x86.c 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/debugreg.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/msr.h>
  46. #include <asm/desc.h>
  47. #include <asm/mtrr.h>
  48. #include <asm/mce.h>
  49. #define MAX_IO_MSRS 256
  50. #define CR0_RESERVED_BITS \
  51. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  52. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  53. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  54. #define CR4_RESERVED_BITS \
  55. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  56. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  57. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  58. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  59. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  60. #define KVM_MAX_MCE_BANKS 32
  61. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  68. #else
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  70. #endif
  71. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  72. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  73. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  74. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  75. struct kvm_cpuid_entry2 __user *entries);
  76. struct kvm_x86_ops *kvm_x86_ops;
  77. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  78. int ignore_msrs = 0;
  79. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  80. #define KVM_NR_SHARED_MSRS 16
  81. struct kvm_shared_msrs_global {
  82. int nr;
  83. struct kvm_shared_msr {
  84. u32 msr;
  85. u64 value;
  86. } msrs[KVM_NR_SHARED_MSRS];
  87. };
  88. struct kvm_shared_msrs {
  89. struct user_return_notifier urn;
  90. bool registered;
  91. u64 current_value[KVM_NR_SHARED_MSRS];
  92. };
  93. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  94. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  95. struct kvm_stats_debugfs_item debugfs_entries[] = {
  96. { "pf_fixed", VCPU_STAT(pf_fixed) },
  97. { "pf_guest", VCPU_STAT(pf_guest) },
  98. { "tlb_flush", VCPU_STAT(tlb_flush) },
  99. { "invlpg", VCPU_STAT(invlpg) },
  100. { "exits", VCPU_STAT(exits) },
  101. { "io_exits", VCPU_STAT(io_exits) },
  102. { "mmio_exits", VCPU_STAT(mmio_exits) },
  103. { "signal_exits", VCPU_STAT(signal_exits) },
  104. { "irq_window", VCPU_STAT(irq_window_exits) },
  105. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  106. { "halt_exits", VCPU_STAT(halt_exits) },
  107. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  108. { "hypercalls", VCPU_STAT(hypercalls) },
  109. { "request_irq", VCPU_STAT(request_irq_exits) },
  110. { "irq_exits", VCPU_STAT(irq_exits) },
  111. { "host_state_reload", VCPU_STAT(host_state_reload) },
  112. { "efer_reload", VCPU_STAT(efer_reload) },
  113. { "fpu_reload", VCPU_STAT(fpu_reload) },
  114. { "insn_emulation", VCPU_STAT(insn_emulation) },
  115. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  116. { "irq_injections", VCPU_STAT(irq_injections) },
  117. { "nmi_injections", VCPU_STAT(nmi_injections) },
  118. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  119. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  120. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  121. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  122. { "mmu_flooded", VM_STAT(mmu_flooded) },
  123. { "mmu_recycled", VM_STAT(mmu_recycled) },
  124. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  125. { "mmu_unsync", VM_STAT(mmu_unsync) },
  126. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  127. { "largepages", VM_STAT(lpages) },
  128. { NULL }
  129. };
  130. static void kvm_on_user_return(struct user_return_notifier *urn)
  131. {
  132. unsigned slot;
  133. struct kvm_shared_msr *global;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  137. global = &shared_msrs_global.msrs[slot];
  138. if (global->value != locals->current_value[slot]) {
  139. wrmsrl(global->msr, global->value);
  140. locals->current_value[slot] = global->value;
  141. }
  142. }
  143. locals->registered = false;
  144. user_return_notifier_unregister(urn);
  145. }
  146. void kvm_define_shared_msr(unsigned slot, u32 msr)
  147. {
  148. int cpu;
  149. u64 value;
  150. if (slot >= shared_msrs_global.nr)
  151. shared_msrs_global.nr = slot + 1;
  152. shared_msrs_global.msrs[slot].msr = msr;
  153. rdmsrl_safe(msr, &value);
  154. shared_msrs_global.msrs[slot].value = value;
  155. for_each_online_cpu(cpu)
  156. per_cpu(shared_msrs, cpu).current_value[slot] = value;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  159. static void kvm_shared_msr_cpu_online(void)
  160. {
  161. unsigned i;
  162. struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
  163. for (i = 0; i < shared_msrs_global.nr; ++i)
  164. locals->current_value[i] = shared_msrs_global.msrs[i].value;
  165. }
  166. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  167. {
  168. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  169. if (((value ^ smsr->current_value[slot]) & mask) == 0)
  170. return;
  171. smsr->current_value[slot] = value;
  172. wrmsrl(shared_msrs_global.msrs[slot].msr, value);
  173. if (!smsr->registered) {
  174. smsr->urn.on_user_return = kvm_on_user_return;
  175. user_return_notifier_register(&smsr->urn);
  176. smsr->registered = true;
  177. }
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  180. static void drop_user_return_notifiers(void *ignore)
  181. {
  182. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  183. if (smsr->registered)
  184. kvm_on_user_return(&smsr->urn);
  185. }
  186. unsigned long segment_base(u16 selector)
  187. {
  188. struct descriptor_table gdt;
  189. struct desc_struct *d;
  190. unsigned long table_base;
  191. unsigned long v;
  192. if (selector == 0)
  193. return 0;
  194. kvm_get_gdt(&gdt);
  195. table_base = gdt.base;
  196. if (selector & 4) { /* from ldt */
  197. u16 ldt_selector = kvm_read_ldt();
  198. table_base = segment_base(ldt_selector);
  199. }
  200. d = (struct desc_struct *)(table_base + (selector & ~7));
  201. v = get_desc_base(d);
  202. #ifdef CONFIG_X86_64
  203. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  204. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  205. #endif
  206. return v;
  207. }
  208. EXPORT_SYMBOL_GPL(segment_base);
  209. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  210. {
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. return vcpu->arch.apic_base;
  213. else
  214. return vcpu->arch.apic_base;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  217. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  218. {
  219. /* TODO: reserve bits check */
  220. if (irqchip_in_kernel(vcpu->kvm))
  221. kvm_lapic_set_base(vcpu, data);
  222. else
  223. vcpu->arch.apic_base = data;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  226. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  227. {
  228. WARN_ON(vcpu->arch.exception.pending);
  229. vcpu->arch.exception.pending = true;
  230. vcpu->arch.exception.has_error_code = false;
  231. vcpu->arch.exception.nr = nr;
  232. }
  233. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  234. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  235. u32 error_code)
  236. {
  237. ++vcpu->stat.pf_guest;
  238. if (vcpu->arch.exception.pending) {
  239. switch(vcpu->arch.exception.nr) {
  240. case DF_VECTOR:
  241. /* triple fault -> shutdown */
  242. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  243. return;
  244. case PF_VECTOR:
  245. vcpu->arch.exception.nr = DF_VECTOR;
  246. vcpu->arch.exception.error_code = 0;
  247. return;
  248. default:
  249. /* replace previous exception with a new one in a hope
  250. that instruction re-execution will regenerate lost
  251. exception */
  252. vcpu->arch.exception.pending = false;
  253. break;
  254. }
  255. }
  256. vcpu->arch.cr2 = addr;
  257. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  258. }
  259. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  260. {
  261. vcpu->arch.nmi_pending = 1;
  262. }
  263. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  264. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  265. {
  266. WARN_ON(vcpu->arch.exception.pending);
  267. vcpu->arch.exception.pending = true;
  268. vcpu->arch.exception.has_error_code = true;
  269. vcpu->arch.exception.nr = nr;
  270. vcpu->arch.exception.error_code = error_code;
  271. }
  272. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  273. /*
  274. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  275. * a #GP and return false.
  276. */
  277. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  278. {
  279. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  280. return true;
  281. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  282. return false;
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  285. /*
  286. * Load the pae pdptrs. Return true is they are all valid.
  287. */
  288. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  289. {
  290. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  291. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  292. int i;
  293. int ret;
  294. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  295. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  296. offset * sizeof(u64), sizeof(pdpte));
  297. if (ret < 0) {
  298. ret = 0;
  299. goto out;
  300. }
  301. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  302. if (is_present_gpte(pdpte[i]) &&
  303. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  304. ret = 0;
  305. goto out;
  306. }
  307. }
  308. ret = 1;
  309. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  310. __set_bit(VCPU_EXREG_PDPTR,
  311. (unsigned long *)&vcpu->arch.regs_avail);
  312. __set_bit(VCPU_EXREG_PDPTR,
  313. (unsigned long *)&vcpu->arch.regs_dirty);
  314. out:
  315. return ret;
  316. }
  317. EXPORT_SYMBOL_GPL(load_pdptrs);
  318. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  319. {
  320. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  321. bool changed = true;
  322. int r;
  323. if (is_long_mode(vcpu) || !is_pae(vcpu))
  324. return false;
  325. if (!test_bit(VCPU_EXREG_PDPTR,
  326. (unsigned long *)&vcpu->arch.regs_avail))
  327. return true;
  328. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  329. if (r < 0)
  330. goto out;
  331. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  332. out:
  333. return changed;
  334. }
  335. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  336. {
  337. if (cr0 & CR0_RESERVED_BITS) {
  338. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  339. cr0, vcpu->arch.cr0);
  340. kvm_inject_gp(vcpu, 0);
  341. return;
  342. }
  343. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  344. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  345. kvm_inject_gp(vcpu, 0);
  346. return;
  347. }
  348. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  349. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  350. "and a clear PE flag\n");
  351. kvm_inject_gp(vcpu, 0);
  352. return;
  353. }
  354. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  355. #ifdef CONFIG_X86_64
  356. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  357. int cs_db, cs_l;
  358. if (!is_pae(vcpu)) {
  359. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  360. "in long mode while PAE is disabled\n");
  361. kvm_inject_gp(vcpu, 0);
  362. return;
  363. }
  364. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  365. if (cs_l) {
  366. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  367. "in long mode while CS.L == 1\n");
  368. kvm_inject_gp(vcpu, 0);
  369. return;
  370. }
  371. } else
  372. #endif
  373. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  374. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  375. "reserved bits\n");
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. }
  380. kvm_x86_ops->set_cr0(vcpu, cr0);
  381. vcpu->arch.cr0 = cr0;
  382. kvm_mmu_reset_context(vcpu);
  383. return;
  384. }
  385. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  386. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  387. {
  388. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  389. }
  390. EXPORT_SYMBOL_GPL(kvm_lmsw);
  391. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  392. {
  393. unsigned long old_cr4 = vcpu->arch.cr4;
  394. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  395. if (cr4 & CR4_RESERVED_BITS) {
  396. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. if (is_long_mode(vcpu)) {
  401. if (!(cr4 & X86_CR4_PAE)) {
  402. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  403. "in long mode\n");
  404. kvm_inject_gp(vcpu, 0);
  405. return;
  406. }
  407. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  408. && ((cr4 ^ old_cr4) & pdptr_bits)
  409. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  410. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  411. kvm_inject_gp(vcpu, 0);
  412. return;
  413. }
  414. if (cr4 & X86_CR4_VMXE) {
  415. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  416. kvm_inject_gp(vcpu, 0);
  417. return;
  418. }
  419. kvm_x86_ops->set_cr4(vcpu, cr4);
  420. vcpu->arch.cr4 = cr4;
  421. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  422. kvm_mmu_reset_context(vcpu);
  423. }
  424. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  425. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  426. {
  427. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  428. kvm_mmu_sync_roots(vcpu);
  429. kvm_mmu_flush_tlb(vcpu);
  430. return;
  431. }
  432. if (is_long_mode(vcpu)) {
  433. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  434. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  435. kvm_inject_gp(vcpu, 0);
  436. return;
  437. }
  438. } else {
  439. if (is_pae(vcpu)) {
  440. if (cr3 & CR3_PAE_RESERVED_BITS) {
  441. printk(KERN_DEBUG
  442. "set_cr3: #GP, reserved bits\n");
  443. kvm_inject_gp(vcpu, 0);
  444. return;
  445. }
  446. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  447. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  448. "reserved bits\n");
  449. kvm_inject_gp(vcpu, 0);
  450. return;
  451. }
  452. }
  453. /*
  454. * We don't check reserved bits in nonpae mode, because
  455. * this isn't enforced, and VMware depends on this.
  456. */
  457. }
  458. /*
  459. * Does the new cr3 value map to physical memory? (Note, we
  460. * catch an invalid cr3 even in real-mode, because it would
  461. * cause trouble later on when we turn on paging anyway.)
  462. *
  463. * A real CPU would silently accept an invalid cr3 and would
  464. * attempt to use it - with largely undefined (and often hard
  465. * to debug) behavior on the guest side.
  466. */
  467. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  468. kvm_inject_gp(vcpu, 0);
  469. else {
  470. vcpu->arch.cr3 = cr3;
  471. vcpu->arch.mmu.new_cr3(vcpu);
  472. }
  473. }
  474. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  475. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  476. {
  477. if (cr8 & CR8_RESERVED_BITS) {
  478. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  479. kvm_inject_gp(vcpu, 0);
  480. return;
  481. }
  482. if (irqchip_in_kernel(vcpu->kvm))
  483. kvm_lapic_set_tpr(vcpu, cr8);
  484. else
  485. vcpu->arch.cr8 = cr8;
  486. }
  487. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  488. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  489. {
  490. if (irqchip_in_kernel(vcpu->kvm))
  491. return kvm_lapic_get_cr8(vcpu);
  492. else
  493. return vcpu->arch.cr8;
  494. }
  495. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  496. static inline u32 bit(int bitno)
  497. {
  498. return 1 << (bitno & 31);
  499. }
  500. /*
  501. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  502. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  503. *
  504. * This list is modified at module load time to reflect the
  505. * capabilities of the host cpu. This capabilities test skips MSRs that are
  506. * kvm-specific. Those are put in the beginning of the list.
  507. */
  508. #define KVM_SAVE_MSRS_BEGIN 2
  509. static u32 msrs_to_save[] = {
  510. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  511. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  512. MSR_K6_STAR,
  513. #ifdef CONFIG_X86_64
  514. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  515. #endif
  516. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  517. };
  518. static unsigned num_msrs_to_save;
  519. static u32 emulated_msrs[] = {
  520. MSR_IA32_MISC_ENABLE,
  521. };
  522. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  523. {
  524. if (efer & efer_reserved_bits) {
  525. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  526. efer);
  527. kvm_inject_gp(vcpu, 0);
  528. return;
  529. }
  530. if (is_paging(vcpu)
  531. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  532. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  533. kvm_inject_gp(vcpu, 0);
  534. return;
  535. }
  536. if (efer & EFER_FFXSR) {
  537. struct kvm_cpuid_entry2 *feat;
  538. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  539. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  540. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  541. kvm_inject_gp(vcpu, 0);
  542. return;
  543. }
  544. }
  545. if (efer & EFER_SVME) {
  546. struct kvm_cpuid_entry2 *feat;
  547. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  548. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  549. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  550. kvm_inject_gp(vcpu, 0);
  551. return;
  552. }
  553. }
  554. kvm_x86_ops->set_efer(vcpu, efer);
  555. efer &= ~EFER_LMA;
  556. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  557. vcpu->arch.shadow_efer = efer;
  558. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  559. kvm_mmu_reset_context(vcpu);
  560. }
  561. void kvm_enable_efer_bits(u64 mask)
  562. {
  563. efer_reserved_bits &= ~mask;
  564. }
  565. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  566. /*
  567. * Writes msr value into into the appropriate "register".
  568. * Returns 0 on success, non-0 otherwise.
  569. * Assumes vcpu_load() was already called.
  570. */
  571. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  572. {
  573. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  574. }
  575. /*
  576. * Adapt set_msr() to msr_io()'s calling convention
  577. */
  578. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  579. {
  580. return kvm_set_msr(vcpu, index, *data);
  581. }
  582. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  583. {
  584. static int version;
  585. struct pvclock_wall_clock wc;
  586. struct timespec now, sys, boot;
  587. if (!wall_clock)
  588. return;
  589. version++;
  590. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  591. /*
  592. * The guest calculates current wall clock time by adding
  593. * system time (updated by kvm_write_guest_time below) to the
  594. * wall clock specified here. guest system time equals host
  595. * system time for us, thus we must fill in host boot time here.
  596. */
  597. now = current_kernel_time();
  598. ktime_get_ts(&sys);
  599. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  600. wc.sec = boot.tv_sec;
  601. wc.nsec = boot.tv_nsec;
  602. wc.version = version;
  603. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  604. version++;
  605. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  606. }
  607. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  608. {
  609. uint32_t quotient, remainder;
  610. /* Don't try to replace with do_div(), this one calculates
  611. * "(dividend << 32) / divisor" */
  612. __asm__ ( "divl %4"
  613. : "=a" (quotient), "=d" (remainder)
  614. : "0" (0), "1" (dividend), "r" (divisor) );
  615. return quotient;
  616. }
  617. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  618. {
  619. uint64_t nsecs = 1000000000LL;
  620. int32_t shift = 0;
  621. uint64_t tps64;
  622. uint32_t tps32;
  623. tps64 = tsc_khz * 1000LL;
  624. while (tps64 > nsecs*2) {
  625. tps64 >>= 1;
  626. shift--;
  627. }
  628. tps32 = (uint32_t)tps64;
  629. while (tps32 <= (uint32_t)nsecs) {
  630. tps32 <<= 1;
  631. shift++;
  632. }
  633. hv_clock->tsc_shift = shift;
  634. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  635. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  636. __func__, tsc_khz, hv_clock->tsc_shift,
  637. hv_clock->tsc_to_system_mul);
  638. }
  639. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  640. static void kvm_write_guest_time(struct kvm_vcpu *v)
  641. {
  642. struct timespec ts;
  643. unsigned long flags;
  644. struct kvm_vcpu_arch *vcpu = &v->arch;
  645. void *shared_kaddr;
  646. unsigned long this_tsc_khz;
  647. if ((!vcpu->time_page))
  648. return;
  649. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  650. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  651. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  652. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  653. }
  654. put_cpu_var(cpu_tsc_khz);
  655. /* Keep irq disabled to prevent changes to the clock */
  656. local_irq_save(flags);
  657. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  658. ktime_get_ts(&ts);
  659. local_irq_restore(flags);
  660. /* With all the info we got, fill in the values */
  661. vcpu->hv_clock.system_time = ts.tv_nsec +
  662. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  663. /*
  664. * The interface expects us to write an even number signaling that the
  665. * update is finished. Since the guest won't see the intermediate
  666. * state, we just increase by 2 at the end.
  667. */
  668. vcpu->hv_clock.version += 2;
  669. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  670. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  671. sizeof(vcpu->hv_clock));
  672. kunmap_atomic(shared_kaddr, KM_USER0);
  673. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  674. }
  675. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  676. {
  677. struct kvm_vcpu_arch *vcpu = &v->arch;
  678. if (!vcpu->time_page)
  679. return 0;
  680. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  681. return 1;
  682. }
  683. static bool msr_mtrr_valid(unsigned msr)
  684. {
  685. switch (msr) {
  686. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  687. case MSR_MTRRfix64K_00000:
  688. case MSR_MTRRfix16K_80000:
  689. case MSR_MTRRfix16K_A0000:
  690. case MSR_MTRRfix4K_C0000:
  691. case MSR_MTRRfix4K_C8000:
  692. case MSR_MTRRfix4K_D0000:
  693. case MSR_MTRRfix4K_D8000:
  694. case MSR_MTRRfix4K_E0000:
  695. case MSR_MTRRfix4K_E8000:
  696. case MSR_MTRRfix4K_F0000:
  697. case MSR_MTRRfix4K_F8000:
  698. case MSR_MTRRdefType:
  699. case MSR_IA32_CR_PAT:
  700. return true;
  701. case 0x2f8:
  702. return true;
  703. }
  704. return false;
  705. }
  706. static bool valid_pat_type(unsigned t)
  707. {
  708. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  709. }
  710. static bool valid_mtrr_type(unsigned t)
  711. {
  712. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  713. }
  714. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  715. {
  716. int i;
  717. if (!msr_mtrr_valid(msr))
  718. return false;
  719. if (msr == MSR_IA32_CR_PAT) {
  720. for (i = 0; i < 8; i++)
  721. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  722. return false;
  723. return true;
  724. } else if (msr == MSR_MTRRdefType) {
  725. if (data & ~0xcff)
  726. return false;
  727. return valid_mtrr_type(data & 0xff);
  728. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  729. for (i = 0; i < 8 ; i++)
  730. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  731. return false;
  732. return true;
  733. }
  734. /* variable MTRRs */
  735. return valid_mtrr_type(data & 0xff);
  736. }
  737. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  738. {
  739. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  740. if (!mtrr_valid(vcpu, msr, data))
  741. return 1;
  742. if (msr == MSR_MTRRdefType) {
  743. vcpu->arch.mtrr_state.def_type = data;
  744. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  745. } else if (msr == MSR_MTRRfix64K_00000)
  746. p[0] = data;
  747. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  748. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  749. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  750. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  751. else if (msr == MSR_IA32_CR_PAT)
  752. vcpu->arch.pat = data;
  753. else { /* Variable MTRRs */
  754. int idx, is_mtrr_mask;
  755. u64 *pt;
  756. idx = (msr - 0x200) / 2;
  757. is_mtrr_mask = msr - 0x200 - 2 * idx;
  758. if (!is_mtrr_mask)
  759. pt =
  760. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  761. else
  762. pt =
  763. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  764. *pt = data;
  765. }
  766. kvm_mmu_reset_context(vcpu);
  767. return 0;
  768. }
  769. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  770. {
  771. u64 mcg_cap = vcpu->arch.mcg_cap;
  772. unsigned bank_num = mcg_cap & 0xff;
  773. switch (msr) {
  774. case MSR_IA32_MCG_STATUS:
  775. vcpu->arch.mcg_status = data;
  776. break;
  777. case MSR_IA32_MCG_CTL:
  778. if (!(mcg_cap & MCG_CTL_P))
  779. return 1;
  780. if (data != 0 && data != ~(u64)0)
  781. return -1;
  782. vcpu->arch.mcg_ctl = data;
  783. break;
  784. default:
  785. if (msr >= MSR_IA32_MC0_CTL &&
  786. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  787. u32 offset = msr - MSR_IA32_MC0_CTL;
  788. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  789. if ((offset & 0x3) == 0 &&
  790. data != 0 && data != ~(u64)0)
  791. return -1;
  792. vcpu->arch.mce_banks[offset] = data;
  793. break;
  794. }
  795. return 1;
  796. }
  797. return 0;
  798. }
  799. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  800. {
  801. struct kvm *kvm = vcpu->kvm;
  802. int lm = is_long_mode(vcpu);
  803. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  804. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  805. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  806. : kvm->arch.xen_hvm_config.blob_size_32;
  807. u32 page_num = data & ~PAGE_MASK;
  808. u64 page_addr = data & PAGE_MASK;
  809. u8 *page;
  810. int r;
  811. r = -E2BIG;
  812. if (page_num >= blob_size)
  813. goto out;
  814. r = -ENOMEM;
  815. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  816. if (!page)
  817. goto out;
  818. r = -EFAULT;
  819. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  820. goto out_free;
  821. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  822. goto out_free;
  823. r = 0;
  824. out_free:
  825. kfree(page);
  826. out:
  827. return r;
  828. }
  829. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  830. {
  831. switch (msr) {
  832. case MSR_EFER:
  833. set_efer(vcpu, data);
  834. break;
  835. case MSR_K7_HWCR:
  836. data &= ~(u64)0x40; /* ignore flush filter disable */
  837. if (data != 0) {
  838. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  839. data);
  840. return 1;
  841. }
  842. break;
  843. case MSR_FAM10H_MMIO_CONF_BASE:
  844. if (data != 0) {
  845. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  846. "0x%llx\n", data);
  847. return 1;
  848. }
  849. break;
  850. case MSR_AMD64_NB_CFG:
  851. break;
  852. case MSR_IA32_DEBUGCTLMSR:
  853. if (!data) {
  854. /* We support the non-activated case already */
  855. break;
  856. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  857. /* Values other than LBR and BTF are vendor-specific,
  858. thus reserved and should throw a #GP */
  859. return 1;
  860. }
  861. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  862. __func__, data);
  863. break;
  864. case MSR_IA32_UCODE_REV:
  865. case MSR_IA32_UCODE_WRITE:
  866. case MSR_VM_HSAVE_PA:
  867. case MSR_AMD64_PATCH_LOADER:
  868. break;
  869. case 0x200 ... 0x2ff:
  870. return set_msr_mtrr(vcpu, msr, data);
  871. case MSR_IA32_APICBASE:
  872. kvm_set_apic_base(vcpu, data);
  873. break;
  874. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  875. return kvm_x2apic_msr_write(vcpu, msr, data);
  876. case MSR_IA32_MISC_ENABLE:
  877. vcpu->arch.ia32_misc_enable_msr = data;
  878. break;
  879. case MSR_KVM_WALL_CLOCK:
  880. vcpu->kvm->arch.wall_clock = data;
  881. kvm_write_wall_clock(vcpu->kvm, data);
  882. break;
  883. case MSR_KVM_SYSTEM_TIME: {
  884. if (vcpu->arch.time_page) {
  885. kvm_release_page_dirty(vcpu->arch.time_page);
  886. vcpu->arch.time_page = NULL;
  887. }
  888. vcpu->arch.time = data;
  889. /* we verify if the enable bit is set... */
  890. if (!(data & 1))
  891. break;
  892. /* ...but clean it before doing the actual write */
  893. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  894. vcpu->arch.time_page =
  895. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  896. if (is_error_page(vcpu->arch.time_page)) {
  897. kvm_release_page_clean(vcpu->arch.time_page);
  898. vcpu->arch.time_page = NULL;
  899. }
  900. kvm_request_guest_time_update(vcpu);
  901. break;
  902. }
  903. case MSR_IA32_MCG_CTL:
  904. case MSR_IA32_MCG_STATUS:
  905. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  906. return set_msr_mce(vcpu, msr, data);
  907. /* Performance counters are not protected by a CPUID bit,
  908. * so we should check all of them in the generic path for the sake of
  909. * cross vendor migration.
  910. * Writing a zero into the event select MSRs disables them,
  911. * which we perfectly emulate ;-). Any other value should be at least
  912. * reported, some guests depend on them.
  913. */
  914. case MSR_P6_EVNTSEL0:
  915. case MSR_P6_EVNTSEL1:
  916. case MSR_K7_EVNTSEL0:
  917. case MSR_K7_EVNTSEL1:
  918. case MSR_K7_EVNTSEL2:
  919. case MSR_K7_EVNTSEL3:
  920. if (data != 0)
  921. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  922. "0x%x data 0x%llx\n", msr, data);
  923. break;
  924. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  925. * so we ignore writes to make it happy.
  926. */
  927. case MSR_P6_PERFCTR0:
  928. case MSR_P6_PERFCTR1:
  929. case MSR_K7_PERFCTR0:
  930. case MSR_K7_PERFCTR1:
  931. case MSR_K7_PERFCTR2:
  932. case MSR_K7_PERFCTR3:
  933. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  934. "0x%x data 0x%llx\n", msr, data);
  935. break;
  936. default:
  937. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  938. return xen_hvm_config(vcpu, data);
  939. if (!ignore_msrs) {
  940. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  941. msr, data);
  942. return 1;
  943. } else {
  944. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  945. msr, data);
  946. break;
  947. }
  948. }
  949. return 0;
  950. }
  951. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  952. /*
  953. * Reads an msr value (of 'msr_index') into 'pdata'.
  954. * Returns 0 on success, non-0 otherwise.
  955. * Assumes vcpu_load() was already called.
  956. */
  957. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  958. {
  959. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  960. }
  961. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  962. {
  963. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  964. if (!msr_mtrr_valid(msr))
  965. return 1;
  966. if (msr == MSR_MTRRdefType)
  967. *pdata = vcpu->arch.mtrr_state.def_type +
  968. (vcpu->arch.mtrr_state.enabled << 10);
  969. else if (msr == MSR_MTRRfix64K_00000)
  970. *pdata = p[0];
  971. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  972. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  973. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  974. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  975. else if (msr == MSR_IA32_CR_PAT)
  976. *pdata = vcpu->arch.pat;
  977. else { /* Variable MTRRs */
  978. int idx, is_mtrr_mask;
  979. u64 *pt;
  980. idx = (msr - 0x200) / 2;
  981. is_mtrr_mask = msr - 0x200 - 2 * idx;
  982. if (!is_mtrr_mask)
  983. pt =
  984. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  985. else
  986. pt =
  987. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  988. *pdata = *pt;
  989. }
  990. return 0;
  991. }
  992. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  993. {
  994. u64 data;
  995. u64 mcg_cap = vcpu->arch.mcg_cap;
  996. unsigned bank_num = mcg_cap & 0xff;
  997. switch (msr) {
  998. case MSR_IA32_P5_MC_ADDR:
  999. case MSR_IA32_P5_MC_TYPE:
  1000. data = 0;
  1001. break;
  1002. case MSR_IA32_MCG_CAP:
  1003. data = vcpu->arch.mcg_cap;
  1004. break;
  1005. case MSR_IA32_MCG_CTL:
  1006. if (!(mcg_cap & MCG_CTL_P))
  1007. return 1;
  1008. data = vcpu->arch.mcg_ctl;
  1009. break;
  1010. case MSR_IA32_MCG_STATUS:
  1011. data = vcpu->arch.mcg_status;
  1012. break;
  1013. default:
  1014. if (msr >= MSR_IA32_MC0_CTL &&
  1015. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1016. u32 offset = msr - MSR_IA32_MC0_CTL;
  1017. data = vcpu->arch.mce_banks[offset];
  1018. break;
  1019. }
  1020. return 1;
  1021. }
  1022. *pdata = data;
  1023. return 0;
  1024. }
  1025. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1026. {
  1027. u64 data;
  1028. switch (msr) {
  1029. case MSR_IA32_PLATFORM_ID:
  1030. case MSR_IA32_UCODE_REV:
  1031. case MSR_IA32_EBL_CR_POWERON:
  1032. case MSR_IA32_DEBUGCTLMSR:
  1033. case MSR_IA32_LASTBRANCHFROMIP:
  1034. case MSR_IA32_LASTBRANCHTOIP:
  1035. case MSR_IA32_LASTINTFROMIP:
  1036. case MSR_IA32_LASTINTTOIP:
  1037. case MSR_K8_SYSCFG:
  1038. case MSR_K7_HWCR:
  1039. case MSR_VM_HSAVE_PA:
  1040. case MSR_P6_PERFCTR0:
  1041. case MSR_P6_PERFCTR1:
  1042. case MSR_P6_EVNTSEL0:
  1043. case MSR_P6_EVNTSEL1:
  1044. case MSR_K7_EVNTSEL0:
  1045. case MSR_K7_PERFCTR0:
  1046. case MSR_K8_INT_PENDING_MSG:
  1047. case MSR_AMD64_NB_CFG:
  1048. case MSR_FAM10H_MMIO_CONF_BASE:
  1049. data = 0;
  1050. break;
  1051. case MSR_MTRRcap:
  1052. data = 0x500 | KVM_NR_VAR_MTRR;
  1053. break;
  1054. case 0x200 ... 0x2ff:
  1055. return get_msr_mtrr(vcpu, msr, pdata);
  1056. case 0xcd: /* fsb frequency */
  1057. data = 3;
  1058. break;
  1059. case MSR_IA32_APICBASE:
  1060. data = kvm_get_apic_base(vcpu);
  1061. break;
  1062. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1063. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1064. break;
  1065. case MSR_IA32_MISC_ENABLE:
  1066. data = vcpu->arch.ia32_misc_enable_msr;
  1067. break;
  1068. case MSR_IA32_PERF_STATUS:
  1069. /* TSC increment by tick */
  1070. data = 1000ULL;
  1071. /* CPU multiplier */
  1072. data |= (((uint64_t)4ULL) << 40);
  1073. break;
  1074. case MSR_EFER:
  1075. data = vcpu->arch.shadow_efer;
  1076. break;
  1077. case MSR_KVM_WALL_CLOCK:
  1078. data = vcpu->kvm->arch.wall_clock;
  1079. break;
  1080. case MSR_KVM_SYSTEM_TIME:
  1081. data = vcpu->arch.time;
  1082. break;
  1083. case MSR_IA32_P5_MC_ADDR:
  1084. case MSR_IA32_P5_MC_TYPE:
  1085. case MSR_IA32_MCG_CAP:
  1086. case MSR_IA32_MCG_CTL:
  1087. case MSR_IA32_MCG_STATUS:
  1088. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1089. return get_msr_mce(vcpu, msr, pdata);
  1090. default:
  1091. if (!ignore_msrs) {
  1092. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1093. return 1;
  1094. } else {
  1095. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1096. data = 0;
  1097. }
  1098. break;
  1099. }
  1100. *pdata = data;
  1101. return 0;
  1102. }
  1103. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1104. /*
  1105. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1106. *
  1107. * @return number of msrs set successfully.
  1108. */
  1109. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1110. struct kvm_msr_entry *entries,
  1111. int (*do_msr)(struct kvm_vcpu *vcpu,
  1112. unsigned index, u64 *data))
  1113. {
  1114. int i;
  1115. vcpu_load(vcpu);
  1116. down_read(&vcpu->kvm->slots_lock);
  1117. for (i = 0; i < msrs->nmsrs; ++i)
  1118. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1119. break;
  1120. up_read(&vcpu->kvm->slots_lock);
  1121. vcpu_put(vcpu);
  1122. return i;
  1123. }
  1124. /*
  1125. * Read or write a bunch of msrs. Parameters are user addresses.
  1126. *
  1127. * @return number of msrs set successfully.
  1128. */
  1129. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1130. int (*do_msr)(struct kvm_vcpu *vcpu,
  1131. unsigned index, u64 *data),
  1132. int writeback)
  1133. {
  1134. struct kvm_msrs msrs;
  1135. struct kvm_msr_entry *entries;
  1136. int r, n;
  1137. unsigned size;
  1138. r = -EFAULT;
  1139. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1140. goto out;
  1141. r = -E2BIG;
  1142. if (msrs.nmsrs >= MAX_IO_MSRS)
  1143. goto out;
  1144. r = -ENOMEM;
  1145. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1146. entries = vmalloc(size);
  1147. if (!entries)
  1148. goto out;
  1149. r = -EFAULT;
  1150. if (copy_from_user(entries, user_msrs->entries, size))
  1151. goto out_free;
  1152. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1153. if (r < 0)
  1154. goto out_free;
  1155. r = -EFAULT;
  1156. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1157. goto out_free;
  1158. r = n;
  1159. out_free:
  1160. vfree(entries);
  1161. out:
  1162. return r;
  1163. }
  1164. int kvm_dev_ioctl_check_extension(long ext)
  1165. {
  1166. int r;
  1167. switch (ext) {
  1168. case KVM_CAP_IRQCHIP:
  1169. case KVM_CAP_HLT:
  1170. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1171. case KVM_CAP_SET_TSS_ADDR:
  1172. case KVM_CAP_EXT_CPUID:
  1173. case KVM_CAP_CLOCKSOURCE:
  1174. case KVM_CAP_PIT:
  1175. case KVM_CAP_NOP_IO_DELAY:
  1176. case KVM_CAP_MP_STATE:
  1177. case KVM_CAP_SYNC_MMU:
  1178. case KVM_CAP_REINJECT_CONTROL:
  1179. case KVM_CAP_IRQ_INJECT_STATUS:
  1180. case KVM_CAP_ASSIGN_DEV_IRQ:
  1181. case KVM_CAP_IRQFD:
  1182. case KVM_CAP_IOEVENTFD:
  1183. case KVM_CAP_PIT2:
  1184. case KVM_CAP_PIT_STATE2:
  1185. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1186. case KVM_CAP_XEN_HVM:
  1187. case KVM_CAP_ADJUST_CLOCK:
  1188. case KVM_CAP_VCPU_EVENTS:
  1189. r = 1;
  1190. break;
  1191. case KVM_CAP_COALESCED_MMIO:
  1192. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1193. break;
  1194. case KVM_CAP_VAPIC:
  1195. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1196. break;
  1197. case KVM_CAP_NR_VCPUS:
  1198. r = KVM_MAX_VCPUS;
  1199. break;
  1200. case KVM_CAP_NR_MEMSLOTS:
  1201. r = KVM_MEMORY_SLOTS;
  1202. break;
  1203. case KVM_CAP_PV_MMU: /* obsolete */
  1204. r = 0;
  1205. break;
  1206. case KVM_CAP_IOMMU:
  1207. r = iommu_found();
  1208. break;
  1209. case KVM_CAP_MCE:
  1210. r = KVM_MAX_MCE_BANKS;
  1211. break;
  1212. default:
  1213. r = 0;
  1214. break;
  1215. }
  1216. return r;
  1217. }
  1218. long kvm_arch_dev_ioctl(struct file *filp,
  1219. unsigned int ioctl, unsigned long arg)
  1220. {
  1221. void __user *argp = (void __user *)arg;
  1222. long r;
  1223. switch (ioctl) {
  1224. case KVM_GET_MSR_INDEX_LIST: {
  1225. struct kvm_msr_list __user *user_msr_list = argp;
  1226. struct kvm_msr_list msr_list;
  1227. unsigned n;
  1228. r = -EFAULT;
  1229. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1230. goto out;
  1231. n = msr_list.nmsrs;
  1232. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1233. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1234. goto out;
  1235. r = -E2BIG;
  1236. if (n < msr_list.nmsrs)
  1237. goto out;
  1238. r = -EFAULT;
  1239. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1240. num_msrs_to_save * sizeof(u32)))
  1241. goto out;
  1242. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1243. &emulated_msrs,
  1244. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1245. goto out;
  1246. r = 0;
  1247. break;
  1248. }
  1249. case KVM_GET_SUPPORTED_CPUID: {
  1250. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1251. struct kvm_cpuid2 cpuid;
  1252. r = -EFAULT;
  1253. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1254. goto out;
  1255. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1256. cpuid_arg->entries);
  1257. if (r)
  1258. goto out;
  1259. r = -EFAULT;
  1260. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1261. goto out;
  1262. r = 0;
  1263. break;
  1264. }
  1265. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1266. u64 mce_cap;
  1267. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1268. r = -EFAULT;
  1269. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1270. goto out;
  1271. r = 0;
  1272. break;
  1273. }
  1274. default:
  1275. r = -EINVAL;
  1276. }
  1277. out:
  1278. return r;
  1279. }
  1280. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1281. {
  1282. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1283. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1284. unsigned long khz = cpufreq_quick_get(cpu);
  1285. if (!khz)
  1286. khz = tsc_khz;
  1287. per_cpu(cpu_tsc_khz, cpu) = khz;
  1288. }
  1289. kvm_request_guest_time_update(vcpu);
  1290. }
  1291. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1292. {
  1293. kvm_x86_ops->vcpu_put(vcpu);
  1294. kvm_put_guest_fpu(vcpu);
  1295. }
  1296. static int is_efer_nx(void)
  1297. {
  1298. unsigned long long efer = 0;
  1299. rdmsrl_safe(MSR_EFER, &efer);
  1300. return efer & EFER_NX;
  1301. }
  1302. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1303. {
  1304. int i;
  1305. struct kvm_cpuid_entry2 *e, *entry;
  1306. entry = NULL;
  1307. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1308. e = &vcpu->arch.cpuid_entries[i];
  1309. if (e->function == 0x80000001) {
  1310. entry = e;
  1311. break;
  1312. }
  1313. }
  1314. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1315. entry->edx &= ~(1 << 20);
  1316. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1317. }
  1318. }
  1319. /* when an old userspace process fills a new kernel module */
  1320. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1321. struct kvm_cpuid *cpuid,
  1322. struct kvm_cpuid_entry __user *entries)
  1323. {
  1324. int r, i;
  1325. struct kvm_cpuid_entry *cpuid_entries;
  1326. r = -E2BIG;
  1327. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1328. goto out;
  1329. r = -ENOMEM;
  1330. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1331. if (!cpuid_entries)
  1332. goto out;
  1333. r = -EFAULT;
  1334. if (copy_from_user(cpuid_entries, entries,
  1335. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1336. goto out_free;
  1337. for (i = 0; i < cpuid->nent; i++) {
  1338. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1339. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1340. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1341. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1342. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1343. vcpu->arch.cpuid_entries[i].index = 0;
  1344. vcpu->arch.cpuid_entries[i].flags = 0;
  1345. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1346. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1347. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1348. }
  1349. vcpu->arch.cpuid_nent = cpuid->nent;
  1350. cpuid_fix_nx_cap(vcpu);
  1351. r = 0;
  1352. kvm_apic_set_version(vcpu);
  1353. out_free:
  1354. vfree(cpuid_entries);
  1355. out:
  1356. return r;
  1357. }
  1358. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1359. struct kvm_cpuid2 *cpuid,
  1360. struct kvm_cpuid_entry2 __user *entries)
  1361. {
  1362. int r;
  1363. r = -E2BIG;
  1364. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1365. goto out;
  1366. r = -EFAULT;
  1367. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1368. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1369. goto out;
  1370. vcpu->arch.cpuid_nent = cpuid->nent;
  1371. kvm_apic_set_version(vcpu);
  1372. return 0;
  1373. out:
  1374. return r;
  1375. }
  1376. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1377. struct kvm_cpuid2 *cpuid,
  1378. struct kvm_cpuid_entry2 __user *entries)
  1379. {
  1380. int r;
  1381. r = -E2BIG;
  1382. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1383. goto out;
  1384. r = -EFAULT;
  1385. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1386. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1387. goto out;
  1388. return 0;
  1389. out:
  1390. cpuid->nent = vcpu->arch.cpuid_nent;
  1391. return r;
  1392. }
  1393. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1394. u32 index)
  1395. {
  1396. entry->function = function;
  1397. entry->index = index;
  1398. cpuid_count(entry->function, entry->index,
  1399. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1400. entry->flags = 0;
  1401. }
  1402. #define F(x) bit(X86_FEATURE_##x)
  1403. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1404. u32 index, int *nent, int maxnent)
  1405. {
  1406. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1407. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1408. #ifdef CONFIG_X86_64
  1409. unsigned f_lm = F(LM);
  1410. #else
  1411. unsigned f_lm = 0;
  1412. #endif
  1413. /* cpuid 1.edx */
  1414. const u32 kvm_supported_word0_x86_features =
  1415. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1416. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1417. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1418. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1419. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1420. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1421. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1422. 0 /* HTT, TM, Reserved, PBE */;
  1423. /* cpuid 0x80000001.edx */
  1424. const u32 kvm_supported_word1_x86_features =
  1425. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1426. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1427. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1428. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1429. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1430. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1431. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1432. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1433. /* cpuid 1.ecx */
  1434. const u32 kvm_supported_word4_x86_features =
  1435. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1436. 0 /* DS-CPL, VMX, SMX, EST */ |
  1437. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1438. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1439. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1440. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1441. 0 /* Reserved, XSAVE, OSXSAVE */;
  1442. /* cpuid 0x80000001.ecx */
  1443. const u32 kvm_supported_word6_x86_features =
  1444. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1445. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1446. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1447. 0 /* SKINIT */ | 0 /* WDT */;
  1448. /* all calls to cpuid_count() should be made on the same cpu */
  1449. get_cpu();
  1450. do_cpuid_1_ent(entry, function, index);
  1451. ++*nent;
  1452. switch (function) {
  1453. case 0:
  1454. entry->eax = min(entry->eax, (u32)0xb);
  1455. break;
  1456. case 1:
  1457. entry->edx &= kvm_supported_word0_x86_features;
  1458. entry->ecx &= kvm_supported_word4_x86_features;
  1459. /* we support x2apic emulation even if host does not support
  1460. * it since we emulate x2apic in software */
  1461. entry->ecx |= F(X2APIC);
  1462. break;
  1463. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1464. * may return different values. This forces us to get_cpu() before
  1465. * issuing the first command, and also to emulate this annoying behavior
  1466. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1467. case 2: {
  1468. int t, times = entry->eax & 0xff;
  1469. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1470. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1471. for (t = 1; t < times && *nent < maxnent; ++t) {
  1472. do_cpuid_1_ent(&entry[t], function, 0);
  1473. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1474. ++*nent;
  1475. }
  1476. break;
  1477. }
  1478. /* function 4 and 0xb have additional index. */
  1479. case 4: {
  1480. int i, cache_type;
  1481. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1482. /* read more entries until cache_type is zero */
  1483. for (i = 1; *nent < maxnent; ++i) {
  1484. cache_type = entry[i - 1].eax & 0x1f;
  1485. if (!cache_type)
  1486. break;
  1487. do_cpuid_1_ent(&entry[i], function, i);
  1488. entry[i].flags |=
  1489. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1490. ++*nent;
  1491. }
  1492. break;
  1493. }
  1494. case 0xb: {
  1495. int i, level_type;
  1496. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1497. /* read more entries until level_type is zero */
  1498. for (i = 1; *nent < maxnent; ++i) {
  1499. level_type = entry[i - 1].ecx & 0xff00;
  1500. if (!level_type)
  1501. break;
  1502. do_cpuid_1_ent(&entry[i], function, i);
  1503. entry[i].flags |=
  1504. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1505. ++*nent;
  1506. }
  1507. break;
  1508. }
  1509. case 0x80000000:
  1510. entry->eax = min(entry->eax, 0x8000001a);
  1511. break;
  1512. case 0x80000001:
  1513. entry->edx &= kvm_supported_word1_x86_features;
  1514. entry->ecx &= kvm_supported_word6_x86_features;
  1515. break;
  1516. }
  1517. put_cpu();
  1518. }
  1519. #undef F
  1520. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1521. struct kvm_cpuid_entry2 __user *entries)
  1522. {
  1523. struct kvm_cpuid_entry2 *cpuid_entries;
  1524. int limit, nent = 0, r = -E2BIG;
  1525. u32 func;
  1526. if (cpuid->nent < 1)
  1527. goto out;
  1528. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1529. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1530. r = -ENOMEM;
  1531. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1532. if (!cpuid_entries)
  1533. goto out;
  1534. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1535. limit = cpuid_entries[0].eax;
  1536. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1537. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1538. &nent, cpuid->nent);
  1539. r = -E2BIG;
  1540. if (nent >= cpuid->nent)
  1541. goto out_free;
  1542. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1543. limit = cpuid_entries[nent - 1].eax;
  1544. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1545. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1546. &nent, cpuid->nent);
  1547. r = -E2BIG;
  1548. if (nent >= cpuid->nent)
  1549. goto out_free;
  1550. r = -EFAULT;
  1551. if (copy_to_user(entries, cpuid_entries,
  1552. nent * sizeof(struct kvm_cpuid_entry2)))
  1553. goto out_free;
  1554. cpuid->nent = nent;
  1555. r = 0;
  1556. out_free:
  1557. vfree(cpuid_entries);
  1558. out:
  1559. return r;
  1560. }
  1561. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1562. struct kvm_lapic_state *s)
  1563. {
  1564. vcpu_load(vcpu);
  1565. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1566. vcpu_put(vcpu);
  1567. return 0;
  1568. }
  1569. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1570. struct kvm_lapic_state *s)
  1571. {
  1572. vcpu_load(vcpu);
  1573. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1574. kvm_apic_post_state_restore(vcpu);
  1575. update_cr8_intercept(vcpu);
  1576. vcpu_put(vcpu);
  1577. return 0;
  1578. }
  1579. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1580. struct kvm_interrupt *irq)
  1581. {
  1582. if (irq->irq < 0 || irq->irq >= 256)
  1583. return -EINVAL;
  1584. if (irqchip_in_kernel(vcpu->kvm))
  1585. return -ENXIO;
  1586. vcpu_load(vcpu);
  1587. kvm_queue_interrupt(vcpu, irq->irq, false);
  1588. vcpu_put(vcpu);
  1589. return 0;
  1590. }
  1591. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1592. {
  1593. vcpu_load(vcpu);
  1594. kvm_inject_nmi(vcpu);
  1595. vcpu_put(vcpu);
  1596. return 0;
  1597. }
  1598. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1599. struct kvm_tpr_access_ctl *tac)
  1600. {
  1601. if (tac->flags)
  1602. return -EINVAL;
  1603. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1604. return 0;
  1605. }
  1606. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1607. u64 mcg_cap)
  1608. {
  1609. int r;
  1610. unsigned bank_num = mcg_cap & 0xff, bank;
  1611. r = -EINVAL;
  1612. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1613. goto out;
  1614. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1615. goto out;
  1616. r = 0;
  1617. vcpu->arch.mcg_cap = mcg_cap;
  1618. /* Init IA32_MCG_CTL to all 1s */
  1619. if (mcg_cap & MCG_CTL_P)
  1620. vcpu->arch.mcg_ctl = ~(u64)0;
  1621. /* Init IA32_MCi_CTL to all 1s */
  1622. for (bank = 0; bank < bank_num; bank++)
  1623. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1624. out:
  1625. return r;
  1626. }
  1627. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1628. struct kvm_x86_mce *mce)
  1629. {
  1630. u64 mcg_cap = vcpu->arch.mcg_cap;
  1631. unsigned bank_num = mcg_cap & 0xff;
  1632. u64 *banks = vcpu->arch.mce_banks;
  1633. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1634. return -EINVAL;
  1635. /*
  1636. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1637. * reporting is disabled
  1638. */
  1639. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1640. vcpu->arch.mcg_ctl != ~(u64)0)
  1641. return 0;
  1642. banks += 4 * mce->bank;
  1643. /*
  1644. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1645. * reporting is disabled for the bank
  1646. */
  1647. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1648. return 0;
  1649. if (mce->status & MCI_STATUS_UC) {
  1650. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1651. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1652. printk(KERN_DEBUG "kvm: set_mce: "
  1653. "injects mce exception while "
  1654. "previous one is in progress!\n");
  1655. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1656. return 0;
  1657. }
  1658. if (banks[1] & MCI_STATUS_VAL)
  1659. mce->status |= MCI_STATUS_OVER;
  1660. banks[2] = mce->addr;
  1661. banks[3] = mce->misc;
  1662. vcpu->arch.mcg_status = mce->mcg_status;
  1663. banks[1] = mce->status;
  1664. kvm_queue_exception(vcpu, MC_VECTOR);
  1665. } else if (!(banks[1] & MCI_STATUS_VAL)
  1666. || !(banks[1] & MCI_STATUS_UC)) {
  1667. if (banks[1] & MCI_STATUS_VAL)
  1668. mce->status |= MCI_STATUS_OVER;
  1669. banks[2] = mce->addr;
  1670. banks[3] = mce->misc;
  1671. banks[1] = mce->status;
  1672. } else
  1673. banks[1] |= MCI_STATUS_OVER;
  1674. return 0;
  1675. }
  1676. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1677. struct kvm_vcpu_events *events)
  1678. {
  1679. vcpu_load(vcpu);
  1680. events->exception.injected = vcpu->arch.exception.pending;
  1681. events->exception.nr = vcpu->arch.exception.nr;
  1682. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1683. events->exception.error_code = vcpu->arch.exception.error_code;
  1684. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1685. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1686. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1687. events->nmi.injected = vcpu->arch.nmi_injected;
  1688. events->nmi.pending = vcpu->arch.nmi_pending;
  1689. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1690. events->sipi_vector = vcpu->arch.sipi_vector;
  1691. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1692. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1693. vcpu_put(vcpu);
  1694. }
  1695. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1696. struct kvm_vcpu_events *events)
  1697. {
  1698. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1699. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1700. return -EINVAL;
  1701. vcpu_load(vcpu);
  1702. vcpu->arch.exception.pending = events->exception.injected;
  1703. vcpu->arch.exception.nr = events->exception.nr;
  1704. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1705. vcpu->arch.exception.error_code = events->exception.error_code;
  1706. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1707. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1708. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1709. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1710. kvm_pic_clear_isr_ack(vcpu->kvm);
  1711. vcpu->arch.nmi_injected = events->nmi.injected;
  1712. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1713. vcpu->arch.nmi_pending = events->nmi.pending;
  1714. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1715. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1716. vcpu->arch.sipi_vector = events->sipi_vector;
  1717. vcpu_put(vcpu);
  1718. return 0;
  1719. }
  1720. long kvm_arch_vcpu_ioctl(struct file *filp,
  1721. unsigned int ioctl, unsigned long arg)
  1722. {
  1723. struct kvm_vcpu *vcpu = filp->private_data;
  1724. void __user *argp = (void __user *)arg;
  1725. int r;
  1726. struct kvm_lapic_state *lapic = NULL;
  1727. switch (ioctl) {
  1728. case KVM_GET_LAPIC: {
  1729. r = -EINVAL;
  1730. if (!vcpu->arch.apic)
  1731. goto out;
  1732. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1733. r = -ENOMEM;
  1734. if (!lapic)
  1735. goto out;
  1736. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1737. if (r)
  1738. goto out;
  1739. r = -EFAULT;
  1740. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1741. goto out;
  1742. r = 0;
  1743. break;
  1744. }
  1745. case KVM_SET_LAPIC: {
  1746. r = -EINVAL;
  1747. if (!vcpu->arch.apic)
  1748. goto out;
  1749. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1750. r = -ENOMEM;
  1751. if (!lapic)
  1752. goto out;
  1753. r = -EFAULT;
  1754. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1755. goto out;
  1756. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1757. if (r)
  1758. goto out;
  1759. r = 0;
  1760. break;
  1761. }
  1762. case KVM_INTERRUPT: {
  1763. struct kvm_interrupt irq;
  1764. r = -EFAULT;
  1765. if (copy_from_user(&irq, argp, sizeof irq))
  1766. goto out;
  1767. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1768. if (r)
  1769. goto out;
  1770. r = 0;
  1771. break;
  1772. }
  1773. case KVM_NMI: {
  1774. r = kvm_vcpu_ioctl_nmi(vcpu);
  1775. if (r)
  1776. goto out;
  1777. r = 0;
  1778. break;
  1779. }
  1780. case KVM_SET_CPUID: {
  1781. struct kvm_cpuid __user *cpuid_arg = argp;
  1782. struct kvm_cpuid cpuid;
  1783. r = -EFAULT;
  1784. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1785. goto out;
  1786. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1787. if (r)
  1788. goto out;
  1789. break;
  1790. }
  1791. case KVM_SET_CPUID2: {
  1792. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1793. struct kvm_cpuid2 cpuid;
  1794. r = -EFAULT;
  1795. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1796. goto out;
  1797. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1798. cpuid_arg->entries);
  1799. if (r)
  1800. goto out;
  1801. break;
  1802. }
  1803. case KVM_GET_CPUID2: {
  1804. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1805. struct kvm_cpuid2 cpuid;
  1806. r = -EFAULT;
  1807. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1808. goto out;
  1809. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1810. cpuid_arg->entries);
  1811. if (r)
  1812. goto out;
  1813. r = -EFAULT;
  1814. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1815. goto out;
  1816. r = 0;
  1817. break;
  1818. }
  1819. case KVM_GET_MSRS:
  1820. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1821. break;
  1822. case KVM_SET_MSRS:
  1823. r = msr_io(vcpu, argp, do_set_msr, 0);
  1824. break;
  1825. case KVM_TPR_ACCESS_REPORTING: {
  1826. struct kvm_tpr_access_ctl tac;
  1827. r = -EFAULT;
  1828. if (copy_from_user(&tac, argp, sizeof tac))
  1829. goto out;
  1830. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1831. if (r)
  1832. goto out;
  1833. r = -EFAULT;
  1834. if (copy_to_user(argp, &tac, sizeof tac))
  1835. goto out;
  1836. r = 0;
  1837. break;
  1838. };
  1839. case KVM_SET_VAPIC_ADDR: {
  1840. struct kvm_vapic_addr va;
  1841. r = -EINVAL;
  1842. if (!irqchip_in_kernel(vcpu->kvm))
  1843. goto out;
  1844. r = -EFAULT;
  1845. if (copy_from_user(&va, argp, sizeof va))
  1846. goto out;
  1847. r = 0;
  1848. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1849. break;
  1850. }
  1851. case KVM_X86_SETUP_MCE: {
  1852. u64 mcg_cap;
  1853. r = -EFAULT;
  1854. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1855. goto out;
  1856. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1857. break;
  1858. }
  1859. case KVM_X86_SET_MCE: {
  1860. struct kvm_x86_mce mce;
  1861. r = -EFAULT;
  1862. if (copy_from_user(&mce, argp, sizeof mce))
  1863. goto out;
  1864. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1865. break;
  1866. }
  1867. case KVM_GET_VCPU_EVENTS: {
  1868. struct kvm_vcpu_events events;
  1869. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  1870. r = -EFAULT;
  1871. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  1872. break;
  1873. r = 0;
  1874. break;
  1875. }
  1876. case KVM_SET_VCPU_EVENTS: {
  1877. struct kvm_vcpu_events events;
  1878. r = -EFAULT;
  1879. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  1880. break;
  1881. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  1882. break;
  1883. }
  1884. default:
  1885. r = -EINVAL;
  1886. }
  1887. out:
  1888. kfree(lapic);
  1889. return r;
  1890. }
  1891. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1892. {
  1893. int ret;
  1894. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1895. return -1;
  1896. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1897. return ret;
  1898. }
  1899. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1900. u64 ident_addr)
  1901. {
  1902. kvm->arch.ept_identity_map_addr = ident_addr;
  1903. return 0;
  1904. }
  1905. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1906. u32 kvm_nr_mmu_pages)
  1907. {
  1908. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1909. return -EINVAL;
  1910. down_write(&kvm->slots_lock);
  1911. spin_lock(&kvm->mmu_lock);
  1912. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1913. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1914. spin_unlock(&kvm->mmu_lock);
  1915. up_write(&kvm->slots_lock);
  1916. return 0;
  1917. }
  1918. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1919. {
  1920. return kvm->arch.n_alloc_mmu_pages;
  1921. }
  1922. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1923. {
  1924. int i;
  1925. struct kvm_mem_alias *alias;
  1926. for (i = 0; i < kvm->arch.naliases; ++i) {
  1927. alias = &kvm->arch.aliases[i];
  1928. if (gfn >= alias->base_gfn
  1929. && gfn < alias->base_gfn + alias->npages)
  1930. return alias->target_gfn + gfn - alias->base_gfn;
  1931. }
  1932. return gfn;
  1933. }
  1934. /*
  1935. * Set a new alias region. Aliases map a portion of physical memory into
  1936. * another portion. This is useful for memory windows, for example the PC
  1937. * VGA region.
  1938. */
  1939. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1940. struct kvm_memory_alias *alias)
  1941. {
  1942. int r, n;
  1943. struct kvm_mem_alias *p;
  1944. r = -EINVAL;
  1945. /* General sanity checks */
  1946. if (alias->memory_size & (PAGE_SIZE - 1))
  1947. goto out;
  1948. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1949. goto out;
  1950. if (alias->slot >= KVM_ALIAS_SLOTS)
  1951. goto out;
  1952. if (alias->guest_phys_addr + alias->memory_size
  1953. < alias->guest_phys_addr)
  1954. goto out;
  1955. if (alias->target_phys_addr + alias->memory_size
  1956. < alias->target_phys_addr)
  1957. goto out;
  1958. down_write(&kvm->slots_lock);
  1959. spin_lock(&kvm->mmu_lock);
  1960. p = &kvm->arch.aliases[alias->slot];
  1961. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1962. p->npages = alias->memory_size >> PAGE_SHIFT;
  1963. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1964. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1965. if (kvm->arch.aliases[n - 1].npages)
  1966. break;
  1967. kvm->arch.naliases = n;
  1968. spin_unlock(&kvm->mmu_lock);
  1969. kvm_mmu_zap_all(kvm);
  1970. up_write(&kvm->slots_lock);
  1971. return 0;
  1972. out:
  1973. return r;
  1974. }
  1975. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1976. {
  1977. int r;
  1978. r = 0;
  1979. switch (chip->chip_id) {
  1980. case KVM_IRQCHIP_PIC_MASTER:
  1981. memcpy(&chip->chip.pic,
  1982. &pic_irqchip(kvm)->pics[0],
  1983. sizeof(struct kvm_pic_state));
  1984. break;
  1985. case KVM_IRQCHIP_PIC_SLAVE:
  1986. memcpy(&chip->chip.pic,
  1987. &pic_irqchip(kvm)->pics[1],
  1988. sizeof(struct kvm_pic_state));
  1989. break;
  1990. case KVM_IRQCHIP_IOAPIC:
  1991. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1992. break;
  1993. default:
  1994. r = -EINVAL;
  1995. break;
  1996. }
  1997. return r;
  1998. }
  1999. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2000. {
  2001. int r;
  2002. r = 0;
  2003. switch (chip->chip_id) {
  2004. case KVM_IRQCHIP_PIC_MASTER:
  2005. spin_lock(&pic_irqchip(kvm)->lock);
  2006. memcpy(&pic_irqchip(kvm)->pics[0],
  2007. &chip->chip.pic,
  2008. sizeof(struct kvm_pic_state));
  2009. spin_unlock(&pic_irqchip(kvm)->lock);
  2010. break;
  2011. case KVM_IRQCHIP_PIC_SLAVE:
  2012. spin_lock(&pic_irqchip(kvm)->lock);
  2013. memcpy(&pic_irqchip(kvm)->pics[1],
  2014. &chip->chip.pic,
  2015. sizeof(struct kvm_pic_state));
  2016. spin_unlock(&pic_irqchip(kvm)->lock);
  2017. break;
  2018. case KVM_IRQCHIP_IOAPIC:
  2019. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2020. break;
  2021. default:
  2022. r = -EINVAL;
  2023. break;
  2024. }
  2025. kvm_pic_update_irq(pic_irqchip(kvm));
  2026. return r;
  2027. }
  2028. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2029. {
  2030. int r = 0;
  2031. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2032. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2033. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2034. return r;
  2035. }
  2036. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2037. {
  2038. int r = 0;
  2039. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2040. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2041. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2042. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2043. return r;
  2044. }
  2045. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2046. {
  2047. int r = 0;
  2048. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2049. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2050. sizeof(ps->channels));
  2051. ps->flags = kvm->arch.vpit->pit_state.flags;
  2052. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2053. return r;
  2054. }
  2055. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2056. {
  2057. int r = 0, start = 0;
  2058. u32 prev_legacy, cur_legacy;
  2059. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2060. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2061. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2062. if (!prev_legacy && cur_legacy)
  2063. start = 1;
  2064. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2065. sizeof(kvm->arch.vpit->pit_state.channels));
  2066. kvm->arch.vpit->pit_state.flags = ps->flags;
  2067. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2068. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2069. return r;
  2070. }
  2071. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2072. struct kvm_reinject_control *control)
  2073. {
  2074. if (!kvm->arch.vpit)
  2075. return -ENXIO;
  2076. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2077. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2078. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2079. return 0;
  2080. }
  2081. /*
  2082. * Get (and clear) the dirty memory log for a memory slot.
  2083. */
  2084. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2085. struct kvm_dirty_log *log)
  2086. {
  2087. int r;
  2088. int n;
  2089. struct kvm_memory_slot *memslot;
  2090. int is_dirty = 0;
  2091. down_write(&kvm->slots_lock);
  2092. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2093. if (r)
  2094. goto out;
  2095. /* If nothing is dirty, don't bother messing with page tables. */
  2096. if (is_dirty) {
  2097. spin_lock(&kvm->mmu_lock);
  2098. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2099. spin_unlock(&kvm->mmu_lock);
  2100. memslot = &kvm->memslots[log->slot];
  2101. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2102. memset(memslot->dirty_bitmap, 0, n);
  2103. }
  2104. r = 0;
  2105. out:
  2106. up_write(&kvm->slots_lock);
  2107. return r;
  2108. }
  2109. long kvm_arch_vm_ioctl(struct file *filp,
  2110. unsigned int ioctl, unsigned long arg)
  2111. {
  2112. struct kvm *kvm = filp->private_data;
  2113. void __user *argp = (void __user *)arg;
  2114. int r = -ENOTTY;
  2115. /*
  2116. * This union makes it completely explicit to gcc-3.x
  2117. * that these two variables' stack usage should be
  2118. * combined, not added together.
  2119. */
  2120. union {
  2121. struct kvm_pit_state ps;
  2122. struct kvm_pit_state2 ps2;
  2123. struct kvm_memory_alias alias;
  2124. struct kvm_pit_config pit_config;
  2125. } u;
  2126. switch (ioctl) {
  2127. case KVM_SET_TSS_ADDR:
  2128. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2129. if (r < 0)
  2130. goto out;
  2131. break;
  2132. case KVM_SET_IDENTITY_MAP_ADDR: {
  2133. u64 ident_addr;
  2134. r = -EFAULT;
  2135. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2136. goto out;
  2137. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2138. if (r < 0)
  2139. goto out;
  2140. break;
  2141. }
  2142. case KVM_SET_MEMORY_REGION: {
  2143. struct kvm_memory_region kvm_mem;
  2144. struct kvm_userspace_memory_region kvm_userspace_mem;
  2145. r = -EFAULT;
  2146. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2147. goto out;
  2148. kvm_userspace_mem.slot = kvm_mem.slot;
  2149. kvm_userspace_mem.flags = kvm_mem.flags;
  2150. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2151. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2152. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2153. if (r)
  2154. goto out;
  2155. break;
  2156. }
  2157. case KVM_SET_NR_MMU_PAGES:
  2158. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2159. if (r)
  2160. goto out;
  2161. break;
  2162. case KVM_GET_NR_MMU_PAGES:
  2163. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2164. break;
  2165. case KVM_SET_MEMORY_ALIAS:
  2166. r = -EFAULT;
  2167. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2168. goto out;
  2169. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2170. if (r)
  2171. goto out;
  2172. break;
  2173. case KVM_CREATE_IRQCHIP: {
  2174. struct kvm_pic *vpic;
  2175. mutex_lock(&kvm->lock);
  2176. r = -EEXIST;
  2177. if (kvm->arch.vpic)
  2178. goto create_irqchip_unlock;
  2179. r = -ENOMEM;
  2180. vpic = kvm_create_pic(kvm);
  2181. if (vpic) {
  2182. r = kvm_ioapic_init(kvm);
  2183. if (r) {
  2184. kfree(vpic);
  2185. goto create_irqchip_unlock;
  2186. }
  2187. } else
  2188. goto create_irqchip_unlock;
  2189. smp_wmb();
  2190. kvm->arch.vpic = vpic;
  2191. smp_wmb();
  2192. r = kvm_setup_default_irq_routing(kvm);
  2193. if (r) {
  2194. mutex_lock(&kvm->irq_lock);
  2195. kfree(kvm->arch.vpic);
  2196. kfree(kvm->arch.vioapic);
  2197. kvm->arch.vpic = NULL;
  2198. kvm->arch.vioapic = NULL;
  2199. mutex_unlock(&kvm->irq_lock);
  2200. }
  2201. create_irqchip_unlock:
  2202. mutex_unlock(&kvm->lock);
  2203. break;
  2204. }
  2205. case KVM_CREATE_PIT:
  2206. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2207. goto create_pit;
  2208. case KVM_CREATE_PIT2:
  2209. r = -EFAULT;
  2210. if (copy_from_user(&u.pit_config, argp,
  2211. sizeof(struct kvm_pit_config)))
  2212. goto out;
  2213. create_pit:
  2214. down_write(&kvm->slots_lock);
  2215. r = -EEXIST;
  2216. if (kvm->arch.vpit)
  2217. goto create_pit_unlock;
  2218. r = -ENOMEM;
  2219. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2220. if (kvm->arch.vpit)
  2221. r = 0;
  2222. create_pit_unlock:
  2223. up_write(&kvm->slots_lock);
  2224. break;
  2225. case KVM_IRQ_LINE_STATUS:
  2226. case KVM_IRQ_LINE: {
  2227. struct kvm_irq_level irq_event;
  2228. r = -EFAULT;
  2229. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2230. goto out;
  2231. if (irqchip_in_kernel(kvm)) {
  2232. __s32 status;
  2233. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2234. irq_event.irq, irq_event.level);
  2235. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2236. irq_event.status = status;
  2237. if (copy_to_user(argp, &irq_event,
  2238. sizeof irq_event))
  2239. goto out;
  2240. }
  2241. r = 0;
  2242. }
  2243. break;
  2244. }
  2245. case KVM_GET_IRQCHIP: {
  2246. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2247. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2248. r = -ENOMEM;
  2249. if (!chip)
  2250. goto out;
  2251. r = -EFAULT;
  2252. if (copy_from_user(chip, argp, sizeof *chip))
  2253. goto get_irqchip_out;
  2254. r = -ENXIO;
  2255. if (!irqchip_in_kernel(kvm))
  2256. goto get_irqchip_out;
  2257. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2258. if (r)
  2259. goto get_irqchip_out;
  2260. r = -EFAULT;
  2261. if (copy_to_user(argp, chip, sizeof *chip))
  2262. goto get_irqchip_out;
  2263. r = 0;
  2264. get_irqchip_out:
  2265. kfree(chip);
  2266. if (r)
  2267. goto out;
  2268. break;
  2269. }
  2270. case KVM_SET_IRQCHIP: {
  2271. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2272. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2273. r = -ENOMEM;
  2274. if (!chip)
  2275. goto out;
  2276. r = -EFAULT;
  2277. if (copy_from_user(chip, argp, sizeof *chip))
  2278. goto set_irqchip_out;
  2279. r = -ENXIO;
  2280. if (!irqchip_in_kernel(kvm))
  2281. goto set_irqchip_out;
  2282. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2283. if (r)
  2284. goto set_irqchip_out;
  2285. r = 0;
  2286. set_irqchip_out:
  2287. kfree(chip);
  2288. if (r)
  2289. goto out;
  2290. break;
  2291. }
  2292. case KVM_GET_PIT: {
  2293. r = -EFAULT;
  2294. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2295. goto out;
  2296. r = -ENXIO;
  2297. if (!kvm->arch.vpit)
  2298. goto out;
  2299. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2300. if (r)
  2301. goto out;
  2302. r = -EFAULT;
  2303. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2304. goto out;
  2305. r = 0;
  2306. break;
  2307. }
  2308. case KVM_SET_PIT: {
  2309. r = -EFAULT;
  2310. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2311. goto out;
  2312. r = -ENXIO;
  2313. if (!kvm->arch.vpit)
  2314. goto out;
  2315. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2316. if (r)
  2317. goto out;
  2318. r = 0;
  2319. break;
  2320. }
  2321. case KVM_GET_PIT2: {
  2322. r = -ENXIO;
  2323. if (!kvm->arch.vpit)
  2324. goto out;
  2325. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2326. if (r)
  2327. goto out;
  2328. r = -EFAULT;
  2329. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2330. goto out;
  2331. r = 0;
  2332. break;
  2333. }
  2334. case KVM_SET_PIT2: {
  2335. r = -EFAULT;
  2336. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2337. goto out;
  2338. r = -ENXIO;
  2339. if (!kvm->arch.vpit)
  2340. goto out;
  2341. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2342. if (r)
  2343. goto out;
  2344. r = 0;
  2345. break;
  2346. }
  2347. case KVM_REINJECT_CONTROL: {
  2348. struct kvm_reinject_control control;
  2349. r = -EFAULT;
  2350. if (copy_from_user(&control, argp, sizeof(control)))
  2351. goto out;
  2352. r = kvm_vm_ioctl_reinject(kvm, &control);
  2353. if (r)
  2354. goto out;
  2355. r = 0;
  2356. break;
  2357. }
  2358. case KVM_XEN_HVM_CONFIG: {
  2359. r = -EFAULT;
  2360. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2361. sizeof(struct kvm_xen_hvm_config)))
  2362. goto out;
  2363. r = -EINVAL;
  2364. if (kvm->arch.xen_hvm_config.flags)
  2365. goto out;
  2366. r = 0;
  2367. break;
  2368. }
  2369. case KVM_SET_CLOCK: {
  2370. struct timespec now;
  2371. struct kvm_clock_data user_ns;
  2372. u64 now_ns;
  2373. s64 delta;
  2374. r = -EFAULT;
  2375. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2376. goto out;
  2377. r = -EINVAL;
  2378. if (user_ns.flags)
  2379. goto out;
  2380. r = 0;
  2381. ktime_get_ts(&now);
  2382. now_ns = timespec_to_ns(&now);
  2383. delta = user_ns.clock - now_ns;
  2384. kvm->arch.kvmclock_offset = delta;
  2385. break;
  2386. }
  2387. case KVM_GET_CLOCK: {
  2388. struct timespec now;
  2389. struct kvm_clock_data user_ns;
  2390. u64 now_ns;
  2391. ktime_get_ts(&now);
  2392. now_ns = timespec_to_ns(&now);
  2393. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2394. user_ns.flags = 0;
  2395. r = -EFAULT;
  2396. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2397. goto out;
  2398. r = 0;
  2399. break;
  2400. }
  2401. default:
  2402. ;
  2403. }
  2404. out:
  2405. return r;
  2406. }
  2407. static void kvm_init_msr_list(void)
  2408. {
  2409. u32 dummy[2];
  2410. unsigned i, j;
  2411. /* skip the first msrs in the list. KVM-specific */
  2412. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2413. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2414. continue;
  2415. if (j < i)
  2416. msrs_to_save[j] = msrs_to_save[i];
  2417. j++;
  2418. }
  2419. num_msrs_to_save = j;
  2420. }
  2421. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2422. const void *v)
  2423. {
  2424. if (vcpu->arch.apic &&
  2425. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2426. return 0;
  2427. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2428. }
  2429. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2430. {
  2431. if (vcpu->arch.apic &&
  2432. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2433. return 0;
  2434. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2435. }
  2436. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2437. struct kvm_vcpu *vcpu)
  2438. {
  2439. void *data = val;
  2440. int r = X86EMUL_CONTINUE;
  2441. while (bytes) {
  2442. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2443. unsigned offset = addr & (PAGE_SIZE-1);
  2444. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2445. int ret;
  2446. if (gpa == UNMAPPED_GVA) {
  2447. r = X86EMUL_PROPAGATE_FAULT;
  2448. goto out;
  2449. }
  2450. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2451. if (ret < 0) {
  2452. r = X86EMUL_UNHANDLEABLE;
  2453. goto out;
  2454. }
  2455. bytes -= toread;
  2456. data += toread;
  2457. addr += toread;
  2458. }
  2459. out:
  2460. return r;
  2461. }
  2462. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2463. struct kvm_vcpu *vcpu)
  2464. {
  2465. void *data = val;
  2466. int r = X86EMUL_CONTINUE;
  2467. while (bytes) {
  2468. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2469. unsigned offset = addr & (PAGE_SIZE-1);
  2470. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2471. int ret;
  2472. if (gpa == UNMAPPED_GVA) {
  2473. r = X86EMUL_PROPAGATE_FAULT;
  2474. goto out;
  2475. }
  2476. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2477. if (ret < 0) {
  2478. r = X86EMUL_UNHANDLEABLE;
  2479. goto out;
  2480. }
  2481. bytes -= towrite;
  2482. data += towrite;
  2483. addr += towrite;
  2484. }
  2485. out:
  2486. return r;
  2487. }
  2488. static int emulator_read_emulated(unsigned long addr,
  2489. void *val,
  2490. unsigned int bytes,
  2491. struct kvm_vcpu *vcpu)
  2492. {
  2493. gpa_t gpa;
  2494. if (vcpu->mmio_read_completed) {
  2495. memcpy(val, vcpu->mmio_data, bytes);
  2496. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2497. vcpu->mmio_phys_addr, *(u64 *)val);
  2498. vcpu->mmio_read_completed = 0;
  2499. return X86EMUL_CONTINUE;
  2500. }
  2501. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2502. /* For APIC access vmexit */
  2503. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2504. goto mmio;
  2505. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2506. == X86EMUL_CONTINUE)
  2507. return X86EMUL_CONTINUE;
  2508. if (gpa == UNMAPPED_GVA)
  2509. return X86EMUL_PROPAGATE_FAULT;
  2510. mmio:
  2511. /*
  2512. * Is this MMIO handled locally?
  2513. */
  2514. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2515. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2516. return X86EMUL_CONTINUE;
  2517. }
  2518. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2519. vcpu->mmio_needed = 1;
  2520. vcpu->mmio_phys_addr = gpa;
  2521. vcpu->mmio_size = bytes;
  2522. vcpu->mmio_is_write = 0;
  2523. return X86EMUL_UNHANDLEABLE;
  2524. }
  2525. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2526. const void *val, int bytes)
  2527. {
  2528. int ret;
  2529. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2530. if (ret < 0)
  2531. return 0;
  2532. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2533. return 1;
  2534. }
  2535. static int emulator_write_emulated_onepage(unsigned long addr,
  2536. const void *val,
  2537. unsigned int bytes,
  2538. struct kvm_vcpu *vcpu)
  2539. {
  2540. gpa_t gpa;
  2541. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2542. if (gpa == UNMAPPED_GVA) {
  2543. kvm_inject_page_fault(vcpu, addr, 2);
  2544. return X86EMUL_PROPAGATE_FAULT;
  2545. }
  2546. /* For APIC access vmexit */
  2547. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2548. goto mmio;
  2549. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2550. return X86EMUL_CONTINUE;
  2551. mmio:
  2552. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2553. /*
  2554. * Is this MMIO handled locally?
  2555. */
  2556. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2557. return X86EMUL_CONTINUE;
  2558. vcpu->mmio_needed = 1;
  2559. vcpu->mmio_phys_addr = gpa;
  2560. vcpu->mmio_size = bytes;
  2561. vcpu->mmio_is_write = 1;
  2562. memcpy(vcpu->mmio_data, val, bytes);
  2563. return X86EMUL_CONTINUE;
  2564. }
  2565. int emulator_write_emulated(unsigned long addr,
  2566. const void *val,
  2567. unsigned int bytes,
  2568. struct kvm_vcpu *vcpu)
  2569. {
  2570. /* Crossing a page boundary? */
  2571. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2572. int rc, now;
  2573. now = -addr & ~PAGE_MASK;
  2574. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2575. if (rc != X86EMUL_CONTINUE)
  2576. return rc;
  2577. addr += now;
  2578. val += now;
  2579. bytes -= now;
  2580. }
  2581. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2582. }
  2583. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2584. static int emulator_cmpxchg_emulated(unsigned long addr,
  2585. const void *old,
  2586. const void *new,
  2587. unsigned int bytes,
  2588. struct kvm_vcpu *vcpu)
  2589. {
  2590. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2591. #ifndef CONFIG_X86_64
  2592. /* guests cmpxchg8b have to be emulated atomically */
  2593. if (bytes == 8) {
  2594. gpa_t gpa;
  2595. struct page *page;
  2596. char *kaddr;
  2597. u64 val;
  2598. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2599. if (gpa == UNMAPPED_GVA ||
  2600. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2601. goto emul_write;
  2602. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2603. goto emul_write;
  2604. val = *(u64 *)new;
  2605. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2606. kaddr = kmap_atomic(page, KM_USER0);
  2607. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2608. kunmap_atomic(kaddr, KM_USER0);
  2609. kvm_release_page_dirty(page);
  2610. }
  2611. emul_write:
  2612. #endif
  2613. return emulator_write_emulated(addr, new, bytes, vcpu);
  2614. }
  2615. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2616. {
  2617. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2618. }
  2619. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2620. {
  2621. kvm_mmu_invlpg(vcpu, address);
  2622. return X86EMUL_CONTINUE;
  2623. }
  2624. int emulate_clts(struct kvm_vcpu *vcpu)
  2625. {
  2626. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2627. return X86EMUL_CONTINUE;
  2628. }
  2629. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2630. {
  2631. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2632. switch (dr) {
  2633. case 0 ... 3:
  2634. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2635. return X86EMUL_CONTINUE;
  2636. default:
  2637. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2638. return X86EMUL_UNHANDLEABLE;
  2639. }
  2640. }
  2641. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2642. {
  2643. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2644. int exception;
  2645. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2646. if (exception) {
  2647. /* FIXME: better handling */
  2648. return X86EMUL_UNHANDLEABLE;
  2649. }
  2650. return X86EMUL_CONTINUE;
  2651. }
  2652. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2653. {
  2654. u8 opcodes[4];
  2655. unsigned long rip = kvm_rip_read(vcpu);
  2656. unsigned long rip_linear;
  2657. if (!printk_ratelimit())
  2658. return;
  2659. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2660. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2661. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2662. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2663. }
  2664. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2665. static struct x86_emulate_ops emulate_ops = {
  2666. .read_std = kvm_read_guest_virt,
  2667. .read_emulated = emulator_read_emulated,
  2668. .write_emulated = emulator_write_emulated,
  2669. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2670. };
  2671. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2672. {
  2673. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2674. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2675. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2676. vcpu->arch.regs_dirty = ~0;
  2677. }
  2678. int emulate_instruction(struct kvm_vcpu *vcpu,
  2679. unsigned long cr2,
  2680. u16 error_code,
  2681. int emulation_type)
  2682. {
  2683. int r, shadow_mask;
  2684. struct decode_cache *c;
  2685. struct kvm_run *run = vcpu->run;
  2686. kvm_clear_exception_queue(vcpu);
  2687. vcpu->arch.mmio_fault_cr2 = cr2;
  2688. /*
  2689. * TODO: fix emulate.c to use guest_read/write_register
  2690. * instead of direct ->regs accesses, can save hundred cycles
  2691. * on Intel for instructions that don't read/change RSP, for
  2692. * for example.
  2693. */
  2694. cache_all_regs(vcpu);
  2695. vcpu->mmio_is_write = 0;
  2696. vcpu->arch.pio.string = 0;
  2697. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2698. int cs_db, cs_l;
  2699. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2700. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2701. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2702. vcpu->arch.emulate_ctxt.mode =
  2703. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2704. ? X86EMUL_MODE_REAL : cs_l
  2705. ? X86EMUL_MODE_PROT64 : cs_db
  2706. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2707. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2708. /* Only allow emulation of specific instructions on #UD
  2709. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2710. c = &vcpu->arch.emulate_ctxt.decode;
  2711. if (emulation_type & EMULTYPE_TRAP_UD) {
  2712. if (!c->twobyte)
  2713. return EMULATE_FAIL;
  2714. switch (c->b) {
  2715. case 0x01: /* VMMCALL */
  2716. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2717. return EMULATE_FAIL;
  2718. break;
  2719. case 0x34: /* sysenter */
  2720. case 0x35: /* sysexit */
  2721. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2722. return EMULATE_FAIL;
  2723. break;
  2724. case 0x05: /* syscall */
  2725. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2726. return EMULATE_FAIL;
  2727. break;
  2728. default:
  2729. return EMULATE_FAIL;
  2730. }
  2731. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2732. return EMULATE_FAIL;
  2733. }
  2734. ++vcpu->stat.insn_emulation;
  2735. if (r) {
  2736. ++vcpu->stat.insn_emulation_fail;
  2737. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2738. return EMULATE_DONE;
  2739. return EMULATE_FAIL;
  2740. }
  2741. }
  2742. if (emulation_type & EMULTYPE_SKIP) {
  2743. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2744. return EMULATE_DONE;
  2745. }
  2746. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2747. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2748. if (r == 0)
  2749. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2750. if (vcpu->arch.pio.string)
  2751. return EMULATE_DO_MMIO;
  2752. if ((r || vcpu->mmio_is_write) && run) {
  2753. run->exit_reason = KVM_EXIT_MMIO;
  2754. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2755. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2756. run->mmio.len = vcpu->mmio_size;
  2757. run->mmio.is_write = vcpu->mmio_is_write;
  2758. }
  2759. if (r) {
  2760. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2761. return EMULATE_DONE;
  2762. if (!vcpu->mmio_needed) {
  2763. kvm_report_emulation_failure(vcpu, "mmio");
  2764. return EMULATE_FAIL;
  2765. }
  2766. return EMULATE_DO_MMIO;
  2767. }
  2768. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2769. if (vcpu->mmio_is_write) {
  2770. vcpu->mmio_needed = 0;
  2771. return EMULATE_DO_MMIO;
  2772. }
  2773. return EMULATE_DONE;
  2774. }
  2775. EXPORT_SYMBOL_GPL(emulate_instruction);
  2776. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2777. {
  2778. void *p = vcpu->arch.pio_data;
  2779. gva_t q = vcpu->arch.pio.guest_gva;
  2780. unsigned bytes;
  2781. int ret;
  2782. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2783. if (vcpu->arch.pio.in)
  2784. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2785. else
  2786. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2787. return ret;
  2788. }
  2789. int complete_pio(struct kvm_vcpu *vcpu)
  2790. {
  2791. struct kvm_pio_request *io = &vcpu->arch.pio;
  2792. long delta;
  2793. int r;
  2794. unsigned long val;
  2795. if (!io->string) {
  2796. if (io->in) {
  2797. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2798. memcpy(&val, vcpu->arch.pio_data, io->size);
  2799. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2800. }
  2801. } else {
  2802. if (io->in) {
  2803. r = pio_copy_data(vcpu);
  2804. if (r)
  2805. return r;
  2806. }
  2807. delta = 1;
  2808. if (io->rep) {
  2809. delta *= io->cur_count;
  2810. /*
  2811. * The size of the register should really depend on
  2812. * current address size.
  2813. */
  2814. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2815. val -= delta;
  2816. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2817. }
  2818. if (io->down)
  2819. delta = -delta;
  2820. delta *= io->size;
  2821. if (io->in) {
  2822. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2823. val += delta;
  2824. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2825. } else {
  2826. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2827. val += delta;
  2828. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2829. }
  2830. }
  2831. io->count -= io->cur_count;
  2832. io->cur_count = 0;
  2833. return 0;
  2834. }
  2835. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2836. {
  2837. /* TODO: String I/O for in kernel device */
  2838. int r;
  2839. if (vcpu->arch.pio.in)
  2840. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2841. vcpu->arch.pio.size, pd);
  2842. else
  2843. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2844. vcpu->arch.pio.size, pd);
  2845. return r;
  2846. }
  2847. static int pio_string_write(struct kvm_vcpu *vcpu)
  2848. {
  2849. struct kvm_pio_request *io = &vcpu->arch.pio;
  2850. void *pd = vcpu->arch.pio_data;
  2851. int i, r = 0;
  2852. for (i = 0; i < io->cur_count; i++) {
  2853. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2854. io->port, io->size, pd)) {
  2855. r = -EOPNOTSUPP;
  2856. break;
  2857. }
  2858. pd += io->size;
  2859. }
  2860. return r;
  2861. }
  2862. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2863. {
  2864. unsigned long val;
  2865. vcpu->run->exit_reason = KVM_EXIT_IO;
  2866. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2867. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2868. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2869. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2870. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2871. vcpu->arch.pio.in = in;
  2872. vcpu->arch.pio.string = 0;
  2873. vcpu->arch.pio.down = 0;
  2874. vcpu->arch.pio.rep = 0;
  2875. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2876. size, 1);
  2877. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2878. memcpy(vcpu->arch.pio_data, &val, 4);
  2879. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2880. complete_pio(vcpu);
  2881. return 1;
  2882. }
  2883. return 0;
  2884. }
  2885. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2886. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2887. int size, unsigned long count, int down,
  2888. gva_t address, int rep, unsigned port)
  2889. {
  2890. unsigned now, in_page;
  2891. int ret = 0;
  2892. vcpu->run->exit_reason = KVM_EXIT_IO;
  2893. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2894. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2895. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2896. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2897. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2898. vcpu->arch.pio.in = in;
  2899. vcpu->arch.pio.string = 1;
  2900. vcpu->arch.pio.down = down;
  2901. vcpu->arch.pio.rep = rep;
  2902. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2903. size, count);
  2904. if (!count) {
  2905. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2906. return 1;
  2907. }
  2908. if (!down)
  2909. in_page = PAGE_SIZE - offset_in_page(address);
  2910. else
  2911. in_page = offset_in_page(address) + size;
  2912. now = min(count, (unsigned long)in_page / size);
  2913. if (!now)
  2914. now = 1;
  2915. if (down) {
  2916. /*
  2917. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2918. */
  2919. pr_unimpl(vcpu, "guest string pio down\n");
  2920. kvm_inject_gp(vcpu, 0);
  2921. return 1;
  2922. }
  2923. vcpu->run->io.count = now;
  2924. vcpu->arch.pio.cur_count = now;
  2925. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2926. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2927. vcpu->arch.pio.guest_gva = address;
  2928. if (!vcpu->arch.pio.in) {
  2929. /* string PIO write */
  2930. ret = pio_copy_data(vcpu);
  2931. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2932. kvm_inject_gp(vcpu, 0);
  2933. return 1;
  2934. }
  2935. if (ret == 0 && !pio_string_write(vcpu)) {
  2936. complete_pio(vcpu);
  2937. if (vcpu->arch.pio.count == 0)
  2938. ret = 1;
  2939. }
  2940. }
  2941. /* no string PIO read support yet */
  2942. return ret;
  2943. }
  2944. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2945. static void bounce_off(void *info)
  2946. {
  2947. /* nothing */
  2948. }
  2949. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2950. void *data)
  2951. {
  2952. struct cpufreq_freqs *freq = data;
  2953. struct kvm *kvm;
  2954. struct kvm_vcpu *vcpu;
  2955. int i, send_ipi = 0;
  2956. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2957. return 0;
  2958. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2959. return 0;
  2960. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2961. spin_lock(&kvm_lock);
  2962. list_for_each_entry(kvm, &vm_list, vm_list) {
  2963. kvm_for_each_vcpu(i, vcpu, kvm) {
  2964. if (vcpu->cpu != freq->cpu)
  2965. continue;
  2966. if (!kvm_request_guest_time_update(vcpu))
  2967. continue;
  2968. if (vcpu->cpu != smp_processor_id())
  2969. send_ipi++;
  2970. }
  2971. }
  2972. spin_unlock(&kvm_lock);
  2973. if (freq->old < freq->new && send_ipi) {
  2974. /*
  2975. * We upscale the frequency. Must make the guest
  2976. * doesn't see old kvmclock values while running with
  2977. * the new frequency, otherwise we risk the guest sees
  2978. * time go backwards.
  2979. *
  2980. * In case we update the frequency for another cpu
  2981. * (which might be in guest context) send an interrupt
  2982. * to kick the cpu out of guest context. Next time
  2983. * guest context is entered kvmclock will be updated,
  2984. * so the guest will not see stale values.
  2985. */
  2986. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2987. }
  2988. return 0;
  2989. }
  2990. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2991. .notifier_call = kvmclock_cpufreq_notifier
  2992. };
  2993. static void kvm_timer_init(void)
  2994. {
  2995. int cpu;
  2996. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2997. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2998. CPUFREQ_TRANSITION_NOTIFIER);
  2999. for_each_online_cpu(cpu) {
  3000. unsigned long khz = cpufreq_get(cpu);
  3001. if (!khz)
  3002. khz = tsc_khz;
  3003. per_cpu(cpu_tsc_khz, cpu) = khz;
  3004. }
  3005. } else {
  3006. for_each_possible_cpu(cpu)
  3007. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3008. }
  3009. }
  3010. int kvm_arch_init(void *opaque)
  3011. {
  3012. int r;
  3013. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3014. if (kvm_x86_ops) {
  3015. printk(KERN_ERR "kvm: already loaded the other module\n");
  3016. r = -EEXIST;
  3017. goto out;
  3018. }
  3019. if (!ops->cpu_has_kvm_support()) {
  3020. printk(KERN_ERR "kvm: no hardware support\n");
  3021. r = -EOPNOTSUPP;
  3022. goto out;
  3023. }
  3024. if (ops->disabled_by_bios()) {
  3025. printk(KERN_ERR "kvm: disabled by bios\n");
  3026. r = -EOPNOTSUPP;
  3027. goto out;
  3028. }
  3029. r = kvm_mmu_module_init();
  3030. if (r)
  3031. goto out;
  3032. kvm_init_msr_list();
  3033. kvm_x86_ops = ops;
  3034. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3035. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3036. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3037. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3038. kvm_timer_init();
  3039. return 0;
  3040. out:
  3041. return r;
  3042. }
  3043. void kvm_arch_exit(void)
  3044. {
  3045. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3046. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3047. CPUFREQ_TRANSITION_NOTIFIER);
  3048. kvm_x86_ops = NULL;
  3049. kvm_mmu_module_exit();
  3050. }
  3051. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3052. {
  3053. ++vcpu->stat.halt_exits;
  3054. if (irqchip_in_kernel(vcpu->kvm)) {
  3055. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3056. return 1;
  3057. } else {
  3058. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3059. return 0;
  3060. }
  3061. }
  3062. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3063. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3064. unsigned long a1)
  3065. {
  3066. if (is_long_mode(vcpu))
  3067. return a0;
  3068. else
  3069. return a0 | ((gpa_t)a1 << 32);
  3070. }
  3071. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3072. {
  3073. unsigned long nr, a0, a1, a2, a3, ret;
  3074. int r = 1;
  3075. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3076. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3077. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3078. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3079. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3080. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3081. if (!is_long_mode(vcpu)) {
  3082. nr &= 0xFFFFFFFF;
  3083. a0 &= 0xFFFFFFFF;
  3084. a1 &= 0xFFFFFFFF;
  3085. a2 &= 0xFFFFFFFF;
  3086. a3 &= 0xFFFFFFFF;
  3087. }
  3088. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3089. ret = -KVM_EPERM;
  3090. goto out;
  3091. }
  3092. switch (nr) {
  3093. case KVM_HC_VAPIC_POLL_IRQ:
  3094. ret = 0;
  3095. break;
  3096. case KVM_HC_MMU_OP:
  3097. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3098. break;
  3099. default:
  3100. ret = -KVM_ENOSYS;
  3101. break;
  3102. }
  3103. out:
  3104. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3105. ++vcpu->stat.hypercalls;
  3106. return r;
  3107. }
  3108. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3109. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3110. {
  3111. char instruction[3];
  3112. int ret = 0;
  3113. unsigned long rip = kvm_rip_read(vcpu);
  3114. /*
  3115. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3116. * to ensure that the updated hypercall appears atomically across all
  3117. * VCPUs.
  3118. */
  3119. kvm_mmu_zap_all(vcpu->kvm);
  3120. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3121. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3122. != X86EMUL_CONTINUE)
  3123. ret = -EFAULT;
  3124. return ret;
  3125. }
  3126. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3127. {
  3128. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3129. }
  3130. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3131. {
  3132. struct descriptor_table dt = { limit, base };
  3133. kvm_x86_ops->set_gdt(vcpu, &dt);
  3134. }
  3135. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3136. {
  3137. struct descriptor_table dt = { limit, base };
  3138. kvm_x86_ops->set_idt(vcpu, &dt);
  3139. }
  3140. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3141. unsigned long *rflags)
  3142. {
  3143. kvm_lmsw(vcpu, msw);
  3144. *rflags = kvm_get_rflags(vcpu);
  3145. }
  3146. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3147. {
  3148. unsigned long value;
  3149. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3150. switch (cr) {
  3151. case 0:
  3152. value = vcpu->arch.cr0;
  3153. break;
  3154. case 2:
  3155. value = vcpu->arch.cr2;
  3156. break;
  3157. case 3:
  3158. value = vcpu->arch.cr3;
  3159. break;
  3160. case 4:
  3161. value = vcpu->arch.cr4;
  3162. break;
  3163. case 8:
  3164. value = kvm_get_cr8(vcpu);
  3165. break;
  3166. default:
  3167. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3168. return 0;
  3169. }
  3170. return value;
  3171. }
  3172. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3173. unsigned long *rflags)
  3174. {
  3175. switch (cr) {
  3176. case 0:
  3177. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3178. *rflags = kvm_get_rflags(vcpu);
  3179. break;
  3180. case 2:
  3181. vcpu->arch.cr2 = val;
  3182. break;
  3183. case 3:
  3184. kvm_set_cr3(vcpu, val);
  3185. break;
  3186. case 4:
  3187. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  3188. break;
  3189. case 8:
  3190. kvm_set_cr8(vcpu, val & 0xfUL);
  3191. break;
  3192. default:
  3193. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3194. }
  3195. }
  3196. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3197. {
  3198. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3199. int j, nent = vcpu->arch.cpuid_nent;
  3200. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3201. /* when no next entry is found, the current entry[i] is reselected */
  3202. for (j = i + 1; ; j = (j + 1) % nent) {
  3203. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3204. if (ej->function == e->function) {
  3205. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3206. return j;
  3207. }
  3208. }
  3209. return 0; /* silence gcc, even though control never reaches here */
  3210. }
  3211. /* find an entry with matching function, matching index (if needed), and that
  3212. * should be read next (if it's stateful) */
  3213. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3214. u32 function, u32 index)
  3215. {
  3216. if (e->function != function)
  3217. return 0;
  3218. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3219. return 0;
  3220. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3221. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3222. return 0;
  3223. return 1;
  3224. }
  3225. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3226. u32 function, u32 index)
  3227. {
  3228. int i;
  3229. struct kvm_cpuid_entry2 *best = NULL;
  3230. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3231. struct kvm_cpuid_entry2 *e;
  3232. e = &vcpu->arch.cpuid_entries[i];
  3233. if (is_matching_cpuid_entry(e, function, index)) {
  3234. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3235. move_to_next_stateful_cpuid_entry(vcpu, i);
  3236. best = e;
  3237. break;
  3238. }
  3239. /*
  3240. * Both basic or both extended?
  3241. */
  3242. if (((e->function ^ function) & 0x80000000) == 0)
  3243. if (!best || e->function > best->function)
  3244. best = e;
  3245. }
  3246. return best;
  3247. }
  3248. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3249. {
  3250. struct kvm_cpuid_entry2 *best;
  3251. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3252. if (best)
  3253. return best->eax & 0xff;
  3254. return 36;
  3255. }
  3256. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3257. {
  3258. u32 function, index;
  3259. struct kvm_cpuid_entry2 *best;
  3260. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3261. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3262. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3263. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3264. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3265. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3266. best = kvm_find_cpuid_entry(vcpu, function, index);
  3267. if (best) {
  3268. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3269. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3270. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3271. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3272. }
  3273. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3274. trace_kvm_cpuid(function,
  3275. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3276. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3277. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3278. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3279. }
  3280. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3281. /*
  3282. * Check if userspace requested an interrupt window, and that the
  3283. * interrupt window is open.
  3284. *
  3285. * No need to exit to userspace if we already have an interrupt queued.
  3286. */
  3287. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3288. {
  3289. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3290. vcpu->run->request_interrupt_window &&
  3291. kvm_arch_interrupt_allowed(vcpu));
  3292. }
  3293. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3294. {
  3295. struct kvm_run *kvm_run = vcpu->run;
  3296. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3297. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3298. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3299. if (irqchip_in_kernel(vcpu->kvm))
  3300. kvm_run->ready_for_interrupt_injection = 1;
  3301. else
  3302. kvm_run->ready_for_interrupt_injection =
  3303. kvm_arch_interrupt_allowed(vcpu) &&
  3304. !kvm_cpu_has_interrupt(vcpu) &&
  3305. !kvm_event_needs_reinjection(vcpu);
  3306. }
  3307. static void vapic_enter(struct kvm_vcpu *vcpu)
  3308. {
  3309. struct kvm_lapic *apic = vcpu->arch.apic;
  3310. struct page *page;
  3311. if (!apic || !apic->vapic_addr)
  3312. return;
  3313. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3314. vcpu->arch.apic->vapic_page = page;
  3315. }
  3316. static void vapic_exit(struct kvm_vcpu *vcpu)
  3317. {
  3318. struct kvm_lapic *apic = vcpu->arch.apic;
  3319. if (!apic || !apic->vapic_addr)
  3320. return;
  3321. down_read(&vcpu->kvm->slots_lock);
  3322. kvm_release_page_dirty(apic->vapic_page);
  3323. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3324. up_read(&vcpu->kvm->slots_lock);
  3325. }
  3326. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3327. {
  3328. int max_irr, tpr;
  3329. if (!kvm_x86_ops->update_cr8_intercept)
  3330. return;
  3331. if (!vcpu->arch.apic)
  3332. return;
  3333. if (!vcpu->arch.apic->vapic_addr)
  3334. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3335. else
  3336. max_irr = -1;
  3337. if (max_irr != -1)
  3338. max_irr >>= 4;
  3339. tpr = kvm_lapic_get_cr8(vcpu);
  3340. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3341. }
  3342. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3343. {
  3344. /* try to reinject previous events if any */
  3345. if (vcpu->arch.exception.pending) {
  3346. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3347. vcpu->arch.exception.has_error_code,
  3348. vcpu->arch.exception.error_code);
  3349. return;
  3350. }
  3351. if (vcpu->arch.nmi_injected) {
  3352. kvm_x86_ops->set_nmi(vcpu);
  3353. return;
  3354. }
  3355. if (vcpu->arch.interrupt.pending) {
  3356. kvm_x86_ops->set_irq(vcpu);
  3357. return;
  3358. }
  3359. /* try to inject new event if pending */
  3360. if (vcpu->arch.nmi_pending) {
  3361. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3362. vcpu->arch.nmi_pending = false;
  3363. vcpu->arch.nmi_injected = true;
  3364. kvm_x86_ops->set_nmi(vcpu);
  3365. }
  3366. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3367. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3368. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3369. false);
  3370. kvm_x86_ops->set_irq(vcpu);
  3371. }
  3372. }
  3373. }
  3374. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3375. {
  3376. int r;
  3377. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3378. vcpu->run->request_interrupt_window;
  3379. if (vcpu->requests)
  3380. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3381. kvm_mmu_unload(vcpu);
  3382. r = kvm_mmu_reload(vcpu);
  3383. if (unlikely(r))
  3384. goto out;
  3385. if (vcpu->requests) {
  3386. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3387. __kvm_migrate_timers(vcpu);
  3388. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3389. kvm_write_guest_time(vcpu);
  3390. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3391. kvm_mmu_sync_roots(vcpu);
  3392. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3393. kvm_x86_ops->tlb_flush(vcpu);
  3394. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3395. &vcpu->requests)) {
  3396. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3397. r = 0;
  3398. goto out;
  3399. }
  3400. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3401. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3402. r = 0;
  3403. goto out;
  3404. }
  3405. }
  3406. preempt_disable();
  3407. kvm_x86_ops->prepare_guest_switch(vcpu);
  3408. kvm_load_guest_fpu(vcpu);
  3409. local_irq_disable();
  3410. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3411. smp_mb__after_clear_bit();
  3412. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3413. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3414. local_irq_enable();
  3415. preempt_enable();
  3416. r = 1;
  3417. goto out;
  3418. }
  3419. inject_pending_event(vcpu);
  3420. /* enable NMI/IRQ window open exits if needed */
  3421. if (vcpu->arch.nmi_pending)
  3422. kvm_x86_ops->enable_nmi_window(vcpu);
  3423. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3424. kvm_x86_ops->enable_irq_window(vcpu);
  3425. if (kvm_lapic_enabled(vcpu)) {
  3426. update_cr8_intercept(vcpu);
  3427. kvm_lapic_sync_to_vapic(vcpu);
  3428. }
  3429. up_read(&vcpu->kvm->slots_lock);
  3430. kvm_guest_enter();
  3431. if (unlikely(vcpu->arch.switch_db_regs)) {
  3432. set_debugreg(0, 7);
  3433. set_debugreg(vcpu->arch.eff_db[0], 0);
  3434. set_debugreg(vcpu->arch.eff_db[1], 1);
  3435. set_debugreg(vcpu->arch.eff_db[2], 2);
  3436. set_debugreg(vcpu->arch.eff_db[3], 3);
  3437. }
  3438. trace_kvm_entry(vcpu->vcpu_id);
  3439. kvm_x86_ops->run(vcpu);
  3440. /*
  3441. * If the guest has used debug registers, at least dr7
  3442. * will be disabled while returning to the host.
  3443. * If we don't have active breakpoints in the host, we don't
  3444. * care about the messed up debug address registers. But if
  3445. * we have some of them active, restore the old state.
  3446. */
  3447. if (hw_breakpoint_active())
  3448. hw_breakpoint_restore();
  3449. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3450. local_irq_enable();
  3451. ++vcpu->stat.exits;
  3452. /*
  3453. * We must have an instruction between local_irq_enable() and
  3454. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3455. * the interrupt shadow. The stat.exits increment will do nicely.
  3456. * But we need to prevent reordering, hence this barrier():
  3457. */
  3458. barrier();
  3459. kvm_guest_exit();
  3460. preempt_enable();
  3461. down_read(&vcpu->kvm->slots_lock);
  3462. /*
  3463. * Profile KVM exit RIPs:
  3464. */
  3465. if (unlikely(prof_on == KVM_PROFILING)) {
  3466. unsigned long rip = kvm_rip_read(vcpu);
  3467. profile_hit(KVM_PROFILING, (void *)rip);
  3468. }
  3469. kvm_lapic_sync_from_vapic(vcpu);
  3470. r = kvm_x86_ops->handle_exit(vcpu);
  3471. out:
  3472. return r;
  3473. }
  3474. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3475. {
  3476. int r;
  3477. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3478. pr_debug("vcpu %d received sipi with vector # %x\n",
  3479. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3480. kvm_lapic_reset(vcpu);
  3481. r = kvm_arch_vcpu_reset(vcpu);
  3482. if (r)
  3483. return r;
  3484. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3485. }
  3486. down_read(&vcpu->kvm->slots_lock);
  3487. vapic_enter(vcpu);
  3488. r = 1;
  3489. while (r > 0) {
  3490. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3491. r = vcpu_enter_guest(vcpu);
  3492. else {
  3493. up_read(&vcpu->kvm->slots_lock);
  3494. kvm_vcpu_block(vcpu);
  3495. down_read(&vcpu->kvm->slots_lock);
  3496. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3497. {
  3498. switch(vcpu->arch.mp_state) {
  3499. case KVM_MP_STATE_HALTED:
  3500. vcpu->arch.mp_state =
  3501. KVM_MP_STATE_RUNNABLE;
  3502. case KVM_MP_STATE_RUNNABLE:
  3503. break;
  3504. case KVM_MP_STATE_SIPI_RECEIVED:
  3505. default:
  3506. r = -EINTR;
  3507. break;
  3508. }
  3509. }
  3510. }
  3511. if (r <= 0)
  3512. break;
  3513. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3514. if (kvm_cpu_has_pending_timer(vcpu))
  3515. kvm_inject_pending_timer_irqs(vcpu);
  3516. if (dm_request_for_irq_injection(vcpu)) {
  3517. r = -EINTR;
  3518. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3519. ++vcpu->stat.request_irq_exits;
  3520. }
  3521. if (signal_pending(current)) {
  3522. r = -EINTR;
  3523. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3524. ++vcpu->stat.signal_exits;
  3525. }
  3526. if (need_resched()) {
  3527. up_read(&vcpu->kvm->slots_lock);
  3528. kvm_resched(vcpu);
  3529. down_read(&vcpu->kvm->slots_lock);
  3530. }
  3531. }
  3532. up_read(&vcpu->kvm->slots_lock);
  3533. post_kvm_run_save(vcpu);
  3534. vapic_exit(vcpu);
  3535. return r;
  3536. }
  3537. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3538. {
  3539. int r;
  3540. sigset_t sigsaved;
  3541. vcpu_load(vcpu);
  3542. if (vcpu->sigset_active)
  3543. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3544. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3545. kvm_vcpu_block(vcpu);
  3546. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3547. r = -EAGAIN;
  3548. goto out;
  3549. }
  3550. /* re-sync apic's tpr */
  3551. if (!irqchip_in_kernel(vcpu->kvm))
  3552. kvm_set_cr8(vcpu, kvm_run->cr8);
  3553. if (vcpu->arch.pio.cur_count) {
  3554. r = complete_pio(vcpu);
  3555. if (r)
  3556. goto out;
  3557. }
  3558. if (vcpu->mmio_needed) {
  3559. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3560. vcpu->mmio_read_completed = 1;
  3561. vcpu->mmio_needed = 0;
  3562. down_read(&vcpu->kvm->slots_lock);
  3563. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3564. EMULTYPE_NO_DECODE);
  3565. up_read(&vcpu->kvm->slots_lock);
  3566. if (r == EMULATE_DO_MMIO) {
  3567. /*
  3568. * Read-modify-write. Back to userspace.
  3569. */
  3570. r = 0;
  3571. goto out;
  3572. }
  3573. }
  3574. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3575. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3576. kvm_run->hypercall.ret);
  3577. r = __vcpu_run(vcpu);
  3578. out:
  3579. if (vcpu->sigset_active)
  3580. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3581. vcpu_put(vcpu);
  3582. return r;
  3583. }
  3584. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3585. {
  3586. vcpu_load(vcpu);
  3587. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3588. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3589. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3590. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3591. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3592. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3593. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3594. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3595. #ifdef CONFIG_X86_64
  3596. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3597. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3598. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3599. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3600. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3601. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3602. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3603. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3604. #endif
  3605. regs->rip = kvm_rip_read(vcpu);
  3606. regs->rflags = kvm_get_rflags(vcpu);
  3607. vcpu_put(vcpu);
  3608. return 0;
  3609. }
  3610. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3611. {
  3612. vcpu_load(vcpu);
  3613. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3614. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3615. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3616. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3617. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3618. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3619. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3620. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3621. #ifdef CONFIG_X86_64
  3622. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3623. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3624. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3625. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3626. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3627. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3628. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3629. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3630. #endif
  3631. kvm_rip_write(vcpu, regs->rip);
  3632. kvm_set_rflags(vcpu, regs->rflags);
  3633. vcpu->arch.exception.pending = false;
  3634. vcpu_put(vcpu);
  3635. return 0;
  3636. }
  3637. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3638. struct kvm_segment *var, int seg)
  3639. {
  3640. kvm_x86_ops->get_segment(vcpu, var, seg);
  3641. }
  3642. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3643. {
  3644. struct kvm_segment cs;
  3645. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3646. *db = cs.db;
  3647. *l = cs.l;
  3648. }
  3649. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3650. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3651. struct kvm_sregs *sregs)
  3652. {
  3653. struct descriptor_table dt;
  3654. vcpu_load(vcpu);
  3655. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3656. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3657. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3658. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3659. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3660. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3661. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3662. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3663. kvm_x86_ops->get_idt(vcpu, &dt);
  3664. sregs->idt.limit = dt.limit;
  3665. sregs->idt.base = dt.base;
  3666. kvm_x86_ops->get_gdt(vcpu, &dt);
  3667. sregs->gdt.limit = dt.limit;
  3668. sregs->gdt.base = dt.base;
  3669. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3670. sregs->cr0 = vcpu->arch.cr0;
  3671. sregs->cr2 = vcpu->arch.cr2;
  3672. sregs->cr3 = vcpu->arch.cr3;
  3673. sregs->cr4 = vcpu->arch.cr4;
  3674. sregs->cr8 = kvm_get_cr8(vcpu);
  3675. sregs->efer = vcpu->arch.shadow_efer;
  3676. sregs->apic_base = kvm_get_apic_base(vcpu);
  3677. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3678. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3679. set_bit(vcpu->arch.interrupt.nr,
  3680. (unsigned long *)sregs->interrupt_bitmap);
  3681. vcpu_put(vcpu);
  3682. return 0;
  3683. }
  3684. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3685. struct kvm_mp_state *mp_state)
  3686. {
  3687. vcpu_load(vcpu);
  3688. mp_state->mp_state = vcpu->arch.mp_state;
  3689. vcpu_put(vcpu);
  3690. return 0;
  3691. }
  3692. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3693. struct kvm_mp_state *mp_state)
  3694. {
  3695. vcpu_load(vcpu);
  3696. vcpu->arch.mp_state = mp_state->mp_state;
  3697. vcpu_put(vcpu);
  3698. return 0;
  3699. }
  3700. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3701. struct kvm_segment *var, int seg)
  3702. {
  3703. kvm_x86_ops->set_segment(vcpu, var, seg);
  3704. }
  3705. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3706. struct kvm_segment *kvm_desct)
  3707. {
  3708. kvm_desct->base = get_desc_base(seg_desc);
  3709. kvm_desct->limit = get_desc_limit(seg_desc);
  3710. if (seg_desc->g) {
  3711. kvm_desct->limit <<= 12;
  3712. kvm_desct->limit |= 0xfff;
  3713. }
  3714. kvm_desct->selector = selector;
  3715. kvm_desct->type = seg_desc->type;
  3716. kvm_desct->present = seg_desc->p;
  3717. kvm_desct->dpl = seg_desc->dpl;
  3718. kvm_desct->db = seg_desc->d;
  3719. kvm_desct->s = seg_desc->s;
  3720. kvm_desct->l = seg_desc->l;
  3721. kvm_desct->g = seg_desc->g;
  3722. kvm_desct->avl = seg_desc->avl;
  3723. if (!selector)
  3724. kvm_desct->unusable = 1;
  3725. else
  3726. kvm_desct->unusable = 0;
  3727. kvm_desct->padding = 0;
  3728. }
  3729. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3730. u16 selector,
  3731. struct descriptor_table *dtable)
  3732. {
  3733. if (selector & 1 << 2) {
  3734. struct kvm_segment kvm_seg;
  3735. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3736. if (kvm_seg.unusable)
  3737. dtable->limit = 0;
  3738. else
  3739. dtable->limit = kvm_seg.limit;
  3740. dtable->base = kvm_seg.base;
  3741. }
  3742. else
  3743. kvm_x86_ops->get_gdt(vcpu, dtable);
  3744. }
  3745. /* allowed just for 8 bytes segments */
  3746. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3747. struct desc_struct *seg_desc)
  3748. {
  3749. struct descriptor_table dtable;
  3750. u16 index = selector >> 3;
  3751. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3752. if (dtable.limit < index * 8 + 7) {
  3753. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3754. return 1;
  3755. }
  3756. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3757. }
  3758. /* allowed just for 8 bytes segments */
  3759. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3760. struct desc_struct *seg_desc)
  3761. {
  3762. struct descriptor_table dtable;
  3763. u16 index = selector >> 3;
  3764. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3765. if (dtable.limit < index * 8 + 7)
  3766. return 1;
  3767. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3768. }
  3769. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3770. struct desc_struct *seg_desc)
  3771. {
  3772. u32 base_addr = get_desc_base(seg_desc);
  3773. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3774. }
  3775. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3776. {
  3777. struct kvm_segment kvm_seg;
  3778. kvm_get_segment(vcpu, &kvm_seg, seg);
  3779. return kvm_seg.selector;
  3780. }
  3781. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3782. u16 selector,
  3783. struct kvm_segment *kvm_seg)
  3784. {
  3785. struct desc_struct seg_desc;
  3786. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3787. return 1;
  3788. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3789. return 0;
  3790. }
  3791. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3792. {
  3793. struct kvm_segment segvar = {
  3794. .base = selector << 4,
  3795. .limit = 0xffff,
  3796. .selector = selector,
  3797. .type = 3,
  3798. .present = 1,
  3799. .dpl = 3,
  3800. .db = 0,
  3801. .s = 1,
  3802. .l = 0,
  3803. .g = 0,
  3804. .avl = 0,
  3805. .unusable = 0,
  3806. };
  3807. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3808. return 0;
  3809. }
  3810. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3811. {
  3812. return (seg != VCPU_SREG_LDTR) &&
  3813. (seg != VCPU_SREG_TR) &&
  3814. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3815. }
  3816. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3817. int type_bits, int seg)
  3818. {
  3819. struct kvm_segment kvm_seg;
  3820. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3821. return kvm_load_realmode_segment(vcpu, selector, seg);
  3822. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3823. return 1;
  3824. kvm_seg.type |= type_bits;
  3825. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3826. seg != VCPU_SREG_LDTR)
  3827. if (!kvm_seg.s)
  3828. kvm_seg.unusable = 1;
  3829. kvm_set_segment(vcpu, &kvm_seg, seg);
  3830. return 0;
  3831. }
  3832. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3833. struct tss_segment_32 *tss)
  3834. {
  3835. tss->cr3 = vcpu->arch.cr3;
  3836. tss->eip = kvm_rip_read(vcpu);
  3837. tss->eflags = kvm_get_rflags(vcpu);
  3838. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3839. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3840. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3841. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3842. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3843. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3844. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3845. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3846. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3847. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3848. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3849. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3850. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3851. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3852. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3853. }
  3854. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3855. struct tss_segment_32 *tss)
  3856. {
  3857. kvm_set_cr3(vcpu, tss->cr3);
  3858. kvm_rip_write(vcpu, tss->eip);
  3859. kvm_set_rflags(vcpu, tss->eflags | 2);
  3860. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3861. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3862. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3863. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3864. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3865. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3866. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3867. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3868. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3869. return 1;
  3870. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3871. return 1;
  3872. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3873. return 1;
  3874. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3875. return 1;
  3876. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3877. return 1;
  3878. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3879. return 1;
  3880. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3881. return 1;
  3882. return 0;
  3883. }
  3884. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3885. struct tss_segment_16 *tss)
  3886. {
  3887. tss->ip = kvm_rip_read(vcpu);
  3888. tss->flag = kvm_get_rflags(vcpu);
  3889. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3890. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3891. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3892. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3893. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3894. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3895. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3896. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3897. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3898. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3899. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3900. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3901. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3902. }
  3903. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3904. struct tss_segment_16 *tss)
  3905. {
  3906. kvm_rip_write(vcpu, tss->ip);
  3907. kvm_set_rflags(vcpu, tss->flag | 2);
  3908. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3909. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3910. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3911. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3912. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3913. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3914. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3915. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3916. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3917. return 1;
  3918. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3919. return 1;
  3920. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3921. return 1;
  3922. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3923. return 1;
  3924. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3925. return 1;
  3926. return 0;
  3927. }
  3928. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3929. u16 old_tss_sel, u32 old_tss_base,
  3930. struct desc_struct *nseg_desc)
  3931. {
  3932. struct tss_segment_16 tss_segment_16;
  3933. int ret = 0;
  3934. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3935. sizeof tss_segment_16))
  3936. goto out;
  3937. save_state_to_tss16(vcpu, &tss_segment_16);
  3938. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3939. sizeof tss_segment_16))
  3940. goto out;
  3941. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3942. &tss_segment_16, sizeof tss_segment_16))
  3943. goto out;
  3944. if (old_tss_sel != 0xffff) {
  3945. tss_segment_16.prev_task_link = old_tss_sel;
  3946. if (kvm_write_guest(vcpu->kvm,
  3947. get_tss_base_addr(vcpu, nseg_desc),
  3948. &tss_segment_16.prev_task_link,
  3949. sizeof tss_segment_16.prev_task_link))
  3950. goto out;
  3951. }
  3952. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3953. goto out;
  3954. ret = 1;
  3955. out:
  3956. return ret;
  3957. }
  3958. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3959. u16 old_tss_sel, u32 old_tss_base,
  3960. struct desc_struct *nseg_desc)
  3961. {
  3962. struct tss_segment_32 tss_segment_32;
  3963. int ret = 0;
  3964. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3965. sizeof tss_segment_32))
  3966. goto out;
  3967. save_state_to_tss32(vcpu, &tss_segment_32);
  3968. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3969. sizeof tss_segment_32))
  3970. goto out;
  3971. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3972. &tss_segment_32, sizeof tss_segment_32))
  3973. goto out;
  3974. if (old_tss_sel != 0xffff) {
  3975. tss_segment_32.prev_task_link = old_tss_sel;
  3976. if (kvm_write_guest(vcpu->kvm,
  3977. get_tss_base_addr(vcpu, nseg_desc),
  3978. &tss_segment_32.prev_task_link,
  3979. sizeof tss_segment_32.prev_task_link))
  3980. goto out;
  3981. }
  3982. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3983. goto out;
  3984. ret = 1;
  3985. out:
  3986. return ret;
  3987. }
  3988. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3989. {
  3990. struct kvm_segment tr_seg;
  3991. struct desc_struct cseg_desc;
  3992. struct desc_struct nseg_desc;
  3993. int ret = 0;
  3994. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3995. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3996. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3997. /* FIXME: Handle errors. Failure to read either TSS or their
  3998. * descriptors should generate a pagefault.
  3999. */
  4000. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4001. goto out;
  4002. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4003. goto out;
  4004. if (reason != TASK_SWITCH_IRET) {
  4005. int cpl;
  4006. cpl = kvm_x86_ops->get_cpl(vcpu);
  4007. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4008. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4009. return 1;
  4010. }
  4011. }
  4012. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4013. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4014. return 1;
  4015. }
  4016. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4017. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4018. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4019. }
  4020. if (reason == TASK_SWITCH_IRET) {
  4021. u32 eflags = kvm_get_rflags(vcpu);
  4022. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4023. }
  4024. /* set back link to prev task only if NT bit is set in eflags
  4025. note that old_tss_sel is not used afetr this point */
  4026. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4027. old_tss_sel = 0xffff;
  4028. if (nseg_desc.type & 8)
  4029. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4030. old_tss_base, &nseg_desc);
  4031. else
  4032. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4033. old_tss_base, &nseg_desc);
  4034. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4035. u32 eflags = kvm_get_rflags(vcpu);
  4036. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4037. }
  4038. if (reason != TASK_SWITCH_IRET) {
  4039. nseg_desc.type |= (1 << 1);
  4040. save_guest_segment_descriptor(vcpu, tss_selector,
  4041. &nseg_desc);
  4042. }
  4043. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  4044. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4045. tr_seg.type = 11;
  4046. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4047. out:
  4048. return ret;
  4049. }
  4050. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4051. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4052. struct kvm_sregs *sregs)
  4053. {
  4054. int mmu_reset_needed = 0;
  4055. int pending_vec, max_bits;
  4056. struct descriptor_table dt;
  4057. vcpu_load(vcpu);
  4058. dt.limit = sregs->idt.limit;
  4059. dt.base = sregs->idt.base;
  4060. kvm_x86_ops->set_idt(vcpu, &dt);
  4061. dt.limit = sregs->gdt.limit;
  4062. dt.base = sregs->gdt.base;
  4063. kvm_x86_ops->set_gdt(vcpu, &dt);
  4064. vcpu->arch.cr2 = sregs->cr2;
  4065. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4066. vcpu->arch.cr3 = sregs->cr3;
  4067. kvm_set_cr8(vcpu, sregs->cr8);
  4068. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  4069. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4070. kvm_set_apic_base(vcpu, sregs->apic_base);
  4071. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  4072. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4073. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4074. vcpu->arch.cr0 = sregs->cr0;
  4075. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  4076. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4077. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4078. load_pdptrs(vcpu, vcpu->arch.cr3);
  4079. mmu_reset_needed = 1;
  4080. }
  4081. if (mmu_reset_needed)
  4082. kvm_mmu_reset_context(vcpu);
  4083. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4084. pending_vec = find_first_bit(
  4085. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4086. if (pending_vec < max_bits) {
  4087. kvm_queue_interrupt(vcpu, pending_vec, false);
  4088. pr_debug("Set back pending irq %d\n", pending_vec);
  4089. if (irqchip_in_kernel(vcpu->kvm))
  4090. kvm_pic_clear_isr_ack(vcpu->kvm);
  4091. }
  4092. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4093. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4094. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4095. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4096. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4097. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4098. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4099. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4100. update_cr8_intercept(vcpu);
  4101. /* Older userspace won't unhalt the vcpu on reset. */
  4102. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4103. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4104. !(vcpu->arch.cr0 & X86_CR0_PE))
  4105. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4106. vcpu_put(vcpu);
  4107. return 0;
  4108. }
  4109. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4110. struct kvm_guest_debug *dbg)
  4111. {
  4112. unsigned long rflags;
  4113. int i, r;
  4114. vcpu_load(vcpu);
  4115. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4116. r = -EBUSY;
  4117. if (vcpu->arch.exception.pending)
  4118. goto unlock_out;
  4119. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4120. kvm_queue_exception(vcpu, DB_VECTOR);
  4121. else
  4122. kvm_queue_exception(vcpu, BP_VECTOR);
  4123. }
  4124. /*
  4125. * Read rflags as long as potentially injected trace flags are still
  4126. * filtered out.
  4127. */
  4128. rflags = kvm_get_rflags(vcpu);
  4129. vcpu->guest_debug = dbg->control;
  4130. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4131. vcpu->guest_debug = 0;
  4132. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4133. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4134. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4135. vcpu->arch.switch_db_regs =
  4136. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4137. } else {
  4138. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4139. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4140. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4141. }
  4142. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4143. vcpu->arch.singlestep_cs =
  4144. get_segment_selector(vcpu, VCPU_SREG_CS);
  4145. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4146. }
  4147. /*
  4148. * Trigger an rflags update that will inject or remove the trace
  4149. * flags.
  4150. */
  4151. kvm_set_rflags(vcpu, rflags);
  4152. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4153. r = 0;
  4154. unlock_out:
  4155. vcpu_put(vcpu);
  4156. return r;
  4157. }
  4158. /*
  4159. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4160. * we have asm/x86/processor.h
  4161. */
  4162. struct fxsave {
  4163. u16 cwd;
  4164. u16 swd;
  4165. u16 twd;
  4166. u16 fop;
  4167. u64 rip;
  4168. u64 rdp;
  4169. u32 mxcsr;
  4170. u32 mxcsr_mask;
  4171. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4172. #ifdef CONFIG_X86_64
  4173. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4174. #else
  4175. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4176. #endif
  4177. };
  4178. /*
  4179. * Translate a guest virtual address to a guest physical address.
  4180. */
  4181. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4182. struct kvm_translation *tr)
  4183. {
  4184. unsigned long vaddr = tr->linear_address;
  4185. gpa_t gpa;
  4186. vcpu_load(vcpu);
  4187. down_read(&vcpu->kvm->slots_lock);
  4188. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4189. up_read(&vcpu->kvm->slots_lock);
  4190. tr->physical_address = gpa;
  4191. tr->valid = gpa != UNMAPPED_GVA;
  4192. tr->writeable = 1;
  4193. tr->usermode = 0;
  4194. vcpu_put(vcpu);
  4195. return 0;
  4196. }
  4197. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4198. {
  4199. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4200. vcpu_load(vcpu);
  4201. memcpy(fpu->fpr, fxsave->st_space, 128);
  4202. fpu->fcw = fxsave->cwd;
  4203. fpu->fsw = fxsave->swd;
  4204. fpu->ftwx = fxsave->twd;
  4205. fpu->last_opcode = fxsave->fop;
  4206. fpu->last_ip = fxsave->rip;
  4207. fpu->last_dp = fxsave->rdp;
  4208. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4209. vcpu_put(vcpu);
  4210. return 0;
  4211. }
  4212. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4213. {
  4214. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4215. vcpu_load(vcpu);
  4216. memcpy(fxsave->st_space, fpu->fpr, 128);
  4217. fxsave->cwd = fpu->fcw;
  4218. fxsave->swd = fpu->fsw;
  4219. fxsave->twd = fpu->ftwx;
  4220. fxsave->fop = fpu->last_opcode;
  4221. fxsave->rip = fpu->last_ip;
  4222. fxsave->rdp = fpu->last_dp;
  4223. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4224. vcpu_put(vcpu);
  4225. return 0;
  4226. }
  4227. void fx_init(struct kvm_vcpu *vcpu)
  4228. {
  4229. unsigned after_mxcsr_mask;
  4230. /*
  4231. * Touch the fpu the first time in non atomic context as if
  4232. * this is the first fpu instruction the exception handler
  4233. * will fire before the instruction returns and it'll have to
  4234. * allocate ram with GFP_KERNEL.
  4235. */
  4236. if (!used_math())
  4237. kvm_fx_save(&vcpu->arch.host_fx_image);
  4238. /* Initialize guest FPU by resetting ours and saving into guest's */
  4239. preempt_disable();
  4240. kvm_fx_save(&vcpu->arch.host_fx_image);
  4241. kvm_fx_finit();
  4242. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4243. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4244. preempt_enable();
  4245. vcpu->arch.cr0 |= X86_CR0_ET;
  4246. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4247. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4248. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4249. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4250. }
  4251. EXPORT_SYMBOL_GPL(fx_init);
  4252. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4253. {
  4254. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4255. return;
  4256. vcpu->guest_fpu_loaded = 1;
  4257. kvm_fx_save(&vcpu->arch.host_fx_image);
  4258. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4259. }
  4260. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4261. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4262. {
  4263. if (!vcpu->guest_fpu_loaded)
  4264. return;
  4265. vcpu->guest_fpu_loaded = 0;
  4266. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4267. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4268. ++vcpu->stat.fpu_reload;
  4269. }
  4270. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4271. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4272. {
  4273. if (vcpu->arch.time_page) {
  4274. kvm_release_page_dirty(vcpu->arch.time_page);
  4275. vcpu->arch.time_page = NULL;
  4276. }
  4277. kvm_x86_ops->vcpu_free(vcpu);
  4278. }
  4279. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4280. unsigned int id)
  4281. {
  4282. return kvm_x86_ops->vcpu_create(kvm, id);
  4283. }
  4284. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4285. {
  4286. int r;
  4287. /* We do fxsave: this must be aligned. */
  4288. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4289. vcpu->arch.mtrr_state.have_fixed = 1;
  4290. vcpu_load(vcpu);
  4291. r = kvm_arch_vcpu_reset(vcpu);
  4292. if (r == 0)
  4293. r = kvm_mmu_setup(vcpu);
  4294. vcpu_put(vcpu);
  4295. if (r < 0)
  4296. goto free_vcpu;
  4297. return 0;
  4298. free_vcpu:
  4299. kvm_x86_ops->vcpu_free(vcpu);
  4300. return r;
  4301. }
  4302. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4303. {
  4304. vcpu_load(vcpu);
  4305. kvm_mmu_unload(vcpu);
  4306. vcpu_put(vcpu);
  4307. kvm_x86_ops->vcpu_free(vcpu);
  4308. }
  4309. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4310. {
  4311. vcpu->arch.nmi_pending = false;
  4312. vcpu->arch.nmi_injected = false;
  4313. vcpu->arch.switch_db_regs = 0;
  4314. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4315. vcpu->arch.dr6 = DR6_FIXED_1;
  4316. vcpu->arch.dr7 = DR7_FIXED_1;
  4317. return kvm_x86_ops->vcpu_reset(vcpu);
  4318. }
  4319. int kvm_arch_hardware_enable(void *garbage)
  4320. {
  4321. /*
  4322. * Since this may be called from a hotplug notifcation,
  4323. * we can't get the CPU frequency directly.
  4324. */
  4325. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4326. int cpu = raw_smp_processor_id();
  4327. per_cpu(cpu_tsc_khz, cpu) = 0;
  4328. }
  4329. kvm_shared_msr_cpu_online();
  4330. return kvm_x86_ops->hardware_enable(garbage);
  4331. }
  4332. void kvm_arch_hardware_disable(void *garbage)
  4333. {
  4334. kvm_x86_ops->hardware_disable(garbage);
  4335. drop_user_return_notifiers(garbage);
  4336. }
  4337. int kvm_arch_hardware_setup(void)
  4338. {
  4339. return kvm_x86_ops->hardware_setup();
  4340. }
  4341. void kvm_arch_hardware_unsetup(void)
  4342. {
  4343. kvm_x86_ops->hardware_unsetup();
  4344. }
  4345. void kvm_arch_check_processor_compat(void *rtn)
  4346. {
  4347. kvm_x86_ops->check_processor_compatibility(rtn);
  4348. }
  4349. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4350. {
  4351. struct page *page;
  4352. struct kvm *kvm;
  4353. int r;
  4354. BUG_ON(vcpu->kvm == NULL);
  4355. kvm = vcpu->kvm;
  4356. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4357. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4358. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4359. else
  4360. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4361. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4362. if (!page) {
  4363. r = -ENOMEM;
  4364. goto fail;
  4365. }
  4366. vcpu->arch.pio_data = page_address(page);
  4367. r = kvm_mmu_create(vcpu);
  4368. if (r < 0)
  4369. goto fail_free_pio_data;
  4370. if (irqchip_in_kernel(kvm)) {
  4371. r = kvm_create_lapic(vcpu);
  4372. if (r < 0)
  4373. goto fail_mmu_destroy;
  4374. }
  4375. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4376. GFP_KERNEL);
  4377. if (!vcpu->arch.mce_banks) {
  4378. r = -ENOMEM;
  4379. goto fail_mmu_destroy;
  4380. }
  4381. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4382. return 0;
  4383. fail_mmu_destroy:
  4384. kvm_mmu_destroy(vcpu);
  4385. fail_free_pio_data:
  4386. free_page((unsigned long)vcpu->arch.pio_data);
  4387. fail:
  4388. return r;
  4389. }
  4390. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4391. {
  4392. kvm_free_lapic(vcpu);
  4393. down_read(&vcpu->kvm->slots_lock);
  4394. kvm_mmu_destroy(vcpu);
  4395. up_read(&vcpu->kvm->slots_lock);
  4396. free_page((unsigned long)vcpu->arch.pio_data);
  4397. }
  4398. struct kvm *kvm_arch_create_vm(void)
  4399. {
  4400. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4401. if (!kvm)
  4402. return ERR_PTR(-ENOMEM);
  4403. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4404. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4405. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4406. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4407. rdtscll(kvm->arch.vm_init_tsc);
  4408. return kvm;
  4409. }
  4410. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4411. {
  4412. vcpu_load(vcpu);
  4413. kvm_mmu_unload(vcpu);
  4414. vcpu_put(vcpu);
  4415. }
  4416. static void kvm_free_vcpus(struct kvm *kvm)
  4417. {
  4418. unsigned int i;
  4419. struct kvm_vcpu *vcpu;
  4420. /*
  4421. * Unpin any mmu pages first.
  4422. */
  4423. kvm_for_each_vcpu(i, vcpu, kvm)
  4424. kvm_unload_vcpu_mmu(vcpu);
  4425. kvm_for_each_vcpu(i, vcpu, kvm)
  4426. kvm_arch_vcpu_free(vcpu);
  4427. mutex_lock(&kvm->lock);
  4428. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4429. kvm->vcpus[i] = NULL;
  4430. atomic_set(&kvm->online_vcpus, 0);
  4431. mutex_unlock(&kvm->lock);
  4432. }
  4433. void kvm_arch_sync_events(struct kvm *kvm)
  4434. {
  4435. kvm_free_all_assigned_devices(kvm);
  4436. }
  4437. void kvm_arch_destroy_vm(struct kvm *kvm)
  4438. {
  4439. kvm_iommu_unmap_guest(kvm);
  4440. kvm_free_pit(kvm);
  4441. kfree(kvm->arch.vpic);
  4442. kfree(kvm->arch.vioapic);
  4443. kvm_free_vcpus(kvm);
  4444. kvm_free_physmem(kvm);
  4445. if (kvm->arch.apic_access_page)
  4446. put_page(kvm->arch.apic_access_page);
  4447. if (kvm->arch.ept_identity_pagetable)
  4448. put_page(kvm->arch.ept_identity_pagetable);
  4449. kfree(kvm);
  4450. }
  4451. int kvm_arch_set_memory_region(struct kvm *kvm,
  4452. struct kvm_userspace_memory_region *mem,
  4453. struct kvm_memory_slot old,
  4454. int user_alloc)
  4455. {
  4456. int npages = mem->memory_size >> PAGE_SHIFT;
  4457. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4458. /*To keep backward compatibility with older userspace,
  4459. *x86 needs to hanlde !user_alloc case.
  4460. */
  4461. if (!user_alloc) {
  4462. if (npages && !old.rmap) {
  4463. unsigned long userspace_addr;
  4464. down_write(&current->mm->mmap_sem);
  4465. userspace_addr = do_mmap(NULL, 0,
  4466. npages * PAGE_SIZE,
  4467. PROT_READ | PROT_WRITE,
  4468. MAP_PRIVATE | MAP_ANONYMOUS,
  4469. 0);
  4470. up_write(&current->mm->mmap_sem);
  4471. if (IS_ERR((void *)userspace_addr))
  4472. return PTR_ERR((void *)userspace_addr);
  4473. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4474. spin_lock(&kvm->mmu_lock);
  4475. memslot->userspace_addr = userspace_addr;
  4476. spin_unlock(&kvm->mmu_lock);
  4477. } else {
  4478. if (!old.user_alloc && old.rmap) {
  4479. int ret;
  4480. down_write(&current->mm->mmap_sem);
  4481. ret = do_munmap(current->mm, old.userspace_addr,
  4482. old.npages * PAGE_SIZE);
  4483. up_write(&current->mm->mmap_sem);
  4484. if (ret < 0)
  4485. printk(KERN_WARNING
  4486. "kvm_vm_ioctl_set_memory_region: "
  4487. "failed to munmap memory\n");
  4488. }
  4489. }
  4490. }
  4491. spin_lock(&kvm->mmu_lock);
  4492. if (!kvm->arch.n_requested_mmu_pages) {
  4493. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4494. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4495. }
  4496. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4497. spin_unlock(&kvm->mmu_lock);
  4498. return 0;
  4499. }
  4500. void kvm_arch_flush_shadow(struct kvm *kvm)
  4501. {
  4502. kvm_mmu_zap_all(kvm);
  4503. kvm_reload_remote_mmus(kvm);
  4504. }
  4505. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4506. {
  4507. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4508. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4509. || vcpu->arch.nmi_pending ||
  4510. (kvm_arch_interrupt_allowed(vcpu) &&
  4511. kvm_cpu_has_interrupt(vcpu));
  4512. }
  4513. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4514. {
  4515. int me;
  4516. int cpu = vcpu->cpu;
  4517. if (waitqueue_active(&vcpu->wq)) {
  4518. wake_up_interruptible(&vcpu->wq);
  4519. ++vcpu->stat.halt_wakeup;
  4520. }
  4521. me = get_cpu();
  4522. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4523. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4524. smp_send_reschedule(cpu);
  4525. put_cpu();
  4526. }
  4527. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4528. {
  4529. return kvm_x86_ops->interrupt_allowed(vcpu);
  4530. }
  4531. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4532. {
  4533. unsigned long rflags;
  4534. rflags = kvm_x86_ops->get_rflags(vcpu);
  4535. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4536. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4537. return rflags;
  4538. }
  4539. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4540. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4541. {
  4542. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4543. vcpu->arch.singlestep_cs ==
  4544. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4545. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4546. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4547. kvm_x86_ops->set_rflags(vcpu, rflags);
  4548. }
  4549. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4550. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4551. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4552. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4553. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4554. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4555. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4556. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4557. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4558. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4559. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4560. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);