iop-adma.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772
  1. /*
  2. * offload engine driver for the Intel Xscale series of i/o processors
  3. * Copyright © 2006, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. *
  18. */
  19. /*
  20. * This driver supports the asynchrounous DMA copy and RAID engines available
  21. * on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
  22. */
  23. #include <linux/init.h>
  24. #include <linux/module.h>
  25. #include <linux/delay.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/memory.h>
  31. #include <linux/ioport.h>
  32. #include <linux/raid/pq.h>
  33. #include <mach/adma.h>
  34. #define to_iop_adma_chan(chan) container_of(chan, struct iop_adma_chan, common)
  35. #define to_iop_adma_device(dev) \
  36. container_of(dev, struct iop_adma_device, common)
  37. #define tx_to_iop_adma_slot(tx) \
  38. container_of(tx, struct iop_adma_desc_slot, async_tx)
  39. /**
  40. * iop_adma_free_slots - flags descriptor slots for reuse
  41. * @slot: Slot to free
  42. * Caller must hold &iop_chan->lock while calling this function
  43. */
  44. static void iop_adma_free_slots(struct iop_adma_desc_slot *slot)
  45. {
  46. int stride = slot->slots_per_op;
  47. while (stride--) {
  48. slot->slots_per_op = 0;
  49. slot = list_entry(slot->slot_node.next,
  50. struct iop_adma_desc_slot,
  51. slot_node);
  52. }
  53. }
  54. static void
  55. iop_desc_unmap(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  56. {
  57. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  58. struct iop_adma_desc_slot *unmap = desc->group_head;
  59. struct device *dev = &iop_chan->device->pdev->dev;
  60. u32 len = unmap->unmap_len;
  61. enum dma_ctrl_flags flags = tx->flags;
  62. u32 src_cnt;
  63. dma_addr_t addr;
  64. dma_addr_t dest;
  65. src_cnt = unmap->unmap_src_cnt;
  66. dest = iop_desc_get_dest_addr(unmap, iop_chan);
  67. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  68. enum dma_data_direction dir;
  69. if (src_cnt > 1) /* is xor? */
  70. dir = DMA_BIDIRECTIONAL;
  71. else
  72. dir = DMA_FROM_DEVICE;
  73. dma_unmap_page(dev, dest, len, dir);
  74. }
  75. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  76. while (src_cnt--) {
  77. addr = iop_desc_get_src_addr(unmap, iop_chan, src_cnt);
  78. if (addr == dest)
  79. continue;
  80. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  81. }
  82. }
  83. desc->group_head = NULL;
  84. }
  85. static void
  86. iop_desc_unmap_pq(struct iop_adma_chan *iop_chan, struct iop_adma_desc_slot *desc)
  87. {
  88. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  89. struct iop_adma_desc_slot *unmap = desc->group_head;
  90. struct device *dev = &iop_chan->device->pdev->dev;
  91. u32 len = unmap->unmap_len;
  92. enum dma_ctrl_flags flags = tx->flags;
  93. u32 src_cnt = unmap->unmap_src_cnt;
  94. dma_addr_t pdest = iop_desc_get_dest_addr(unmap, iop_chan);
  95. dma_addr_t qdest = iop_desc_get_qdest_addr(unmap, iop_chan);
  96. int i;
  97. if (tx->flags & DMA_PREP_CONTINUE)
  98. src_cnt -= 3;
  99. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP) && !desc->pq_check_result) {
  100. dma_unmap_page(dev, pdest, len, DMA_BIDIRECTIONAL);
  101. dma_unmap_page(dev, qdest, len, DMA_BIDIRECTIONAL);
  102. }
  103. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  104. dma_addr_t addr;
  105. for (i = 0; i < src_cnt; i++) {
  106. addr = iop_desc_get_src_addr(unmap, iop_chan, i);
  107. dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
  108. }
  109. if (desc->pq_check_result) {
  110. dma_unmap_page(dev, pdest, len, DMA_TO_DEVICE);
  111. dma_unmap_page(dev, qdest, len, DMA_TO_DEVICE);
  112. }
  113. }
  114. desc->group_head = NULL;
  115. }
  116. static dma_cookie_t
  117. iop_adma_run_tx_complete_actions(struct iop_adma_desc_slot *desc,
  118. struct iop_adma_chan *iop_chan, dma_cookie_t cookie)
  119. {
  120. struct dma_async_tx_descriptor *tx = &desc->async_tx;
  121. BUG_ON(tx->cookie < 0);
  122. if (tx->cookie > 0) {
  123. cookie = tx->cookie;
  124. tx->cookie = 0;
  125. /* call the callback (must not sleep or submit new
  126. * operations to this channel)
  127. */
  128. if (tx->callback)
  129. tx->callback(tx->callback_param);
  130. /* unmap dma addresses
  131. * (unmap_single vs unmap_page?)
  132. */
  133. if (desc->group_head && desc->unmap_len) {
  134. if (iop_desc_is_pq(desc))
  135. iop_desc_unmap_pq(iop_chan, desc);
  136. else
  137. iop_desc_unmap(iop_chan, desc);
  138. }
  139. }
  140. /* run dependent operations */
  141. dma_run_dependencies(tx);
  142. return cookie;
  143. }
  144. static int
  145. iop_adma_clean_slot(struct iop_adma_desc_slot *desc,
  146. struct iop_adma_chan *iop_chan)
  147. {
  148. /* the client is allowed to attach dependent operations
  149. * until 'ack' is set
  150. */
  151. if (!async_tx_test_ack(&desc->async_tx))
  152. return 0;
  153. /* leave the last descriptor in the chain
  154. * so we can append to it
  155. */
  156. if (desc->chain_node.next == &iop_chan->chain)
  157. return 1;
  158. dev_dbg(iop_chan->device->common.dev,
  159. "\tfree slot: %d slots_per_op: %d\n",
  160. desc->idx, desc->slots_per_op);
  161. list_del(&desc->chain_node);
  162. iop_adma_free_slots(desc);
  163. return 0;
  164. }
  165. static void __iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  166. {
  167. struct iop_adma_desc_slot *iter, *_iter, *grp_start = NULL;
  168. dma_cookie_t cookie = 0;
  169. u32 current_desc = iop_chan_get_current_descriptor(iop_chan);
  170. int busy = iop_chan_is_busy(iop_chan);
  171. int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
  172. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  173. /* free completed slots from the chain starting with
  174. * the oldest descriptor
  175. */
  176. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  177. chain_node) {
  178. pr_debug("\tcookie: %d slot: %d busy: %d "
  179. "this_desc: %#x next_desc: %#x ack: %d\n",
  180. iter->async_tx.cookie, iter->idx, busy,
  181. iter->async_tx.phys, iop_desc_get_next_desc(iter),
  182. async_tx_test_ack(&iter->async_tx));
  183. prefetch(_iter);
  184. prefetch(&_iter->async_tx);
  185. /* do not advance past the current descriptor loaded into the
  186. * hardware channel, subsequent descriptors are either in
  187. * process or have not been submitted
  188. */
  189. if (seen_current)
  190. break;
  191. /* stop the search if we reach the current descriptor and the
  192. * channel is busy, or if it appears that the current descriptor
  193. * needs to be re-read (i.e. has been appended to)
  194. */
  195. if (iter->async_tx.phys == current_desc) {
  196. BUG_ON(seen_current++);
  197. if (busy || iop_desc_get_next_desc(iter))
  198. break;
  199. }
  200. /* detect the start of a group transaction */
  201. if (!slot_cnt && !slots_per_op) {
  202. slot_cnt = iter->slot_cnt;
  203. slots_per_op = iter->slots_per_op;
  204. if (slot_cnt <= slots_per_op) {
  205. slot_cnt = 0;
  206. slots_per_op = 0;
  207. }
  208. }
  209. if (slot_cnt) {
  210. pr_debug("\tgroup++\n");
  211. if (!grp_start)
  212. grp_start = iter;
  213. slot_cnt -= slots_per_op;
  214. }
  215. /* all the members of a group are complete */
  216. if (slots_per_op != 0 && slot_cnt == 0) {
  217. struct iop_adma_desc_slot *grp_iter, *_grp_iter;
  218. int end_of_chain = 0;
  219. pr_debug("\tgroup end\n");
  220. /* collect the total results */
  221. if (grp_start->xor_check_result) {
  222. u32 zero_sum_result = 0;
  223. slot_cnt = grp_start->slot_cnt;
  224. grp_iter = grp_start;
  225. list_for_each_entry_from(grp_iter,
  226. &iop_chan->chain, chain_node) {
  227. zero_sum_result |=
  228. iop_desc_get_zero_result(grp_iter);
  229. pr_debug("\titer%d result: %d\n",
  230. grp_iter->idx, zero_sum_result);
  231. slot_cnt -= slots_per_op;
  232. if (slot_cnt == 0)
  233. break;
  234. }
  235. pr_debug("\tgrp_start->xor_check_result: %p\n",
  236. grp_start->xor_check_result);
  237. *grp_start->xor_check_result = zero_sum_result;
  238. }
  239. /* clean up the group */
  240. slot_cnt = grp_start->slot_cnt;
  241. grp_iter = grp_start;
  242. list_for_each_entry_safe_from(grp_iter, _grp_iter,
  243. &iop_chan->chain, chain_node) {
  244. cookie = iop_adma_run_tx_complete_actions(
  245. grp_iter, iop_chan, cookie);
  246. slot_cnt -= slots_per_op;
  247. end_of_chain = iop_adma_clean_slot(grp_iter,
  248. iop_chan);
  249. if (slot_cnt == 0 || end_of_chain)
  250. break;
  251. }
  252. /* the group should be complete at this point */
  253. BUG_ON(slot_cnt);
  254. slots_per_op = 0;
  255. grp_start = NULL;
  256. if (end_of_chain)
  257. break;
  258. else
  259. continue;
  260. } else if (slots_per_op) /* wait for group completion */
  261. continue;
  262. /* write back zero sum results (single descriptor case) */
  263. if (iter->xor_check_result && iter->async_tx.cookie)
  264. *iter->xor_check_result =
  265. iop_desc_get_zero_result(iter);
  266. cookie = iop_adma_run_tx_complete_actions(
  267. iter, iop_chan, cookie);
  268. if (iop_adma_clean_slot(iter, iop_chan))
  269. break;
  270. }
  271. if (cookie > 0) {
  272. iop_chan->completed_cookie = cookie;
  273. pr_debug("\tcompleted cookie %d\n", cookie);
  274. }
  275. }
  276. static void
  277. iop_adma_slot_cleanup(struct iop_adma_chan *iop_chan)
  278. {
  279. spin_lock_bh(&iop_chan->lock);
  280. __iop_adma_slot_cleanup(iop_chan);
  281. spin_unlock_bh(&iop_chan->lock);
  282. }
  283. static void iop_adma_tasklet(unsigned long data)
  284. {
  285. struct iop_adma_chan *iop_chan = (struct iop_adma_chan *) data;
  286. /* lockdep will flag depedency submissions as potentially
  287. * recursive locking, this is not the case as a dependency
  288. * submission will never recurse a channels submit routine.
  289. * There are checks in async_tx.c to prevent this.
  290. */
  291. spin_lock_nested(&iop_chan->lock, SINGLE_DEPTH_NESTING);
  292. __iop_adma_slot_cleanup(iop_chan);
  293. spin_unlock(&iop_chan->lock);
  294. }
  295. static struct iop_adma_desc_slot *
  296. iop_adma_alloc_slots(struct iop_adma_chan *iop_chan, int num_slots,
  297. int slots_per_op)
  298. {
  299. struct iop_adma_desc_slot *iter, *_iter, *alloc_start = NULL;
  300. LIST_HEAD(chain);
  301. int slots_found, retry = 0;
  302. /* start search from the last allocated descrtiptor
  303. * if a contiguous allocation can not be found start searching
  304. * from the beginning of the list
  305. */
  306. retry:
  307. slots_found = 0;
  308. if (retry == 0)
  309. iter = iop_chan->last_used;
  310. else
  311. iter = list_entry(&iop_chan->all_slots,
  312. struct iop_adma_desc_slot,
  313. slot_node);
  314. list_for_each_entry_safe_continue(
  315. iter, _iter, &iop_chan->all_slots, slot_node) {
  316. prefetch(_iter);
  317. prefetch(&_iter->async_tx);
  318. if (iter->slots_per_op) {
  319. /* give up after finding the first busy slot
  320. * on the second pass through the list
  321. */
  322. if (retry)
  323. break;
  324. slots_found = 0;
  325. continue;
  326. }
  327. /* start the allocation if the slot is correctly aligned */
  328. if (!slots_found++) {
  329. if (iop_desc_is_aligned(iter, slots_per_op))
  330. alloc_start = iter;
  331. else {
  332. slots_found = 0;
  333. continue;
  334. }
  335. }
  336. if (slots_found == num_slots) {
  337. struct iop_adma_desc_slot *alloc_tail = NULL;
  338. struct iop_adma_desc_slot *last_used = NULL;
  339. iter = alloc_start;
  340. while (num_slots) {
  341. int i;
  342. dev_dbg(iop_chan->device->common.dev,
  343. "allocated slot: %d "
  344. "(desc %p phys: %#x) slots_per_op %d\n",
  345. iter->idx, iter->hw_desc,
  346. iter->async_tx.phys, slots_per_op);
  347. /* pre-ack all but the last descriptor */
  348. if (num_slots != slots_per_op)
  349. async_tx_ack(&iter->async_tx);
  350. list_add_tail(&iter->chain_node, &chain);
  351. alloc_tail = iter;
  352. iter->async_tx.cookie = 0;
  353. iter->slot_cnt = num_slots;
  354. iter->xor_check_result = NULL;
  355. for (i = 0; i < slots_per_op; i++) {
  356. iter->slots_per_op = slots_per_op - i;
  357. last_used = iter;
  358. iter = list_entry(iter->slot_node.next,
  359. struct iop_adma_desc_slot,
  360. slot_node);
  361. }
  362. num_slots -= slots_per_op;
  363. }
  364. alloc_tail->group_head = alloc_start;
  365. alloc_tail->async_tx.cookie = -EBUSY;
  366. list_splice(&chain, &alloc_tail->tx_list);
  367. iop_chan->last_used = last_used;
  368. iop_desc_clear_next_desc(alloc_start);
  369. iop_desc_clear_next_desc(alloc_tail);
  370. return alloc_tail;
  371. }
  372. }
  373. if (!retry++)
  374. goto retry;
  375. /* perform direct reclaim if the allocation fails */
  376. __iop_adma_slot_cleanup(iop_chan);
  377. return NULL;
  378. }
  379. static dma_cookie_t
  380. iop_desc_assign_cookie(struct iop_adma_chan *iop_chan,
  381. struct iop_adma_desc_slot *desc)
  382. {
  383. dma_cookie_t cookie = iop_chan->common.cookie;
  384. cookie++;
  385. if (cookie < 0)
  386. cookie = 1;
  387. iop_chan->common.cookie = desc->async_tx.cookie = cookie;
  388. return cookie;
  389. }
  390. static void iop_adma_check_threshold(struct iop_adma_chan *iop_chan)
  391. {
  392. dev_dbg(iop_chan->device->common.dev, "pending: %d\n",
  393. iop_chan->pending);
  394. if (iop_chan->pending >= IOP_ADMA_THRESHOLD) {
  395. iop_chan->pending = 0;
  396. iop_chan_append(iop_chan);
  397. }
  398. }
  399. static dma_cookie_t
  400. iop_adma_tx_submit(struct dma_async_tx_descriptor *tx)
  401. {
  402. struct iop_adma_desc_slot *sw_desc = tx_to_iop_adma_slot(tx);
  403. struct iop_adma_chan *iop_chan = to_iop_adma_chan(tx->chan);
  404. struct iop_adma_desc_slot *grp_start, *old_chain_tail;
  405. int slot_cnt;
  406. int slots_per_op;
  407. dma_cookie_t cookie;
  408. dma_addr_t next_dma;
  409. grp_start = sw_desc->group_head;
  410. slot_cnt = grp_start->slot_cnt;
  411. slots_per_op = grp_start->slots_per_op;
  412. spin_lock_bh(&iop_chan->lock);
  413. cookie = iop_desc_assign_cookie(iop_chan, sw_desc);
  414. old_chain_tail = list_entry(iop_chan->chain.prev,
  415. struct iop_adma_desc_slot, chain_node);
  416. list_splice_init(&sw_desc->tx_list,
  417. &old_chain_tail->chain_node);
  418. /* fix up the hardware chain */
  419. next_dma = grp_start->async_tx.phys;
  420. iop_desc_set_next_desc(old_chain_tail, next_dma);
  421. BUG_ON(iop_desc_get_next_desc(old_chain_tail) != next_dma); /* flush */
  422. /* check for pre-chained descriptors */
  423. iop_paranoia(iop_desc_get_next_desc(sw_desc));
  424. /* increment the pending count by the number of slots
  425. * memcpy operations have a 1:1 (slot:operation) relation
  426. * other operations are heavier and will pop the threshold
  427. * more often.
  428. */
  429. iop_chan->pending += slot_cnt;
  430. iop_adma_check_threshold(iop_chan);
  431. spin_unlock_bh(&iop_chan->lock);
  432. dev_dbg(iop_chan->device->common.dev, "%s cookie: %d slot: %d\n",
  433. __func__, sw_desc->async_tx.cookie, sw_desc->idx);
  434. return cookie;
  435. }
  436. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan);
  437. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan);
  438. /**
  439. * iop_adma_alloc_chan_resources - returns the number of allocated descriptors
  440. * @chan - allocate descriptor resources for this channel
  441. * @client - current client requesting the channel be ready for requests
  442. *
  443. * Note: We keep the slots for 1 operation on iop_chan->chain at all times. To
  444. * avoid deadlock, via async_xor, num_descs_in_pool must at a minimum be
  445. * greater than 2x the number slots needed to satisfy a device->max_xor
  446. * request.
  447. * */
  448. static int iop_adma_alloc_chan_resources(struct dma_chan *chan)
  449. {
  450. char *hw_desc;
  451. int idx;
  452. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  453. struct iop_adma_desc_slot *slot = NULL;
  454. int init = iop_chan->slots_allocated ? 0 : 1;
  455. struct iop_adma_platform_data *plat_data =
  456. iop_chan->device->pdev->dev.platform_data;
  457. int num_descs_in_pool = plat_data->pool_size/IOP_ADMA_SLOT_SIZE;
  458. /* Allocate descriptor slots */
  459. do {
  460. idx = iop_chan->slots_allocated;
  461. if (idx == num_descs_in_pool)
  462. break;
  463. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  464. if (!slot) {
  465. printk(KERN_INFO "IOP ADMA Channel only initialized"
  466. " %d descriptor slots", idx);
  467. break;
  468. }
  469. hw_desc = (char *) iop_chan->device->dma_desc_pool_virt;
  470. slot->hw_desc = (void *) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  471. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  472. slot->async_tx.tx_submit = iop_adma_tx_submit;
  473. INIT_LIST_HEAD(&slot->tx_list);
  474. INIT_LIST_HEAD(&slot->chain_node);
  475. INIT_LIST_HEAD(&slot->slot_node);
  476. hw_desc = (char *) iop_chan->device->dma_desc_pool;
  477. slot->async_tx.phys =
  478. (dma_addr_t) &hw_desc[idx * IOP_ADMA_SLOT_SIZE];
  479. slot->idx = idx;
  480. spin_lock_bh(&iop_chan->lock);
  481. iop_chan->slots_allocated++;
  482. list_add_tail(&slot->slot_node, &iop_chan->all_slots);
  483. spin_unlock_bh(&iop_chan->lock);
  484. } while (iop_chan->slots_allocated < num_descs_in_pool);
  485. if (idx && !iop_chan->last_used)
  486. iop_chan->last_used = list_entry(iop_chan->all_slots.next,
  487. struct iop_adma_desc_slot,
  488. slot_node);
  489. dev_dbg(iop_chan->device->common.dev,
  490. "allocated %d descriptor slots last_used: %p\n",
  491. iop_chan->slots_allocated, iop_chan->last_used);
  492. /* initialize the channel and the chain with a null operation */
  493. if (init) {
  494. if (dma_has_cap(DMA_MEMCPY,
  495. iop_chan->device->common.cap_mask))
  496. iop_chan_start_null_memcpy(iop_chan);
  497. else if (dma_has_cap(DMA_XOR,
  498. iop_chan->device->common.cap_mask))
  499. iop_chan_start_null_xor(iop_chan);
  500. else
  501. BUG();
  502. }
  503. return (idx > 0) ? idx : -ENOMEM;
  504. }
  505. static struct dma_async_tx_descriptor *
  506. iop_adma_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
  507. {
  508. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  509. struct iop_adma_desc_slot *sw_desc, *grp_start;
  510. int slot_cnt, slots_per_op;
  511. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  512. spin_lock_bh(&iop_chan->lock);
  513. slot_cnt = iop_chan_interrupt_slot_count(&slots_per_op, iop_chan);
  514. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  515. if (sw_desc) {
  516. grp_start = sw_desc->group_head;
  517. iop_desc_init_interrupt(grp_start, iop_chan);
  518. grp_start->unmap_len = 0;
  519. sw_desc->async_tx.flags = flags;
  520. }
  521. spin_unlock_bh(&iop_chan->lock);
  522. return sw_desc ? &sw_desc->async_tx : NULL;
  523. }
  524. static struct dma_async_tx_descriptor *
  525. iop_adma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
  526. dma_addr_t dma_src, size_t len, unsigned long flags)
  527. {
  528. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  529. struct iop_adma_desc_slot *sw_desc, *grp_start;
  530. int slot_cnt, slots_per_op;
  531. if (unlikely(!len))
  532. return NULL;
  533. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  534. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  535. __func__, len);
  536. spin_lock_bh(&iop_chan->lock);
  537. slot_cnt = iop_chan_memcpy_slot_count(len, &slots_per_op);
  538. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  539. if (sw_desc) {
  540. grp_start = sw_desc->group_head;
  541. iop_desc_init_memcpy(grp_start, flags);
  542. iop_desc_set_byte_count(grp_start, iop_chan, len);
  543. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  544. iop_desc_set_memcpy_src_addr(grp_start, dma_src);
  545. sw_desc->unmap_src_cnt = 1;
  546. sw_desc->unmap_len = len;
  547. sw_desc->async_tx.flags = flags;
  548. }
  549. spin_unlock_bh(&iop_chan->lock);
  550. return sw_desc ? &sw_desc->async_tx : NULL;
  551. }
  552. static struct dma_async_tx_descriptor *
  553. iop_adma_prep_dma_memset(struct dma_chan *chan, dma_addr_t dma_dest,
  554. int value, size_t len, unsigned long flags)
  555. {
  556. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  557. struct iop_adma_desc_slot *sw_desc, *grp_start;
  558. int slot_cnt, slots_per_op;
  559. if (unlikely(!len))
  560. return NULL;
  561. BUG_ON(unlikely(len > IOP_ADMA_MAX_BYTE_COUNT));
  562. dev_dbg(iop_chan->device->common.dev, "%s len: %u\n",
  563. __func__, len);
  564. spin_lock_bh(&iop_chan->lock);
  565. slot_cnt = iop_chan_memset_slot_count(len, &slots_per_op);
  566. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  567. if (sw_desc) {
  568. grp_start = sw_desc->group_head;
  569. iop_desc_init_memset(grp_start, flags);
  570. iop_desc_set_byte_count(grp_start, iop_chan, len);
  571. iop_desc_set_block_fill_val(grp_start, value);
  572. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  573. sw_desc->unmap_src_cnt = 1;
  574. sw_desc->unmap_len = len;
  575. sw_desc->async_tx.flags = flags;
  576. }
  577. spin_unlock_bh(&iop_chan->lock);
  578. return sw_desc ? &sw_desc->async_tx : NULL;
  579. }
  580. static struct dma_async_tx_descriptor *
  581. iop_adma_prep_dma_xor(struct dma_chan *chan, dma_addr_t dma_dest,
  582. dma_addr_t *dma_src, unsigned int src_cnt, size_t len,
  583. unsigned long flags)
  584. {
  585. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  586. struct iop_adma_desc_slot *sw_desc, *grp_start;
  587. int slot_cnt, slots_per_op;
  588. if (unlikely(!len))
  589. return NULL;
  590. BUG_ON(unlikely(len > IOP_ADMA_XOR_MAX_BYTE_COUNT));
  591. dev_dbg(iop_chan->device->common.dev,
  592. "%s src_cnt: %d len: %u flags: %lx\n",
  593. __func__, src_cnt, len, flags);
  594. spin_lock_bh(&iop_chan->lock);
  595. slot_cnt = iop_chan_xor_slot_count(len, src_cnt, &slots_per_op);
  596. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  597. if (sw_desc) {
  598. grp_start = sw_desc->group_head;
  599. iop_desc_init_xor(grp_start, src_cnt, flags);
  600. iop_desc_set_byte_count(grp_start, iop_chan, len);
  601. iop_desc_set_dest_addr(grp_start, iop_chan, dma_dest);
  602. sw_desc->unmap_src_cnt = src_cnt;
  603. sw_desc->unmap_len = len;
  604. sw_desc->async_tx.flags = flags;
  605. while (src_cnt--)
  606. iop_desc_set_xor_src_addr(grp_start, src_cnt,
  607. dma_src[src_cnt]);
  608. }
  609. spin_unlock_bh(&iop_chan->lock);
  610. return sw_desc ? &sw_desc->async_tx : NULL;
  611. }
  612. static struct dma_async_tx_descriptor *
  613. iop_adma_prep_dma_xor_val(struct dma_chan *chan, dma_addr_t *dma_src,
  614. unsigned int src_cnt, size_t len, u32 *result,
  615. unsigned long flags)
  616. {
  617. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  618. struct iop_adma_desc_slot *sw_desc, *grp_start;
  619. int slot_cnt, slots_per_op;
  620. if (unlikely(!len))
  621. return NULL;
  622. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  623. __func__, src_cnt, len);
  624. spin_lock_bh(&iop_chan->lock);
  625. slot_cnt = iop_chan_zero_sum_slot_count(len, src_cnt, &slots_per_op);
  626. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  627. if (sw_desc) {
  628. grp_start = sw_desc->group_head;
  629. iop_desc_init_zero_sum(grp_start, src_cnt, flags);
  630. iop_desc_set_zero_sum_byte_count(grp_start, len);
  631. grp_start->xor_check_result = result;
  632. pr_debug("\t%s: grp_start->xor_check_result: %p\n",
  633. __func__, grp_start->xor_check_result);
  634. sw_desc->unmap_src_cnt = src_cnt;
  635. sw_desc->unmap_len = len;
  636. sw_desc->async_tx.flags = flags;
  637. while (src_cnt--)
  638. iop_desc_set_zero_sum_src_addr(grp_start, src_cnt,
  639. dma_src[src_cnt]);
  640. }
  641. spin_unlock_bh(&iop_chan->lock);
  642. return sw_desc ? &sw_desc->async_tx : NULL;
  643. }
  644. static struct dma_async_tx_descriptor *
  645. iop_adma_prep_dma_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  646. unsigned int src_cnt, const unsigned char *scf, size_t len,
  647. unsigned long flags)
  648. {
  649. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  650. struct iop_adma_desc_slot *sw_desc, *g;
  651. int slot_cnt, slots_per_op;
  652. int continue_srcs;
  653. if (unlikely(!len))
  654. return NULL;
  655. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  656. dev_dbg(iop_chan->device->common.dev,
  657. "%s src_cnt: %d len: %u flags: %lx\n",
  658. __func__, src_cnt, len, flags);
  659. if (dmaf_p_disabled_continue(flags))
  660. continue_srcs = 1+src_cnt;
  661. else if (dmaf_continue(flags))
  662. continue_srcs = 3+src_cnt;
  663. else
  664. continue_srcs = 0+src_cnt;
  665. spin_lock_bh(&iop_chan->lock);
  666. slot_cnt = iop_chan_pq_slot_count(len, continue_srcs, &slots_per_op);
  667. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  668. if (sw_desc) {
  669. int i;
  670. g = sw_desc->group_head;
  671. iop_desc_set_byte_count(g, iop_chan, len);
  672. /* even if P is disabled its destination address (bits
  673. * [3:0]) must match Q. It is ok if P points to an
  674. * invalid address, it won't be written.
  675. */
  676. if (flags & DMA_PREP_PQ_DISABLE_P)
  677. dst[0] = dst[1] & 0x7;
  678. iop_desc_set_pq_addr(g, dst);
  679. sw_desc->unmap_src_cnt = src_cnt;
  680. sw_desc->unmap_len = len;
  681. sw_desc->async_tx.flags = flags;
  682. for (i = 0; i < src_cnt; i++)
  683. iop_desc_set_pq_src_addr(g, i, src[i], scf[i]);
  684. /* if we are continuing a previous operation factor in
  685. * the old p and q values, see the comment for dma_maxpq
  686. * in include/linux/dmaengine.h
  687. */
  688. if (dmaf_p_disabled_continue(flags))
  689. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  690. else if (dmaf_continue(flags)) {
  691. iop_desc_set_pq_src_addr(g, i++, dst[0], 0);
  692. iop_desc_set_pq_src_addr(g, i++, dst[1], 1);
  693. iop_desc_set_pq_src_addr(g, i++, dst[1], 0);
  694. }
  695. iop_desc_init_pq(g, i, flags);
  696. }
  697. spin_unlock_bh(&iop_chan->lock);
  698. return sw_desc ? &sw_desc->async_tx : NULL;
  699. }
  700. static struct dma_async_tx_descriptor *
  701. iop_adma_prep_dma_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  702. unsigned int src_cnt, const unsigned char *scf,
  703. size_t len, enum sum_check_flags *pqres,
  704. unsigned long flags)
  705. {
  706. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  707. struct iop_adma_desc_slot *sw_desc, *g;
  708. int slot_cnt, slots_per_op;
  709. if (unlikely(!len))
  710. return NULL;
  711. BUG_ON(len > IOP_ADMA_XOR_MAX_BYTE_COUNT);
  712. dev_dbg(iop_chan->device->common.dev, "%s src_cnt: %d len: %u\n",
  713. __func__, src_cnt, len);
  714. spin_lock_bh(&iop_chan->lock);
  715. slot_cnt = iop_chan_pq_zero_sum_slot_count(len, src_cnt + 2, &slots_per_op);
  716. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  717. if (sw_desc) {
  718. /* for validate operations p and q are tagged onto the
  719. * end of the source list
  720. */
  721. int pq_idx = src_cnt;
  722. g = sw_desc->group_head;
  723. iop_desc_init_pq_zero_sum(g, src_cnt+2, flags);
  724. iop_desc_set_pq_zero_sum_byte_count(g, len);
  725. g->pq_check_result = pqres;
  726. pr_debug("\t%s: g->pq_check_result: %p\n",
  727. __func__, g->pq_check_result);
  728. sw_desc->unmap_src_cnt = src_cnt+2;
  729. sw_desc->unmap_len = len;
  730. sw_desc->async_tx.flags = flags;
  731. while (src_cnt--)
  732. iop_desc_set_pq_zero_sum_src_addr(g, src_cnt,
  733. src[src_cnt],
  734. scf[src_cnt]);
  735. iop_desc_set_pq_zero_sum_addr(g, pq_idx, src);
  736. }
  737. spin_unlock_bh(&iop_chan->lock);
  738. return sw_desc ? &sw_desc->async_tx : NULL;
  739. }
  740. static void iop_adma_free_chan_resources(struct dma_chan *chan)
  741. {
  742. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  743. struct iop_adma_desc_slot *iter, *_iter;
  744. int in_use_descs = 0;
  745. iop_adma_slot_cleanup(iop_chan);
  746. spin_lock_bh(&iop_chan->lock);
  747. list_for_each_entry_safe(iter, _iter, &iop_chan->chain,
  748. chain_node) {
  749. in_use_descs++;
  750. list_del(&iter->chain_node);
  751. }
  752. list_for_each_entry_safe_reverse(
  753. iter, _iter, &iop_chan->all_slots, slot_node) {
  754. list_del(&iter->slot_node);
  755. kfree(iter);
  756. iop_chan->slots_allocated--;
  757. }
  758. iop_chan->last_used = NULL;
  759. dev_dbg(iop_chan->device->common.dev, "%s slots_allocated %d\n",
  760. __func__, iop_chan->slots_allocated);
  761. spin_unlock_bh(&iop_chan->lock);
  762. /* one is ok since we left it on there on purpose */
  763. if (in_use_descs > 1)
  764. printk(KERN_ERR "IOP: Freeing %d in use descriptors!\n",
  765. in_use_descs - 1);
  766. }
  767. /**
  768. * iop_adma_is_complete - poll the status of an ADMA transaction
  769. * @chan: ADMA channel handle
  770. * @cookie: ADMA transaction identifier
  771. */
  772. static enum dma_status iop_adma_is_complete(struct dma_chan *chan,
  773. dma_cookie_t cookie,
  774. dma_cookie_t *done,
  775. dma_cookie_t *used)
  776. {
  777. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  778. dma_cookie_t last_used;
  779. dma_cookie_t last_complete;
  780. enum dma_status ret;
  781. last_used = chan->cookie;
  782. last_complete = iop_chan->completed_cookie;
  783. if (done)
  784. *done = last_complete;
  785. if (used)
  786. *used = last_used;
  787. ret = dma_async_is_complete(cookie, last_complete, last_used);
  788. if (ret == DMA_SUCCESS)
  789. return ret;
  790. iop_adma_slot_cleanup(iop_chan);
  791. last_used = chan->cookie;
  792. last_complete = iop_chan->completed_cookie;
  793. if (done)
  794. *done = last_complete;
  795. if (used)
  796. *used = last_used;
  797. return dma_async_is_complete(cookie, last_complete, last_used);
  798. }
  799. static irqreturn_t iop_adma_eot_handler(int irq, void *data)
  800. {
  801. struct iop_adma_chan *chan = data;
  802. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  803. tasklet_schedule(&chan->irq_tasklet);
  804. iop_adma_device_clear_eot_status(chan);
  805. return IRQ_HANDLED;
  806. }
  807. static irqreturn_t iop_adma_eoc_handler(int irq, void *data)
  808. {
  809. struct iop_adma_chan *chan = data;
  810. dev_dbg(chan->device->common.dev, "%s\n", __func__);
  811. tasklet_schedule(&chan->irq_tasklet);
  812. iop_adma_device_clear_eoc_status(chan);
  813. return IRQ_HANDLED;
  814. }
  815. static irqreturn_t iop_adma_err_handler(int irq, void *data)
  816. {
  817. struct iop_adma_chan *chan = data;
  818. unsigned long status = iop_chan_get_status(chan);
  819. dev_printk(KERN_ERR, chan->device->common.dev,
  820. "error ( %s%s%s%s%s%s%s)\n",
  821. iop_is_err_int_parity(status, chan) ? "int_parity " : "",
  822. iop_is_err_mcu_abort(status, chan) ? "mcu_abort " : "",
  823. iop_is_err_int_tabort(status, chan) ? "int_tabort " : "",
  824. iop_is_err_int_mabort(status, chan) ? "int_mabort " : "",
  825. iop_is_err_pci_tabort(status, chan) ? "pci_tabort " : "",
  826. iop_is_err_pci_mabort(status, chan) ? "pci_mabort " : "",
  827. iop_is_err_split_tx(status, chan) ? "split_tx " : "");
  828. iop_adma_device_clear_err_status(chan);
  829. BUG();
  830. return IRQ_HANDLED;
  831. }
  832. static void iop_adma_issue_pending(struct dma_chan *chan)
  833. {
  834. struct iop_adma_chan *iop_chan = to_iop_adma_chan(chan);
  835. if (iop_chan->pending) {
  836. iop_chan->pending = 0;
  837. iop_chan_append(iop_chan);
  838. }
  839. }
  840. /*
  841. * Perform a transaction to verify the HW works.
  842. */
  843. #define IOP_ADMA_TEST_SIZE 2000
  844. static int __devinit iop_adma_memcpy_self_test(struct iop_adma_device *device)
  845. {
  846. int i;
  847. void *src, *dest;
  848. dma_addr_t src_dma, dest_dma;
  849. struct dma_chan *dma_chan;
  850. dma_cookie_t cookie;
  851. struct dma_async_tx_descriptor *tx;
  852. int err = 0;
  853. struct iop_adma_chan *iop_chan;
  854. dev_dbg(device->common.dev, "%s\n", __func__);
  855. src = kmalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  856. if (!src)
  857. return -ENOMEM;
  858. dest = kzalloc(IOP_ADMA_TEST_SIZE, GFP_KERNEL);
  859. if (!dest) {
  860. kfree(src);
  861. return -ENOMEM;
  862. }
  863. /* Fill in src buffer */
  864. for (i = 0; i < IOP_ADMA_TEST_SIZE; i++)
  865. ((u8 *) src)[i] = (u8)i;
  866. /* Start copy, using first DMA channel */
  867. dma_chan = container_of(device->common.channels.next,
  868. struct dma_chan,
  869. device_node);
  870. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  871. err = -ENODEV;
  872. goto out;
  873. }
  874. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  875. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  876. src_dma = dma_map_single(dma_chan->device->dev, src,
  877. IOP_ADMA_TEST_SIZE, DMA_TO_DEVICE);
  878. tx = iop_adma_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  879. IOP_ADMA_TEST_SIZE,
  880. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  881. cookie = iop_adma_tx_submit(tx);
  882. iop_adma_issue_pending(dma_chan);
  883. msleep(1);
  884. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  885. DMA_SUCCESS) {
  886. dev_printk(KERN_ERR, dma_chan->device->dev,
  887. "Self-test copy timed out, disabling\n");
  888. err = -ENODEV;
  889. goto free_resources;
  890. }
  891. iop_chan = to_iop_adma_chan(dma_chan);
  892. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  893. IOP_ADMA_TEST_SIZE, DMA_FROM_DEVICE);
  894. if (memcmp(src, dest, IOP_ADMA_TEST_SIZE)) {
  895. dev_printk(KERN_ERR, dma_chan->device->dev,
  896. "Self-test copy failed compare, disabling\n");
  897. err = -ENODEV;
  898. goto free_resources;
  899. }
  900. free_resources:
  901. iop_adma_free_chan_resources(dma_chan);
  902. out:
  903. kfree(src);
  904. kfree(dest);
  905. return err;
  906. }
  907. #define IOP_ADMA_NUM_SRC_TEST 4 /* must be <= 15 */
  908. static int __devinit
  909. iop_adma_xor_val_self_test(struct iop_adma_device *device)
  910. {
  911. int i, src_idx;
  912. struct page *dest;
  913. struct page *xor_srcs[IOP_ADMA_NUM_SRC_TEST];
  914. struct page *zero_sum_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  915. dma_addr_t dma_srcs[IOP_ADMA_NUM_SRC_TEST + 1];
  916. dma_addr_t dma_addr, dest_dma;
  917. struct dma_async_tx_descriptor *tx;
  918. struct dma_chan *dma_chan;
  919. dma_cookie_t cookie;
  920. u8 cmp_byte = 0;
  921. u32 cmp_word;
  922. u32 zero_sum_result;
  923. int err = 0;
  924. struct iop_adma_chan *iop_chan;
  925. dev_dbg(device->common.dev, "%s\n", __func__);
  926. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  927. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  928. if (!xor_srcs[src_idx]) {
  929. while (src_idx--)
  930. __free_page(xor_srcs[src_idx]);
  931. return -ENOMEM;
  932. }
  933. }
  934. dest = alloc_page(GFP_KERNEL);
  935. if (!dest) {
  936. while (src_idx--)
  937. __free_page(xor_srcs[src_idx]);
  938. return -ENOMEM;
  939. }
  940. /* Fill in src buffers */
  941. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++) {
  942. u8 *ptr = page_address(xor_srcs[src_idx]);
  943. for (i = 0; i < PAGE_SIZE; i++)
  944. ptr[i] = (1 << src_idx);
  945. }
  946. for (src_idx = 0; src_idx < IOP_ADMA_NUM_SRC_TEST; src_idx++)
  947. cmp_byte ^= (u8) (1 << src_idx);
  948. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  949. (cmp_byte << 8) | cmp_byte;
  950. memset(page_address(dest), 0, PAGE_SIZE);
  951. dma_chan = container_of(device->common.channels.next,
  952. struct dma_chan,
  953. device_node);
  954. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  955. err = -ENODEV;
  956. goto out;
  957. }
  958. /* test xor */
  959. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0,
  960. PAGE_SIZE, DMA_FROM_DEVICE);
  961. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  962. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  963. 0, PAGE_SIZE, DMA_TO_DEVICE);
  964. tx = iop_adma_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  965. IOP_ADMA_NUM_SRC_TEST, PAGE_SIZE,
  966. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  967. cookie = iop_adma_tx_submit(tx);
  968. iop_adma_issue_pending(dma_chan);
  969. msleep(8);
  970. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  971. DMA_SUCCESS) {
  972. dev_printk(KERN_ERR, dma_chan->device->dev,
  973. "Self-test xor timed out, disabling\n");
  974. err = -ENODEV;
  975. goto free_resources;
  976. }
  977. iop_chan = to_iop_adma_chan(dma_chan);
  978. dma_sync_single_for_cpu(&iop_chan->device->pdev->dev, dest_dma,
  979. PAGE_SIZE, DMA_FROM_DEVICE);
  980. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  981. u32 *ptr = page_address(dest);
  982. if (ptr[i] != cmp_word) {
  983. dev_printk(KERN_ERR, dma_chan->device->dev,
  984. "Self-test xor failed compare, disabling\n");
  985. err = -ENODEV;
  986. goto free_resources;
  987. }
  988. }
  989. dma_sync_single_for_device(&iop_chan->device->pdev->dev, dest_dma,
  990. PAGE_SIZE, DMA_TO_DEVICE);
  991. /* skip zero sum if the capability is not present */
  992. if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
  993. goto free_resources;
  994. /* zero sum the sources with the destintation page */
  995. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  996. zero_sum_srcs[i] = xor_srcs[i];
  997. zero_sum_srcs[i] = dest;
  998. zero_sum_result = 1;
  999. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1000. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1001. zero_sum_srcs[i], 0, PAGE_SIZE,
  1002. DMA_TO_DEVICE);
  1003. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1004. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1005. &zero_sum_result,
  1006. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1007. cookie = iop_adma_tx_submit(tx);
  1008. iop_adma_issue_pending(dma_chan);
  1009. msleep(8);
  1010. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1011. dev_printk(KERN_ERR, dma_chan->device->dev,
  1012. "Self-test zero sum timed out, disabling\n");
  1013. err = -ENODEV;
  1014. goto free_resources;
  1015. }
  1016. if (zero_sum_result != 0) {
  1017. dev_printk(KERN_ERR, dma_chan->device->dev,
  1018. "Self-test zero sum failed compare, disabling\n");
  1019. err = -ENODEV;
  1020. goto free_resources;
  1021. }
  1022. /* test memset */
  1023. dma_addr = dma_map_page(dma_chan->device->dev, dest, 0,
  1024. PAGE_SIZE, DMA_FROM_DEVICE);
  1025. tx = iop_adma_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
  1026. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1027. cookie = iop_adma_tx_submit(tx);
  1028. iop_adma_issue_pending(dma_chan);
  1029. msleep(8);
  1030. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1031. dev_printk(KERN_ERR, dma_chan->device->dev,
  1032. "Self-test memset timed out, disabling\n");
  1033. err = -ENODEV;
  1034. goto free_resources;
  1035. }
  1036. for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
  1037. u32 *ptr = page_address(dest);
  1038. if (ptr[i]) {
  1039. dev_printk(KERN_ERR, dma_chan->device->dev,
  1040. "Self-test memset failed compare, disabling\n");
  1041. err = -ENODEV;
  1042. goto free_resources;
  1043. }
  1044. }
  1045. /* test for non-zero parity sum */
  1046. zero_sum_result = 0;
  1047. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 1; i++)
  1048. dma_srcs[i] = dma_map_page(dma_chan->device->dev,
  1049. zero_sum_srcs[i], 0, PAGE_SIZE,
  1050. DMA_TO_DEVICE);
  1051. tx = iop_adma_prep_dma_xor_val(dma_chan, dma_srcs,
  1052. IOP_ADMA_NUM_SRC_TEST + 1, PAGE_SIZE,
  1053. &zero_sum_result,
  1054. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  1055. cookie = iop_adma_tx_submit(tx);
  1056. iop_adma_issue_pending(dma_chan);
  1057. msleep(8);
  1058. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
  1059. dev_printk(KERN_ERR, dma_chan->device->dev,
  1060. "Self-test non-zero sum timed out, disabling\n");
  1061. err = -ENODEV;
  1062. goto free_resources;
  1063. }
  1064. if (zero_sum_result != 1) {
  1065. dev_printk(KERN_ERR, dma_chan->device->dev,
  1066. "Self-test non-zero sum failed compare, disabling\n");
  1067. err = -ENODEV;
  1068. goto free_resources;
  1069. }
  1070. free_resources:
  1071. iop_adma_free_chan_resources(dma_chan);
  1072. out:
  1073. src_idx = IOP_ADMA_NUM_SRC_TEST;
  1074. while (src_idx--)
  1075. __free_page(xor_srcs[src_idx]);
  1076. __free_page(dest);
  1077. return err;
  1078. }
  1079. #ifdef CONFIG_MD_RAID6_PQ
  1080. static int __devinit
  1081. iop_adma_pq_zero_sum_self_test(struct iop_adma_device *device)
  1082. {
  1083. /* combined sources, software pq results, and extra hw pq results */
  1084. struct page *pq[IOP_ADMA_NUM_SRC_TEST+2+2];
  1085. /* ptr to the extra hw pq buffers defined above */
  1086. struct page **pq_hw = &pq[IOP_ADMA_NUM_SRC_TEST+2];
  1087. /* address conversion buffers (dma_map / page_address) */
  1088. void *pq_sw[IOP_ADMA_NUM_SRC_TEST+2];
  1089. dma_addr_t pq_src[IOP_ADMA_NUM_SRC_TEST];
  1090. dma_addr_t pq_dest[2];
  1091. int i;
  1092. struct dma_async_tx_descriptor *tx;
  1093. struct dma_chan *dma_chan;
  1094. dma_cookie_t cookie;
  1095. u32 zero_sum_result;
  1096. int err = 0;
  1097. struct device *dev;
  1098. dev_dbg(device->common.dev, "%s\n", __func__);
  1099. for (i = 0; i < ARRAY_SIZE(pq); i++) {
  1100. pq[i] = alloc_page(GFP_KERNEL);
  1101. if (!pq[i]) {
  1102. while (i--)
  1103. __free_page(pq[i]);
  1104. return -ENOMEM;
  1105. }
  1106. }
  1107. /* Fill in src buffers */
  1108. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++) {
  1109. pq_sw[i] = page_address(pq[i]);
  1110. memset(pq_sw[i], 0x11111111 * (1<<i), PAGE_SIZE);
  1111. }
  1112. pq_sw[i] = page_address(pq[i]);
  1113. pq_sw[i+1] = page_address(pq[i+1]);
  1114. dma_chan = container_of(device->common.channels.next,
  1115. struct dma_chan,
  1116. device_node);
  1117. if (iop_adma_alloc_chan_resources(dma_chan) < 1) {
  1118. err = -ENODEV;
  1119. goto out;
  1120. }
  1121. dev = dma_chan->device->dev;
  1122. /* initialize the dests */
  1123. memset(page_address(pq_hw[0]), 0 , PAGE_SIZE);
  1124. memset(page_address(pq_hw[1]), 0 , PAGE_SIZE);
  1125. /* test pq */
  1126. pq_dest[0] = dma_map_page(dev, pq_hw[0], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1127. pq_dest[1] = dma_map_page(dev, pq_hw[1], 0, PAGE_SIZE, DMA_FROM_DEVICE);
  1128. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST; i++)
  1129. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1130. DMA_TO_DEVICE);
  1131. tx = iop_adma_prep_dma_pq(dma_chan, pq_dest, pq_src,
  1132. IOP_ADMA_NUM_SRC_TEST, (u8 *)raid6_gfexp,
  1133. PAGE_SIZE,
  1134. DMA_PREP_INTERRUPT |
  1135. DMA_CTRL_ACK);
  1136. cookie = iop_adma_tx_submit(tx);
  1137. iop_adma_issue_pending(dma_chan);
  1138. msleep(8);
  1139. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1140. DMA_SUCCESS) {
  1141. dev_err(dev, "Self-test pq timed out, disabling\n");
  1142. err = -ENODEV;
  1143. goto free_resources;
  1144. }
  1145. raid6_call.gen_syndrome(IOP_ADMA_NUM_SRC_TEST+2, PAGE_SIZE, pq_sw);
  1146. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST],
  1147. page_address(pq_hw[0]), PAGE_SIZE) != 0) {
  1148. dev_err(dev, "Self-test p failed compare, disabling\n");
  1149. err = -ENODEV;
  1150. goto free_resources;
  1151. }
  1152. if (memcmp(pq_sw[IOP_ADMA_NUM_SRC_TEST+1],
  1153. page_address(pq_hw[1]), PAGE_SIZE) != 0) {
  1154. dev_err(dev, "Self-test q failed compare, disabling\n");
  1155. err = -ENODEV;
  1156. goto free_resources;
  1157. }
  1158. /* test correct zero sum using the software generated pq values */
  1159. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1160. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1161. DMA_TO_DEVICE);
  1162. zero_sum_result = ~0;
  1163. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1164. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1165. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1166. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1167. cookie = iop_adma_tx_submit(tx);
  1168. iop_adma_issue_pending(dma_chan);
  1169. msleep(8);
  1170. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1171. DMA_SUCCESS) {
  1172. dev_err(dev, "Self-test pq-zero-sum timed out, disabling\n");
  1173. err = -ENODEV;
  1174. goto free_resources;
  1175. }
  1176. if (zero_sum_result != 0) {
  1177. dev_err(dev, "Self-test pq-zero-sum failed to validate: %x\n",
  1178. zero_sum_result);
  1179. err = -ENODEV;
  1180. goto free_resources;
  1181. }
  1182. /* test incorrect zero sum */
  1183. i = IOP_ADMA_NUM_SRC_TEST;
  1184. memset(pq_sw[i] + 100, 0, 100);
  1185. memset(pq_sw[i+1] + 200, 0, 200);
  1186. for (i = 0; i < IOP_ADMA_NUM_SRC_TEST + 2; i++)
  1187. pq_src[i] = dma_map_page(dev, pq[i], 0, PAGE_SIZE,
  1188. DMA_TO_DEVICE);
  1189. zero_sum_result = 0;
  1190. tx = iop_adma_prep_dma_pq_val(dma_chan, &pq_src[IOP_ADMA_NUM_SRC_TEST],
  1191. pq_src, IOP_ADMA_NUM_SRC_TEST,
  1192. raid6_gfexp, PAGE_SIZE, &zero_sum_result,
  1193. DMA_PREP_INTERRUPT|DMA_CTRL_ACK);
  1194. cookie = iop_adma_tx_submit(tx);
  1195. iop_adma_issue_pending(dma_chan);
  1196. msleep(8);
  1197. if (iop_adma_is_complete(dma_chan, cookie, NULL, NULL) !=
  1198. DMA_SUCCESS) {
  1199. dev_err(dev, "Self-test !pq-zero-sum timed out, disabling\n");
  1200. err = -ENODEV;
  1201. goto free_resources;
  1202. }
  1203. if (zero_sum_result != (SUM_CHECK_P_RESULT | SUM_CHECK_Q_RESULT)) {
  1204. dev_err(dev, "Self-test !pq-zero-sum failed to validate: %x\n",
  1205. zero_sum_result);
  1206. err = -ENODEV;
  1207. goto free_resources;
  1208. }
  1209. free_resources:
  1210. iop_adma_free_chan_resources(dma_chan);
  1211. out:
  1212. i = ARRAY_SIZE(pq);
  1213. while (i--)
  1214. __free_page(pq[i]);
  1215. return err;
  1216. }
  1217. #endif
  1218. static int __devexit iop_adma_remove(struct platform_device *dev)
  1219. {
  1220. struct iop_adma_device *device = platform_get_drvdata(dev);
  1221. struct dma_chan *chan, *_chan;
  1222. struct iop_adma_chan *iop_chan;
  1223. struct iop_adma_platform_data *plat_data = dev->dev.platform_data;
  1224. dma_async_device_unregister(&device->common);
  1225. dma_free_coherent(&dev->dev, plat_data->pool_size,
  1226. device->dma_desc_pool_virt, device->dma_desc_pool);
  1227. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  1228. device_node) {
  1229. iop_chan = to_iop_adma_chan(chan);
  1230. list_del(&chan->device_node);
  1231. kfree(iop_chan);
  1232. }
  1233. kfree(device);
  1234. return 0;
  1235. }
  1236. static int __devinit iop_adma_probe(struct platform_device *pdev)
  1237. {
  1238. struct resource *res;
  1239. int ret = 0, i;
  1240. struct iop_adma_device *adev;
  1241. struct iop_adma_chan *iop_chan;
  1242. struct dma_device *dma_dev;
  1243. struct iop_adma_platform_data *plat_data = pdev->dev.platform_data;
  1244. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1245. if (!res)
  1246. return -ENODEV;
  1247. if (!devm_request_mem_region(&pdev->dev, res->start,
  1248. resource_size(res), pdev->name))
  1249. return -EBUSY;
  1250. adev = kzalloc(sizeof(*adev), GFP_KERNEL);
  1251. if (!adev)
  1252. return -ENOMEM;
  1253. dma_dev = &adev->common;
  1254. /* allocate coherent memory for hardware descriptors
  1255. * note: writecombine gives slightly better performance, but
  1256. * requires that we explicitly flush the writes
  1257. */
  1258. if ((adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  1259. plat_data->pool_size,
  1260. &adev->dma_desc_pool,
  1261. GFP_KERNEL)) == NULL) {
  1262. ret = -ENOMEM;
  1263. goto err_free_adev;
  1264. }
  1265. dev_dbg(&pdev->dev, "%s: allocted descriptor pool virt %p phys %p\n",
  1266. __func__, adev->dma_desc_pool_virt,
  1267. (void *) adev->dma_desc_pool);
  1268. adev->id = plat_data->hw_id;
  1269. /* discover transaction capabilites from the platform data */
  1270. dma_dev->cap_mask = plat_data->cap_mask;
  1271. adev->pdev = pdev;
  1272. platform_set_drvdata(pdev, adev);
  1273. INIT_LIST_HEAD(&dma_dev->channels);
  1274. /* set base routines */
  1275. dma_dev->device_alloc_chan_resources = iop_adma_alloc_chan_resources;
  1276. dma_dev->device_free_chan_resources = iop_adma_free_chan_resources;
  1277. dma_dev->device_is_tx_complete = iop_adma_is_complete;
  1278. dma_dev->device_issue_pending = iop_adma_issue_pending;
  1279. dma_dev->dev = &pdev->dev;
  1280. /* set prep routines based on capability */
  1281. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  1282. dma_dev->device_prep_dma_memcpy = iop_adma_prep_dma_memcpy;
  1283. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  1284. dma_dev->device_prep_dma_memset = iop_adma_prep_dma_memset;
  1285. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1286. dma_dev->max_xor = iop_adma_get_max_xor();
  1287. dma_dev->device_prep_dma_xor = iop_adma_prep_dma_xor;
  1288. }
  1289. if (dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask))
  1290. dma_dev->device_prep_dma_xor_val =
  1291. iop_adma_prep_dma_xor_val;
  1292. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
  1293. dma_set_maxpq(dma_dev, iop_adma_get_max_pq(), 0);
  1294. dma_dev->device_prep_dma_pq = iop_adma_prep_dma_pq;
  1295. }
  1296. if (dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask))
  1297. dma_dev->device_prep_dma_pq_val =
  1298. iop_adma_prep_dma_pq_val;
  1299. if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
  1300. dma_dev->device_prep_dma_interrupt =
  1301. iop_adma_prep_dma_interrupt;
  1302. iop_chan = kzalloc(sizeof(*iop_chan), GFP_KERNEL);
  1303. if (!iop_chan) {
  1304. ret = -ENOMEM;
  1305. goto err_free_dma;
  1306. }
  1307. iop_chan->device = adev;
  1308. iop_chan->mmr_base = devm_ioremap(&pdev->dev, res->start,
  1309. resource_size(res));
  1310. if (!iop_chan->mmr_base) {
  1311. ret = -ENOMEM;
  1312. goto err_free_iop_chan;
  1313. }
  1314. tasklet_init(&iop_chan->irq_tasklet, iop_adma_tasklet, (unsigned long)
  1315. iop_chan);
  1316. /* clear errors before enabling interrupts */
  1317. iop_adma_device_clear_err_status(iop_chan);
  1318. for (i = 0; i < 3; i++) {
  1319. irq_handler_t handler[] = { iop_adma_eot_handler,
  1320. iop_adma_eoc_handler,
  1321. iop_adma_err_handler };
  1322. int irq = platform_get_irq(pdev, i);
  1323. if (irq < 0) {
  1324. ret = -ENXIO;
  1325. goto err_free_iop_chan;
  1326. } else {
  1327. ret = devm_request_irq(&pdev->dev, irq,
  1328. handler[i], 0, pdev->name, iop_chan);
  1329. if (ret)
  1330. goto err_free_iop_chan;
  1331. }
  1332. }
  1333. spin_lock_init(&iop_chan->lock);
  1334. INIT_LIST_HEAD(&iop_chan->chain);
  1335. INIT_LIST_HEAD(&iop_chan->all_slots);
  1336. iop_chan->common.device = dma_dev;
  1337. list_add_tail(&iop_chan->common.device_node, &dma_dev->channels);
  1338. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1339. ret = iop_adma_memcpy_self_test(adev);
  1340. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1341. if (ret)
  1342. goto err_free_iop_chan;
  1343. }
  1344. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask) ||
  1345. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
  1346. ret = iop_adma_xor_val_self_test(adev);
  1347. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1348. if (ret)
  1349. goto err_free_iop_chan;
  1350. }
  1351. if (dma_has_cap(DMA_PQ, dma_dev->cap_mask) &&
  1352. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask)) {
  1353. #ifdef CONFIG_MD_RAID6_PQ
  1354. ret = iop_adma_pq_zero_sum_self_test(adev);
  1355. dev_dbg(&pdev->dev, "pq self test returned %d\n", ret);
  1356. #else
  1357. /* can not test raid6, so do not publish capability */
  1358. dma_cap_clear(DMA_PQ, dma_dev->cap_mask);
  1359. dma_cap_clear(DMA_PQ_VAL, dma_dev->cap_mask);
  1360. ret = 0;
  1361. #endif
  1362. if (ret)
  1363. goto err_free_iop_chan;
  1364. }
  1365. dev_printk(KERN_INFO, &pdev->dev, "Intel(R) IOP: "
  1366. "( %s%s%s%s%s%s%s)\n",
  1367. dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "pq " : "",
  1368. dma_has_cap(DMA_PQ_VAL, dma_dev->cap_mask) ? "pq_val " : "",
  1369. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1370. dma_has_cap(DMA_XOR_VAL, dma_dev->cap_mask) ? "xor_val " : "",
  1371. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1372. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1373. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1374. dma_async_device_register(dma_dev);
  1375. goto out;
  1376. err_free_iop_chan:
  1377. kfree(iop_chan);
  1378. err_free_dma:
  1379. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1380. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1381. err_free_adev:
  1382. kfree(adev);
  1383. out:
  1384. return ret;
  1385. }
  1386. static void iop_chan_start_null_memcpy(struct iop_adma_chan *iop_chan)
  1387. {
  1388. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1389. dma_cookie_t cookie;
  1390. int slot_cnt, slots_per_op;
  1391. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1392. spin_lock_bh(&iop_chan->lock);
  1393. slot_cnt = iop_chan_memcpy_slot_count(0, &slots_per_op);
  1394. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1395. if (sw_desc) {
  1396. grp_start = sw_desc->group_head;
  1397. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1398. async_tx_ack(&sw_desc->async_tx);
  1399. iop_desc_init_memcpy(grp_start, 0);
  1400. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1401. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1402. iop_desc_set_memcpy_src_addr(grp_start, 0);
  1403. cookie = iop_chan->common.cookie;
  1404. cookie++;
  1405. if (cookie <= 1)
  1406. cookie = 2;
  1407. /* initialize the completed cookie to be less than
  1408. * the most recently used cookie
  1409. */
  1410. iop_chan->completed_cookie = cookie - 1;
  1411. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1412. /* channel should not be busy */
  1413. BUG_ON(iop_chan_is_busy(iop_chan));
  1414. /* clear any prior error-status bits */
  1415. iop_adma_device_clear_err_status(iop_chan);
  1416. /* disable operation */
  1417. iop_chan_disable(iop_chan);
  1418. /* set the descriptor address */
  1419. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1420. /* 1/ don't add pre-chained descriptors
  1421. * 2/ dummy read to flush next_desc write
  1422. */
  1423. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1424. /* run the descriptor */
  1425. iop_chan_enable(iop_chan);
  1426. } else
  1427. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1428. "failed to allocate null descriptor\n");
  1429. spin_unlock_bh(&iop_chan->lock);
  1430. }
  1431. static void iop_chan_start_null_xor(struct iop_adma_chan *iop_chan)
  1432. {
  1433. struct iop_adma_desc_slot *sw_desc, *grp_start;
  1434. dma_cookie_t cookie;
  1435. int slot_cnt, slots_per_op;
  1436. dev_dbg(iop_chan->device->common.dev, "%s\n", __func__);
  1437. spin_lock_bh(&iop_chan->lock);
  1438. slot_cnt = iop_chan_xor_slot_count(0, 2, &slots_per_op);
  1439. sw_desc = iop_adma_alloc_slots(iop_chan, slot_cnt, slots_per_op);
  1440. if (sw_desc) {
  1441. grp_start = sw_desc->group_head;
  1442. list_splice_init(&sw_desc->tx_list, &iop_chan->chain);
  1443. async_tx_ack(&sw_desc->async_tx);
  1444. iop_desc_init_null_xor(grp_start, 2, 0);
  1445. iop_desc_set_byte_count(grp_start, iop_chan, 0);
  1446. iop_desc_set_dest_addr(grp_start, iop_chan, 0);
  1447. iop_desc_set_xor_src_addr(grp_start, 0, 0);
  1448. iop_desc_set_xor_src_addr(grp_start, 1, 0);
  1449. cookie = iop_chan->common.cookie;
  1450. cookie++;
  1451. if (cookie <= 1)
  1452. cookie = 2;
  1453. /* initialize the completed cookie to be less than
  1454. * the most recently used cookie
  1455. */
  1456. iop_chan->completed_cookie = cookie - 1;
  1457. iop_chan->common.cookie = sw_desc->async_tx.cookie = cookie;
  1458. /* channel should not be busy */
  1459. BUG_ON(iop_chan_is_busy(iop_chan));
  1460. /* clear any prior error-status bits */
  1461. iop_adma_device_clear_err_status(iop_chan);
  1462. /* disable operation */
  1463. iop_chan_disable(iop_chan);
  1464. /* set the descriptor address */
  1465. iop_chan_set_next_descriptor(iop_chan, sw_desc->async_tx.phys);
  1466. /* 1/ don't add pre-chained descriptors
  1467. * 2/ dummy read to flush next_desc write
  1468. */
  1469. BUG_ON(iop_desc_get_next_desc(sw_desc));
  1470. /* run the descriptor */
  1471. iop_chan_enable(iop_chan);
  1472. } else
  1473. dev_printk(KERN_ERR, iop_chan->device->common.dev,
  1474. "failed to allocate null descriptor\n");
  1475. spin_unlock_bh(&iop_chan->lock);
  1476. }
  1477. MODULE_ALIAS("platform:iop-adma");
  1478. static struct platform_driver iop_adma_driver = {
  1479. .probe = iop_adma_probe,
  1480. .remove = __devexit_p(iop_adma_remove),
  1481. .driver = {
  1482. .owner = THIS_MODULE,
  1483. .name = "iop-adma",
  1484. },
  1485. };
  1486. static int __init iop_adma_init (void)
  1487. {
  1488. return platform_driver_register(&iop_adma_driver);
  1489. }
  1490. static void __exit iop_adma_exit (void)
  1491. {
  1492. platform_driver_unregister(&iop_adma_driver);
  1493. return;
  1494. }
  1495. module_exit(iop_adma_exit);
  1496. module_init(iop_adma_init);
  1497. MODULE_AUTHOR("Intel Corporation");
  1498. MODULE_DESCRIPTION("IOP ADMA Engine Driver");
  1499. MODULE_LICENSE("GPL");