dw_dmac.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*
  2. * Driver for the Synopsys DesignWare DMA Controller (aka DMACA on
  3. * AVR32 systems.)
  4. *
  5. * Copyright (C) 2007-2008 Atmel Corporation
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/dmaengine.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/io.h>
  18. #include <linux/mm.h>
  19. #include <linux/module.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/slab.h>
  22. #include "dw_dmac_regs.h"
  23. /*
  24. * This supports the Synopsys "DesignWare AHB Central DMA Controller",
  25. * (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
  26. * of which use ARM any more). See the "Databook" from Synopsys for
  27. * information beyond what licensees probably provide.
  28. *
  29. * The driver has currently been tested only with the Atmel AT32AP7000,
  30. * which does not support descriptor writeback.
  31. */
  32. /* NOTE: DMS+SMS is system-specific. We should get this information
  33. * from the platform code somehow.
  34. */
  35. #define DWC_DEFAULT_CTLLO (DWC_CTLL_DST_MSIZE(0) \
  36. | DWC_CTLL_SRC_MSIZE(0) \
  37. | DWC_CTLL_DMS(0) \
  38. | DWC_CTLL_SMS(1) \
  39. | DWC_CTLL_LLP_D_EN \
  40. | DWC_CTLL_LLP_S_EN)
  41. /*
  42. * This is configuration-dependent and usually a funny size like 4095.
  43. * Let's round it down to the nearest power of two.
  44. *
  45. * Note that this is a transfer count, i.e. if we transfer 32-bit
  46. * words, we can do 8192 bytes per descriptor.
  47. *
  48. * This parameter is also system-specific.
  49. */
  50. #define DWC_MAX_COUNT 2048U
  51. /*
  52. * Number of descriptors to allocate for each channel. This should be
  53. * made configurable somehow; preferably, the clients (at least the
  54. * ones using slave transfers) should be able to give us a hint.
  55. */
  56. #define NR_DESCS_PER_CHANNEL 64
  57. /*----------------------------------------------------------------------*/
  58. /*
  59. * Because we're not relying on writeback from the controller (it may not
  60. * even be configured into the core!) we don't need to use dma_pool. These
  61. * descriptors -- and associated data -- are cacheable. We do need to make
  62. * sure their dcache entries are written back before handing them off to
  63. * the controller, though.
  64. */
  65. static struct device *chan2dev(struct dma_chan *chan)
  66. {
  67. return &chan->dev->device;
  68. }
  69. static struct device *chan2parent(struct dma_chan *chan)
  70. {
  71. return chan->dev->device.parent;
  72. }
  73. static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
  74. {
  75. return list_entry(dwc->active_list.next, struct dw_desc, desc_node);
  76. }
  77. static struct dw_desc *dwc_first_queued(struct dw_dma_chan *dwc)
  78. {
  79. return list_entry(dwc->queue.next, struct dw_desc, desc_node);
  80. }
  81. static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
  82. {
  83. struct dw_desc *desc, *_desc;
  84. struct dw_desc *ret = NULL;
  85. unsigned int i = 0;
  86. spin_lock_bh(&dwc->lock);
  87. list_for_each_entry_safe(desc, _desc, &dwc->free_list, desc_node) {
  88. if (async_tx_test_ack(&desc->txd)) {
  89. list_del(&desc->desc_node);
  90. ret = desc;
  91. break;
  92. }
  93. dev_dbg(chan2dev(&dwc->chan), "desc %p not ACKed\n", desc);
  94. i++;
  95. }
  96. spin_unlock_bh(&dwc->lock);
  97. dev_vdbg(chan2dev(&dwc->chan), "scanned %u descriptors on freelist\n", i);
  98. return ret;
  99. }
  100. static void dwc_sync_desc_for_cpu(struct dw_dma_chan *dwc, struct dw_desc *desc)
  101. {
  102. struct dw_desc *child;
  103. list_for_each_entry(child, &desc->tx_list, desc_node)
  104. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  105. child->txd.phys, sizeof(child->lli),
  106. DMA_TO_DEVICE);
  107. dma_sync_single_for_cpu(chan2parent(&dwc->chan),
  108. desc->txd.phys, sizeof(desc->lli),
  109. DMA_TO_DEVICE);
  110. }
  111. /*
  112. * Move a descriptor, including any children, to the free list.
  113. * `desc' must not be on any lists.
  114. */
  115. static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
  116. {
  117. if (desc) {
  118. struct dw_desc *child;
  119. dwc_sync_desc_for_cpu(dwc, desc);
  120. spin_lock_bh(&dwc->lock);
  121. list_for_each_entry(child, &desc->tx_list, desc_node)
  122. dev_vdbg(chan2dev(&dwc->chan),
  123. "moving child desc %p to freelist\n",
  124. child);
  125. list_splice_init(&desc->tx_list, &dwc->free_list);
  126. dev_vdbg(chan2dev(&dwc->chan), "moving desc %p to freelist\n", desc);
  127. list_add(&desc->desc_node, &dwc->free_list);
  128. spin_unlock_bh(&dwc->lock);
  129. }
  130. }
  131. /* Called with dwc->lock held and bh disabled */
  132. static dma_cookie_t
  133. dwc_assign_cookie(struct dw_dma_chan *dwc, struct dw_desc *desc)
  134. {
  135. dma_cookie_t cookie = dwc->chan.cookie;
  136. if (++cookie < 0)
  137. cookie = 1;
  138. dwc->chan.cookie = cookie;
  139. desc->txd.cookie = cookie;
  140. return cookie;
  141. }
  142. /*----------------------------------------------------------------------*/
  143. /* Called with dwc->lock held and bh disabled */
  144. static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
  145. {
  146. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  147. /* ASSERT: channel is idle */
  148. if (dma_readl(dw, CH_EN) & dwc->mask) {
  149. dev_err(chan2dev(&dwc->chan),
  150. "BUG: Attempted to start non-idle channel\n");
  151. dev_err(chan2dev(&dwc->chan),
  152. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  153. channel_readl(dwc, SAR),
  154. channel_readl(dwc, DAR),
  155. channel_readl(dwc, LLP),
  156. channel_readl(dwc, CTL_HI),
  157. channel_readl(dwc, CTL_LO));
  158. /* The tasklet will hopefully advance the queue... */
  159. return;
  160. }
  161. channel_writel(dwc, LLP, first->txd.phys);
  162. channel_writel(dwc, CTL_LO,
  163. DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  164. channel_writel(dwc, CTL_HI, 0);
  165. channel_set_bit(dw, CH_EN, dwc->mask);
  166. }
  167. /*----------------------------------------------------------------------*/
  168. static void
  169. dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc)
  170. {
  171. dma_async_tx_callback callback;
  172. void *param;
  173. struct dma_async_tx_descriptor *txd = &desc->txd;
  174. dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
  175. dwc->completed = txd->cookie;
  176. callback = txd->callback;
  177. param = txd->callback_param;
  178. dwc_sync_desc_for_cpu(dwc, desc);
  179. list_splice_init(&desc->tx_list, &dwc->free_list);
  180. list_move(&desc->desc_node, &dwc->free_list);
  181. if (!dwc->chan.private) {
  182. struct device *parent = chan2parent(&dwc->chan);
  183. if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  184. if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  185. dma_unmap_single(parent, desc->lli.dar,
  186. desc->len, DMA_FROM_DEVICE);
  187. else
  188. dma_unmap_page(parent, desc->lli.dar,
  189. desc->len, DMA_FROM_DEVICE);
  190. }
  191. if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  192. if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  193. dma_unmap_single(parent, desc->lli.sar,
  194. desc->len, DMA_TO_DEVICE);
  195. else
  196. dma_unmap_page(parent, desc->lli.sar,
  197. desc->len, DMA_TO_DEVICE);
  198. }
  199. }
  200. /*
  201. * The API requires that no submissions are done from a
  202. * callback, so we don't need to drop the lock here
  203. */
  204. if (callback)
  205. callback(param);
  206. }
  207. static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
  208. {
  209. struct dw_desc *desc, *_desc;
  210. LIST_HEAD(list);
  211. if (dma_readl(dw, CH_EN) & dwc->mask) {
  212. dev_err(chan2dev(&dwc->chan),
  213. "BUG: XFER bit set, but channel not idle!\n");
  214. /* Try to continue after resetting the channel... */
  215. channel_clear_bit(dw, CH_EN, dwc->mask);
  216. while (dma_readl(dw, CH_EN) & dwc->mask)
  217. cpu_relax();
  218. }
  219. /*
  220. * Submit queued descriptors ASAP, i.e. before we go through
  221. * the completed ones.
  222. */
  223. if (!list_empty(&dwc->queue))
  224. dwc_dostart(dwc, dwc_first_queued(dwc));
  225. list_splice_init(&dwc->active_list, &list);
  226. list_splice_init(&dwc->queue, &dwc->active_list);
  227. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  228. dwc_descriptor_complete(dwc, desc);
  229. }
  230. static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
  231. {
  232. dma_addr_t llp;
  233. struct dw_desc *desc, *_desc;
  234. struct dw_desc *child;
  235. u32 status_xfer;
  236. /*
  237. * Clear block interrupt flag before scanning so that we don't
  238. * miss any, and read LLP before RAW_XFER to ensure it is
  239. * valid if we decide to scan the list.
  240. */
  241. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  242. llp = channel_readl(dwc, LLP);
  243. status_xfer = dma_readl(dw, RAW.XFER);
  244. if (status_xfer & dwc->mask) {
  245. /* Everything we've submitted is done */
  246. dma_writel(dw, CLEAR.XFER, dwc->mask);
  247. dwc_complete_all(dw, dwc);
  248. return;
  249. }
  250. dev_vdbg(chan2dev(&dwc->chan), "scan_descriptors: llp=0x%x\n", llp);
  251. list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
  252. if (desc->lli.llp == llp)
  253. /* This one is currently in progress */
  254. return;
  255. list_for_each_entry(child, &desc->tx_list, desc_node)
  256. if (child->lli.llp == llp)
  257. /* Currently in progress */
  258. return;
  259. /*
  260. * No descriptors so far seem to be in progress, i.e.
  261. * this one must be done.
  262. */
  263. dwc_descriptor_complete(dwc, desc);
  264. }
  265. dev_err(chan2dev(&dwc->chan),
  266. "BUG: All descriptors done, but channel not idle!\n");
  267. /* Try to continue after resetting the channel... */
  268. channel_clear_bit(dw, CH_EN, dwc->mask);
  269. while (dma_readl(dw, CH_EN) & dwc->mask)
  270. cpu_relax();
  271. if (!list_empty(&dwc->queue)) {
  272. dwc_dostart(dwc, dwc_first_queued(dwc));
  273. list_splice_init(&dwc->queue, &dwc->active_list);
  274. }
  275. }
  276. static void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_lli *lli)
  277. {
  278. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  279. " desc: s0x%x d0x%x l0x%x c0x%x:%x\n",
  280. lli->sar, lli->dar, lli->llp,
  281. lli->ctlhi, lli->ctllo);
  282. }
  283. static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
  284. {
  285. struct dw_desc *bad_desc;
  286. struct dw_desc *child;
  287. dwc_scan_descriptors(dw, dwc);
  288. /*
  289. * The descriptor currently at the head of the active list is
  290. * borked. Since we don't have any way to report errors, we'll
  291. * just have to scream loudly and try to carry on.
  292. */
  293. bad_desc = dwc_first_active(dwc);
  294. list_del_init(&bad_desc->desc_node);
  295. list_splice_init(&dwc->queue, dwc->active_list.prev);
  296. /* Clear the error flag and try to restart the controller */
  297. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  298. if (!list_empty(&dwc->active_list))
  299. dwc_dostart(dwc, dwc_first_active(dwc));
  300. /*
  301. * KERN_CRITICAL may seem harsh, but since this only happens
  302. * when someone submits a bad physical address in a
  303. * descriptor, we should consider ourselves lucky that the
  304. * controller flagged an error instead of scribbling over
  305. * random memory locations.
  306. */
  307. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  308. "Bad descriptor submitted for DMA!\n");
  309. dev_printk(KERN_CRIT, chan2dev(&dwc->chan),
  310. " cookie: %d\n", bad_desc->txd.cookie);
  311. dwc_dump_lli(dwc, &bad_desc->lli);
  312. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  313. dwc_dump_lli(dwc, &child->lli);
  314. /* Pretend the descriptor completed successfully */
  315. dwc_descriptor_complete(dwc, bad_desc);
  316. }
  317. /* --------------------- Cyclic DMA API extensions -------------------- */
  318. inline dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
  319. {
  320. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  321. return channel_readl(dwc, SAR);
  322. }
  323. EXPORT_SYMBOL(dw_dma_get_src_addr);
  324. inline dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
  325. {
  326. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  327. return channel_readl(dwc, DAR);
  328. }
  329. EXPORT_SYMBOL(dw_dma_get_dst_addr);
  330. /* called with dwc->lock held and all DMAC interrupts disabled */
  331. static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
  332. u32 status_block, u32 status_err, u32 status_xfer)
  333. {
  334. if (status_block & dwc->mask) {
  335. void (*callback)(void *param);
  336. void *callback_param;
  337. dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
  338. channel_readl(dwc, LLP));
  339. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  340. callback = dwc->cdesc->period_callback;
  341. callback_param = dwc->cdesc->period_callback_param;
  342. if (callback) {
  343. spin_unlock(&dwc->lock);
  344. callback(callback_param);
  345. spin_lock(&dwc->lock);
  346. }
  347. }
  348. /*
  349. * Error and transfer complete are highly unlikely, and will most
  350. * likely be due to a configuration error by the user.
  351. */
  352. if (unlikely(status_err & dwc->mask) ||
  353. unlikely(status_xfer & dwc->mask)) {
  354. int i;
  355. dev_err(chan2dev(&dwc->chan), "cyclic DMA unexpected %s "
  356. "interrupt, stopping DMA transfer\n",
  357. status_xfer ? "xfer" : "error");
  358. dev_err(chan2dev(&dwc->chan),
  359. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  360. channel_readl(dwc, SAR),
  361. channel_readl(dwc, DAR),
  362. channel_readl(dwc, LLP),
  363. channel_readl(dwc, CTL_HI),
  364. channel_readl(dwc, CTL_LO));
  365. channel_clear_bit(dw, CH_EN, dwc->mask);
  366. while (dma_readl(dw, CH_EN) & dwc->mask)
  367. cpu_relax();
  368. /* make sure DMA does not restart by loading a new list */
  369. channel_writel(dwc, LLP, 0);
  370. channel_writel(dwc, CTL_LO, 0);
  371. channel_writel(dwc, CTL_HI, 0);
  372. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  373. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  374. dma_writel(dw, CLEAR.XFER, dwc->mask);
  375. for (i = 0; i < dwc->cdesc->periods; i++)
  376. dwc_dump_lli(dwc, &dwc->cdesc->desc[i]->lli);
  377. }
  378. }
  379. /* ------------------------------------------------------------------------- */
  380. static void dw_dma_tasklet(unsigned long data)
  381. {
  382. struct dw_dma *dw = (struct dw_dma *)data;
  383. struct dw_dma_chan *dwc;
  384. u32 status_block;
  385. u32 status_xfer;
  386. u32 status_err;
  387. int i;
  388. status_block = dma_readl(dw, RAW.BLOCK);
  389. status_xfer = dma_readl(dw, RAW.XFER);
  390. status_err = dma_readl(dw, RAW.ERROR);
  391. dev_vdbg(dw->dma.dev, "tasklet: status_block=%x status_err=%x\n",
  392. status_block, status_err);
  393. for (i = 0; i < dw->dma.chancnt; i++) {
  394. dwc = &dw->chan[i];
  395. spin_lock(&dwc->lock);
  396. if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
  397. dwc_handle_cyclic(dw, dwc, status_block, status_err,
  398. status_xfer);
  399. else if (status_err & (1 << i))
  400. dwc_handle_error(dw, dwc);
  401. else if ((status_block | status_xfer) & (1 << i))
  402. dwc_scan_descriptors(dw, dwc);
  403. spin_unlock(&dwc->lock);
  404. }
  405. /*
  406. * Re-enable interrupts. Block Complete interrupts are only
  407. * enabled if the INT_EN bit in the descriptor is set. This
  408. * will trigger a scan before the whole list is done.
  409. */
  410. channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
  411. channel_set_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  412. channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
  413. }
  414. static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
  415. {
  416. struct dw_dma *dw = dev_id;
  417. u32 status;
  418. dev_vdbg(dw->dma.dev, "interrupt: status=0x%x\n",
  419. dma_readl(dw, STATUS_INT));
  420. /*
  421. * Just disable the interrupts. We'll turn them back on in the
  422. * softirq handler.
  423. */
  424. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  425. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  426. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  427. status = dma_readl(dw, STATUS_INT);
  428. if (status) {
  429. dev_err(dw->dma.dev,
  430. "BUG: Unexpected interrupts pending: 0x%x\n",
  431. status);
  432. /* Try to recover */
  433. channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
  434. channel_clear_bit(dw, MASK.BLOCK, (1 << 8) - 1);
  435. channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
  436. channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
  437. channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
  438. }
  439. tasklet_schedule(&dw->tasklet);
  440. return IRQ_HANDLED;
  441. }
  442. /*----------------------------------------------------------------------*/
  443. static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
  444. {
  445. struct dw_desc *desc = txd_to_dw_desc(tx);
  446. struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
  447. dma_cookie_t cookie;
  448. spin_lock_bh(&dwc->lock);
  449. cookie = dwc_assign_cookie(dwc, desc);
  450. /*
  451. * REVISIT: We should attempt to chain as many descriptors as
  452. * possible, perhaps even appending to those already submitted
  453. * for DMA. But this is hard to do in a race-free manner.
  454. */
  455. if (list_empty(&dwc->active_list)) {
  456. dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
  457. desc->txd.cookie);
  458. dwc_dostart(dwc, desc);
  459. list_add_tail(&desc->desc_node, &dwc->active_list);
  460. } else {
  461. dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
  462. desc->txd.cookie);
  463. list_add_tail(&desc->desc_node, &dwc->queue);
  464. }
  465. spin_unlock_bh(&dwc->lock);
  466. return cookie;
  467. }
  468. static struct dma_async_tx_descriptor *
  469. dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  470. size_t len, unsigned long flags)
  471. {
  472. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  473. struct dw_desc *desc;
  474. struct dw_desc *first;
  475. struct dw_desc *prev;
  476. size_t xfer_count;
  477. size_t offset;
  478. unsigned int src_width;
  479. unsigned int dst_width;
  480. u32 ctllo;
  481. dev_vdbg(chan2dev(chan), "prep_dma_memcpy d0x%x s0x%x l0x%zx f0x%lx\n",
  482. dest, src, len, flags);
  483. if (unlikely(!len)) {
  484. dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
  485. return NULL;
  486. }
  487. /*
  488. * We can be a lot more clever here, but this should take care
  489. * of the most common optimization.
  490. */
  491. if (!((src | dest | len) & 3))
  492. src_width = dst_width = 2;
  493. else if (!((src | dest | len) & 1))
  494. src_width = dst_width = 1;
  495. else
  496. src_width = dst_width = 0;
  497. ctllo = DWC_DEFAULT_CTLLO
  498. | DWC_CTLL_DST_WIDTH(dst_width)
  499. | DWC_CTLL_SRC_WIDTH(src_width)
  500. | DWC_CTLL_DST_INC
  501. | DWC_CTLL_SRC_INC
  502. | DWC_CTLL_FC_M2M;
  503. prev = first = NULL;
  504. for (offset = 0; offset < len; offset += xfer_count << src_width) {
  505. xfer_count = min_t(size_t, (len - offset) >> src_width,
  506. DWC_MAX_COUNT);
  507. desc = dwc_desc_get(dwc);
  508. if (!desc)
  509. goto err_desc_get;
  510. desc->lli.sar = src + offset;
  511. desc->lli.dar = dest + offset;
  512. desc->lli.ctllo = ctllo;
  513. desc->lli.ctlhi = xfer_count;
  514. if (!first) {
  515. first = desc;
  516. } else {
  517. prev->lli.llp = desc->txd.phys;
  518. dma_sync_single_for_device(chan2parent(chan),
  519. prev->txd.phys, sizeof(prev->lli),
  520. DMA_TO_DEVICE);
  521. list_add_tail(&desc->desc_node,
  522. &first->tx_list);
  523. }
  524. prev = desc;
  525. }
  526. if (flags & DMA_PREP_INTERRUPT)
  527. /* Trigger interrupt after last block */
  528. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  529. prev->lli.llp = 0;
  530. dma_sync_single_for_device(chan2parent(chan),
  531. prev->txd.phys, sizeof(prev->lli),
  532. DMA_TO_DEVICE);
  533. first->txd.flags = flags;
  534. first->len = len;
  535. return &first->txd;
  536. err_desc_get:
  537. dwc_desc_put(dwc, first);
  538. return NULL;
  539. }
  540. static struct dma_async_tx_descriptor *
  541. dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  542. unsigned int sg_len, enum dma_data_direction direction,
  543. unsigned long flags)
  544. {
  545. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  546. struct dw_dma_slave *dws = chan->private;
  547. struct dw_desc *prev;
  548. struct dw_desc *first;
  549. u32 ctllo;
  550. dma_addr_t reg;
  551. unsigned int reg_width;
  552. unsigned int mem_width;
  553. unsigned int i;
  554. struct scatterlist *sg;
  555. size_t total_len = 0;
  556. dev_vdbg(chan2dev(chan), "prep_dma_slave\n");
  557. if (unlikely(!dws || !sg_len))
  558. return NULL;
  559. reg_width = dws->reg_width;
  560. prev = first = NULL;
  561. switch (direction) {
  562. case DMA_TO_DEVICE:
  563. ctllo = (DWC_DEFAULT_CTLLO
  564. | DWC_CTLL_DST_WIDTH(reg_width)
  565. | DWC_CTLL_DST_FIX
  566. | DWC_CTLL_SRC_INC
  567. | DWC_CTLL_FC_M2P);
  568. reg = dws->tx_reg;
  569. for_each_sg(sgl, sg, sg_len, i) {
  570. struct dw_desc *desc;
  571. u32 len;
  572. u32 mem;
  573. desc = dwc_desc_get(dwc);
  574. if (!desc) {
  575. dev_err(chan2dev(chan),
  576. "not enough descriptors available\n");
  577. goto err_desc_get;
  578. }
  579. mem = sg_phys(sg);
  580. len = sg_dma_len(sg);
  581. mem_width = 2;
  582. if (unlikely(mem & 3 || len & 3))
  583. mem_width = 0;
  584. desc->lli.sar = mem;
  585. desc->lli.dar = reg;
  586. desc->lli.ctllo = ctllo | DWC_CTLL_SRC_WIDTH(mem_width);
  587. desc->lli.ctlhi = len >> mem_width;
  588. if (!first) {
  589. first = desc;
  590. } else {
  591. prev->lli.llp = desc->txd.phys;
  592. dma_sync_single_for_device(chan2parent(chan),
  593. prev->txd.phys,
  594. sizeof(prev->lli),
  595. DMA_TO_DEVICE);
  596. list_add_tail(&desc->desc_node,
  597. &first->tx_list);
  598. }
  599. prev = desc;
  600. total_len += len;
  601. }
  602. break;
  603. case DMA_FROM_DEVICE:
  604. ctllo = (DWC_DEFAULT_CTLLO
  605. | DWC_CTLL_SRC_WIDTH(reg_width)
  606. | DWC_CTLL_DST_INC
  607. | DWC_CTLL_SRC_FIX
  608. | DWC_CTLL_FC_P2M);
  609. reg = dws->rx_reg;
  610. for_each_sg(sgl, sg, sg_len, i) {
  611. struct dw_desc *desc;
  612. u32 len;
  613. u32 mem;
  614. desc = dwc_desc_get(dwc);
  615. if (!desc) {
  616. dev_err(chan2dev(chan),
  617. "not enough descriptors available\n");
  618. goto err_desc_get;
  619. }
  620. mem = sg_phys(sg);
  621. len = sg_dma_len(sg);
  622. mem_width = 2;
  623. if (unlikely(mem & 3 || len & 3))
  624. mem_width = 0;
  625. desc->lli.sar = reg;
  626. desc->lli.dar = mem;
  627. desc->lli.ctllo = ctllo | DWC_CTLL_DST_WIDTH(mem_width);
  628. desc->lli.ctlhi = len >> reg_width;
  629. if (!first) {
  630. first = desc;
  631. } else {
  632. prev->lli.llp = desc->txd.phys;
  633. dma_sync_single_for_device(chan2parent(chan),
  634. prev->txd.phys,
  635. sizeof(prev->lli),
  636. DMA_TO_DEVICE);
  637. list_add_tail(&desc->desc_node,
  638. &first->tx_list);
  639. }
  640. prev = desc;
  641. total_len += len;
  642. }
  643. break;
  644. default:
  645. return NULL;
  646. }
  647. if (flags & DMA_PREP_INTERRUPT)
  648. /* Trigger interrupt after last block */
  649. prev->lli.ctllo |= DWC_CTLL_INT_EN;
  650. prev->lli.llp = 0;
  651. dma_sync_single_for_device(chan2parent(chan),
  652. prev->txd.phys, sizeof(prev->lli),
  653. DMA_TO_DEVICE);
  654. first->len = total_len;
  655. return &first->txd;
  656. err_desc_get:
  657. dwc_desc_put(dwc, first);
  658. return NULL;
  659. }
  660. static void dwc_terminate_all(struct dma_chan *chan)
  661. {
  662. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  663. struct dw_dma *dw = to_dw_dma(chan->device);
  664. struct dw_desc *desc, *_desc;
  665. LIST_HEAD(list);
  666. /*
  667. * This is only called when something went wrong elsewhere, so
  668. * we don't really care about the data. Just disable the
  669. * channel. We still have to poll the channel enable bit due
  670. * to AHB/HSB limitations.
  671. */
  672. spin_lock_bh(&dwc->lock);
  673. channel_clear_bit(dw, CH_EN, dwc->mask);
  674. while (dma_readl(dw, CH_EN) & dwc->mask)
  675. cpu_relax();
  676. /* active_list entries will end up before queued entries */
  677. list_splice_init(&dwc->queue, &list);
  678. list_splice_init(&dwc->active_list, &list);
  679. spin_unlock_bh(&dwc->lock);
  680. /* Flush all pending and queued descriptors */
  681. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  682. dwc_descriptor_complete(dwc, desc);
  683. }
  684. static enum dma_status
  685. dwc_is_tx_complete(struct dma_chan *chan,
  686. dma_cookie_t cookie,
  687. dma_cookie_t *done, dma_cookie_t *used)
  688. {
  689. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  690. dma_cookie_t last_used;
  691. dma_cookie_t last_complete;
  692. int ret;
  693. last_complete = dwc->completed;
  694. last_used = chan->cookie;
  695. ret = dma_async_is_complete(cookie, last_complete, last_used);
  696. if (ret != DMA_SUCCESS) {
  697. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  698. last_complete = dwc->completed;
  699. last_used = chan->cookie;
  700. ret = dma_async_is_complete(cookie, last_complete, last_used);
  701. }
  702. if (done)
  703. *done = last_complete;
  704. if (used)
  705. *used = last_used;
  706. return ret;
  707. }
  708. static void dwc_issue_pending(struct dma_chan *chan)
  709. {
  710. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  711. spin_lock_bh(&dwc->lock);
  712. if (!list_empty(&dwc->queue))
  713. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  714. spin_unlock_bh(&dwc->lock);
  715. }
  716. static int dwc_alloc_chan_resources(struct dma_chan *chan)
  717. {
  718. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  719. struct dw_dma *dw = to_dw_dma(chan->device);
  720. struct dw_desc *desc;
  721. struct dw_dma_slave *dws;
  722. int i;
  723. u32 cfghi;
  724. u32 cfglo;
  725. dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
  726. /* ASSERT: channel is idle */
  727. if (dma_readl(dw, CH_EN) & dwc->mask) {
  728. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  729. return -EIO;
  730. }
  731. dwc->completed = chan->cookie = 1;
  732. cfghi = DWC_CFGH_FIFO_MODE;
  733. cfglo = 0;
  734. dws = chan->private;
  735. if (dws) {
  736. /*
  737. * We need controller-specific data to set up slave
  738. * transfers.
  739. */
  740. BUG_ON(!dws->dma_dev || dws->dma_dev != dw->dma.dev);
  741. cfghi = dws->cfg_hi;
  742. cfglo = dws->cfg_lo;
  743. }
  744. channel_writel(dwc, CFG_LO, cfglo);
  745. channel_writel(dwc, CFG_HI, cfghi);
  746. /*
  747. * NOTE: some controllers may have additional features that we
  748. * need to initialize here, like "scatter-gather" (which
  749. * doesn't mean what you think it means), and status writeback.
  750. */
  751. spin_lock_bh(&dwc->lock);
  752. i = dwc->descs_allocated;
  753. while (dwc->descs_allocated < NR_DESCS_PER_CHANNEL) {
  754. spin_unlock_bh(&dwc->lock);
  755. desc = kzalloc(sizeof(struct dw_desc), GFP_KERNEL);
  756. if (!desc) {
  757. dev_info(chan2dev(chan),
  758. "only allocated %d descriptors\n", i);
  759. spin_lock_bh(&dwc->lock);
  760. break;
  761. }
  762. INIT_LIST_HEAD(&desc->tx_list);
  763. dma_async_tx_descriptor_init(&desc->txd, chan);
  764. desc->txd.tx_submit = dwc_tx_submit;
  765. desc->txd.flags = DMA_CTRL_ACK;
  766. desc->txd.phys = dma_map_single(chan2parent(chan), &desc->lli,
  767. sizeof(desc->lli), DMA_TO_DEVICE);
  768. dwc_desc_put(dwc, desc);
  769. spin_lock_bh(&dwc->lock);
  770. i = ++dwc->descs_allocated;
  771. }
  772. /* Enable interrupts */
  773. channel_set_bit(dw, MASK.XFER, dwc->mask);
  774. channel_set_bit(dw, MASK.BLOCK, dwc->mask);
  775. channel_set_bit(dw, MASK.ERROR, dwc->mask);
  776. spin_unlock_bh(&dwc->lock);
  777. dev_dbg(chan2dev(chan),
  778. "alloc_chan_resources allocated %d descriptors\n", i);
  779. return i;
  780. }
  781. static void dwc_free_chan_resources(struct dma_chan *chan)
  782. {
  783. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  784. struct dw_dma *dw = to_dw_dma(chan->device);
  785. struct dw_desc *desc, *_desc;
  786. LIST_HEAD(list);
  787. dev_dbg(chan2dev(chan), "free_chan_resources (descs allocated=%u)\n",
  788. dwc->descs_allocated);
  789. /* ASSERT: channel is idle */
  790. BUG_ON(!list_empty(&dwc->active_list));
  791. BUG_ON(!list_empty(&dwc->queue));
  792. BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
  793. spin_lock_bh(&dwc->lock);
  794. list_splice_init(&dwc->free_list, &list);
  795. dwc->descs_allocated = 0;
  796. /* Disable interrupts */
  797. channel_clear_bit(dw, MASK.XFER, dwc->mask);
  798. channel_clear_bit(dw, MASK.BLOCK, dwc->mask);
  799. channel_clear_bit(dw, MASK.ERROR, dwc->mask);
  800. spin_unlock_bh(&dwc->lock);
  801. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  802. dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
  803. dma_unmap_single(chan2parent(chan), desc->txd.phys,
  804. sizeof(desc->lli), DMA_TO_DEVICE);
  805. kfree(desc);
  806. }
  807. dev_vdbg(chan2dev(chan), "free_chan_resources done\n");
  808. }
  809. /* --------------------- Cyclic DMA API extensions -------------------- */
  810. /**
  811. * dw_dma_cyclic_start - start the cyclic DMA transfer
  812. * @chan: the DMA channel to start
  813. *
  814. * Must be called with soft interrupts disabled. Returns zero on success or
  815. * -errno on failure.
  816. */
  817. int dw_dma_cyclic_start(struct dma_chan *chan)
  818. {
  819. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  820. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  821. if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
  822. dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
  823. return -ENODEV;
  824. }
  825. spin_lock(&dwc->lock);
  826. /* assert channel is idle */
  827. if (dma_readl(dw, CH_EN) & dwc->mask) {
  828. dev_err(chan2dev(&dwc->chan),
  829. "BUG: Attempted to start non-idle channel\n");
  830. dev_err(chan2dev(&dwc->chan),
  831. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  832. channel_readl(dwc, SAR),
  833. channel_readl(dwc, DAR),
  834. channel_readl(dwc, LLP),
  835. channel_readl(dwc, CTL_HI),
  836. channel_readl(dwc, CTL_LO));
  837. spin_unlock(&dwc->lock);
  838. return -EBUSY;
  839. }
  840. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  841. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  842. dma_writel(dw, CLEAR.XFER, dwc->mask);
  843. /* setup DMAC channel registers */
  844. channel_writel(dwc, LLP, dwc->cdesc->desc[0]->txd.phys);
  845. channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  846. channel_writel(dwc, CTL_HI, 0);
  847. channel_set_bit(dw, CH_EN, dwc->mask);
  848. spin_unlock(&dwc->lock);
  849. return 0;
  850. }
  851. EXPORT_SYMBOL(dw_dma_cyclic_start);
  852. /**
  853. * dw_dma_cyclic_stop - stop the cyclic DMA transfer
  854. * @chan: the DMA channel to stop
  855. *
  856. * Must be called with soft interrupts disabled.
  857. */
  858. void dw_dma_cyclic_stop(struct dma_chan *chan)
  859. {
  860. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  861. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  862. spin_lock(&dwc->lock);
  863. channel_clear_bit(dw, CH_EN, dwc->mask);
  864. while (dma_readl(dw, CH_EN) & dwc->mask)
  865. cpu_relax();
  866. spin_unlock(&dwc->lock);
  867. }
  868. EXPORT_SYMBOL(dw_dma_cyclic_stop);
  869. /**
  870. * dw_dma_cyclic_prep - prepare the cyclic DMA transfer
  871. * @chan: the DMA channel to prepare
  872. * @buf_addr: physical DMA address where the buffer starts
  873. * @buf_len: total number of bytes for the entire buffer
  874. * @period_len: number of bytes for each period
  875. * @direction: transfer direction, to or from device
  876. *
  877. * Must be called before trying to start the transfer. Returns a valid struct
  878. * dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
  879. */
  880. struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
  881. dma_addr_t buf_addr, size_t buf_len, size_t period_len,
  882. enum dma_data_direction direction)
  883. {
  884. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  885. struct dw_cyclic_desc *cdesc;
  886. struct dw_cyclic_desc *retval = NULL;
  887. struct dw_desc *desc;
  888. struct dw_desc *last = NULL;
  889. struct dw_dma_slave *dws = chan->private;
  890. unsigned long was_cyclic;
  891. unsigned int reg_width;
  892. unsigned int periods;
  893. unsigned int i;
  894. spin_lock_bh(&dwc->lock);
  895. if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
  896. spin_unlock_bh(&dwc->lock);
  897. dev_dbg(chan2dev(&dwc->chan),
  898. "queue and/or active list are not empty\n");
  899. return ERR_PTR(-EBUSY);
  900. }
  901. was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  902. spin_unlock_bh(&dwc->lock);
  903. if (was_cyclic) {
  904. dev_dbg(chan2dev(&dwc->chan),
  905. "channel already prepared for cyclic DMA\n");
  906. return ERR_PTR(-EBUSY);
  907. }
  908. retval = ERR_PTR(-EINVAL);
  909. reg_width = dws->reg_width;
  910. periods = buf_len / period_len;
  911. /* Check for too big/unaligned periods and unaligned DMA buffer. */
  912. if (period_len > (DWC_MAX_COUNT << reg_width))
  913. goto out_err;
  914. if (unlikely(period_len & ((1 << reg_width) - 1)))
  915. goto out_err;
  916. if (unlikely(buf_addr & ((1 << reg_width) - 1)))
  917. goto out_err;
  918. if (unlikely(!(direction & (DMA_TO_DEVICE | DMA_FROM_DEVICE))))
  919. goto out_err;
  920. retval = ERR_PTR(-ENOMEM);
  921. if (periods > NR_DESCS_PER_CHANNEL)
  922. goto out_err;
  923. cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
  924. if (!cdesc)
  925. goto out_err;
  926. cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
  927. if (!cdesc->desc)
  928. goto out_err_alloc;
  929. for (i = 0; i < periods; i++) {
  930. desc = dwc_desc_get(dwc);
  931. if (!desc)
  932. goto out_err_desc_get;
  933. switch (direction) {
  934. case DMA_TO_DEVICE:
  935. desc->lli.dar = dws->tx_reg;
  936. desc->lli.sar = buf_addr + (period_len * i);
  937. desc->lli.ctllo = (DWC_DEFAULT_CTLLO
  938. | DWC_CTLL_DST_WIDTH(reg_width)
  939. | DWC_CTLL_SRC_WIDTH(reg_width)
  940. | DWC_CTLL_DST_FIX
  941. | DWC_CTLL_SRC_INC
  942. | DWC_CTLL_FC_M2P
  943. | DWC_CTLL_INT_EN);
  944. break;
  945. case DMA_FROM_DEVICE:
  946. desc->lli.dar = buf_addr + (period_len * i);
  947. desc->lli.sar = dws->rx_reg;
  948. desc->lli.ctllo = (DWC_DEFAULT_CTLLO
  949. | DWC_CTLL_SRC_WIDTH(reg_width)
  950. | DWC_CTLL_DST_WIDTH(reg_width)
  951. | DWC_CTLL_DST_INC
  952. | DWC_CTLL_SRC_FIX
  953. | DWC_CTLL_FC_P2M
  954. | DWC_CTLL_INT_EN);
  955. break;
  956. default:
  957. break;
  958. }
  959. desc->lli.ctlhi = (period_len >> reg_width);
  960. cdesc->desc[i] = desc;
  961. if (last) {
  962. last->lli.llp = desc->txd.phys;
  963. dma_sync_single_for_device(chan2parent(chan),
  964. last->txd.phys, sizeof(last->lli),
  965. DMA_TO_DEVICE);
  966. }
  967. last = desc;
  968. }
  969. /* lets make a cyclic list */
  970. last->lli.llp = cdesc->desc[0]->txd.phys;
  971. dma_sync_single_for_device(chan2parent(chan), last->txd.phys,
  972. sizeof(last->lli), DMA_TO_DEVICE);
  973. dev_dbg(chan2dev(&dwc->chan), "cyclic prepared buf 0x%08x len %zu "
  974. "period %zu periods %d\n", buf_addr, buf_len,
  975. period_len, periods);
  976. cdesc->periods = periods;
  977. dwc->cdesc = cdesc;
  978. return cdesc;
  979. out_err_desc_get:
  980. while (i--)
  981. dwc_desc_put(dwc, cdesc->desc[i]);
  982. out_err_alloc:
  983. kfree(cdesc);
  984. out_err:
  985. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  986. return (struct dw_cyclic_desc *)retval;
  987. }
  988. EXPORT_SYMBOL(dw_dma_cyclic_prep);
  989. /**
  990. * dw_dma_cyclic_free - free a prepared cyclic DMA transfer
  991. * @chan: the DMA channel to free
  992. */
  993. void dw_dma_cyclic_free(struct dma_chan *chan)
  994. {
  995. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  996. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  997. struct dw_cyclic_desc *cdesc = dwc->cdesc;
  998. int i;
  999. dev_dbg(chan2dev(&dwc->chan), "cyclic free\n");
  1000. if (!cdesc)
  1001. return;
  1002. spin_lock_bh(&dwc->lock);
  1003. channel_clear_bit(dw, CH_EN, dwc->mask);
  1004. while (dma_readl(dw, CH_EN) & dwc->mask)
  1005. cpu_relax();
  1006. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  1007. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  1008. dma_writel(dw, CLEAR.XFER, dwc->mask);
  1009. spin_unlock_bh(&dwc->lock);
  1010. for (i = 0; i < cdesc->periods; i++)
  1011. dwc_desc_put(dwc, cdesc->desc[i]);
  1012. kfree(cdesc->desc);
  1013. kfree(cdesc);
  1014. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1015. }
  1016. EXPORT_SYMBOL(dw_dma_cyclic_free);
  1017. /*----------------------------------------------------------------------*/
  1018. static void dw_dma_off(struct dw_dma *dw)
  1019. {
  1020. dma_writel(dw, CFG, 0);
  1021. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1022. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  1023. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1024. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1025. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1026. while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
  1027. cpu_relax();
  1028. }
  1029. static int __init dw_probe(struct platform_device *pdev)
  1030. {
  1031. struct dw_dma_platform_data *pdata;
  1032. struct resource *io;
  1033. struct dw_dma *dw;
  1034. size_t size;
  1035. int irq;
  1036. int err;
  1037. int i;
  1038. pdata = pdev->dev.platform_data;
  1039. if (!pdata || pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS)
  1040. return -EINVAL;
  1041. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1042. if (!io)
  1043. return -EINVAL;
  1044. irq = platform_get_irq(pdev, 0);
  1045. if (irq < 0)
  1046. return irq;
  1047. size = sizeof(struct dw_dma);
  1048. size += pdata->nr_channels * sizeof(struct dw_dma_chan);
  1049. dw = kzalloc(size, GFP_KERNEL);
  1050. if (!dw)
  1051. return -ENOMEM;
  1052. if (!request_mem_region(io->start, DW_REGLEN, pdev->dev.driver->name)) {
  1053. err = -EBUSY;
  1054. goto err_kfree;
  1055. }
  1056. dw->regs = ioremap(io->start, DW_REGLEN);
  1057. if (!dw->regs) {
  1058. err = -ENOMEM;
  1059. goto err_release_r;
  1060. }
  1061. dw->clk = clk_get(&pdev->dev, "hclk");
  1062. if (IS_ERR(dw->clk)) {
  1063. err = PTR_ERR(dw->clk);
  1064. goto err_clk;
  1065. }
  1066. clk_enable(dw->clk);
  1067. /* force dma off, just in case */
  1068. dw_dma_off(dw);
  1069. err = request_irq(irq, dw_dma_interrupt, 0, "dw_dmac", dw);
  1070. if (err)
  1071. goto err_irq;
  1072. platform_set_drvdata(pdev, dw);
  1073. tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
  1074. dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
  1075. INIT_LIST_HEAD(&dw->dma.channels);
  1076. for (i = 0; i < pdata->nr_channels; i++, dw->dma.chancnt++) {
  1077. struct dw_dma_chan *dwc = &dw->chan[i];
  1078. dwc->chan.device = &dw->dma;
  1079. dwc->chan.cookie = dwc->completed = 1;
  1080. dwc->chan.chan_id = i;
  1081. list_add_tail(&dwc->chan.device_node, &dw->dma.channels);
  1082. dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
  1083. spin_lock_init(&dwc->lock);
  1084. dwc->mask = 1 << i;
  1085. INIT_LIST_HEAD(&dwc->active_list);
  1086. INIT_LIST_HEAD(&dwc->queue);
  1087. INIT_LIST_HEAD(&dwc->free_list);
  1088. channel_clear_bit(dw, CH_EN, dwc->mask);
  1089. }
  1090. /* Clear/disable all interrupts on all channels. */
  1091. dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
  1092. dma_writel(dw, CLEAR.BLOCK, dw->all_chan_mask);
  1093. dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
  1094. dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
  1095. dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
  1096. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  1097. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  1098. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  1099. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  1100. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  1101. dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
  1102. dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
  1103. dw->dma.dev = &pdev->dev;
  1104. dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
  1105. dw->dma.device_free_chan_resources = dwc_free_chan_resources;
  1106. dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
  1107. dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
  1108. dw->dma.device_terminate_all = dwc_terminate_all;
  1109. dw->dma.device_is_tx_complete = dwc_is_tx_complete;
  1110. dw->dma.device_issue_pending = dwc_issue_pending;
  1111. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1112. printk(KERN_INFO "%s: DesignWare DMA Controller, %d channels\n",
  1113. dev_name(&pdev->dev), dw->dma.chancnt);
  1114. dma_async_device_register(&dw->dma);
  1115. return 0;
  1116. err_irq:
  1117. clk_disable(dw->clk);
  1118. clk_put(dw->clk);
  1119. err_clk:
  1120. iounmap(dw->regs);
  1121. dw->regs = NULL;
  1122. err_release_r:
  1123. release_resource(io);
  1124. err_kfree:
  1125. kfree(dw);
  1126. return err;
  1127. }
  1128. static int __exit dw_remove(struct platform_device *pdev)
  1129. {
  1130. struct dw_dma *dw = platform_get_drvdata(pdev);
  1131. struct dw_dma_chan *dwc, *_dwc;
  1132. struct resource *io;
  1133. dw_dma_off(dw);
  1134. dma_async_device_unregister(&dw->dma);
  1135. free_irq(platform_get_irq(pdev, 0), dw);
  1136. tasklet_kill(&dw->tasklet);
  1137. list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
  1138. chan.device_node) {
  1139. list_del(&dwc->chan.device_node);
  1140. channel_clear_bit(dw, CH_EN, dwc->mask);
  1141. }
  1142. clk_disable(dw->clk);
  1143. clk_put(dw->clk);
  1144. iounmap(dw->regs);
  1145. dw->regs = NULL;
  1146. io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1147. release_mem_region(io->start, DW_REGLEN);
  1148. kfree(dw);
  1149. return 0;
  1150. }
  1151. static void dw_shutdown(struct platform_device *pdev)
  1152. {
  1153. struct dw_dma *dw = platform_get_drvdata(pdev);
  1154. dw_dma_off(platform_get_drvdata(pdev));
  1155. clk_disable(dw->clk);
  1156. }
  1157. static int dw_suspend_noirq(struct device *dev)
  1158. {
  1159. struct platform_device *pdev = to_platform_device(dev);
  1160. struct dw_dma *dw = platform_get_drvdata(pdev);
  1161. dw_dma_off(platform_get_drvdata(pdev));
  1162. clk_disable(dw->clk);
  1163. return 0;
  1164. }
  1165. static int dw_resume_noirq(struct device *dev)
  1166. {
  1167. struct platform_device *pdev = to_platform_device(dev);
  1168. struct dw_dma *dw = platform_get_drvdata(pdev);
  1169. clk_enable(dw->clk);
  1170. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  1171. return 0;
  1172. }
  1173. static const struct dev_pm_ops dw_dev_pm_ops = {
  1174. .suspend_noirq = dw_suspend_noirq,
  1175. .resume_noirq = dw_resume_noirq,
  1176. };
  1177. static struct platform_driver dw_driver = {
  1178. .remove = __exit_p(dw_remove),
  1179. .shutdown = dw_shutdown,
  1180. .driver = {
  1181. .name = "dw_dmac",
  1182. .pm = &dw_dev_pm_ops,
  1183. },
  1184. };
  1185. static int __init dw_init(void)
  1186. {
  1187. return platform_driver_probe(&dw_driver, dw_probe);
  1188. }
  1189. module_init(dw_init);
  1190. static void __exit dw_exit(void)
  1191. {
  1192. platform_driver_unregister(&dw_driver);
  1193. }
  1194. module_exit(dw_exit);
  1195. MODULE_LICENSE("GPL v2");
  1196. MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller driver");
  1197. MODULE_AUTHOR("Haavard Skinnemoen <haavard.skinnemoen@atmel.com>");