mv_xor.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/memory.h>
  26. #include <plat/mv_xor.h>
  27. #include "mv_xor.h"
  28. static void mv_xor_issue_pending(struct dma_chan *chan);
  29. #define to_mv_xor_chan(chan) \
  30. container_of(chan, struct mv_xor_chan, common)
  31. #define to_mv_xor_device(dev) \
  32. container_of(dev, struct mv_xor_device, common)
  33. #define to_mv_xor_slot(tx) \
  34. container_of(tx, struct mv_xor_desc_slot, async_tx)
  35. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  36. {
  37. struct mv_xor_desc *hw_desc = desc->hw_desc;
  38. hw_desc->status = (1 << 31);
  39. hw_desc->phy_next_desc = 0;
  40. hw_desc->desc_command = (1 << 31);
  41. }
  42. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  43. {
  44. struct mv_xor_desc *hw_desc = desc->hw_desc;
  45. return hw_desc->phy_dest_addr;
  46. }
  47. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  48. int src_idx)
  49. {
  50. struct mv_xor_desc *hw_desc = desc->hw_desc;
  51. return hw_desc->phy_src_addr[src_idx];
  52. }
  53. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  54. u32 byte_count)
  55. {
  56. struct mv_xor_desc *hw_desc = desc->hw_desc;
  57. hw_desc->byte_count = byte_count;
  58. }
  59. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  60. u32 next_desc_addr)
  61. {
  62. struct mv_xor_desc *hw_desc = desc->hw_desc;
  63. BUG_ON(hw_desc->phy_next_desc);
  64. hw_desc->phy_next_desc = next_desc_addr;
  65. }
  66. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  67. {
  68. struct mv_xor_desc *hw_desc = desc->hw_desc;
  69. hw_desc->phy_next_desc = 0;
  70. }
  71. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  72. {
  73. desc->value = val;
  74. }
  75. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  76. dma_addr_t addr)
  77. {
  78. struct mv_xor_desc *hw_desc = desc->hw_desc;
  79. hw_desc->phy_dest_addr = addr;
  80. }
  81. static int mv_chan_memset_slot_count(size_t len)
  82. {
  83. return 1;
  84. }
  85. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  86. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  87. int index, dma_addr_t addr)
  88. {
  89. struct mv_xor_desc *hw_desc = desc->hw_desc;
  90. hw_desc->phy_src_addr[index] = addr;
  91. if (desc->type == DMA_XOR)
  92. hw_desc->desc_command |= (1 << index);
  93. }
  94. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  95. {
  96. return __raw_readl(XOR_CURR_DESC(chan));
  97. }
  98. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  99. u32 next_desc_addr)
  100. {
  101. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  102. }
  103. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  104. {
  105. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  106. }
  107. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  108. {
  109. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  110. }
  111. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  112. {
  113. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  114. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  115. }
  116. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  117. {
  118. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  119. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  120. __raw_writel(val, XOR_INTR_MASK(chan));
  121. }
  122. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  123. {
  124. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  125. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  126. return intr_cause;
  127. }
  128. static int mv_is_err_intr(u32 intr_cause)
  129. {
  130. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  131. return 1;
  132. return 0;
  133. }
  134. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  135. {
  136. u32 val = (1 << (1 + (chan->idx * 16)));
  137. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  138. __raw_writel(val, XOR_INTR_CAUSE(chan));
  139. }
  140. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  141. {
  142. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  143. __raw_writel(val, XOR_INTR_CAUSE(chan));
  144. }
  145. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  146. {
  147. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  148. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  149. if (chain_old_tail->type != desc->type)
  150. return 0;
  151. if (desc->type == DMA_MEMSET)
  152. return 0;
  153. return 1;
  154. }
  155. static void mv_set_mode(struct mv_xor_chan *chan,
  156. enum dma_transaction_type type)
  157. {
  158. u32 op_mode;
  159. u32 config = __raw_readl(XOR_CONFIG(chan));
  160. switch (type) {
  161. case DMA_XOR:
  162. op_mode = XOR_OPERATION_MODE_XOR;
  163. break;
  164. case DMA_MEMCPY:
  165. op_mode = XOR_OPERATION_MODE_MEMCPY;
  166. break;
  167. case DMA_MEMSET:
  168. op_mode = XOR_OPERATION_MODE_MEMSET;
  169. break;
  170. default:
  171. dev_printk(KERN_ERR, chan->device->common.dev,
  172. "error: unsupported operation %d.\n",
  173. type);
  174. BUG();
  175. return;
  176. }
  177. config &= ~0x7;
  178. config |= op_mode;
  179. __raw_writel(config, XOR_CONFIG(chan));
  180. chan->current_type = type;
  181. }
  182. static void mv_chan_activate(struct mv_xor_chan *chan)
  183. {
  184. u32 activation;
  185. dev_dbg(chan->device->common.dev, " activate chan.\n");
  186. activation = __raw_readl(XOR_ACTIVATION(chan));
  187. activation |= 0x1;
  188. __raw_writel(activation, XOR_ACTIVATION(chan));
  189. }
  190. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  191. {
  192. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  193. state = (state >> 4) & 0x3;
  194. return (state == 1) ? 1 : 0;
  195. }
  196. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  197. {
  198. return 1;
  199. }
  200. /**
  201. * mv_xor_free_slots - flags descriptor slots for reuse
  202. * @slot: Slot to free
  203. * Caller must hold &mv_chan->lock while calling this function
  204. */
  205. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  206. struct mv_xor_desc_slot *slot)
  207. {
  208. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  209. __func__, __LINE__, slot);
  210. slot->slots_per_op = 0;
  211. }
  212. /*
  213. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  214. * sw_desc
  215. * Caller must hold &mv_chan->lock while calling this function
  216. */
  217. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  218. struct mv_xor_desc_slot *sw_desc)
  219. {
  220. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  221. __func__, __LINE__, sw_desc);
  222. if (sw_desc->type != mv_chan->current_type)
  223. mv_set_mode(mv_chan, sw_desc->type);
  224. if (sw_desc->type == DMA_MEMSET) {
  225. /* for memset requests we need to program the engine, no
  226. * descriptors used.
  227. */
  228. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  229. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  230. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  231. mv_chan_set_value(mv_chan, sw_desc->value);
  232. } else {
  233. /* set the hardware chain */
  234. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  235. }
  236. mv_chan->pending += sw_desc->slot_cnt;
  237. mv_xor_issue_pending(&mv_chan->common);
  238. }
  239. static dma_cookie_t
  240. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  241. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  242. {
  243. BUG_ON(desc->async_tx.cookie < 0);
  244. if (desc->async_tx.cookie > 0) {
  245. cookie = desc->async_tx.cookie;
  246. /* call the callback (must not sleep or submit new
  247. * operations to this channel)
  248. */
  249. if (desc->async_tx.callback)
  250. desc->async_tx.callback(
  251. desc->async_tx.callback_param);
  252. /* unmap dma addresses
  253. * (unmap_single vs unmap_page?)
  254. */
  255. if (desc->group_head && desc->unmap_len) {
  256. struct mv_xor_desc_slot *unmap = desc->group_head;
  257. struct device *dev =
  258. &mv_chan->device->pdev->dev;
  259. u32 len = unmap->unmap_len;
  260. enum dma_ctrl_flags flags = desc->async_tx.flags;
  261. u32 src_cnt;
  262. dma_addr_t addr;
  263. dma_addr_t dest;
  264. src_cnt = unmap->unmap_src_cnt;
  265. dest = mv_desc_get_dest_addr(unmap);
  266. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  267. enum dma_data_direction dir;
  268. if (src_cnt > 1) /* is xor ? */
  269. dir = DMA_BIDIRECTIONAL;
  270. else
  271. dir = DMA_FROM_DEVICE;
  272. dma_unmap_page(dev, dest, len, dir);
  273. }
  274. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  275. while (src_cnt--) {
  276. addr = mv_desc_get_src_addr(unmap,
  277. src_cnt);
  278. if (addr == dest)
  279. continue;
  280. dma_unmap_page(dev, addr, len,
  281. DMA_TO_DEVICE);
  282. }
  283. }
  284. desc->group_head = NULL;
  285. }
  286. }
  287. /* run dependent operations */
  288. dma_run_dependencies(&desc->async_tx);
  289. return cookie;
  290. }
  291. static int
  292. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  293. {
  294. struct mv_xor_desc_slot *iter, *_iter;
  295. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  296. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  297. completed_node) {
  298. if (async_tx_test_ack(&iter->async_tx)) {
  299. list_del(&iter->completed_node);
  300. mv_xor_free_slots(mv_chan, iter);
  301. }
  302. }
  303. return 0;
  304. }
  305. static int
  306. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  307. struct mv_xor_chan *mv_chan)
  308. {
  309. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  310. __func__, __LINE__, desc, desc->async_tx.flags);
  311. list_del(&desc->chain_node);
  312. /* the client is allowed to attach dependent operations
  313. * until 'ack' is set
  314. */
  315. if (!async_tx_test_ack(&desc->async_tx)) {
  316. /* move this slot to the completed_slots */
  317. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  318. return 0;
  319. }
  320. mv_xor_free_slots(mv_chan, desc);
  321. return 0;
  322. }
  323. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  324. {
  325. struct mv_xor_desc_slot *iter, *_iter;
  326. dma_cookie_t cookie = 0;
  327. int busy = mv_chan_is_busy(mv_chan);
  328. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  329. int seen_current = 0;
  330. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  331. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  332. mv_xor_clean_completed_slots(mv_chan);
  333. /* free completed slots from the chain starting with
  334. * the oldest descriptor
  335. */
  336. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  337. chain_node) {
  338. prefetch(_iter);
  339. prefetch(&_iter->async_tx);
  340. /* do not advance past the current descriptor loaded into the
  341. * hardware channel, subsequent descriptors are either in
  342. * process or have not been submitted
  343. */
  344. if (seen_current)
  345. break;
  346. /* stop the search if we reach the current descriptor and the
  347. * channel is busy
  348. */
  349. if (iter->async_tx.phys == current_desc) {
  350. seen_current = 1;
  351. if (busy)
  352. break;
  353. }
  354. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  355. if (mv_xor_clean_slot(iter, mv_chan))
  356. break;
  357. }
  358. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  359. struct mv_xor_desc_slot *chain_head;
  360. chain_head = list_entry(mv_chan->chain.next,
  361. struct mv_xor_desc_slot,
  362. chain_node);
  363. mv_xor_start_new_chain(mv_chan, chain_head);
  364. }
  365. if (cookie > 0)
  366. mv_chan->completed_cookie = cookie;
  367. }
  368. static void
  369. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  370. {
  371. spin_lock_bh(&mv_chan->lock);
  372. __mv_xor_slot_cleanup(mv_chan);
  373. spin_unlock_bh(&mv_chan->lock);
  374. }
  375. static void mv_xor_tasklet(unsigned long data)
  376. {
  377. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  378. __mv_xor_slot_cleanup(chan);
  379. }
  380. static struct mv_xor_desc_slot *
  381. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  382. int slots_per_op)
  383. {
  384. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  385. LIST_HEAD(chain);
  386. int slots_found, retry = 0;
  387. /* start search from the last allocated descrtiptor
  388. * if a contiguous allocation can not be found start searching
  389. * from the beginning of the list
  390. */
  391. retry:
  392. slots_found = 0;
  393. if (retry == 0)
  394. iter = mv_chan->last_used;
  395. else
  396. iter = list_entry(&mv_chan->all_slots,
  397. struct mv_xor_desc_slot,
  398. slot_node);
  399. list_for_each_entry_safe_continue(
  400. iter, _iter, &mv_chan->all_slots, slot_node) {
  401. prefetch(_iter);
  402. prefetch(&_iter->async_tx);
  403. if (iter->slots_per_op) {
  404. /* give up after finding the first busy slot
  405. * on the second pass through the list
  406. */
  407. if (retry)
  408. break;
  409. slots_found = 0;
  410. continue;
  411. }
  412. /* start the allocation if the slot is correctly aligned */
  413. if (!slots_found++)
  414. alloc_start = iter;
  415. if (slots_found == num_slots) {
  416. struct mv_xor_desc_slot *alloc_tail = NULL;
  417. struct mv_xor_desc_slot *last_used = NULL;
  418. iter = alloc_start;
  419. while (num_slots) {
  420. int i;
  421. /* pre-ack all but the last descriptor */
  422. async_tx_ack(&iter->async_tx);
  423. list_add_tail(&iter->chain_node, &chain);
  424. alloc_tail = iter;
  425. iter->async_tx.cookie = 0;
  426. iter->slot_cnt = num_slots;
  427. iter->xor_check_result = NULL;
  428. for (i = 0; i < slots_per_op; i++) {
  429. iter->slots_per_op = slots_per_op - i;
  430. last_used = iter;
  431. iter = list_entry(iter->slot_node.next,
  432. struct mv_xor_desc_slot,
  433. slot_node);
  434. }
  435. num_slots -= slots_per_op;
  436. }
  437. alloc_tail->group_head = alloc_start;
  438. alloc_tail->async_tx.cookie = -EBUSY;
  439. list_splice(&chain, &alloc_tail->tx_list);
  440. mv_chan->last_used = last_used;
  441. mv_desc_clear_next_desc(alloc_start);
  442. mv_desc_clear_next_desc(alloc_tail);
  443. return alloc_tail;
  444. }
  445. }
  446. if (!retry++)
  447. goto retry;
  448. /* try to free some slots if the allocation fails */
  449. tasklet_schedule(&mv_chan->irq_tasklet);
  450. return NULL;
  451. }
  452. static dma_cookie_t
  453. mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
  454. struct mv_xor_desc_slot *desc)
  455. {
  456. dma_cookie_t cookie = mv_chan->common.cookie;
  457. if (++cookie < 0)
  458. cookie = 1;
  459. mv_chan->common.cookie = desc->async_tx.cookie = cookie;
  460. return cookie;
  461. }
  462. /************************ DMA engine API functions ****************************/
  463. static dma_cookie_t
  464. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  465. {
  466. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  467. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  468. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  469. dma_cookie_t cookie;
  470. int new_hw_chain = 1;
  471. dev_dbg(mv_chan->device->common.dev,
  472. "%s sw_desc %p: async_tx %p\n",
  473. __func__, sw_desc, &sw_desc->async_tx);
  474. grp_start = sw_desc->group_head;
  475. spin_lock_bh(&mv_chan->lock);
  476. cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
  477. if (list_empty(&mv_chan->chain))
  478. list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
  479. else {
  480. new_hw_chain = 0;
  481. old_chain_tail = list_entry(mv_chan->chain.prev,
  482. struct mv_xor_desc_slot,
  483. chain_node);
  484. list_splice_init(&grp_start->tx_list,
  485. &old_chain_tail->chain_node);
  486. if (!mv_can_chain(grp_start))
  487. goto submit_done;
  488. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  489. old_chain_tail->async_tx.phys);
  490. /* fix up the hardware chain */
  491. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  492. /* if the channel is not busy */
  493. if (!mv_chan_is_busy(mv_chan)) {
  494. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  495. /*
  496. * and the curren desc is the end of the chain before
  497. * the append, then we need to start the channel
  498. */
  499. if (current_desc == old_chain_tail->async_tx.phys)
  500. new_hw_chain = 1;
  501. }
  502. }
  503. if (new_hw_chain)
  504. mv_xor_start_new_chain(mv_chan, grp_start);
  505. submit_done:
  506. spin_unlock_bh(&mv_chan->lock);
  507. return cookie;
  508. }
  509. /* returns the number of allocated descriptors */
  510. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  511. {
  512. char *hw_desc;
  513. int idx;
  514. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  515. struct mv_xor_desc_slot *slot = NULL;
  516. struct mv_xor_platform_data *plat_data =
  517. mv_chan->device->pdev->dev.platform_data;
  518. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  519. /* Allocate descriptor slots */
  520. idx = mv_chan->slots_allocated;
  521. while (idx < num_descs_in_pool) {
  522. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  523. if (!slot) {
  524. printk(KERN_INFO "MV XOR Channel only initialized"
  525. " %d descriptor slots", idx);
  526. break;
  527. }
  528. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  529. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  530. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  531. slot->async_tx.tx_submit = mv_xor_tx_submit;
  532. INIT_LIST_HEAD(&slot->chain_node);
  533. INIT_LIST_HEAD(&slot->slot_node);
  534. INIT_LIST_HEAD(&slot->tx_list);
  535. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  536. slot->async_tx.phys =
  537. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  538. slot->idx = idx++;
  539. spin_lock_bh(&mv_chan->lock);
  540. mv_chan->slots_allocated = idx;
  541. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  542. spin_unlock_bh(&mv_chan->lock);
  543. }
  544. if (mv_chan->slots_allocated && !mv_chan->last_used)
  545. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  546. struct mv_xor_desc_slot,
  547. slot_node);
  548. dev_dbg(mv_chan->device->common.dev,
  549. "allocated %d descriptor slots last_used: %p\n",
  550. mv_chan->slots_allocated, mv_chan->last_used);
  551. return mv_chan->slots_allocated ? : -ENOMEM;
  552. }
  553. static struct dma_async_tx_descriptor *
  554. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  555. size_t len, unsigned long flags)
  556. {
  557. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  558. struct mv_xor_desc_slot *sw_desc, *grp_start;
  559. int slot_cnt;
  560. dev_dbg(mv_chan->device->common.dev,
  561. "%s dest: %x src %x len: %u flags: %ld\n",
  562. __func__, dest, src, len, flags);
  563. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  564. return NULL;
  565. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  566. spin_lock_bh(&mv_chan->lock);
  567. slot_cnt = mv_chan_memcpy_slot_count(len);
  568. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  569. if (sw_desc) {
  570. sw_desc->type = DMA_MEMCPY;
  571. sw_desc->async_tx.flags = flags;
  572. grp_start = sw_desc->group_head;
  573. mv_desc_init(grp_start, flags);
  574. mv_desc_set_byte_count(grp_start, len);
  575. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  576. mv_desc_set_src_addr(grp_start, 0, src);
  577. sw_desc->unmap_src_cnt = 1;
  578. sw_desc->unmap_len = len;
  579. }
  580. spin_unlock_bh(&mv_chan->lock);
  581. dev_dbg(mv_chan->device->common.dev,
  582. "%s sw_desc %p async_tx %p\n",
  583. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  584. return sw_desc ? &sw_desc->async_tx : NULL;
  585. }
  586. static struct dma_async_tx_descriptor *
  587. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  588. size_t len, unsigned long flags)
  589. {
  590. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  591. struct mv_xor_desc_slot *sw_desc, *grp_start;
  592. int slot_cnt;
  593. dev_dbg(mv_chan->device->common.dev,
  594. "%s dest: %x len: %u flags: %ld\n",
  595. __func__, dest, len, flags);
  596. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  597. return NULL;
  598. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  599. spin_lock_bh(&mv_chan->lock);
  600. slot_cnt = mv_chan_memset_slot_count(len);
  601. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  602. if (sw_desc) {
  603. sw_desc->type = DMA_MEMSET;
  604. sw_desc->async_tx.flags = flags;
  605. grp_start = sw_desc->group_head;
  606. mv_desc_init(grp_start, flags);
  607. mv_desc_set_byte_count(grp_start, len);
  608. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  609. mv_desc_set_block_fill_val(grp_start, value);
  610. sw_desc->unmap_src_cnt = 1;
  611. sw_desc->unmap_len = len;
  612. }
  613. spin_unlock_bh(&mv_chan->lock);
  614. dev_dbg(mv_chan->device->common.dev,
  615. "%s sw_desc %p async_tx %p \n",
  616. __func__, sw_desc, &sw_desc->async_tx);
  617. return sw_desc ? &sw_desc->async_tx : NULL;
  618. }
  619. static struct dma_async_tx_descriptor *
  620. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  621. unsigned int src_cnt, size_t len, unsigned long flags)
  622. {
  623. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  624. struct mv_xor_desc_slot *sw_desc, *grp_start;
  625. int slot_cnt;
  626. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  627. return NULL;
  628. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  629. dev_dbg(mv_chan->device->common.dev,
  630. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  631. __func__, src_cnt, len, dest, flags);
  632. spin_lock_bh(&mv_chan->lock);
  633. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  634. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  635. if (sw_desc) {
  636. sw_desc->type = DMA_XOR;
  637. sw_desc->async_tx.flags = flags;
  638. grp_start = sw_desc->group_head;
  639. mv_desc_init(grp_start, flags);
  640. /* the byte count field is the same as in memcpy desc*/
  641. mv_desc_set_byte_count(grp_start, len);
  642. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  643. sw_desc->unmap_src_cnt = src_cnt;
  644. sw_desc->unmap_len = len;
  645. while (src_cnt--)
  646. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  647. }
  648. spin_unlock_bh(&mv_chan->lock);
  649. dev_dbg(mv_chan->device->common.dev,
  650. "%s sw_desc %p async_tx %p \n",
  651. __func__, sw_desc, &sw_desc->async_tx);
  652. return sw_desc ? &sw_desc->async_tx : NULL;
  653. }
  654. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  655. {
  656. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  657. struct mv_xor_desc_slot *iter, *_iter;
  658. int in_use_descs = 0;
  659. mv_xor_slot_cleanup(mv_chan);
  660. spin_lock_bh(&mv_chan->lock);
  661. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  662. chain_node) {
  663. in_use_descs++;
  664. list_del(&iter->chain_node);
  665. }
  666. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  667. completed_node) {
  668. in_use_descs++;
  669. list_del(&iter->completed_node);
  670. }
  671. list_for_each_entry_safe_reverse(
  672. iter, _iter, &mv_chan->all_slots, slot_node) {
  673. list_del(&iter->slot_node);
  674. kfree(iter);
  675. mv_chan->slots_allocated--;
  676. }
  677. mv_chan->last_used = NULL;
  678. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  679. __func__, mv_chan->slots_allocated);
  680. spin_unlock_bh(&mv_chan->lock);
  681. if (in_use_descs)
  682. dev_err(mv_chan->device->common.dev,
  683. "freeing %d in use descriptors!\n", in_use_descs);
  684. }
  685. /**
  686. * mv_xor_is_complete - poll the status of an XOR transaction
  687. * @chan: XOR channel handle
  688. * @cookie: XOR transaction identifier
  689. */
  690. static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
  691. dma_cookie_t cookie,
  692. dma_cookie_t *done,
  693. dma_cookie_t *used)
  694. {
  695. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  696. dma_cookie_t last_used;
  697. dma_cookie_t last_complete;
  698. enum dma_status ret;
  699. last_used = chan->cookie;
  700. last_complete = mv_chan->completed_cookie;
  701. mv_chan->is_complete_cookie = cookie;
  702. if (done)
  703. *done = last_complete;
  704. if (used)
  705. *used = last_used;
  706. ret = dma_async_is_complete(cookie, last_complete, last_used);
  707. if (ret == DMA_SUCCESS) {
  708. mv_xor_clean_completed_slots(mv_chan);
  709. return ret;
  710. }
  711. mv_xor_slot_cleanup(mv_chan);
  712. last_used = chan->cookie;
  713. last_complete = mv_chan->completed_cookie;
  714. if (done)
  715. *done = last_complete;
  716. if (used)
  717. *used = last_used;
  718. return dma_async_is_complete(cookie, last_complete, last_used);
  719. }
  720. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  721. {
  722. u32 val;
  723. val = __raw_readl(XOR_CONFIG(chan));
  724. dev_printk(KERN_ERR, chan->device->common.dev,
  725. "config 0x%08x.\n", val);
  726. val = __raw_readl(XOR_ACTIVATION(chan));
  727. dev_printk(KERN_ERR, chan->device->common.dev,
  728. "activation 0x%08x.\n", val);
  729. val = __raw_readl(XOR_INTR_CAUSE(chan));
  730. dev_printk(KERN_ERR, chan->device->common.dev,
  731. "intr cause 0x%08x.\n", val);
  732. val = __raw_readl(XOR_INTR_MASK(chan));
  733. dev_printk(KERN_ERR, chan->device->common.dev,
  734. "intr mask 0x%08x.\n", val);
  735. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  736. dev_printk(KERN_ERR, chan->device->common.dev,
  737. "error cause 0x%08x.\n", val);
  738. val = __raw_readl(XOR_ERROR_ADDR(chan));
  739. dev_printk(KERN_ERR, chan->device->common.dev,
  740. "error addr 0x%08x.\n", val);
  741. }
  742. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  743. u32 intr_cause)
  744. {
  745. if (intr_cause & (1 << 4)) {
  746. dev_dbg(chan->device->common.dev,
  747. "ignore this error\n");
  748. return;
  749. }
  750. dev_printk(KERN_ERR, chan->device->common.dev,
  751. "error on chan %d. intr cause 0x%08x.\n",
  752. chan->idx, intr_cause);
  753. mv_dump_xor_regs(chan);
  754. BUG();
  755. }
  756. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  757. {
  758. struct mv_xor_chan *chan = data;
  759. u32 intr_cause = mv_chan_get_intr_cause(chan);
  760. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  761. if (mv_is_err_intr(intr_cause))
  762. mv_xor_err_interrupt_handler(chan, intr_cause);
  763. tasklet_schedule(&chan->irq_tasklet);
  764. mv_xor_device_clear_eoc_cause(chan);
  765. return IRQ_HANDLED;
  766. }
  767. static void mv_xor_issue_pending(struct dma_chan *chan)
  768. {
  769. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  770. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  771. mv_chan->pending = 0;
  772. mv_chan_activate(mv_chan);
  773. }
  774. }
  775. /*
  776. * Perform a transaction to verify the HW works.
  777. */
  778. #define MV_XOR_TEST_SIZE 2000
  779. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  780. {
  781. int i;
  782. void *src, *dest;
  783. dma_addr_t src_dma, dest_dma;
  784. struct dma_chan *dma_chan;
  785. dma_cookie_t cookie;
  786. struct dma_async_tx_descriptor *tx;
  787. int err = 0;
  788. struct mv_xor_chan *mv_chan;
  789. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  790. if (!src)
  791. return -ENOMEM;
  792. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  793. if (!dest) {
  794. kfree(src);
  795. return -ENOMEM;
  796. }
  797. /* Fill in src buffer */
  798. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  799. ((u8 *) src)[i] = (u8)i;
  800. /* Start copy, using first DMA channel */
  801. dma_chan = container_of(device->common.channels.next,
  802. struct dma_chan,
  803. device_node);
  804. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  805. err = -ENODEV;
  806. goto out;
  807. }
  808. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  809. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  810. src_dma = dma_map_single(dma_chan->device->dev, src,
  811. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  812. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  813. MV_XOR_TEST_SIZE, 0);
  814. cookie = mv_xor_tx_submit(tx);
  815. mv_xor_issue_pending(dma_chan);
  816. async_tx_ack(tx);
  817. msleep(1);
  818. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  819. DMA_SUCCESS) {
  820. dev_printk(KERN_ERR, dma_chan->device->dev,
  821. "Self-test copy timed out, disabling\n");
  822. err = -ENODEV;
  823. goto free_resources;
  824. }
  825. mv_chan = to_mv_xor_chan(dma_chan);
  826. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  827. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  828. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  829. dev_printk(KERN_ERR, dma_chan->device->dev,
  830. "Self-test copy failed compare, disabling\n");
  831. err = -ENODEV;
  832. goto free_resources;
  833. }
  834. free_resources:
  835. mv_xor_free_chan_resources(dma_chan);
  836. out:
  837. kfree(src);
  838. kfree(dest);
  839. return err;
  840. }
  841. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  842. static int __devinit
  843. mv_xor_xor_self_test(struct mv_xor_device *device)
  844. {
  845. int i, src_idx;
  846. struct page *dest;
  847. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  848. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  849. dma_addr_t dest_dma;
  850. struct dma_async_tx_descriptor *tx;
  851. struct dma_chan *dma_chan;
  852. dma_cookie_t cookie;
  853. u8 cmp_byte = 0;
  854. u32 cmp_word;
  855. int err = 0;
  856. struct mv_xor_chan *mv_chan;
  857. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  858. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  859. if (!xor_srcs[src_idx]) {
  860. while (src_idx--)
  861. __free_page(xor_srcs[src_idx]);
  862. return -ENOMEM;
  863. }
  864. }
  865. dest = alloc_page(GFP_KERNEL);
  866. if (!dest) {
  867. while (src_idx--)
  868. __free_page(xor_srcs[src_idx]);
  869. return -ENOMEM;
  870. }
  871. /* Fill in src buffers */
  872. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  873. u8 *ptr = page_address(xor_srcs[src_idx]);
  874. for (i = 0; i < PAGE_SIZE; i++)
  875. ptr[i] = (1 << src_idx);
  876. }
  877. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  878. cmp_byte ^= (u8) (1 << src_idx);
  879. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  880. (cmp_byte << 8) | cmp_byte;
  881. memset(page_address(dest), 0, PAGE_SIZE);
  882. dma_chan = container_of(device->common.channels.next,
  883. struct dma_chan,
  884. device_node);
  885. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  886. err = -ENODEV;
  887. goto out;
  888. }
  889. /* test xor */
  890. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  891. DMA_FROM_DEVICE);
  892. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  893. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  894. 0, PAGE_SIZE, DMA_TO_DEVICE);
  895. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  896. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  897. cookie = mv_xor_tx_submit(tx);
  898. mv_xor_issue_pending(dma_chan);
  899. async_tx_ack(tx);
  900. msleep(8);
  901. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  902. DMA_SUCCESS) {
  903. dev_printk(KERN_ERR, dma_chan->device->dev,
  904. "Self-test xor timed out, disabling\n");
  905. err = -ENODEV;
  906. goto free_resources;
  907. }
  908. mv_chan = to_mv_xor_chan(dma_chan);
  909. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  910. PAGE_SIZE, DMA_FROM_DEVICE);
  911. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  912. u32 *ptr = page_address(dest);
  913. if (ptr[i] != cmp_word) {
  914. dev_printk(KERN_ERR, dma_chan->device->dev,
  915. "Self-test xor failed compare, disabling."
  916. " index %d, data %x, expected %x\n", i,
  917. ptr[i], cmp_word);
  918. err = -ENODEV;
  919. goto free_resources;
  920. }
  921. }
  922. free_resources:
  923. mv_xor_free_chan_resources(dma_chan);
  924. out:
  925. src_idx = MV_XOR_NUM_SRC_TEST;
  926. while (src_idx--)
  927. __free_page(xor_srcs[src_idx]);
  928. __free_page(dest);
  929. return err;
  930. }
  931. static int __devexit mv_xor_remove(struct platform_device *dev)
  932. {
  933. struct mv_xor_device *device = platform_get_drvdata(dev);
  934. struct dma_chan *chan, *_chan;
  935. struct mv_xor_chan *mv_chan;
  936. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  937. dma_async_device_unregister(&device->common);
  938. dma_free_coherent(&dev->dev, plat_data->pool_size,
  939. device->dma_desc_pool_virt, device->dma_desc_pool);
  940. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  941. device_node) {
  942. mv_chan = to_mv_xor_chan(chan);
  943. list_del(&chan->device_node);
  944. }
  945. return 0;
  946. }
  947. static int __devinit mv_xor_probe(struct platform_device *pdev)
  948. {
  949. int ret = 0;
  950. int irq;
  951. struct mv_xor_device *adev;
  952. struct mv_xor_chan *mv_chan;
  953. struct dma_device *dma_dev;
  954. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  955. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  956. if (!adev)
  957. return -ENOMEM;
  958. dma_dev = &adev->common;
  959. /* allocate coherent memory for hardware descriptors
  960. * note: writecombine gives slightly better performance, but
  961. * requires that we explicitly flush the writes
  962. */
  963. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  964. plat_data->pool_size,
  965. &adev->dma_desc_pool,
  966. GFP_KERNEL);
  967. if (!adev->dma_desc_pool_virt)
  968. return -ENOMEM;
  969. adev->id = plat_data->hw_id;
  970. /* discover transaction capabilites from the platform data */
  971. dma_dev->cap_mask = plat_data->cap_mask;
  972. adev->pdev = pdev;
  973. platform_set_drvdata(pdev, adev);
  974. adev->shared = platform_get_drvdata(plat_data->shared);
  975. INIT_LIST_HEAD(&dma_dev->channels);
  976. /* set base routines */
  977. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  978. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  979. dma_dev->device_is_tx_complete = mv_xor_is_complete;
  980. dma_dev->device_issue_pending = mv_xor_issue_pending;
  981. dma_dev->dev = &pdev->dev;
  982. /* set prep routines based on capability */
  983. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  984. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  985. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  986. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  987. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  988. dma_dev->max_xor = 8;
  989. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  990. }
  991. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  992. if (!mv_chan) {
  993. ret = -ENOMEM;
  994. goto err_free_dma;
  995. }
  996. mv_chan->device = adev;
  997. mv_chan->idx = plat_data->hw_id;
  998. mv_chan->mmr_base = adev->shared->xor_base;
  999. if (!mv_chan->mmr_base) {
  1000. ret = -ENOMEM;
  1001. goto err_free_dma;
  1002. }
  1003. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  1004. mv_chan);
  1005. /* clear errors before enabling interrupts */
  1006. mv_xor_device_clear_err_status(mv_chan);
  1007. irq = platform_get_irq(pdev, 0);
  1008. if (irq < 0) {
  1009. ret = irq;
  1010. goto err_free_dma;
  1011. }
  1012. ret = devm_request_irq(&pdev->dev, irq,
  1013. mv_xor_interrupt_handler,
  1014. 0, dev_name(&pdev->dev), mv_chan);
  1015. if (ret)
  1016. goto err_free_dma;
  1017. mv_chan_unmask_interrupts(mv_chan);
  1018. mv_set_mode(mv_chan, DMA_MEMCPY);
  1019. spin_lock_init(&mv_chan->lock);
  1020. INIT_LIST_HEAD(&mv_chan->chain);
  1021. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1022. INIT_LIST_HEAD(&mv_chan->all_slots);
  1023. mv_chan->common.device = dma_dev;
  1024. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1025. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1026. ret = mv_xor_memcpy_self_test(adev);
  1027. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1028. if (ret)
  1029. goto err_free_dma;
  1030. }
  1031. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1032. ret = mv_xor_xor_self_test(adev);
  1033. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1034. if (ret)
  1035. goto err_free_dma;
  1036. }
  1037. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1038. "( %s%s%s%s)\n",
  1039. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1040. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1041. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1042. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1043. dma_async_device_register(dma_dev);
  1044. goto out;
  1045. err_free_dma:
  1046. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1047. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1048. out:
  1049. return ret;
  1050. }
  1051. static void
  1052. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1053. struct mbus_dram_target_info *dram)
  1054. {
  1055. void __iomem *base = msp->xor_base;
  1056. u32 win_enable = 0;
  1057. int i;
  1058. for (i = 0; i < 8; i++) {
  1059. writel(0, base + WINDOW_BASE(i));
  1060. writel(0, base + WINDOW_SIZE(i));
  1061. if (i < 4)
  1062. writel(0, base + WINDOW_REMAP_HIGH(i));
  1063. }
  1064. for (i = 0; i < dram->num_cs; i++) {
  1065. struct mbus_dram_window *cs = dram->cs + i;
  1066. writel((cs->base & 0xffff0000) |
  1067. (cs->mbus_attr << 8) |
  1068. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1069. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1070. win_enable |= (1 << i);
  1071. win_enable |= 3 << (16 + (2 * i));
  1072. }
  1073. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1074. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1075. }
  1076. static struct platform_driver mv_xor_driver = {
  1077. .probe = mv_xor_probe,
  1078. .remove = __devexit_p(mv_xor_remove),
  1079. .driver = {
  1080. .owner = THIS_MODULE,
  1081. .name = MV_XOR_NAME,
  1082. },
  1083. };
  1084. static int mv_xor_shared_probe(struct platform_device *pdev)
  1085. {
  1086. struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
  1087. struct mv_xor_shared_private *msp;
  1088. struct resource *res;
  1089. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1090. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1091. if (!msp)
  1092. return -ENOMEM;
  1093. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1094. if (!res)
  1095. return -ENODEV;
  1096. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1097. res->end - res->start + 1);
  1098. if (!msp->xor_base)
  1099. return -EBUSY;
  1100. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1101. if (!res)
  1102. return -ENODEV;
  1103. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1104. res->end - res->start + 1);
  1105. if (!msp->xor_high_base)
  1106. return -EBUSY;
  1107. platform_set_drvdata(pdev, msp);
  1108. /*
  1109. * (Re-)program MBUS remapping windows if we are asked to.
  1110. */
  1111. if (msd != NULL && msd->dram != NULL)
  1112. mv_xor_conf_mbus_windows(msp, msd->dram);
  1113. return 0;
  1114. }
  1115. static int mv_xor_shared_remove(struct platform_device *pdev)
  1116. {
  1117. return 0;
  1118. }
  1119. static struct platform_driver mv_xor_shared_driver = {
  1120. .probe = mv_xor_shared_probe,
  1121. .remove = mv_xor_shared_remove,
  1122. .driver = {
  1123. .owner = THIS_MODULE,
  1124. .name = MV_XOR_SHARED_NAME,
  1125. },
  1126. };
  1127. static int __init mv_xor_init(void)
  1128. {
  1129. int rc;
  1130. rc = platform_driver_register(&mv_xor_shared_driver);
  1131. if (!rc) {
  1132. rc = platform_driver_register(&mv_xor_driver);
  1133. if (rc)
  1134. platform_driver_unregister(&mv_xor_shared_driver);
  1135. }
  1136. return rc;
  1137. }
  1138. module_init(mv_xor_init);
  1139. /* it's currently unsafe to unload this module */
  1140. #if 0
  1141. static void __exit mv_xor_exit(void)
  1142. {
  1143. platform_driver_unregister(&mv_xor_driver);
  1144. platform_driver_unregister(&mv_xor_shared_driver);
  1145. return;
  1146. }
  1147. module_exit(mv_xor_exit);
  1148. #endif
  1149. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1150. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1151. MODULE_LICENSE("GPL");