  2173. * Finds free space in the GTT aperture and binds the object there.
  2174. */
  2175. static int
  2176. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2177. {
  2178. struct drm_device *dev = obj->dev;
  2179. drm_i915_private_t *dev_priv = dev->dev_private;
  2180. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2181. struct drm_mm_node *free_space;
  2182. bool retry_alloc = false;
  2183. int ret;
  2184. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2185. DRM_ERROR("Attempting to bind a purgeable object\n");
  2186. return -EINVAL;
  2187. }
  2188. if (alignment == 0)
  2189. alignment = i915_gem_get_gtt_alignment(obj);
  2190. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2191. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2192. return -EINVAL;
  2193. }
  2194. search_free:
  2195. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2196. obj->size, alignment, 0);
  2197. if (free_space != NULL) {
  2198. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2199. alignment);
  2200. if (obj_priv->gtt_space != NULL) {
  2201. obj_priv->gtt_space->private = obj;
  2202. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2203. }
  2204. }
  2205. if (obj_priv->gtt_space == NULL) {
  2206. /* If the gtt is empty and we're still having trouble
  2207. * fitting our object in, we're out of memory.
  2208. */
  2209. #if WATCH_LRU
  2210. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2211. #endif
  2212. ret = i915_gem_evict_something(dev, obj->size);
  2213. if (ret)
  2214. return ret;
  2215. goto search_free;
  2216. }
  2217. #if WATCH_BUF
  2218. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2219. obj->size, obj_priv->gtt_offset);
  2220. #endif
  2221. if (retry_alloc) {
  2222. i915_gem_object_set_page_gfp_mask (obj,
  2223. i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
  2224. }
  2225. ret = i915_gem_object_get_pages(obj);
  2226. if (retry_alloc) {
  2227. i915_gem_object_set_page_gfp_mask (obj,
  2228. i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
  2229. }
  2230. if (ret) {
  2231. drm_mm_put_block(obj_priv->gtt_space);
  2232. obj_priv->gtt_space = NULL;
  2233. if (ret == -ENOMEM) {
  2234. /* first try to clear up some space from the GTT */
  2235. ret = i915_gem_evict_something(dev, obj->size);
  2236. if (ret) {
  2237. /* now try to shrink everyone else */
  2238. if (! retry_alloc) {
  2239. retry_alloc = true;
  2240. goto search_free;
  2241. }
  2242. return ret;
  2243. }
  2244. goto search_free;
  2245. }
  2246. return ret;
  2247. }
  2248. /* Create an AGP memory structure pointing at our pages, and bind it
  2249. * into the GTT.
  2250. */
  2251. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2252. obj_priv->pages,
  2253. obj->size >> PAGE_SHIFT,
  2254. obj_priv->gtt_offset,
  2255. obj_priv->agp_type);
  2256. if (obj_priv->agp_mem == NULL) {
  2257. i915_gem_object_put_pages(obj);
  2258. drm_mm_put_block(obj_priv->gtt_space);
  2259. obj_priv->gtt_space = NULL;
  2260. ret = i915_gem_evict_something(dev, obj->size);
  2261. if (ret)
  2262. return ret;
  2263. goto search_free;
  2264. }
  2265. atomic_inc(&dev->gtt_count);
  2266. atomic_add(obj->size, &dev->gtt_memory);
  2267. /* Assert that the object is not currently in any GPU domain. As it
  2268. * wasn't in the GTT, there shouldn't be any way it could have been in
  2269. * a GPU cache
  2270. */
  2271. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2272. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2273. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2274. return 0;
  2275. }
  2276. void
  2277. i915_gem_clflush_object(struct drm_gem_object *obj)
  2278. {
  2279. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2280. /* If we don't have a page list set up, then we're not pinned
  2281. * to GPU, and we can ignore the cache flush because it'll happen
  2282. * again at bind time.
  2283. */
  2284. if (obj_priv->pages == NULL)
  2285. return;
  2286. trace_i915_gem_object_clflush(obj);
  2287. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2288. }
  2289. /** Flushes any GPU write domain for the object if it's dirty. */
  2290. static void
  2291. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2292. {
  2293. struct drm_device *dev = obj->dev;
  2294. uint32_t seqno;
  2295. uint32_t old_write_domain;
  2296. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2297. return;
  2298. /* Queue the GPU write cache flushing we need. */
  2299. old_write_domain = obj->write_domain;
  2300. i915_gem_flush(dev, 0, obj->write_domain);
  2301. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2302. obj->write_domain = 0;
  2303. i915_gem_object_move_to_active(obj, seqno);
  2304. trace_i915_gem_object_change_domain(obj,
  2305. obj->read_domains,
  2306. old_write_domain);
  2307. }
  2308. /** Flushes the GTT write domain for the object if it's dirty. */
  2309. static void
  2310. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2311. {
  2312. uint32_t old_write_domain;
  2313. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2314. return;
  2315. /* No actual flushing is required for the GTT write domain. Writes
  2316. * to it immediately go to main memory as far as we know, so there's
  2317. * no chipset flush. It also doesn't land in render cache.
  2318. */
  2319. old_write_domain = obj->write_domain;
  2320. obj->write_domain = 0;
  2321. trace_i915_gem_object_change_domain(obj,
  2322. obj->read_domains,
  2323. old_write_domain);
  2324. }
  2325. /** Flushes the CPU write domain for the object if it's dirty. */
  2326. static void
  2327. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2328. {
  2329. struct drm_device *dev = obj->dev;
  2330. uint32_t old_write_domain;
  2331. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2332. return;
  2333. i915_gem_clflush_object(obj);
  2334. drm_agp_chipset_flush(dev);
  2335. old_write_domain = obj->write_domain;
  2336. obj->write_domain = 0;
  2337. trace_i915_gem_object_change_domain(obj,
  2338. obj->read_domains,
  2339. old_write_domain);
  2340. }
  2341. void
  2342. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2343. {
  2344. switch (obj->write_domain) {
  2345. case I915_GEM_DOMAIN_GTT:
  2346. i915_gem_object_flush_gtt_write_domain(obj);
  2347. break;
  2348. case I915_GEM_DOMAIN_CPU:
  2349. i915_gem_object_flush_cpu_write_domain(obj);
  2350. break;
  2351. default:
  2352. i915_gem_object_flush_gpu_write_domain(obj);
  2353. break;
  2354. }
  2355. }
  2356. /**
  2357. * Moves a single object to the GTT read, and possibly write domain.
  2358. *
  2359. * This function returns when the move is complete, including waiting on
  2360. * flushes to occur.
  2361. */
  2362. int
  2363. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2364. {
  2365. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2366. uint32_t old_write_domain, old_read_domains;
  2367. int ret;
  2368. /* Not valid to be called on unbound objects. */
  2369. if (obj_priv->gtt_space == NULL)
  2370. return -EINVAL;
  2371. i915_gem_object_flush_gpu_write_domain(obj);
  2372. /* Wait on any GPU rendering and flushing to occur. */
  2373. ret = i915_gem_object_wait_rendering(obj);
  2374. if (ret != 0)
  2375. return ret;
  2376. old_write_domain = obj->write_domain;
  2377. old_read_domains = obj->read_domains;
  2378. /* If we're writing through the GTT domain, then CPU and GPU caches
  2379. * will need to be invalidated at next use.
  2380. */
  2381. if (write)
  2382. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2383. i915_gem_object_flush_cpu_write_domain(obj);
  2384. /* It should now be out of any other write domains, and we can update
  2385. * the domain values for our changes.
  2386. */
  2387. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2388. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2389. if (write) {
  2390. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2391. obj_priv->dirty = 1;
  2392. }
  2393. trace_i915_gem_object_change_domain(obj,
  2394. old_read_domains,
  2395. old_write_domain);
  2396. return 0;
  2397. }
  2398. /**
  2399. * Moves a single object to the CPU read, and possibly write domain.
  2400. *
  2401. * This function returns when the move is complete, including waiting on
  2402. * flushes to occur.
  2403. */
  2404. static int
  2405. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2406. {
  2407. uint32_t old_write_domain, old_read_domains;
  2408. int ret;
  2409. i915_gem_object_flush_gpu_write_domain(obj);
  2410. /* Wait on any GPU rendering and flushing to occur. */
  2411. ret = i915_gem_object_wait_rendering(obj);
  2412. if (ret != 0)
  2413. return ret;
  2414. i915_gem_object_flush_gtt_write_domain(obj);
  2415. /* If we have a partially-valid cache of the object in the CPU,
  2416. * finish invalidating it and free the per-page flags.
  2417. */
  2418. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2419. old_write_domain = obj->write_domain;
  2420. old_read_domains = obj->read_domains;
  2421. /* Flush the CPU cache if it's still invalid. */
  2422. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2423. i915_gem_clflush_object(obj);
  2424. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2425. }
  2426. /* It should now be out of any other write domains, and we can update
  2427. * the domain values for our changes.
  2428. */
  2429. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2430. /* If we're writing through the CPU, then the GPU read domains will
  2431. * need to be invalidated at next use.
  2432. */
  2433. if (write) {
  2434. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2435. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2436. }
  2437. trace_i915_gem_object_change_domain(obj,
  2438. old_read_domains,
  2439. old_write_domain);
  2440. return 0;
  2441. }
  2442. /*
  2443. * Set the next domain for the specified object. This
  2444. * may not actually perform the necessary flushing/invaliding though,
  2445. * as that may want to be batched with other set_domain operations
  2446. *
  2447. * This is (we hope) the only really tricky part of gem. The goal
  2448. * is fairly simple -- track which caches hold bits of the object
  2449. * and make sure they remain coherent. A few concrete examples may
  2450. * help to explain how it works. For shorthand, we use the notation
  2451. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2452. * a pair of read and write domain masks.
  2453. *
  2454. * Case 1: the batch buffer
  2455. *
  2456. * 1. Allocated
  2457. * 2. Written by CPU
  2458. * 3. Mapped to GTT
  2459. * 4. Read by GPU
  2460. * 5. Unmapped from GTT
  2461. * 6. Freed
  2462. *
  2463. * Let's take these a step at a time
  2464. *
  2465. * 1. Allocated
  2466. * Pages allocated from the kernel may still have
  2467. * cache contents, so we set them to (CPU, CPU) always.
  2468. * 2. Written by CPU (using pwrite)
  2469. * The pwrite function calls set_domain (CPU, CPU) and
  2470. * this function does nothing (as nothing changes)
  2471. * 3. Mapped by GTT
  2472. * This function asserts that the object is not
  2473. * currently in any GPU-based read or write domains
  2474. * 4. Read by GPU
  2475. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2476. * As write_domain is zero, this function adds in the
  2477. * current read domains (CPU+COMMAND, 0).
  2478. * flush_domains is set to CPU.
  2479. * invalidate_domains is set to COMMAND
  2480. * clflush is run to get data out of the CPU caches
  2481. * then i915_dev_set_domain calls i915_gem_flush to
  2482. * emit an MI_FLUSH and drm_agp_chipset_flush
  2483. * 5. Unmapped from GTT
  2484. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2485. * flush_domains and invalidate_domains end up both zero
  2486. * so no flushing/invalidating happens
  2487. * 6. Freed
  2488. * yay, done
  2489. *
  2490. * Case 2: The shared render buffer
  2491. *
  2492. * 1. Allocated
  2493. * 2. Mapped to GTT
  2494. * 3. Read/written by GPU
  2495. * 4. set_domain to (CPU,CPU)
  2496. * 5. Read/written by CPU
  2497. * 6. Read/written by GPU
  2498. *
  2499. * 1. Allocated
  2500. * Same as last example, (CPU, CPU)
  2501. * 2. Mapped to GTT
  2502. * Nothing changes (assertions find that it is not in the GPU)
  2503. * 3. Read/written by GPU
  2504. * execbuffer calls set_domain (RENDER, RENDER)
  2505. * flush_domains gets CPU
  2506. * invalidate_domains gets GPU
  2507. * clflush (obj)
  2508. * MI_FLUSH and drm_agp_chipset_flush
  2509. * 4. set_domain (CPU, CPU)
  2510. * flush_domains gets GPU
  2511. * invalidate_domains gets CPU
  2512. * wait_rendering (obj) to make sure all drawing is complete.
  2513. * This will include an MI_FLUSH to get the data from GPU
  2514. * to memory
  2515. * clflush (obj) to invalidate the CPU cache
  2516. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2517. * 5. Read/written by CPU
  2518. * cache lines are loaded and dirtied
  2519. * 6. Read written by GPU
  2520. * Same as last GPU access
  2521. *
  2522. * Case 3: The constant buffer
  2523. *
  2524. * 1. Allocated
  2525. * 2. Written by CPU
  2526. * 3. Read by GPU
  2527. * 4. Updated (written) by CPU again
  2528. * 5. Read by GPU
  2529. *
  2530. * 1. Allocated
  2531. * (CPU, CPU)
  2532. * 2. Written by CPU
  2533. * (CPU, CPU)
  2534. * 3. Read by GPU
  2535. * (CPU+RENDER, 0)
  2536. * flush_domains = CPU
  2537. * invalidate_domains = RENDER
  2538. * clflush (obj)
  2539. * MI_FLUSH
  2540. * drm_agp_chipset_flush
  2541. * 4. Updated (written) by CPU again
  2542. * (CPU, CPU)
  2543. * flush_domains = 0 (no previous write domain)
  2544. * invalidate_domains = 0 (no new read domains)
  2545. * 5. Read by GPU
  2546. * (CPU+RENDER, 0)
  2547. * flush_domains = CPU
  2548. * invalidate_domains = RENDER
  2549. * clflush (obj)
  2550. * MI_FLUSH
  2551. * drm_agp_chipset_flush
  2552. */
  2553. static void
  2554. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2555. {
  2556. struct drm_device *dev = obj->dev;
  2557. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2558. uint32_t invalidate_domains = 0;
  2559. uint32_t flush_domains = 0;
  2560. uint32_t old_read_domains;
  2561. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2562. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2563. intel_mark_busy(dev, obj);
  2564. #if WATCH_BUF
  2565. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2566. __func__, obj,
  2567. obj->read_domains, obj->pending_read_domains,
  2568. obj->write_domain, obj->pending_write_domain);
  2569. #endif
  2570. /*
  2571. * If the object isn't moving to a new write domain,
  2572. * let the object stay in multiple read domains
  2573. */
  2574. if (obj->pending_write_domain == 0)
  2575. obj->pending_read_domains |= obj->read_domains;
  2576. else
  2577. obj_priv->dirty = 1;
  2578. /*
  2579. * Flush the current write domain if
  2580. * the new read domains don't match. Invalidate
  2581. * any read domains which differ from the old
  2582. * write domain
  2583. */
  2584. if (obj->write_domain &&
  2585. obj->write_domain != obj->pending_read_domains) {
  2586. flush_domains |= obj->write_domain;
  2587. invalidate_domains |=
  2588. obj->pending_read_domains & ~obj->write_domain;
  2589. }
  2590. /*
  2591. * Invalidate any read caches which may have
  2592. * stale data. That is, any new read domains.
  2593. */
  2594. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2595. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2596. #if WATCH_BUF
  2597. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2598. __func__, flush_domains, invalidate_domains);
  2599. #endif
  2600. i915_gem_clflush_object(obj);
  2601. }
  2602. old_read_domains = obj->read_domains;
  2603. /* The actual obj->write_domain will be updated with
  2604. * pending_write_domain after we emit the accumulated flush for all
  2605. * of our domain changes in execbuffers (which clears objects'
  2606. * write_domains). So if we have a current write domain that we
  2607. * aren't changing, set pending_write_domain to that.
  2608. */
  2609. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2610. obj->pending_write_domain = obj->write_domain;
  2611. obj->read_domains = obj->pending_read_domains;
  2612. dev->invalidate_domains |= invalidate_domains;
  2613. dev->flush_domains |= flush_domains;
  2614. #if WATCH_BUF
  2615. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2616. __func__,
  2617. obj->read_domains, obj->write_domain,
  2618. dev->invalidate_domains, dev->flush_domains);
  2619. #endif
  2620. trace_i915_gem_object_change_domain(obj,
  2621. old_read_domains,
  2622. obj->write_domain);
  2623. }
  2624. /**
  2625. * Moves the object from a partially CPU read to a full one.
  2626. *
  2627. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2628. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2629. */
  2630. static void
  2631. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2632. {
  2633. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2634. if (!obj_priv->page_cpu_valid)
  2635. return;
  2636. /* If we're partially in the CPU read domain, finish moving it in.
  2637. */
  2638. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2639. int i;
  2640. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2641. if (obj_priv->page_cpu_valid[i])
  2642. continue;
  2643. drm_clflush_pages(obj_priv->pages + i, 1);
  2644. }
  2645. }
  2646. /* Free the page_cpu_valid mappings which are now stale, whether
  2647. * or not we've got I915_GEM_DOMAIN_CPU.
  2648. */
  2649. kfree(obj_priv->page_cpu_valid);
  2650. obj_priv->page_cpu_valid = NULL;
  2651. }
  2652. /**
  2653. * Set the CPU read domain on a range of the object.
  2654. *
  2655. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2656. * not entirely valid. The page_cpu_valid member of the object flags which
  2657. * pages have been flushed, and will be respected by
  2658. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2659. * of the whole object.
  2660. *
  2661. * This function returns when the move is complete, including waiting on
  2662. * flushes to occur.
  2663. */
  2664. static int
  2665. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2666. uint64_t offset, uint64_t size)
  2667. {
  2668. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2669. uint32_t old_read_domains;
  2670. int i, ret;
  2671. if (offset == 0 && size == obj->size)
  2672. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2673. i915_gem_object_flush_gpu_write_domain(obj);
  2674. /* Wait on any GPU rendering and flushing to occur. */
  2675. ret = i915_gem_object_wait_rendering(obj);
  2676. if (ret != 0)
  2677. return ret;
  2678. i915_gem_object_flush_gtt_write_domain(obj);
  2679. /* If we're already fully in the CPU read domain, we're done. */
  2680. if (obj_priv->page_cpu_valid == NULL &&
  2681. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2682. return 0;
  2683. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2684. * newly adding I915_GEM_DOMAIN_CPU
  2685. */
  2686. if (obj_priv->page_cpu_valid == NULL) {
  2687. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2688. GFP_KERNEL);
  2689. if (obj_priv->page_cpu_valid == NULL)
  2690. return -ENOMEM;
  2691. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2692. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2693. /* Flush the cache on any pages that are still invalid from the CPU's
  2694. * perspective.
  2695. */
  2696. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2697. i++) {
  2698. if (obj_priv->page_cpu_valid[i])
  2699. continue;
  2700. drm_clflush_pages(obj_priv->pages + i, 1);
  2701. obj_priv->page_cpu_valid[i] = 1;
  2702. }
  2703. /* It should now be out of any other write domains, and we can update
  2704. * the domain values for our changes.
  2705. */
  2706. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2707. old_read_domains = obj->read_domains;
  2708. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2709. trace_i915_gem_object_change_domain(obj,
  2710. old_read_domains,
  2711. obj->write_domain);
  2712. return 0;
  2713. }
  2714. /**
  2715. * Pin an object to the GTT and evaluate the relocations landing in it.
  2716. */
  2717. static int
  2718. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2719. struct drm_file *file_priv,
  2720. struct drm_i915_gem_exec_object2 *entry,
  2721. struct drm_i915_gem_relocation_entry *relocs)
  2722. {
  2723. struct drm_device *dev = obj->dev;
  2724. drm_i915_private_t *dev_priv = dev->dev_private;
  2725. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2726. int i, ret;
  2727. void __iomem *reloc_page;
  2728. bool need_fence;
  2729. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2730. obj_priv->tiling_mode != I915_TILING_NONE;
  2731. /* Check fence reg constraints and rebind if necessary */
  2732. if (need_fence && !i915_obj_fenceable(dev, obj))
  2733. i915_gem_object_unbind(obj);
  2734. /* Choose the GTT offset for our buffer and put it there. */
  2735. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2736. if (ret)
  2737. return ret;
  2738. /*
  2739. * Pre-965 chips need a fence register set up in order to
  2740. * properly handle blits to/from tiled surfaces.
  2741. */
  2742. if (need_fence) {
  2743. ret = i915_gem_object_get_fence_reg(obj);
  2744. if (ret != 0) {
  2745. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2746. DRM_ERROR("Failure to install fence: %d\n",
  2747. ret);
  2748. i915_gem_object_unpin(obj);
  2749. return ret;
  2750. }
  2751. }
  2752. entry->offset = obj_priv->gtt_offset;
  2753. /* Apply the relocations, using the GTT aperture to avoid cache
  2754. * flushing requirements.
  2755. */
  2756. for (i = 0; i < entry->relocation_count; i++) {
  2757. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2758. struct drm_gem_object *target_obj;
  2759. struct drm_i915_gem_object *target_obj_priv;
  2760. uint32_t reloc_val, reloc_offset;
  2761. uint32_t __iomem *reloc_entry;
  2762. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2763. reloc->target_handle);
  2764. if (target_obj == NULL) {
  2765. i915_gem_object_unpin(obj);
  2766. return -EBADF;
  2767. }
  2768. target_obj_priv = target_obj->driver_private;
  2769. #if WATCH_RELOC
  2770. DRM_INFO("%s: obj %p offset %08x target %d "
  2771. "read %08x write %08x gtt %08x "
  2772. "presumed %08x delta %08x\n",
  2773. __func__,
  2774. obj,
  2775. (int) reloc->offset,
  2776. (int) reloc->target_handle,
  2777. (int) reloc->read_domains,
  2778. (int) reloc->write_domain,
  2779. (int) target_obj_priv->gtt_offset,
  2780. (int) reloc->presumed_offset,
  2781. reloc->delta);
  2782. #endif
  2783. /* The target buffer should have appeared before us in the
  2784. * exec_object list, so it should have a GTT space bound by now.
  2785. */
  2786. if (target_obj_priv->gtt_space == NULL) {
  2787. DRM_ERROR("No GTT space found for object %d\n",
  2788. reloc->target_handle);
  2789. drm_gem_object_unreference(target_obj);
  2790. i915_gem_object_unpin(obj);
  2791. return -EINVAL;
  2792. }
  2793. /* Validate that the target is in a valid r/w GPU domain */
  2794. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2795. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2796. DRM_ERROR("reloc with read/write CPU domains: "
  2797. "obj %p target %d offset %d "
  2798. "read %08x write %08x",
  2799. obj, reloc->target_handle,
  2800. (int) reloc->offset,
  2801. reloc->read_domains,
  2802. reloc->write_domain);
  2803. drm_gem_object_unreference(target_obj);
  2804. i915_gem_object_unpin(obj);
  2805. return -EINVAL;
  2806. }
  2807. if (reloc->write_domain && target_obj->pending_write_domain &&
  2808. reloc->write_domain != target_obj->pending_write_domain) {
  2809. DRM_ERROR("Write domain conflict: "
  2810. "obj %p target %d offset %d "
  2811. "new %08x old %08x\n",
  2812. obj, reloc->target_handle,
  2813. (int) reloc->offset,
  2814. reloc->write_domain,
  2815. target_obj->pending_write_domain);
  2816. drm_gem_object_unreference(target_obj);
  2817. i915_gem_object_unpin(obj);
  2818. return -EINVAL;
  2819. }
  2820. target_obj->pending_read_domains |= reloc->read_domains;
  2821. target_obj->pending_write_domain |= reloc->write_domain;
  2822. /* If the relocation already has the right value in it, no
  2823. * more work needs to be done.
  2824. */
  2825. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2826. drm_gem_object_unreference(target_obj);
  2827. continue;
  2828. }
  2829. /* Check that the relocation address is valid... */
  2830. if (reloc->offset > obj->size - 4) {
  2831. DRM_ERROR("Relocation beyond object bounds: "
  2832. "obj %p target %d offset %d size %d.\n",
  2833. obj, reloc->target_handle,
  2834. (int) reloc->offset, (int) obj->size);
  2835. drm_gem_object_unreference(target_obj);
  2836. i915_gem_object_unpin(obj);
  2837. return -EINVAL;
  2838. }
  2839. if (reloc->offset & 3) {
  2840. DRM_ERROR("Relocation not 4-byte aligned: "
  2841. "obj %p target %d offset %d.\n",
  2842. obj, reloc->target_handle,
  2843. (int) reloc->offset);
  2844. drm_gem_object_unreference(target_obj);
  2845. i915_gem_object_unpin(obj);
  2846. return -EINVAL;
  2847. }
  2848. /* and points to somewhere within the target object. */
  2849. if (reloc->delta >= target_obj->size) {
  2850. DRM_ERROR("Relocation beyond target object bounds: "
  2851. "obj %p target %d delta %d size %d.\n",
  2852. obj, reloc->target_handle,
  2853. (int) reloc->delta, (int) target_obj->size);
  2854. drm_gem_object_unreference(target_obj);
  2855. i915_gem_object_unpin(obj);
  2856. return -EINVAL;
  2857. }
  2858. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2859. if (ret != 0) {
  2860. drm_gem_object_unreference(target_obj);
  2861. i915_gem_object_unpin(obj);
  2862. return -EINVAL;
  2863. }
  2864. /* Map the page containing the relocation we're going to
  2865. * perform.
  2866. */
  2867. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2868. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2869. (reloc_offset &
  2870. ~(PAGE_SIZE - 1)));
  2871. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2872. (reloc_offset & (PAGE_SIZE - 1)));
  2873. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2874. #if WATCH_BUF
  2875. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2876. obj, (unsigned int) reloc->offset,
  2877. readl(reloc_entry), reloc_val);
  2878. #endif
  2879. writel(reloc_val, reloc_entry);
  2880. io_mapping_unmap_atomic(reloc_page);
  2881. /* The updated presumed offset for this entry will be
  2882. * copied back out to the user.
  2883. */
  2884. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2885. drm_gem_object_unreference(target_obj);
  2886. }
  2887. #if WATCH_BUF
  2888. if (0)
  2889. i915_gem_dump_object(obj, 128, __func__, ~0);
  2890. #endif
  2891. return 0;
  2892. }
  2893. /** Dispatch a batchbuffer to the ring
  2894. */
  2895. static int
  2896. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2897. struct drm_i915_gem_execbuffer2 *exec,
  2898. struct drm_clip_rect *cliprects,
  2899. uint64_t exec_offset)
  2900. {
  2901. drm_i915_private_t *dev_priv = dev->dev_private;
  2902. int nbox = exec->num_cliprects;
  2903. int i = 0, count;
  2904. uint32_t exec_start, exec_len;
  2905. RING_LOCALS;
  2906. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2907. exec_len = (uint32_t) exec->batch_len;
  2908. trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
  2909. count = nbox ? nbox : 1;
  2910. for (i = 0; i < count; i++) {
  2911. if (i < nbox) {
  2912. int ret = i915_emit_box(dev, cliprects, i,
  2913. exec->DR1, exec->DR4);
  2914. if (ret)
  2915. return ret;
  2916. }
  2917. if (IS_I830(dev) || IS_845G(dev)) {
  2918. BEGIN_LP_RING(4);
  2919. OUT_RING(MI_BATCH_BUFFER);
  2920. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2921. OUT_RING(exec_start + exec_len - 4);
  2922. OUT_RING(0);
  2923. ADVANCE_LP_RING();
  2924. } else {
  2925. BEGIN_LP_RING(2);
  2926. if (IS_I965G(dev)) {
  2927. OUT_RING(MI_BATCH_BUFFER_START |
  2928. (2 << 6) |
  2929. MI_BATCH_NON_SECURE_I965);
  2930. OUT_RING(exec_start);
  2931. } else {
  2932. OUT_RING(MI_BATCH_BUFFER_START |
  2933. (2 << 6));
  2934. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2935. }
  2936. ADVANCE_LP_RING();
  2937. }
  2938. }
  2939. /* XXX breadcrumb */
  2940. return 0;
  2941. }
  2942. /* Throttle our rendering by waiting until the ring has completed our requests
  2943. * emitted over 20 msec ago.
  2944. *
  2945. * Note that if we were to use the current jiffies each time around the loop,
  2946. * we wouldn't escape the function with any frames outstanding if the time to
  2947. * render a frame was over 20ms.
  2948. *
  2949. * This should get us reasonable parallelism between CPU and GPU but also
  2950. * relatively low latency when blocking on a particular request to finish.
  2951. */
  2952. static int
  2953. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2954. {
  2955. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2956. int ret = 0;
  2957. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2958. mutex_lock(&dev->struct_mutex);
  2959. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2960. struct drm_i915_gem_request *request;
  2961. request = list_first_entry(&i915_file_priv->mm.request_list,
  2962. struct drm_i915_gem_request,
  2963. client_list);
  2964. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2965. break;
  2966. ret = i915_wait_request(dev, request->seqno);
  2967. if (ret != 0)
  2968. break;
  2969. }
  2970. mutex_unlock(&dev->struct_mutex);
  2971. return ret;
  2972. }
  2973. static int
  2974. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2975. uint32_t buffer_count,
  2976. struct drm_i915_gem_relocation_entry **relocs)
  2977. {
  2978. uint32_t reloc_count = 0, reloc_index = 0, i;
  2979. int ret;
  2980. *relocs = NULL;
  2981. for (i = 0; i < buffer_count; i++) {
  2982. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2983. return -EINVAL;
  2984. reloc_count += exec_list[i].relocation_count;
  2985. }
  2986. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2987. if (*relocs == NULL) {
  2988. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2989. return -ENOMEM;
  2990. }
  2991. for (i = 0; i < buffer_count; i++) {
  2992. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2993. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2994. ret = copy_from_user(&(*relocs)[reloc_index],
  2995. user_relocs,
  2996. exec_list[i].relocation_count *
  2997. sizeof(**relocs));
  2998. if (ret != 0) {
  2999. drm_free_large(*relocs);
  3000. *relocs = NULL;
  3001. return -EFAULT;
  3002. }
  3003. reloc_index += exec_list[i].relocation_count;
  3004. }
  3005. return 0;
  3006. }
  3007. static int
  3008. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  3009. uint32_t buffer_count,
  3010. struct drm_i915_gem_relocation_entry *relocs)
  3011. {
  3012. uint32_t reloc_count = 0, i;
  3013. int ret = 0;
  3014. for (i = 0; i < buffer_count; i++) {
  3015. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3016. int unwritten;
  3017. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3018. unwritten = copy_to_user(user_relocs,
  3019. &relocs[reloc_count],
  3020. exec_list[i].relocation_count *
  3021. sizeof(*relocs));
  3022. if (unwritten) {
  3023. ret = -EFAULT;
  3024. goto err;
  3025. }
  3026. reloc_count += exec_list[i].relocation_count;
  3027. }
  3028. err:
  3029. drm_free_large(relocs);
  3030. return ret;
  3031. }
  3032. static int
  3033. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  3034. uint64_t exec_offset)
  3035. {
  3036. uint32_t exec_start, exec_len;
  3037. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3038. exec_len = (uint32_t) exec->batch_len;
  3039. if ((exec_start | exec_len) & 0x7)
  3040. return -EINVAL;
  3041. if (!exec_start)
  3042. return -EINVAL;
  3043. return 0;
  3044. }
  3045. static int
  3046. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  3047. struct drm_gem_object **object_list,
  3048. int count)
  3049. {
  3050. drm_i915_private_t *dev_priv = dev->dev_private;
  3051. struct drm_i915_gem_object *obj_priv;
  3052. DEFINE_WAIT(wait);
  3053. int i, ret = 0;
  3054. for (;;) {
  3055. prepare_to_wait(&dev_priv->pending_flip_queue,
  3056. &wait, TASK_INTERRUPTIBLE);
  3057. for (i = 0; i < count; i++) {
  3058. obj_priv = object_list[i]->driver_private;
  3059. if (atomic_read(&obj_priv->pending_flip) > 0)
  3060. break;
  3061. }
  3062. if (i == count)
  3063. break;
  3064. if (!signal_pending(current)) {
  3065. mutex_unlock(&dev->struct_mutex);
  3066. schedule();
  3067. mutex_lock(&dev->struct_mutex);
  3068. continue;
  3069. }
  3070. ret = -ERESTARTSYS;
  3071. break;
  3072. }
  3073. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3074. return ret;
  3075. }
  3076. int
  3077. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3078. struct drm_file *file_priv,
  3079. struct drm_i915_gem_execbuffer2 *args,
  3080. struct drm_i915_gem_exec_object2 *exec_list)
  3081. {
  3082. drm_i915_private_t *dev_priv = dev->dev_private;
  3083. struct drm_gem_object **object_list = NULL;
  3084. struct drm_gem_object *batch_obj;
  3085. struct drm_i915_gem_object *obj_priv;
  3086. struct drm_clip_rect *cliprects = NULL;
  3087. struct drm_i915_gem_relocation_entry *relocs;
  3088. int ret = 0, ret2, i, pinned = 0;
  3089. uint64_t exec_offset;
  3090. uint32_t seqno, flush_domains, reloc_index;
  3091. int pin_tries, flips;
  3092. #if WATCH_EXEC
  3093. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3094. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3095. #endif
  3096. if (args->buffer_count < 1) {
  3097. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3098. return -EINVAL;
  3099. }
  3100. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3101. if (object_list == NULL) {
  3102. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3103. args->buffer_count);
  3104. ret = -ENOMEM;
  3105. goto pre_mutex_err;
  3106. }
  3107. if (args->num_cliprects != 0) {
  3108. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3109. GFP_KERNEL);
  3110. if (cliprects == NULL)
  3111. goto pre_mutex_err;
  3112. ret = copy_from_user(cliprects,
  3113. (struct drm_clip_rect __user *)
  3114. (uintptr_t) args->cliprects_ptr,
  3115. sizeof(*cliprects) * args->num_cliprects);
  3116. if (ret != 0) {
  3117. DRM_ERROR("copy %d cliprects failed: %d\n",
  3118. args->num_cliprects, ret);
  3119. goto pre_mutex_err;
  3120. }
  3121. }
  3122. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3123. &relocs);
  3124. if (ret != 0)
  3125. goto pre_mutex_err;
  3126. mutex_lock(&dev->struct_mutex);
  3127. i915_verify_inactive(dev, __FILE__, __LINE__);
  3128. if (atomic_read(&dev_priv->mm.wedged)) {
  3129. mutex_unlock(&dev->struct_mutex);
  3130. ret = -EIO;
  3131. goto pre_mutex_err;
  3132. }
  3133. if (dev_priv->mm.suspended) {
  3134. mutex_unlock(&dev->struct_mutex);
  3135. ret = -EBUSY;
  3136. goto pre_mutex_err;
  3137. }
  3138. /* Look up object handles */
  3139. flips = 0;
  3140. for (i = 0; i < args->buffer_count; i++) {
  3141. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3142. exec_list[i].handle);
  3143. if (object_list[i] == NULL) {
  3144. DRM_ERROR("Invalid object handle %d at index %d\n",
  3145. exec_list[i].handle, i);
  3146. ret = -EBADF;
  3147. goto err;
  3148. }
  3149. obj_priv = object_list[i]->driver_private;
  3150. if (obj_priv->in_execbuffer) {
  3151. DRM_ERROR("Object %p appears more than once in object list\n",
  3152. object_list[i]);
  3153. ret = -EBADF;
  3154. goto err;
  3155. }
  3156. obj_priv->in_execbuffer = true;
  3157. flips += atomic_read(&obj_priv->pending_flip);
  3158. }
  3159. if (flips > 0) {
  3160. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3161. args->buffer_count);
  3162. if (ret)
  3163. goto err;
  3164. }
  3165. /* Pin and relocate */
  3166. for (pin_tries = 0; ; pin_tries++) {
  3167. ret = 0;
  3168. reloc_index = 0;
  3169. for (i = 0; i < args->buffer_count; i++) {
  3170. object_list[i]->pending_read_domains = 0;
  3171. object_list[i]->pending_write_domain = 0;
  3172. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3173. file_priv,
  3174. &exec_list[i],
  3175. &relocs[reloc_index]);
  3176. if (ret)
  3177. break;
  3178. pinned = i + 1;
  3179. reloc_index += exec_list[i].relocation_count;
  3180. }
  3181. /* success */
  3182. if (ret == 0)
  3183. break;
  3184. /* error other than GTT full, or we've already tried again */
  3185. if (ret != -ENOSPC || pin_tries >= 1) {
  3186. if (ret != -ERESTARTSYS) {
  3187. unsigned long long total_size = 0;
  3188. for (i = 0; i < args->buffer_count; i++)
  3189. total_size += object_list[i]->size;
  3190. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
  3191. pinned+1, args->buffer_count,
  3192. total_size, ret);
  3193. DRM_ERROR("%d objects [%d pinned], "
  3194. "%d object bytes [%d pinned], "
  3195. "%d/%d gtt bytes\n",
  3196. atomic_read(&dev->object_count),
  3197. atomic_read(&dev->pin_count),
  3198. atomic_read(&dev->object_memory),
  3199. atomic_read(&dev->pin_memory),
  3200. atomic_read(&dev->gtt_memory),
  3201. dev->gtt_total);
  3202. }
  3203. goto err;
  3204. }
  3205. /* unpin all of our buffers */
  3206. for (i = 0; i < pinned; i++)
  3207. i915_gem_object_unpin(object_list[i]);
  3208. pinned = 0;
  3209. /* evict everyone we can from the aperture */
  3210. ret = i915_gem_evict_everything(dev);
  3211. if (ret && ret != -ENOSPC)
  3212. goto err;
  3213. }
  3214. /* Set the pending read domains for the batch buffer to COMMAND */
  3215. batch_obj = object_list[args->buffer_count-1];
  3216. if (batch_obj->pending_write_domain) {
  3217. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3218. ret = -EINVAL;
  3219. goto err;
  3220. }
  3221. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3222. /* Sanity check the batch buffer, prior to moving objects */
  3223. exec_offset = exec_list[args->buffer_count - 1].offset;
  3224. ret = i915_gem_check_execbuffer (args, exec_offset);
  3225. if (ret != 0) {
  3226. DRM_ERROR("execbuf with invalid offset/length\n");
  3227. goto err;
  3228. }
  3229. i915_verify_inactive(dev, __FILE__, __LINE__);
  3230. /* Zero the global flush/invalidate flags. These
  3231. * will be modified as new domains are computed
  3232. * for each object
  3233. */
  3234. dev->invalidate_domains = 0;
  3235. dev->flush_domains = 0;
  3236. for (i = 0; i < args->buffer_count; i++) {
  3237. struct drm_gem_object *obj = object_list[i];
  3238. /* Compute new gpu domains and update invalidate/flush */
  3239. i915_gem_object_set_to_gpu_domain(obj);
  3240. }
  3241. i915_verify_inactive(dev, __FILE__, __LINE__);
  3242. if (dev->invalidate_domains | dev->flush_domains) {
  3243. #if WATCH_EXEC
  3244. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3245. __func__,
  3246. dev->invalidate_domains,
  3247. dev->flush_domains);
  3248. #endif
  3249. i915_gem_flush(dev,
  3250. dev->invalidate_domains,
  3251. dev->flush_domains);
  3252. if (dev->flush_domains)
  3253. (void)i915_add_request(dev, file_priv,
  3254. dev->flush_domains);
  3255. }
  3256. for (i = 0; i < args->buffer_count; i++) {
  3257. struct drm_gem_object *obj = object_list[i];
  3258. uint32_t old_write_domain = obj->write_domain;
  3259. obj->write_domain = obj->pending_write_domain;
  3260. trace_i915_gem_object_change_domain(obj,
  3261. obj->read_domains,
  3262. old_write_domain);
  3263. }
  3264. i915_verify_inactive(dev, __FILE__, __LINE__);
  3265. #if WATCH_COHERENCY
  3266. for (i = 0; i < args->buffer_count; i++) {
  3267. i915_gem_object_check_coherency(object_list[i],
  3268. exec_list[i].handle);
  3269. }
  3270. #endif
  3271. #if WATCH_EXEC
  3272. i915_gem_dump_object(batch_obj,
  3273. args->batch_len,
  3274. __func__,
  3275. ~0);
  3276. #endif
  3277. /* Exec the batchbuffer */
  3278. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3279. if (ret) {
  3280. DRM_ERROR("dispatch failed %d\n", ret);
  3281. goto err;
  3282. }
  3283. /*
  3284. * Ensure that the commands in the batch buffer are
  3285. * finished before the interrupt fires
  3286. */
  3287. flush_domains = i915_retire_commands(dev);
  3288. i915_verify_inactive(dev, __FILE__, __LINE__);
  3289. /*
  3290. * Get a seqno representing the execution of the current buffer,
  3291. * which we can wait on. We would like to mitigate these interrupts,
  3292. * likely by only creating seqnos occasionally (so that we have
  3293. * *some* interrupts representing completion of buffers that we can
  3294. * wait on when trying to clear up gtt space).
  3295. */
  3296. seqno = i915_add_request(dev, file_priv, flush_domains);
  3297. BUG_ON(seqno == 0);
  3298. for (i = 0; i < args->buffer_count; i++) {
  3299. struct drm_gem_object *obj = object_list[i];
  3300. i915_gem_object_move_to_active(obj, seqno);
  3301. #if WATCH_LRU
  3302. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3303. #endif
  3304. }
  3305. #if WATCH_LRU
  3306. i915_dump_lru(dev, __func__);
  3307. #endif
  3308. i915_verify_inactive(dev, __FILE__, __LINE__);
  3309. err:
  3310. for (i = 0; i < pinned; i++)
  3311. i915_gem_object_unpin(object_list[i]);
  3312. for (i = 0; i < args->buffer_count; i++) {
  3313. if (object_list[i]) {
  3314. obj_priv = object_list[i]->driver_private;
  3315. obj_priv->in_execbuffer = false;
  3316. }
  3317. drm_gem_object_unreference(object_list[i]);
  3318. }
  3319. mutex_unlock(&dev->struct_mutex);
  3320. /* Copy the updated relocations out regardless of current error
  3321. * state. Failure to update the relocs would mean that the next
  3322. * time userland calls execbuf, it would do so with presumed offset
  3323. * state that didn't match the actual object state.
  3324. */
  3325. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3326. relocs);
  3327. if (ret2 != 0) {
  3328. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3329. if (ret == 0)
  3330. ret = ret2;
  3331. }
  3332. pre_mutex_err:
  3333. drm_free_large(object_list);
  3334. kfree(cliprects);
  3335. return ret;
  3336. }
  3337. /*
  3338. * Legacy execbuffer just creates an exec2 list from the original exec object
  3339. * list array and passes it to the real function.
  3340. */
  3341. int
  3342. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3343. struct drm_file *file_priv)
  3344. {
  3345. struct drm_i915_gem_execbuffer *args = data;
  3346. struct drm_i915_gem_execbuffer2 exec2;
  3347. struct drm_i915_gem_exec_object *exec_list = NULL;
  3348. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3349. int ret, i;
  3350. #if WATCH_EXEC
  3351. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3352. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3353. #endif
  3354. if (args->buffer_count < 1) {
  3355. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3356. return -EINVAL;
  3357. }
  3358. /* Copy in the exec list from userland */
  3359. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3360. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3361. if (exec_list == NULL || exec2_list == NULL) {
  3362. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3363. args->buffer_count);
  3364. drm_free_large(exec_list);
  3365. drm_free_large(exec2_list);
  3366. return -ENOMEM;
  3367. }
  3368. ret = copy_from_user(exec_list,
  3369. (struct drm_i915_relocation_entry __user *)
  3370. (uintptr_t) args->buffers_ptr,
  3371. sizeof(*exec_list) * args->buffer_count);
  3372. if (ret != 0) {
  3373. DRM_ERROR("copy %d exec entries failed %d\n",
  3374. args->buffer_count, ret);
  3375. drm_free_large(exec_list);
  3376. drm_free_large(exec2_list);
  3377. return -EFAULT;
  3378. }
  3379. for (i = 0; i < args->buffer_count; i++) {
  3380. exec2_list[i].handle = exec_list[i].handle;
  3381. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3382. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3383. exec2_list[i].alignment = exec_list[i].alignment;
  3384. exec2_list[i].offset = exec_list[i].offset;
  3385. if (!IS_I965G(dev))
  3386. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3387. else
  3388. exec2_list[i].flags = 0;
  3389. }
  3390. exec2.buffers_ptr = args->buffers_ptr;
  3391. exec2.buffer_count = args->buffer_count;
  3392. exec2.batch_start_offset = args->batch_start_offset;
  3393. exec2.batch_len = args->batch_len;
  3394. exec2.DR1 = args->DR1;
  3395. exec2.DR4 = args->DR4;
  3396. exec2.num_cliprects = args->num_cliprects;
  3397. exec2.cliprects_ptr = args->cliprects_ptr;
  3398. exec2.flags = 0;
  3399. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3400. if (!ret) {
  3401. /* Copy the new buffer offsets back to the user's exec list. */
  3402. for (i = 0; i < args->buffer_count; i++)
  3403. exec_list[i].offset = exec2_list[i].offset;
  3404. /* ... and back out to userspace */
  3405. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3406. (uintptr_t) args->buffers_ptr,
  3407. exec_list,
  3408. sizeof(*exec_list) * args->buffer_count);
  3409. if (ret) {
  3410. ret = -EFAULT;
  3411. DRM_ERROR("failed to copy %d exec entries "
  3412. "back to user (%d)\n",
  3413. args->buffer_count, ret);
  3414. }
  3415. } else {
  3416. DRM_ERROR("i915_gem_do_execbuffer returns %d\n", ret);
  3417. }
  3418. drm_free_large(exec_list);
  3419. drm_free_large(exec2_list);
  3420. return ret;
  3421. }
  3422. int
  3423. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3424. struct drm_file *file_priv)
  3425. {
  3426. struct drm_i915_gem_execbuffer2 *args = data;
  3427. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3428. int ret;
  3429. #if WATCH_EXEC
  3430. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3431. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3432. #endif
  3433. if (args->buffer_count < 1) {
  3434. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3435. return -EINVAL;
  3436. }
  3437. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3438. if (exec2_list == NULL) {
  3439. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3440. args->buffer_count);
  3441. return -ENOMEM;
  3442. }
  3443. ret = copy_from_user(exec2_list,
  3444. (struct drm_i915_relocation_entry __user *)
  3445. (uintptr_t) args->buffers_ptr,
  3446. sizeof(*exec2_list) * args->buffer_count);
  3447. if (ret != 0) {
  3448. DRM_ERROR("copy %d exec entries failed %d\n",
  3449. args->buffer_count, ret);
  3450. drm_free_large(exec2_list);
  3451. return -EFAULT;
  3452. }
  3453. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3454. if (!ret) {
  3455. /* Copy the new buffer offsets back to the user's exec list. */
  3456. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3457. (uintptr_t) args->buffers_ptr,
  3458. exec2_list,
  3459. sizeof(*exec2_list) * args->buffer_count);
  3460. if (ret) {
  3461. ret = -EFAULT;
  3462. DRM_ERROR("failed to copy %d exec entries "
  3463. "back to user (%d)\n",
  3464. args->buffer_count, ret);
  3465. }
  3466. }
  3467. drm_free_large(exec2_list);
  3468. return ret;
  3469. }
  3470. int
  3471. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3472. {
  3473. struct drm_device *dev = obj->dev;
  3474. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3475. int ret;
  3476. i915_verify_inactive(dev, __FILE__, __LINE__);
  3477. if (obj_priv->gtt_space == NULL) {
  3478. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3479. if (ret)
  3480. return ret;
  3481. }
  3482. obj_priv->pin_count++;
  3483. /* If the object is not active and not pending a flush,
  3484. * remove it from the inactive list
  3485. */
  3486. if (obj_priv->pin_count == 1) {
  3487. atomic_inc(&dev->pin_count);
  3488. atomic_add(obj->size, &dev->pin_memory);
  3489. if (!obj_priv->active &&
  3490. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3491. !list_empty(&obj_priv->list))
  3492. list_del_init(&obj_priv->list);
  3493. }
  3494. i915_verify_inactive(dev, __FILE__, __LINE__);
  3495. return 0;
  3496. }
  3497. void
  3498. i915_gem_object_unpin(struct drm_gem_object *obj)
  3499. {
  3500. struct drm_device *dev = obj->dev;
  3501. drm_i915_private_t *dev_priv = dev->dev_private;
  3502. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3503. i915_verify_inactive(dev, __FILE__, __LINE__);
  3504. obj_priv->pin_count--;
  3505. BUG_ON(obj_priv->pin_count < 0);
  3506. BUG_ON(obj_priv->gtt_space == NULL);
  3507. /* If the object is no longer pinned, and is
  3508. * neither active nor being flushed, then stick it on
  3509. * the inactive list
  3510. */
  3511. if (obj_priv->pin_count == 0) {
  3512. if (!obj_priv->active &&
  3513. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3514. list_move_tail(&obj_priv->list,
  3515. &dev_priv->mm.inactive_list);
  3516. atomic_dec(&dev->pin_count);
  3517. atomic_sub(obj->size, &dev->pin_memory);
  3518. }
  3519. i915_verify_inactive(dev, __FILE__, __LINE__);
  3520. }
  3521. int
  3522. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3523. struct drm_file *file_priv)
  3524. {
  3525. struct drm_i915_gem_pin *args = data;
  3526. struct drm_gem_object *obj;
  3527. struct drm_i915_gem_object *obj_priv;
  3528. int ret;
  3529. mutex_lock(&dev->struct_mutex);
  3530. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3531. if (obj == NULL) {
  3532. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3533. args->handle);
  3534. mutex_unlock(&dev->struct_mutex);
  3535. return -EBADF;
  3536. }
  3537. obj_priv = obj->driver_private;
  3538. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3539. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3540. drm_gem_object_unreference(obj);
  3541. mutex_unlock(&dev->struct_mutex);
  3542. return -EINVAL;
  3543. }
  3544. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3545. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3546. args->handle);
  3547. drm_gem_object_unreference(obj);
  3548. mutex_unlock(&dev->struct_mutex);
  3549. return -EINVAL;
  3550. }
  3551. obj_priv->user_pin_count++;
  3552. obj_priv->pin_filp = file_priv;
  3553. if (obj_priv->user_pin_count == 1) {
  3554. ret = i915_gem_object_pin(obj, args->alignment);
  3555. if (ret != 0) {
  3556. drm_gem_object_unreference(obj);
  3557. mutex_unlock(&dev->struct_mutex);
  3558. return ret;
  3559. }
  3560. }
  3561. /* XXX - flush the CPU caches for pinned objects
  3562. * as the X server doesn't manage domains yet
  3563. */
  3564. i915_gem_object_flush_cpu_write_domain(obj);
  3565. args->offset = obj_priv->gtt_offset;
  3566. drm_gem_object_unreference(obj);
  3567. mutex_unlock(&dev->struct_mutex);
  3568. return 0;
  3569. }
  3570. int
  3571. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3572. struct drm_file *file_priv)
  3573. {
  3574. struct drm_i915_gem_pin *args = data;
  3575. struct drm_gem_object *obj;
  3576. struct drm_i915_gem_object *obj_priv;
  3577. mutex_lock(&dev->struct_mutex);
  3578. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3579. if (obj == NULL) {
  3580. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3581. args->handle);
  3582. mutex_unlock(&dev->struct_mutex);
  3583. return -EBADF;
  3584. }
  3585. obj_priv = obj->driver_private;
  3586. if (obj_priv->pin_filp != file_priv) {
  3587. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3588. args->handle);
  3589. drm_gem_object_unreference(obj);
  3590. mutex_unlock(&dev->struct_mutex);
  3591. return -EINVAL;
  3592. }
  3593. obj_priv->user_pin_count--;
  3594. if (obj_priv->user_pin_count == 0) {
  3595. obj_priv->pin_filp = NULL;
  3596. i915_gem_object_unpin(obj);
  3597. }
  3598. drm_gem_object_unreference(obj);
  3599. mutex_unlock(&dev->struct_mutex);
  3600. return 0;
  3601. }
  3602. int
  3603. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3604. struct drm_file *file_priv)
  3605. {
  3606. struct drm_i915_gem_busy *args = data;
  3607. struct drm_gem_object *obj;
  3608. struct drm_i915_gem_object *obj_priv;
  3609. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3610. if (obj == NULL) {
  3611. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3612. args->handle);
  3613. return -EBADF;
  3614. }
  3615. mutex_lock(&dev->struct_mutex);
  3616. /* Update the active list for the hardware's current position.
  3617. * Otherwise this only updates on a delayed timer or when irqs are
  3618. * actually unmasked, and our working set ends up being larger than
  3619. * required.
  3620. */
  3621. i915_gem_retire_requests(dev);
  3622. obj_priv = obj->driver_private;
  3623. /* Don't count being on the flushing list against the object being
  3624. * done. Otherwise, a buffer left on the flushing list but not getting
  3625. * flushed (because nobody's flushing that domain) won't ever return
  3626. * unbusy and get reused by libdrm's bo cache. The other expected
  3627. * consumer of this interface, OpenGL's occlusion queries, also specs
  3628. * that the objects get unbusy "eventually" without any interference.
  3629. */
  3630. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3631. drm_gem_object_unreference(obj);
  3632. mutex_unlock(&dev->struct_mutex);
  3633. return 0;
  3634. }
  3635. int
  3636. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3637. struct drm_file *file_priv)
  3638. {
  3639. return i915_gem_ring_throttle(dev, file_priv);
  3640. }
  3641. int
  3642. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3643. struct drm_file *file_priv)
  3644. {
  3645. struct drm_i915_gem_madvise *args = data;
  3646. struct drm_gem_object *obj;
  3647. struct drm_i915_gem_object *obj_priv;
  3648. switch (args->madv) {
  3649. case I915_MADV_DONTNEED:
  3650. case I915_MADV_WILLNEED:
  3651. break;
  3652. default:
  3653. return -EINVAL;
  3654. }
  3655. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3656. if (obj == NULL) {
  3657. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3658. args->handle);
  3659. return -EBADF;
  3660. }
  3661. mutex_lock(&dev->struct_mutex);
  3662. obj_priv = obj->driver_private;
  3663. if (obj_priv->pin_count) {
  3664. drm_gem_object_unreference(obj);
  3665. mutex_unlock(&dev->struct_mutex);
  3666. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3667. return -EINVAL;
  3668. }
  3669. if (obj_priv->madv != __I915_MADV_PURGED)
  3670. obj_priv->madv = args->madv;
  3671. /* if the object is no longer bound, discard its backing storage */
  3672. if (i915_gem_object_is_purgeable(obj_priv) &&
  3673. obj_priv->gtt_space == NULL)
  3674. i915_gem_object_truncate(obj);
  3675. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3676. drm_gem_object_unreference(obj);
  3677. mutex_unlock(&dev->struct_mutex);
  3678. return 0;
  3679. }
  3680. int i915_gem_init_object(struct drm_gem_object *obj)
  3681. {
  3682. struct drm_i915_gem_object *obj_priv;
  3683. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3684. if (obj_priv == NULL)
  3685. return -ENOMEM;
  3686. /*
  3687. * We've just allocated pages from the kernel,
  3688. * so they've just been written by the CPU with
  3689. * zeros. They'll need to be clflushed before we
  3690. * use them with the GPU.
  3691. */
  3692. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3693. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3694. obj_priv->agp_type = AGP_USER_MEMORY;
  3695. obj->driver_private = obj_priv;
  3696. obj_priv->obj = obj;
  3697. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3698. INIT_LIST_HEAD(&obj_priv->list);
  3699. INIT_LIST_HEAD(&obj_priv->fence_list);
  3700. obj_priv->madv = I915_MADV_WILLNEED;
  3701. trace_i915_gem_object_create(obj);
  3702. return 0;
  3703. }
  3704. void i915_gem_free_object(struct drm_gem_object *obj)
  3705. {
  3706. struct drm_device *dev = obj->dev;
  3707. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3708. trace_i915_gem_object_destroy(obj);
  3709. while (obj_priv->pin_count > 0)
  3710. i915_gem_object_unpin(obj);
  3711. if (obj_priv->phys_obj)
  3712. i915_gem_detach_phys_object(dev, obj);
  3713. i915_gem_object_unbind(obj);
  3714. if (obj_priv->mmap_offset)
  3715. i915_gem_free_mmap_offset(obj);
  3716. kfree(obj_priv->page_cpu_valid);
  3717. kfree(obj_priv->bit_17);
  3718. kfree(obj->driver_private);
  3719. }
  3720. /** Unbinds all inactive objects. */
  3721. static int
  3722. i915_gem_evict_from_inactive_list(struct drm_device *dev)
  3723. {
  3724. drm_i915_private_t *dev_priv = dev->dev_private;
  3725. while (!list_empty(&dev_priv->mm.inactive_list)) {
  3726. struct drm_gem_object *obj;
  3727. int ret;
  3728. obj = list_first_entry(&dev_priv->mm.inactive_list,
  3729. struct drm_i915_gem_object,
  3730. list)->obj;
  3731. ret = i915_gem_object_unbind(obj);
  3732. if (ret != 0) {
  3733. DRM_ERROR("Error unbinding object: %d\n", ret);
  3734. return ret;
  3735. }
  3736. }
  3737. return 0;
  3738. }
  3739. int
  3740. i915_gem_idle(struct drm_device *dev)
  3741. {
  3742. drm_i915_private_t *dev_priv = dev->dev_private;
  3743. uint32_t seqno, cur_seqno, last_seqno;
  3744. int stuck, ret;
  3745. mutex_lock(&dev->struct_mutex);
  3746. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3747. mutex_unlock(&dev->struct_mutex);
  3748. return 0;
  3749. }
  3750. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3751. * We need to replace this with a semaphore, or something.
  3752. */
  3753. dev_priv->mm.suspended = 1;
  3754. del_timer(&dev_priv->hangcheck_timer);
  3755. /* Cancel the retire work handler, wait for it to finish if running
  3756. */
  3757. mutex_unlock(&dev->struct_mutex);
  3758. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3759. mutex_lock(&dev->struct_mutex);
  3760. i915_kernel_lost_context(dev);
  3761. /* Flush the GPU along with all non-CPU write domains
  3762. */
  3763. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3764. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3765. if (seqno == 0) {
  3766. mutex_unlock(&dev->struct_mutex);
  3767. return -ENOMEM;
  3768. }
  3769. dev_priv->mm.waiting_gem_seqno = seqno;
  3770. last_seqno = 0;
  3771. stuck = 0;
  3772. for (;;) {
  3773. cur_seqno = i915_get_gem_seqno(dev);
  3774. if (i915_seqno_passed(cur_seqno, seqno))
  3775. break;
  3776. if (last_seqno == cur_seqno) {
  3777. if (stuck++ > 100) {
  3778. DRM_ERROR("hardware wedged\n");
  3779. atomic_set(&dev_priv->mm.wedged, 1);
  3780. DRM_WAKEUP(&dev_priv->irq_queue);
  3781. break;
  3782. }
  3783. }
  3784. msleep(10);
  3785. last_seqno = cur_seqno;
  3786. }
  3787. dev_priv->mm.waiting_gem_seqno = 0;
  3788. i915_gem_retire_requests(dev);
  3789. spin_lock(&dev_priv->mm.active_list_lock);
  3790. if (!atomic_read(&dev_priv->mm.wedged)) {
  3791. /* Active and flushing should now be empty as we've
  3792. * waited for a sequence higher than any pending execbuffer
  3793. */
  3794. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3795. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3796. /* Request should now be empty as we've also waited
  3797. * for the last request in the list
  3798. */
  3799. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3800. }
  3801. /* Empty the active and flushing lists to inactive. If there's
  3802. * anything left at this point, it means that we're wedged and
  3803. * nothing good's going to happen by leaving them there. So strip
  3804. * the GPU domains and just stuff them onto inactive.
  3805. */
  3806. while (!list_empty(&dev_priv->mm.active_list)) {
  3807. struct drm_gem_object *obj;
  3808. uint32_t old_write_domain;
  3809. obj = list_first_entry(&dev_priv->mm.active_list,
  3810. struct drm_i915_gem_object,
  3811. list)->obj;
  3812. old_write_domain = obj->write_domain;
  3813. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3814. i915_gem_object_move_to_inactive(obj);
  3815. trace_i915_gem_object_change_domain(obj,
  3816. obj->read_domains,
  3817. old_write_domain);
  3818. }
  3819. spin_unlock(&dev_priv->mm.active_list_lock);
  3820. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3821. struct drm_gem_object *obj;
  3822. uint32_t old_write_domain;
  3823. obj = list_first_entry(&dev_priv->mm.flushing_list,
  3824. struct drm_i915_gem_object,
  3825. list)->obj;
  3826. old_write_domain = obj->write_domain;
  3827. obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3828. i915_gem_object_move_to_inactive(obj);
  3829. trace_i915_gem_object_change_domain(obj,
  3830. obj->read_domains,
  3831. old_write_domain);
  3832. }
  3833. /* Move all inactive buffers out of the GTT. */
  3834. ret = i915_gem_evict_from_inactive_list(dev);
  3835. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3836. if (ret) {
  3837. mutex_unlock(&dev->struct_mutex);
  3838. return ret;
  3839. }
  3840. i915_gem_cleanup_ringbuffer(dev);
  3841. mutex_unlock(&dev->struct_mutex);
  3842. return 0;
  3843. }
  3844. static int
  3845. i915_gem_init_hws(struct drm_device *dev)
  3846. {
  3847. drm_i915_private_t *dev_priv = dev->dev_private;
  3848. struct drm_gem_object *obj;
  3849. struct drm_i915_gem_object *obj_priv;
  3850. int ret;
  3851. /* If we need a physical address for the status page, it's already
  3852. * initialized at driver load time.
  3853. */
  3854. if (!I915_NEED_GFX_HWS(dev))
  3855. return 0;
  3856. obj = drm_gem_object_alloc(dev, 4096);
  3857. if (obj == NULL) {
  3858. DRM_ERROR("Failed to allocate status page\n");
  3859. return -ENOMEM;
  3860. }
  3861. obj_priv = obj->driver_private;
  3862. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3863. ret = i915_gem_object_pin(obj, 4096);
  3864. if (ret != 0) {
  3865. drm_gem_object_unreference(obj);
  3866. return ret;
  3867. }
  3868. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3869. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3870. if (dev_priv->hw_status_page == NULL) {
  3871. DRM_ERROR("Failed to map status page.\n");
  3872. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3873. i915_gem_object_unpin(obj);
  3874. drm_gem_object_unreference(obj);
  3875. return -EINVAL;
  3876. }
  3877. dev_priv->hws_obj = obj;
  3878. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3879. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3880. I915_READ(HWS_PGA); /* posting read */
  3881. DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3882. return 0;
  3883. }
  3884. static void
  3885. i915_gem_cleanup_hws(struct drm_device *dev)
  3886. {
  3887. drm_i915_private_t *dev_priv = dev->dev_private;
  3888. struct drm_gem_object *obj;
  3889. struct drm_i915_gem_object *obj_priv;
  3890. if (dev_priv->hws_obj == NULL)
  3891. return;
  3892. obj = dev_priv->hws_obj;
  3893. obj_priv = obj->driver_private;
  3894. kunmap(obj_priv->pages[0]);
  3895. i915_gem_object_unpin(obj);
  3896. drm_gem_object_unreference(obj);
  3897. dev_priv->hws_obj = NULL;
  3898. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3899. dev_priv->hw_status_page = NULL;
  3900. /* Write high address into HWS_PGA when disabling. */
  3901. I915_WRITE(HWS_PGA, 0x1ffff000);
  3902. }
  3903. int
  3904. i915_gem_init_ringbuffer(struct drm_device *dev)
  3905. {
  3906. drm_i915_private_t *dev_priv = dev->dev_private;
  3907. struct drm_gem_object *obj;
  3908. struct drm_i915_gem_object *obj_priv;
  3909. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3910. int ret;
  3911. u32 head;
  3912. ret = i915_gem_init_hws(dev);
  3913. if (ret != 0)
  3914. return ret;
  3915. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3916. if (obj == NULL) {
  3917. DRM_ERROR("Failed to allocate ringbuffer\n");
  3918. i915_gem_cleanup_hws(dev);
  3919. return -ENOMEM;
  3920. }
  3921. obj_priv = obj->driver_private;
  3922. ret = i915_gem_object_pin(obj, 4096);
  3923. if (ret != 0) {
  3924. drm_gem_object_unreference(obj);
  3925. i915_gem_cleanup_hws(dev);
  3926. return ret;
  3927. }
  3928. /* Set up the kernel mapping for the ring. */
  3929. ring->Size = obj->size;
  3930. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3931. ring->map.size = obj->size;
  3932. ring->map.type = 0;
  3933. ring->map.flags = 0;
  3934. ring->map.mtrr = 0;
  3935. drm_core_ioremap_wc(&ring->map, dev);
  3936. if (ring->map.handle == NULL) {
  3937. DRM_ERROR("Failed to map ringbuffer.\n");
  3938. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3939. i915_gem_object_unpin(obj);
  3940. drm_gem_object_unreference(obj);
  3941. i915_gem_cleanup_hws(dev);
  3942. return -EINVAL;
  3943. }
  3944. ring->ring_obj = obj;
  3945. ring->virtual_start = ring->map.handle;
  3946. /* Stop the ring if it's running. */
  3947. I915_WRITE(PRB0_CTL, 0);
  3948. I915_WRITE(PRB0_TAIL, 0);
  3949. I915_WRITE(PRB0_HEAD, 0);
  3950. /* Initialize the ring. */
  3951. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3952. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3953. /* G45 ring initialization fails to reset head to zero */
  3954. if (head != 0) {
  3955. DRM_ERROR("Ring head not reset to zero "
  3956. "ctl %08x head %08x tail %08x start %08x\n",
  3957. I915_READ(PRB0_CTL),
  3958. I915_READ(PRB0_HEAD),
  3959. I915_READ(PRB0_TAIL),
  3960. I915_READ(PRB0_START));
  3961. I915_WRITE(PRB0_HEAD, 0);
  3962. DRM_ERROR("Ring head forced to zero "
  3963. "ctl %08x head %08x tail %08x start %08x\n",
  3964. I915_READ(PRB0_CTL),
  3965. I915_READ(PRB0_HEAD),
  3966. I915_READ(PRB0_TAIL),
  3967. I915_READ(PRB0_START));
  3968. }
  3969. I915_WRITE(PRB0_CTL,
  3970. ((obj->size - 4096) & RING_NR_PAGES) |
  3971. RING_NO_REPORT |
  3972. RING_VALID);
  3973. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3974. /* If the head is still not zero, the ring is dead */
  3975. if (head != 0) {
  3976. DRM_ERROR("Ring initialization failed "
  3977. "ctl %08x head %08x tail %08x start %08x\n",
  3978. I915_READ(PRB0_CTL),
  3979. I915_READ(PRB0_HEAD),
  3980. I915_READ(PRB0_TAIL),
  3981. I915_READ(PRB0_START));
  3982. return -EIO;
  3983. }
  3984. /* Update our cache of the ring state */
  3985. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3986. i915_kernel_lost_context(dev);
  3987. else {
  3988. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3989. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3990. ring->space = ring->head - (ring->tail + 8);
  3991. if (ring->space < 0)
  3992. ring->space += ring->Size;
  3993. }
  3994. return 0;
  3995. }
  3996. void
  3997. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3998. {
  3999. drm_i915_private_t *dev_priv = dev->dev_private;
  4000. if (dev_priv->ring.ring_obj == NULL)
  4001. return;
  4002. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  4003. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  4004. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  4005. dev_priv->ring.ring_obj = NULL;
  4006. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  4007. i915_gem_cleanup_hws(dev);
  4008. }
  4009. int
  4010. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  4011. struct drm_file *file_priv)
  4012. {
  4013. drm_i915_private_t *dev_priv = dev->dev_private;
  4014. int ret;
  4015. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4016. return 0;
  4017. if (atomic_read(&dev_priv->mm.wedged)) {
  4018. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  4019. atomic_set(&dev_priv->mm.wedged, 0);
  4020. }
  4021. mutex_lock(&dev->struct_mutex);
  4022. dev_priv->mm.suspended = 0;
  4023. ret = i915_gem_init_ringbuffer(dev);
  4024. if (ret != 0) {
  4025. mutex_unlock(&dev->struct_mutex);
  4026. return ret;
  4027. }
  4028. spin_lock(&dev_priv->mm.active_list_lock);
  4029. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4030. spin_unlock(&dev_priv->mm.active_list_lock);
  4031. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4032. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4033. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  4034. mutex_unlock(&dev->struct_mutex);
  4035. drm_irq_install(dev);
  4036. return 0;
  4037. }
  4038. int
  4039. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4040. struct drm_file *file_priv)
  4041. {
  4042. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4043. return 0;
  4044. drm_irq_uninstall(dev);
  4045. return i915_gem_idle(dev);
  4046. }
  4047. void
  4048. i915_gem_lastclose(struct drm_device *dev)
  4049. {
  4050. int ret;
  4051. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4052. return;
  4053. ret = i915_gem_idle(dev);
  4054. if (ret)
  4055. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4056. }
  4057. void
  4058. i915_gem_load(struct drm_device *dev)
  4059. {
  4060. int i;
  4061. drm_i915_private_t *dev_priv = dev->dev_private;
  4062. spin_lock_init(&dev_priv->mm.active_list_lock);
  4063. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4064. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4065. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4066. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  4067. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4068. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4069. i915_gem_retire_work_handler);
  4070. dev_priv->mm.next_gem_seqno = 1;
  4071. spin_lock(&shrink_list_lock);
  4072. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  4073. spin_unlock(&shrink_list_lock);
  4074. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4075. dev_priv->fence_reg_start = 3;
  4076. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4077. dev_priv->num_fence_regs = 16;
  4078. else
  4079. dev_priv->num_fence_regs = 8;
  4080. /* Initialize fence registers to zero */
  4081. if (IS_I965G(dev)) {
  4082. for (i = 0; i < 16; i++)
  4083. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4084. } else {
  4085. for (i = 0; i < 8; i++)
  4086. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4087. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4088. for (i = 0; i < 8; i++)
  4089. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4090. }
  4091. i915_gem_detect_bit_6_swizzle(dev);
  4092. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4093. }
  4094. /*
  4095. * Create a physically contiguous memory object for this object
  4096. * e.g. for cursor + overlay regs
  4097. */
  4098. int i915_gem_init_phys_object(struct drm_device *dev,
  4099. int id, int size)
  4100. {
  4101. drm_i915_private_t *dev_priv = dev->dev_private;
  4102. struct drm_i915_gem_phys_object *phys_obj;
  4103. int ret;
  4104. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4105. return 0;
  4106. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4107. if (!phys_obj)
  4108. return -ENOMEM;
  4109. phys_obj->id = id;
  4110. phys_obj->handle = drm_pci_alloc(dev, size, 0);
  4111. if (!phys_obj->handle) {
  4112. ret = -ENOMEM;
  4113. goto kfree_obj;
  4114. }
  4115. #ifdef CONFIG_X86
  4116. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4117. #endif
  4118. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4119. return 0;
  4120. kfree_obj:
  4121. kfree(phys_obj);
  4122. return ret;
  4123. }
  4124. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4125. {
  4126. drm_i915_private_t *dev_priv = dev->dev_private;
  4127. struct drm_i915_gem_phys_object *phys_obj;
  4128. if (!dev_priv->mm.phys_objs[id - 1])
  4129. return;
  4130. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4131. if (phys_obj->cur_obj) {
  4132. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4133. }
  4134. #ifdef CONFIG_X86
  4135. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4136. #endif
  4137. drm_pci_free(dev, phys_obj->handle);
  4138. kfree(phys_obj);
  4139. dev_priv->mm.phys_objs[id - 1] = NULL;
  4140. }
  4141. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4142. {
  4143. int i;
  4144. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4145. i915_gem_free_phys_object(dev, i);
  4146. }
  4147. void i915_gem_detach_phys_object(struct drm_device *dev,
  4148. struct drm_gem_object *obj)
  4149. {
  4150. struct drm_i915_gem_object *obj_priv;
  4151. int i;
  4152. int ret;
  4153. int page_count;
  4154. obj_priv = obj->driver_private;
  4155. if (!obj_priv->phys_obj)
  4156. return;
  4157. ret = i915_gem_object_get_pages(obj);
  4158. if (ret)
  4159. goto out;
  4160. page_count = obj->size / PAGE_SIZE;
  4161. for (i = 0; i < page_count; i++) {
  4162. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4163. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4164. memcpy(dst, src, PAGE_SIZE);
  4165. kunmap_atomic(dst, KM_USER0);
  4166. }
  4167. drm_clflush_pages(obj_priv->pages, page_count);
  4168. drm_agp_chipset_flush(dev);
  4169. i915_gem_object_put_pages(obj);
  4170. out:
  4171. obj_priv->phys_obj->cur_obj = NULL;
  4172. obj_priv->phys_obj = NULL;
  4173. }
  4174. int
  4175. i915_gem_attach_phys_object(struct drm_device *dev,
  4176. struct drm_gem_object *obj, int id)
  4177. {
  4178. drm_i915_private_t *dev_priv = dev->dev_private;
  4179. struct drm_i915_gem_object *obj_priv;
  4180. int ret = 0;
  4181. int page_count;
  4182. int i;
  4183. if (id > I915_MAX_PHYS_OBJECT)
  4184. return -EINVAL;
  4185. obj_priv = obj->driver_private;
  4186. if (obj_priv->phys_obj) {
  4187. if (obj_priv->phys_obj->id == id)
  4188. return 0;
  4189. i915_gem_detach_phys_object(dev, obj);
  4190. }
  4191. /* create a new object */
  4192. if (!dev_priv->mm.phys_objs[id - 1]) {
  4193. ret = i915_gem_init_phys_object(dev, id,
  4194. obj->size);
  4195. if (ret) {
  4196. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4197. goto out;
  4198. }
  4199. }
  4200. /* bind to the object */
  4201. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4202. obj_priv->phys_obj->cur_obj = obj;
  4203. ret = i915_gem_object_get_pages(obj);
  4204. if (ret) {
  4205. DRM_ERROR("failed to get page list\n");
  4206. goto out;
  4207. }
  4208. page_count = obj->size / PAGE_SIZE;
  4209. for (i = 0; i < page_count; i++) {
  4210. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4211. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4212. memcpy(dst, src, PAGE_SIZE);
  4213. kunmap_atomic(src, KM_USER0);
  4214. }
  4215. i915_gem_object_put_pages(obj);
  4216. return 0;
  4217. out:
  4218. return ret;
  4219. }
  4220. static int
  4221. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4222. struct drm_i915_gem_pwrite *args,
  4223. struct drm_file *file_priv)
  4224. {
  4225. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  4226. void *obj_addr;
  4227. int ret;
  4228. char __user *user_data;
  4229. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4230. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4231. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4232. ret = copy_from_user(obj_addr, user_data, args->size);
  4233. if (ret)
  4234. return -EFAULT;
  4235. drm_agp_chipset_flush(dev);
  4236. return 0;
  4237. }
  4238. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4239. {
  4240. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4241. /* Clean up our request list when the client is going away, so that
  4242. * later retire_requests won't dereference our soon-to-be-gone
  4243. * file_priv.
  4244. */
  4245. mutex_lock(&dev->struct_mutex);
  4246. while (!list_empty(&i915_file_priv->mm.request_list))
  4247. list_del_init(i915_file_priv->mm.request_list.next);
  4248. mutex_unlock(&dev->struct_mutex);
  4249. }
  4250. static int
  4251. i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
  4252. {
  4253. drm_i915_private_t *dev_priv, *next_dev;
  4254. struct drm_i915_gem_object *obj_priv, *next_obj;
  4255. int cnt = 0;
  4256. int would_deadlock = 1;
  4257. /* "fast-path" to count number of available objects */
  4258. if (nr_to_scan == 0) {
  4259. spin_lock(&shrink_list_lock);
  4260. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4261. struct drm_device *dev = dev_priv->dev;
  4262. if (mutex_trylock(&dev->struct_mutex)) {
  4263. list_for_each_entry(obj_priv,
  4264. &dev_priv->mm.inactive_list,
  4265. list)
  4266. cnt++;
  4267. mutex_unlock(&dev->struct_mutex);
  4268. }
  4269. }
  4270. spin_unlock(&shrink_list_lock);
  4271. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4272. }
  4273. spin_lock(&shrink_list_lock);
  4274. /* first scan for clean buffers */
  4275. list_for_each_entry_safe(dev_priv, next_dev,
  4276. &shrink_list, mm.shrink_list) {
  4277. struct drm_device *dev = dev_priv->dev;
  4278. if (! mutex_trylock(&dev->struct_mutex))
  4279. continue;
  4280. spin_unlock(&shrink_list_lock);
  4281. i915_gem_retire_requests(dev);
  4282. list_for_each_entry_safe(obj_priv, next_obj,
  4283. &dev_priv->mm.inactive_list,
  4284. list) {
  4285. if (i915_gem_object_is_purgeable(obj_priv)) {
  4286. i915_gem_object_unbind(obj_priv->obj);
  4287. if (--nr_to_scan <= 0)
  4288. break;
  4289. }
  4290. }
  4291. spin_lock(&shrink_list_lock);
  4292. mutex_unlock(&dev->struct_mutex);
  4293. would_deadlock = 0;
  4294. if (nr_to_scan <= 0)
  4295. break;
  4296. }
  4297. /* second pass, evict/count anything still on the inactive list */
  4298. list_for_each_entry_safe(dev_priv, next_dev,
  4299. &shrink_list, mm.shrink_list) {
  4300. struct drm_device *dev = dev_priv->dev;
  4301. if (! mutex_trylock(&dev->struct_mutex))
  4302. continue;
  4303. spin_unlock(&shrink_list_lock);
  4304. list_for_each_entry_safe(obj_priv, next_obj,
  4305. &dev_priv->mm.inactive_list,
  4306. list) {
  4307. if (nr_to_scan > 0) {
  4308. i915_gem_object_unbind(obj_priv->obj);
  4309. nr_to_scan--;
  4310. } else
  4311. cnt++;
  4312. }
  4313. spin_lock(&shrink_list_lock);
  4314. mutex_unlock(&dev->struct_mutex);
  4315. would_deadlock = 0;
  4316. }
  4317. spin_unlock(&shrink_list_lock);
  4318. if (would_deadlock)
  4319. return -1;
  4320. else if (cnt > 0)
  4321. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4322. else
  4323. return 0;
  4324. }
  4325. static struct shrinker shrinker = {
  4326. .shrink = i915_gem_shrink,
  4327. .seeks = DEFAULT_SEEKS,
  4328. };
  4329. __init void
  4330. i915_gem_shrinker_init(void)
  4331. {
  4332. register_shrinker(&shrinker);
  4333. }
  4334. __exit void
  4335. i915_gem_shrinker_exit(void)
  4336. {
  4337. unregister_shrinker(&shrinker);
  4338. }