vmx.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. /*
  52. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  53. * ple_gap: upper bound on the amount of time between two successive
  54. * executions of PAUSE in a loop. Also indicate if ple enabled.
  55. * According to test, this time is usually small than 41 cycles.
  56. * ple_window: upper bound on the amount of time a guest is allowed to execute
  57. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  58. * less than 2^12 cycles
  59. * Time is measured based on a counter that runs at the same rate as the TSC,
  60. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  61. */
  62. #define KVM_VMX_DEFAULT_PLE_GAP 41
  63. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  64. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  65. module_param(ple_gap, int, S_IRUGO);
  66. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  67. module_param(ple_window, int, S_IRUGO);
  68. struct vmcs {
  69. u32 revision_id;
  70. u32 abort;
  71. char data[0];
  72. };
  73. struct shared_msr_entry {
  74. unsigned index;
  75. u64 data;
  76. u64 mask;
  77. };
  78. struct vcpu_vmx {
  79. struct kvm_vcpu vcpu;
  80. struct list_head local_vcpus_link;
  81. unsigned long host_rsp;
  82. int launched;
  83. u8 fail;
  84. u32 idt_vectoring_info;
  85. struct shared_msr_entry *guest_msrs;
  86. int nmsrs;
  87. int save_nmsrs;
  88. #ifdef CONFIG_X86_64
  89. u64 msr_host_kernel_gs_base;
  90. u64 msr_guest_kernel_gs_base;
  91. #endif
  92. struct vmcs *vmcs;
  93. struct {
  94. int loaded;
  95. u16 fs_sel, gs_sel, ldt_sel;
  96. int gs_ldt_reload_needed;
  97. int fs_reload_needed;
  98. } host_state;
  99. struct {
  100. int vm86_active;
  101. u8 save_iopl;
  102. struct kvm_save_segment {
  103. u16 selector;
  104. unsigned long base;
  105. u32 limit;
  106. u32 ar;
  107. } tr, es, ds, fs, gs;
  108. struct {
  109. bool pending;
  110. u8 vector;
  111. unsigned rip;
  112. } irq;
  113. } rmode;
  114. int vpid;
  115. bool emulation_required;
  116. /* Support for vnmi-less CPUs */
  117. int soft_vnmi_blocked;
  118. ktime_t entry_time;
  119. s64 vnmi_blocked_time;
  120. u32 exit_reason;
  121. };
  122. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  123. {
  124. return container_of(vcpu, struct vcpu_vmx, vcpu);
  125. }
  126. static int init_rmode(struct kvm *kvm);
  127. static u64 construct_eptp(unsigned long root_hpa);
  128. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  129. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  130. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  131. static unsigned long *vmx_io_bitmap_a;
  132. static unsigned long *vmx_io_bitmap_b;
  133. static unsigned long *vmx_msr_bitmap_legacy;
  134. static unsigned long *vmx_msr_bitmap_longmode;
  135. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  136. static DEFINE_SPINLOCK(vmx_vpid_lock);
  137. static struct vmcs_config {
  138. int size;
  139. int order;
  140. u32 revision_id;
  141. u32 pin_based_exec_ctrl;
  142. u32 cpu_based_exec_ctrl;
  143. u32 cpu_based_2nd_exec_ctrl;
  144. u32 vmexit_ctrl;
  145. u32 vmentry_ctrl;
  146. } vmcs_config;
  147. static struct vmx_capability {
  148. u32 ept;
  149. u32 vpid;
  150. } vmx_capability;
  151. #define VMX_SEGMENT_FIELD(seg) \
  152. [VCPU_SREG_##seg] = { \
  153. .selector = GUEST_##seg##_SELECTOR, \
  154. .base = GUEST_##seg##_BASE, \
  155. .limit = GUEST_##seg##_LIMIT, \
  156. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  157. }
  158. static struct kvm_vmx_segment_field {
  159. unsigned selector;
  160. unsigned base;
  161. unsigned limit;
  162. unsigned ar_bytes;
  163. } kvm_vmx_segment_fields[] = {
  164. VMX_SEGMENT_FIELD(CS),
  165. VMX_SEGMENT_FIELD(DS),
  166. VMX_SEGMENT_FIELD(ES),
  167. VMX_SEGMENT_FIELD(FS),
  168. VMX_SEGMENT_FIELD(GS),
  169. VMX_SEGMENT_FIELD(SS),
  170. VMX_SEGMENT_FIELD(TR),
  171. VMX_SEGMENT_FIELD(LDTR),
  172. };
  173. static u64 host_efer;
  174. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  175. /*
  176. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  177. * away by decrementing the array size.
  178. */
  179. static const u32 vmx_msr_index[] = {
  180. #ifdef CONFIG_X86_64
  181. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  182. #endif
  183. MSR_EFER, MSR_K6_STAR,
  184. };
  185. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  186. static inline int is_page_fault(u32 intr_info)
  187. {
  188. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  189. INTR_INFO_VALID_MASK)) ==
  190. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  191. }
  192. static inline int is_no_device(u32 intr_info)
  193. {
  194. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  195. INTR_INFO_VALID_MASK)) ==
  196. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  197. }
  198. static inline int is_invalid_opcode(u32 intr_info)
  199. {
  200. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  201. INTR_INFO_VALID_MASK)) ==
  202. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  203. }
  204. static inline int is_external_interrupt(u32 intr_info)
  205. {
  206. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  207. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  208. }
  209. static inline int is_machine_check(u32 intr_info)
  210. {
  211. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  212. INTR_INFO_VALID_MASK)) ==
  213. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  214. }
  215. static inline int cpu_has_vmx_msr_bitmap(void)
  216. {
  217. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  218. }
  219. static inline int cpu_has_vmx_tpr_shadow(void)
  220. {
  221. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  222. }
  223. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  224. {
  225. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  226. }
  227. static inline int cpu_has_secondary_exec_ctrls(void)
  228. {
  229. return vmcs_config.cpu_based_exec_ctrl &
  230. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  231. }
  232. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  233. {
  234. return vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  236. }
  237. static inline bool cpu_has_vmx_flexpriority(void)
  238. {
  239. return cpu_has_vmx_tpr_shadow() &&
  240. cpu_has_vmx_virtualize_apic_accesses();
  241. }
  242. static inline bool cpu_has_vmx_ept_execute_only(void)
  243. {
  244. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  245. }
  246. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  247. {
  248. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  249. }
  250. static inline bool cpu_has_vmx_eptp_writeback(void)
  251. {
  252. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  253. }
  254. static inline bool cpu_has_vmx_ept_2m_page(void)
  255. {
  256. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  257. }
  258. static inline int cpu_has_vmx_invept_individual_addr(void)
  259. {
  260. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  261. }
  262. static inline int cpu_has_vmx_invept_context(void)
  263. {
  264. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  265. }
  266. static inline int cpu_has_vmx_invept_global(void)
  267. {
  268. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  269. }
  270. static inline int cpu_has_vmx_ept(void)
  271. {
  272. return vmcs_config.cpu_based_2nd_exec_ctrl &
  273. SECONDARY_EXEC_ENABLE_EPT;
  274. }
  275. static inline int cpu_has_vmx_unrestricted_guest(void)
  276. {
  277. return vmcs_config.cpu_based_2nd_exec_ctrl &
  278. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  279. }
  280. static inline int cpu_has_vmx_ple(void)
  281. {
  282. return vmcs_config.cpu_based_2nd_exec_ctrl &
  283. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  284. }
  285. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  286. {
  287. return flexpriority_enabled &&
  288. (cpu_has_vmx_virtualize_apic_accesses()) &&
  289. (irqchip_in_kernel(kvm));
  290. }
  291. static inline int cpu_has_vmx_vpid(void)
  292. {
  293. return vmcs_config.cpu_based_2nd_exec_ctrl &
  294. SECONDARY_EXEC_ENABLE_VPID;
  295. }
  296. static inline int cpu_has_virtual_nmis(void)
  297. {
  298. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  299. }
  300. static inline bool report_flexpriority(void)
  301. {
  302. return flexpriority_enabled;
  303. }
  304. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  305. {
  306. int i;
  307. for (i = 0; i < vmx->nmsrs; ++i)
  308. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  309. return i;
  310. return -1;
  311. }
  312. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  313. {
  314. struct {
  315. u64 vpid : 16;
  316. u64 rsvd : 48;
  317. u64 gva;
  318. } operand = { vpid, 0, gva };
  319. asm volatile (__ex(ASM_VMX_INVVPID)
  320. /* CF==1 or ZF==1 --> rc = -1 */
  321. "; ja 1f ; ud2 ; 1:"
  322. : : "a"(&operand), "c"(ext) : "cc", "memory");
  323. }
  324. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  325. {
  326. struct {
  327. u64 eptp, gpa;
  328. } operand = {eptp, gpa};
  329. asm volatile (__ex(ASM_VMX_INVEPT)
  330. /* CF==1 or ZF==1 --> rc = -1 */
  331. "; ja 1f ; ud2 ; 1:\n"
  332. : : "a" (&operand), "c" (ext) : "cc", "memory");
  333. }
  334. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  335. {
  336. int i;
  337. i = __find_msr_index(vmx, msr);
  338. if (i >= 0)
  339. return &vmx->guest_msrs[i];
  340. return NULL;
  341. }
  342. static void vmcs_clear(struct vmcs *vmcs)
  343. {
  344. u64 phys_addr = __pa(vmcs);
  345. u8 error;
  346. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  347. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  348. : "cc", "memory");
  349. if (error)
  350. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  351. vmcs, phys_addr);
  352. }
  353. static void __vcpu_clear(void *arg)
  354. {
  355. struct vcpu_vmx *vmx = arg;
  356. int cpu = raw_smp_processor_id();
  357. if (vmx->vcpu.cpu == cpu)
  358. vmcs_clear(vmx->vmcs);
  359. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  360. per_cpu(current_vmcs, cpu) = NULL;
  361. rdtscll(vmx->vcpu.arch.host_tsc);
  362. list_del(&vmx->local_vcpus_link);
  363. vmx->vcpu.cpu = -1;
  364. vmx->launched = 0;
  365. }
  366. static void vcpu_clear(struct vcpu_vmx *vmx)
  367. {
  368. if (vmx->vcpu.cpu == -1)
  369. return;
  370. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  371. }
  372. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  373. {
  374. if (vmx->vpid == 0)
  375. return;
  376. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  377. }
  378. static inline void ept_sync_global(void)
  379. {
  380. if (cpu_has_vmx_invept_global())
  381. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  382. }
  383. static inline void ept_sync_context(u64 eptp)
  384. {
  385. if (enable_ept) {
  386. if (cpu_has_vmx_invept_context())
  387. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  388. else
  389. ept_sync_global();
  390. }
  391. }
  392. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  393. {
  394. if (enable_ept) {
  395. if (cpu_has_vmx_invept_individual_addr())
  396. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  397. eptp, gpa);
  398. else
  399. ept_sync_context(eptp);
  400. }
  401. }
  402. static unsigned long vmcs_readl(unsigned long field)
  403. {
  404. unsigned long value;
  405. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  406. : "=a"(value) : "d"(field) : "cc");
  407. return value;
  408. }
  409. static u16 vmcs_read16(unsigned long field)
  410. {
  411. return vmcs_readl(field);
  412. }
  413. static u32 vmcs_read32(unsigned long field)
  414. {
  415. return vmcs_readl(field);
  416. }
  417. static u64 vmcs_read64(unsigned long field)
  418. {
  419. #ifdef CONFIG_X86_64
  420. return vmcs_readl(field);
  421. #else
  422. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  423. #endif
  424. }
  425. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  426. {
  427. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  428. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  429. dump_stack();
  430. }
  431. static void vmcs_writel(unsigned long field, unsigned long value)
  432. {
  433. u8 error;
  434. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  435. : "=q"(error) : "a"(value), "d"(field) : "cc");
  436. if (unlikely(error))
  437. vmwrite_error(field, value);
  438. }
  439. static void vmcs_write16(unsigned long field, u16 value)
  440. {
  441. vmcs_writel(field, value);
  442. }
  443. static void vmcs_write32(unsigned long field, u32 value)
  444. {
  445. vmcs_writel(field, value);
  446. }
  447. static void vmcs_write64(unsigned long field, u64 value)
  448. {
  449. vmcs_writel(field, value);
  450. #ifndef CONFIG_X86_64
  451. asm volatile ("");
  452. vmcs_writel(field+1, value >> 32);
  453. #endif
  454. }
  455. static void vmcs_clear_bits(unsigned long field, u32 mask)
  456. {
  457. vmcs_writel(field, vmcs_readl(field) & ~mask);
  458. }
  459. static void vmcs_set_bits(unsigned long field, u32 mask)
  460. {
  461. vmcs_writel(field, vmcs_readl(field) | mask);
  462. }
  463. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  464. {
  465. u32 eb;
  466. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  467. if (!vcpu->fpu_active)
  468. eb |= 1u << NM_VECTOR;
  469. /*
  470. * Unconditionally intercept #DB so we can maintain dr6 without
  471. * reading it every exit.
  472. */
  473. eb |= 1u << DB_VECTOR;
  474. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  475. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  476. eb |= 1u << BP_VECTOR;
  477. }
  478. if (to_vmx(vcpu)->rmode.vm86_active)
  479. eb = ~0;
  480. if (enable_ept)
  481. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  482. vmcs_write32(EXCEPTION_BITMAP, eb);
  483. }
  484. static void reload_tss(void)
  485. {
  486. /*
  487. * VT restores TR but not its size. Useless.
  488. */
  489. struct descriptor_table gdt;
  490. struct desc_struct *descs;
  491. kvm_get_gdt(&gdt);
  492. descs = (void *)gdt.base;
  493. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  494. load_TR_desc();
  495. }
  496. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  497. {
  498. u64 guest_efer;
  499. u64 ignore_bits;
  500. guest_efer = vmx->vcpu.arch.shadow_efer;
  501. /*
  502. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  503. * outside long mode
  504. */
  505. ignore_bits = EFER_NX | EFER_SCE;
  506. #ifdef CONFIG_X86_64
  507. ignore_bits |= EFER_LMA | EFER_LME;
  508. /* SCE is meaningful only in long mode on Intel */
  509. if (guest_efer & EFER_LMA)
  510. ignore_bits &= ~(u64)EFER_SCE;
  511. #endif
  512. guest_efer &= ~ignore_bits;
  513. guest_efer |= host_efer & ignore_bits;
  514. vmx->guest_msrs[efer_offset].data = guest_efer;
  515. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  516. return true;
  517. }
  518. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  519. {
  520. struct vcpu_vmx *vmx = to_vmx(vcpu);
  521. int i;
  522. if (vmx->host_state.loaded)
  523. return;
  524. vmx->host_state.loaded = 1;
  525. /*
  526. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  527. * allow segment selectors with cpl > 0 or ti == 1.
  528. */
  529. vmx->host_state.ldt_sel = kvm_read_ldt();
  530. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  531. vmx->host_state.fs_sel = kvm_read_fs();
  532. if (!(vmx->host_state.fs_sel & 7)) {
  533. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  534. vmx->host_state.fs_reload_needed = 0;
  535. } else {
  536. vmcs_write16(HOST_FS_SELECTOR, 0);
  537. vmx->host_state.fs_reload_needed = 1;
  538. }
  539. vmx->host_state.gs_sel = kvm_read_gs();
  540. if (!(vmx->host_state.gs_sel & 7))
  541. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  542. else {
  543. vmcs_write16(HOST_GS_SELECTOR, 0);
  544. vmx->host_state.gs_ldt_reload_needed = 1;
  545. }
  546. #ifdef CONFIG_X86_64
  547. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  548. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  549. #else
  550. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  551. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  552. #endif
  553. #ifdef CONFIG_X86_64
  554. if (is_long_mode(&vmx->vcpu)) {
  555. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  556. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  557. }
  558. #endif
  559. for (i = 0; i < vmx->save_nmsrs; ++i)
  560. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  561. vmx->guest_msrs[i].data,
  562. vmx->guest_msrs[i].mask);
  563. }
  564. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  565. {
  566. unsigned long flags;
  567. if (!vmx->host_state.loaded)
  568. return;
  569. ++vmx->vcpu.stat.host_state_reload;
  570. vmx->host_state.loaded = 0;
  571. if (vmx->host_state.fs_reload_needed)
  572. kvm_load_fs(vmx->host_state.fs_sel);
  573. if (vmx->host_state.gs_ldt_reload_needed) {
  574. kvm_load_ldt(vmx->host_state.ldt_sel);
  575. /*
  576. * If we have to reload gs, we must take care to
  577. * preserve our gs base.
  578. */
  579. local_irq_save(flags);
  580. kvm_load_gs(vmx->host_state.gs_sel);
  581. #ifdef CONFIG_X86_64
  582. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  583. #endif
  584. local_irq_restore(flags);
  585. }
  586. reload_tss();
  587. #ifdef CONFIG_X86_64
  588. if (is_long_mode(&vmx->vcpu)) {
  589. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  590. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  591. }
  592. #endif
  593. }
  594. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  595. {
  596. preempt_disable();
  597. __vmx_load_host_state(vmx);
  598. preempt_enable();
  599. }
  600. /*
  601. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  602. * vcpu mutex is already taken.
  603. */
  604. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  605. {
  606. struct vcpu_vmx *vmx = to_vmx(vcpu);
  607. u64 phys_addr = __pa(vmx->vmcs);
  608. u64 tsc_this, delta, new_offset;
  609. if (vcpu->cpu != cpu) {
  610. vcpu_clear(vmx);
  611. kvm_migrate_timers(vcpu);
  612. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  613. local_irq_disable();
  614. list_add(&vmx->local_vcpus_link,
  615. &per_cpu(vcpus_on_cpu, cpu));
  616. local_irq_enable();
  617. }
  618. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  619. u8 error;
  620. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  621. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  622. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  623. : "cc");
  624. if (error)
  625. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  626. vmx->vmcs, phys_addr);
  627. }
  628. if (vcpu->cpu != cpu) {
  629. struct descriptor_table dt;
  630. unsigned long sysenter_esp;
  631. vcpu->cpu = cpu;
  632. /*
  633. * Linux uses per-cpu TSS and GDT, so set these when switching
  634. * processors.
  635. */
  636. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  637. kvm_get_gdt(&dt);
  638. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  639. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  640. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  641. /*
  642. * Make sure the time stamp counter is monotonous.
  643. */
  644. rdtscll(tsc_this);
  645. if (tsc_this < vcpu->arch.host_tsc) {
  646. delta = vcpu->arch.host_tsc - tsc_this;
  647. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  648. vmcs_write64(TSC_OFFSET, new_offset);
  649. }
  650. }
  651. }
  652. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  653. {
  654. __vmx_load_host_state(to_vmx(vcpu));
  655. }
  656. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  657. {
  658. if (vcpu->fpu_active)
  659. return;
  660. vcpu->fpu_active = 1;
  661. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  662. if (vcpu->arch.cr0 & X86_CR0_TS)
  663. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  664. update_exception_bitmap(vcpu);
  665. }
  666. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  667. {
  668. if (!vcpu->fpu_active)
  669. return;
  670. vcpu->fpu_active = 0;
  671. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  672. update_exception_bitmap(vcpu);
  673. }
  674. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  675. {
  676. unsigned long rflags;
  677. rflags = vmcs_readl(GUEST_RFLAGS);
  678. if (to_vmx(vcpu)->rmode.vm86_active)
  679. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  680. return rflags;
  681. }
  682. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  683. {
  684. if (to_vmx(vcpu)->rmode.vm86_active)
  685. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  686. vmcs_writel(GUEST_RFLAGS, rflags);
  687. }
  688. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  689. {
  690. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  691. int ret = 0;
  692. if (interruptibility & GUEST_INTR_STATE_STI)
  693. ret |= X86_SHADOW_INT_STI;
  694. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  695. ret |= X86_SHADOW_INT_MOV_SS;
  696. return ret & mask;
  697. }
  698. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  699. {
  700. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  701. u32 interruptibility = interruptibility_old;
  702. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  703. if (mask & X86_SHADOW_INT_MOV_SS)
  704. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  705. if (mask & X86_SHADOW_INT_STI)
  706. interruptibility |= GUEST_INTR_STATE_STI;
  707. if ((interruptibility != interruptibility_old))
  708. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  709. }
  710. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  711. {
  712. unsigned long rip;
  713. rip = kvm_rip_read(vcpu);
  714. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  715. kvm_rip_write(vcpu, rip);
  716. /* skipping an emulated instruction also counts */
  717. vmx_set_interrupt_shadow(vcpu, 0);
  718. }
  719. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  720. bool has_error_code, u32 error_code)
  721. {
  722. struct vcpu_vmx *vmx = to_vmx(vcpu);
  723. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  724. if (has_error_code) {
  725. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  726. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  727. }
  728. if (vmx->rmode.vm86_active) {
  729. vmx->rmode.irq.pending = true;
  730. vmx->rmode.irq.vector = nr;
  731. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  732. if (kvm_exception_is_soft(nr))
  733. vmx->rmode.irq.rip +=
  734. vmx->vcpu.arch.event_exit_inst_len;
  735. intr_info |= INTR_TYPE_SOFT_INTR;
  736. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  737. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  738. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  739. return;
  740. }
  741. if (kvm_exception_is_soft(nr)) {
  742. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  743. vmx->vcpu.arch.event_exit_inst_len);
  744. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  745. } else
  746. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  747. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  748. }
  749. /*
  750. * Swap MSR entry in host/guest MSR entry array.
  751. */
  752. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  753. {
  754. struct shared_msr_entry tmp;
  755. tmp = vmx->guest_msrs[to];
  756. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  757. vmx->guest_msrs[from] = tmp;
  758. }
  759. /*
  760. * Set up the vmcs to automatically save and restore system
  761. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  762. * mode, as fiddling with msrs is very expensive.
  763. */
  764. static void setup_msrs(struct vcpu_vmx *vmx)
  765. {
  766. int save_nmsrs, index;
  767. unsigned long *msr_bitmap;
  768. vmx_load_host_state(vmx);
  769. save_nmsrs = 0;
  770. #ifdef CONFIG_X86_64
  771. if (is_long_mode(&vmx->vcpu)) {
  772. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  773. if (index >= 0)
  774. move_msr_up(vmx, index, save_nmsrs++);
  775. index = __find_msr_index(vmx, MSR_LSTAR);
  776. if (index >= 0)
  777. move_msr_up(vmx, index, save_nmsrs++);
  778. index = __find_msr_index(vmx, MSR_CSTAR);
  779. if (index >= 0)
  780. move_msr_up(vmx, index, save_nmsrs++);
  781. /*
  782. * MSR_K6_STAR is only needed on long mode guests, and only
  783. * if efer.sce is enabled.
  784. */
  785. index = __find_msr_index(vmx, MSR_K6_STAR);
  786. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  787. move_msr_up(vmx, index, save_nmsrs++);
  788. }
  789. #endif
  790. index = __find_msr_index(vmx, MSR_EFER);
  791. if (index >= 0 && update_transition_efer(vmx, index))
  792. move_msr_up(vmx, index, save_nmsrs++);
  793. vmx->save_nmsrs = save_nmsrs;
  794. if (cpu_has_vmx_msr_bitmap()) {
  795. if (is_long_mode(&vmx->vcpu))
  796. msr_bitmap = vmx_msr_bitmap_longmode;
  797. else
  798. msr_bitmap = vmx_msr_bitmap_legacy;
  799. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  800. }
  801. }
  802. /*
  803. * reads and returns guest's timestamp counter "register"
  804. * guest_tsc = host_tsc + tsc_offset -- 21.3
  805. */
  806. static u64 guest_read_tsc(void)
  807. {
  808. u64 host_tsc, tsc_offset;
  809. rdtscll(host_tsc);
  810. tsc_offset = vmcs_read64(TSC_OFFSET);
  811. return host_tsc + tsc_offset;
  812. }
  813. /*
  814. * writes 'guest_tsc' into guest's timestamp counter "register"
  815. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  816. */
  817. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  818. {
  819. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  820. }
  821. /*
  822. * Reads an msr value (of 'msr_index') into 'pdata'.
  823. * Returns 0 on success, non-0 otherwise.
  824. * Assumes vcpu_load() was already called.
  825. */
  826. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  827. {
  828. u64 data;
  829. struct shared_msr_entry *msr;
  830. if (!pdata) {
  831. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  832. return -EINVAL;
  833. }
  834. switch (msr_index) {
  835. #ifdef CONFIG_X86_64
  836. case MSR_FS_BASE:
  837. data = vmcs_readl(GUEST_FS_BASE);
  838. break;
  839. case MSR_GS_BASE:
  840. data = vmcs_readl(GUEST_GS_BASE);
  841. break;
  842. case MSR_KERNEL_GS_BASE:
  843. vmx_load_host_state(to_vmx(vcpu));
  844. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  845. break;
  846. #endif
  847. case MSR_EFER:
  848. return kvm_get_msr_common(vcpu, msr_index, pdata);
  849. case MSR_IA32_TSC:
  850. data = guest_read_tsc();
  851. break;
  852. case MSR_IA32_SYSENTER_CS:
  853. data = vmcs_read32(GUEST_SYSENTER_CS);
  854. break;
  855. case MSR_IA32_SYSENTER_EIP:
  856. data = vmcs_readl(GUEST_SYSENTER_EIP);
  857. break;
  858. case MSR_IA32_SYSENTER_ESP:
  859. data = vmcs_readl(GUEST_SYSENTER_ESP);
  860. break;
  861. default:
  862. vmx_load_host_state(to_vmx(vcpu));
  863. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  864. if (msr) {
  865. vmx_load_host_state(to_vmx(vcpu));
  866. data = msr->data;
  867. break;
  868. }
  869. return kvm_get_msr_common(vcpu, msr_index, pdata);
  870. }
  871. *pdata = data;
  872. return 0;
  873. }
  874. /*
  875. * Writes msr value into into the appropriate "register".
  876. * Returns 0 on success, non-0 otherwise.
  877. * Assumes vcpu_load() was already called.
  878. */
  879. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  880. {
  881. struct vcpu_vmx *vmx = to_vmx(vcpu);
  882. struct shared_msr_entry *msr;
  883. u64 host_tsc;
  884. int ret = 0;
  885. switch (msr_index) {
  886. case MSR_EFER:
  887. vmx_load_host_state(vmx);
  888. ret = kvm_set_msr_common(vcpu, msr_index, data);
  889. break;
  890. #ifdef CONFIG_X86_64
  891. case MSR_FS_BASE:
  892. vmcs_writel(GUEST_FS_BASE, data);
  893. break;
  894. case MSR_GS_BASE:
  895. vmcs_writel(GUEST_GS_BASE, data);
  896. break;
  897. case MSR_KERNEL_GS_BASE:
  898. vmx_load_host_state(vmx);
  899. vmx->msr_guest_kernel_gs_base = data;
  900. break;
  901. #endif
  902. case MSR_IA32_SYSENTER_CS:
  903. vmcs_write32(GUEST_SYSENTER_CS, data);
  904. break;
  905. case MSR_IA32_SYSENTER_EIP:
  906. vmcs_writel(GUEST_SYSENTER_EIP, data);
  907. break;
  908. case MSR_IA32_SYSENTER_ESP:
  909. vmcs_writel(GUEST_SYSENTER_ESP, data);
  910. break;
  911. case MSR_IA32_TSC:
  912. rdtscll(host_tsc);
  913. guest_write_tsc(data, host_tsc);
  914. break;
  915. case MSR_IA32_CR_PAT:
  916. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  917. vmcs_write64(GUEST_IA32_PAT, data);
  918. vcpu->arch.pat = data;
  919. break;
  920. }
  921. /* Otherwise falls through to kvm_set_msr_common */
  922. default:
  923. msr = find_msr_entry(vmx, msr_index);
  924. if (msr) {
  925. vmx_load_host_state(vmx);
  926. msr->data = data;
  927. break;
  928. }
  929. ret = kvm_set_msr_common(vcpu, msr_index, data);
  930. }
  931. return ret;
  932. }
  933. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  934. {
  935. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  936. switch (reg) {
  937. case VCPU_REGS_RSP:
  938. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  939. break;
  940. case VCPU_REGS_RIP:
  941. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  942. break;
  943. case VCPU_EXREG_PDPTR:
  944. if (enable_ept)
  945. ept_save_pdptrs(vcpu);
  946. break;
  947. default:
  948. break;
  949. }
  950. }
  951. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  952. {
  953. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  954. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  955. else
  956. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  957. update_exception_bitmap(vcpu);
  958. }
  959. static __init int cpu_has_kvm_support(void)
  960. {
  961. return cpu_has_vmx();
  962. }
  963. static __init int vmx_disabled_by_bios(void)
  964. {
  965. u64 msr;
  966. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  967. return (msr & (FEATURE_CONTROL_LOCKED |
  968. FEATURE_CONTROL_VMXON_ENABLED))
  969. == FEATURE_CONTROL_LOCKED;
  970. /* locked but not enabled */
  971. }
  972. static int hardware_enable(void *garbage)
  973. {
  974. int cpu = raw_smp_processor_id();
  975. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  976. u64 old;
  977. if (read_cr4() & X86_CR4_VMXE)
  978. return -EBUSY;
  979. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  980. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  981. if ((old & (FEATURE_CONTROL_LOCKED |
  982. FEATURE_CONTROL_VMXON_ENABLED))
  983. != (FEATURE_CONTROL_LOCKED |
  984. FEATURE_CONTROL_VMXON_ENABLED))
  985. /* enable and lock */
  986. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  987. FEATURE_CONTROL_LOCKED |
  988. FEATURE_CONTROL_VMXON_ENABLED);
  989. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  990. asm volatile (ASM_VMX_VMXON_RAX
  991. : : "a"(&phys_addr), "m"(phys_addr)
  992. : "memory", "cc");
  993. ept_sync_global();
  994. return 0;
  995. }
  996. static void vmclear_local_vcpus(void)
  997. {
  998. int cpu = raw_smp_processor_id();
  999. struct vcpu_vmx *vmx, *n;
  1000. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1001. local_vcpus_link)
  1002. __vcpu_clear(vmx);
  1003. }
  1004. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1005. * tricks.
  1006. */
  1007. static void kvm_cpu_vmxoff(void)
  1008. {
  1009. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1010. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1011. }
  1012. static void hardware_disable(void *garbage)
  1013. {
  1014. vmclear_local_vcpus();
  1015. kvm_cpu_vmxoff();
  1016. }
  1017. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1018. u32 msr, u32 *result)
  1019. {
  1020. u32 vmx_msr_low, vmx_msr_high;
  1021. u32 ctl = ctl_min | ctl_opt;
  1022. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1023. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1024. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1025. /* Ensure minimum (required) set of control bits are supported. */
  1026. if (ctl_min & ~ctl)
  1027. return -EIO;
  1028. *result = ctl;
  1029. return 0;
  1030. }
  1031. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1032. {
  1033. u32 vmx_msr_low, vmx_msr_high;
  1034. u32 min, opt, min2, opt2;
  1035. u32 _pin_based_exec_control = 0;
  1036. u32 _cpu_based_exec_control = 0;
  1037. u32 _cpu_based_2nd_exec_control = 0;
  1038. u32 _vmexit_control = 0;
  1039. u32 _vmentry_control = 0;
  1040. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1041. opt = PIN_BASED_VIRTUAL_NMIS;
  1042. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1043. &_pin_based_exec_control) < 0)
  1044. return -EIO;
  1045. min = CPU_BASED_HLT_EXITING |
  1046. #ifdef CONFIG_X86_64
  1047. CPU_BASED_CR8_LOAD_EXITING |
  1048. CPU_BASED_CR8_STORE_EXITING |
  1049. #endif
  1050. CPU_BASED_CR3_LOAD_EXITING |
  1051. CPU_BASED_CR3_STORE_EXITING |
  1052. CPU_BASED_USE_IO_BITMAPS |
  1053. CPU_BASED_MOV_DR_EXITING |
  1054. CPU_BASED_USE_TSC_OFFSETING |
  1055. CPU_BASED_INVLPG_EXITING;
  1056. opt = CPU_BASED_TPR_SHADOW |
  1057. CPU_BASED_USE_MSR_BITMAPS |
  1058. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1059. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1060. &_cpu_based_exec_control) < 0)
  1061. return -EIO;
  1062. #ifdef CONFIG_X86_64
  1063. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1064. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1065. ~CPU_BASED_CR8_STORE_EXITING;
  1066. #endif
  1067. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1068. min2 = 0;
  1069. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1070. SECONDARY_EXEC_WBINVD_EXITING |
  1071. SECONDARY_EXEC_ENABLE_VPID |
  1072. SECONDARY_EXEC_ENABLE_EPT |
  1073. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1074. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1075. if (adjust_vmx_controls(min2, opt2,
  1076. MSR_IA32_VMX_PROCBASED_CTLS2,
  1077. &_cpu_based_2nd_exec_control) < 0)
  1078. return -EIO;
  1079. }
  1080. #ifndef CONFIG_X86_64
  1081. if (!(_cpu_based_2nd_exec_control &
  1082. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1083. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1084. #endif
  1085. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1086. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1087. enabled */
  1088. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1089. CPU_BASED_CR3_STORE_EXITING |
  1090. CPU_BASED_INVLPG_EXITING);
  1091. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1092. vmx_capability.ept, vmx_capability.vpid);
  1093. }
  1094. min = 0;
  1095. #ifdef CONFIG_X86_64
  1096. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1097. #endif
  1098. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1099. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1100. &_vmexit_control) < 0)
  1101. return -EIO;
  1102. min = 0;
  1103. opt = VM_ENTRY_LOAD_IA32_PAT;
  1104. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1105. &_vmentry_control) < 0)
  1106. return -EIO;
  1107. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1108. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1109. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1110. return -EIO;
  1111. #ifdef CONFIG_X86_64
  1112. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1113. if (vmx_msr_high & (1u<<16))
  1114. return -EIO;
  1115. #endif
  1116. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1117. if (((vmx_msr_high >> 18) & 15) != 6)
  1118. return -EIO;
  1119. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1120. vmcs_conf->order = get_order(vmcs_config.size);
  1121. vmcs_conf->revision_id = vmx_msr_low;
  1122. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1123. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1124. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1125. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1126. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1127. return 0;
  1128. }
  1129. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1130. {
  1131. int node = cpu_to_node(cpu);
  1132. struct page *pages;
  1133. struct vmcs *vmcs;
  1134. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1135. if (!pages)
  1136. return NULL;
  1137. vmcs = page_address(pages);
  1138. memset(vmcs, 0, vmcs_config.size);
  1139. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1140. return vmcs;
  1141. }
  1142. static struct vmcs *alloc_vmcs(void)
  1143. {
  1144. return alloc_vmcs_cpu(raw_smp_processor_id());
  1145. }
  1146. static void free_vmcs(struct vmcs *vmcs)
  1147. {
  1148. free_pages((unsigned long)vmcs, vmcs_config.order);
  1149. }
  1150. static void free_kvm_area(void)
  1151. {
  1152. int cpu;
  1153. for_each_possible_cpu(cpu) {
  1154. free_vmcs(per_cpu(vmxarea, cpu));
  1155. per_cpu(vmxarea, cpu) = NULL;
  1156. }
  1157. }
  1158. static __init int alloc_kvm_area(void)
  1159. {
  1160. int cpu;
  1161. for_each_possible_cpu(cpu) {
  1162. struct vmcs *vmcs;
  1163. vmcs = alloc_vmcs_cpu(cpu);
  1164. if (!vmcs) {
  1165. free_kvm_area();
  1166. return -ENOMEM;
  1167. }
  1168. per_cpu(vmxarea, cpu) = vmcs;
  1169. }
  1170. return 0;
  1171. }
  1172. static __init int hardware_setup(void)
  1173. {
  1174. if (setup_vmcs_config(&vmcs_config) < 0)
  1175. return -EIO;
  1176. if (boot_cpu_has(X86_FEATURE_NX))
  1177. kvm_enable_efer_bits(EFER_NX);
  1178. if (!cpu_has_vmx_vpid())
  1179. enable_vpid = 0;
  1180. if (!cpu_has_vmx_ept()) {
  1181. enable_ept = 0;
  1182. enable_unrestricted_guest = 0;
  1183. }
  1184. if (!cpu_has_vmx_unrestricted_guest())
  1185. enable_unrestricted_guest = 0;
  1186. if (!cpu_has_vmx_flexpriority())
  1187. flexpriority_enabled = 0;
  1188. if (!cpu_has_vmx_tpr_shadow())
  1189. kvm_x86_ops->update_cr8_intercept = NULL;
  1190. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1191. kvm_disable_largepages();
  1192. if (!cpu_has_vmx_ple())
  1193. ple_gap = 0;
  1194. return alloc_kvm_area();
  1195. }
  1196. static __exit void hardware_unsetup(void)
  1197. {
  1198. free_kvm_area();
  1199. }
  1200. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1201. {
  1202. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1203. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1204. vmcs_write16(sf->selector, save->selector);
  1205. vmcs_writel(sf->base, save->base);
  1206. vmcs_write32(sf->limit, save->limit);
  1207. vmcs_write32(sf->ar_bytes, save->ar);
  1208. } else {
  1209. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1210. << AR_DPL_SHIFT;
  1211. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1212. }
  1213. }
  1214. static void enter_pmode(struct kvm_vcpu *vcpu)
  1215. {
  1216. unsigned long flags;
  1217. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1218. vmx->emulation_required = 1;
  1219. vmx->rmode.vm86_active = 0;
  1220. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1221. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1222. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1223. flags = vmcs_readl(GUEST_RFLAGS);
  1224. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1225. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1226. vmcs_writel(GUEST_RFLAGS, flags);
  1227. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1228. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1229. update_exception_bitmap(vcpu);
  1230. if (emulate_invalid_guest_state)
  1231. return;
  1232. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1233. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1234. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1235. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1236. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1237. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1238. vmcs_write16(GUEST_CS_SELECTOR,
  1239. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1240. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1241. }
  1242. static gva_t rmode_tss_base(struct kvm *kvm)
  1243. {
  1244. if (!kvm->arch.tss_addr) {
  1245. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1246. kvm->memslots[0].npages - 3;
  1247. return base_gfn << PAGE_SHIFT;
  1248. }
  1249. return kvm->arch.tss_addr;
  1250. }
  1251. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1252. {
  1253. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1254. save->selector = vmcs_read16(sf->selector);
  1255. save->base = vmcs_readl(sf->base);
  1256. save->limit = vmcs_read32(sf->limit);
  1257. save->ar = vmcs_read32(sf->ar_bytes);
  1258. vmcs_write16(sf->selector, save->base >> 4);
  1259. vmcs_write32(sf->base, save->base & 0xfffff);
  1260. vmcs_write32(sf->limit, 0xffff);
  1261. vmcs_write32(sf->ar_bytes, 0xf3);
  1262. }
  1263. static void enter_rmode(struct kvm_vcpu *vcpu)
  1264. {
  1265. unsigned long flags;
  1266. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1267. if (enable_unrestricted_guest)
  1268. return;
  1269. vmx->emulation_required = 1;
  1270. vmx->rmode.vm86_active = 1;
  1271. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1272. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1273. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1274. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1275. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1276. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1277. flags = vmcs_readl(GUEST_RFLAGS);
  1278. vmx->rmode.save_iopl
  1279. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1280. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1281. vmcs_writel(GUEST_RFLAGS, flags);
  1282. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1283. update_exception_bitmap(vcpu);
  1284. if (emulate_invalid_guest_state)
  1285. goto continue_rmode;
  1286. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1287. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1288. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1289. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1290. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1291. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1292. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1293. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1294. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1295. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1296. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1297. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1298. continue_rmode:
  1299. kvm_mmu_reset_context(vcpu);
  1300. init_rmode(vcpu->kvm);
  1301. }
  1302. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1303. {
  1304. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1305. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1306. if (!msr)
  1307. return;
  1308. /*
  1309. * Force kernel_gs_base reloading before EFER changes, as control
  1310. * of this msr depends on is_long_mode().
  1311. */
  1312. vmx_load_host_state(to_vmx(vcpu));
  1313. vcpu->arch.shadow_efer = efer;
  1314. if (!msr)
  1315. return;
  1316. if (efer & EFER_LMA) {
  1317. vmcs_write32(VM_ENTRY_CONTROLS,
  1318. vmcs_read32(VM_ENTRY_CONTROLS) |
  1319. VM_ENTRY_IA32E_MODE);
  1320. msr->data = efer;
  1321. } else {
  1322. vmcs_write32(VM_ENTRY_CONTROLS,
  1323. vmcs_read32(VM_ENTRY_CONTROLS) &
  1324. ~VM_ENTRY_IA32E_MODE);
  1325. msr->data = efer & ~EFER_LME;
  1326. }
  1327. setup_msrs(vmx);
  1328. }
  1329. #ifdef CONFIG_X86_64
  1330. static void enter_lmode(struct kvm_vcpu *vcpu)
  1331. {
  1332. u32 guest_tr_ar;
  1333. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1334. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1335. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1336. __func__);
  1337. vmcs_write32(GUEST_TR_AR_BYTES,
  1338. (guest_tr_ar & ~AR_TYPE_MASK)
  1339. | AR_TYPE_BUSY_64_TSS);
  1340. }
  1341. vcpu->arch.shadow_efer |= EFER_LMA;
  1342. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1343. }
  1344. static void exit_lmode(struct kvm_vcpu *vcpu)
  1345. {
  1346. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1347. vmcs_write32(VM_ENTRY_CONTROLS,
  1348. vmcs_read32(VM_ENTRY_CONTROLS)
  1349. & ~VM_ENTRY_IA32E_MODE);
  1350. }
  1351. #endif
  1352. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1353. {
  1354. vpid_sync_vcpu_all(to_vmx(vcpu));
  1355. if (enable_ept)
  1356. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1357. }
  1358. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1359. {
  1360. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1361. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1362. }
  1363. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1364. {
  1365. if (!test_bit(VCPU_EXREG_PDPTR,
  1366. (unsigned long *)&vcpu->arch.regs_dirty))
  1367. return;
  1368. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1369. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1370. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1371. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1372. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1373. }
  1374. }
  1375. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1376. {
  1377. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1378. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1379. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1380. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1381. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1382. }
  1383. __set_bit(VCPU_EXREG_PDPTR,
  1384. (unsigned long *)&vcpu->arch.regs_avail);
  1385. __set_bit(VCPU_EXREG_PDPTR,
  1386. (unsigned long *)&vcpu->arch.regs_dirty);
  1387. }
  1388. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1389. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1390. unsigned long cr0,
  1391. struct kvm_vcpu *vcpu)
  1392. {
  1393. if (!(cr0 & X86_CR0_PG)) {
  1394. /* From paging/starting to nonpaging */
  1395. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1396. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1397. (CPU_BASED_CR3_LOAD_EXITING |
  1398. CPU_BASED_CR3_STORE_EXITING));
  1399. vcpu->arch.cr0 = cr0;
  1400. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1401. } else if (!is_paging(vcpu)) {
  1402. /* From nonpaging to paging */
  1403. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1404. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1405. ~(CPU_BASED_CR3_LOAD_EXITING |
  1406. CPU_BASED_CR3_STORE_EXITING));
  1407. vcpu->arch.cr0 = cr0;
  1408. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1409. }
  1410. if (!(cr0 & X86_CR0_WP))
  1411. *hw_cr0 &= ~X86_CR0_WP;
  1412. }
  1413. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1414. struct kvm_vcpu *vcpu)
  1415. {
  1416. if (!is_paging(vcpu)) {
  1417. *hw_cr4 &= ~X86_CR4_PAE;
  1418. *hw_cr4 |= X86_CR4_PSE;
  1419. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1420. *hw_cr4 &= ~X86_CR4_PAE;
  1421. }
  1422. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1423. {
  1424. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1425. unsigned long hw_cr0;
  1426. if (enable_unrestricted_guest)
  1427. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1428. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1429. else
  1430. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1431. vmx_fpu_deactivate(vcpu);
  1432. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1433. enter_pmode(vcpu);
  1434. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1435. enter_rmode(vcpu);
  1436. #ifdef CONFIG_X86_64
  1437. if (vcpu->arch.shadow_efer & EFER_LME) {
  1438. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1439. enter_lmode(vcpu);
  1440. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1441. exit_lmode(vcpu);
  1442. }
  1443. #endif
  1444. if (enable_ept)
  1445. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1446. vmcs_writel(CR0_READ_SHADOW, cr0);
  1447. vmcs_writel(GUEST_CR0, hw_cr0);
  1448. vcpu->arch.cr0 = cr0;
  1449. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1450. vmx_fpu_activate(vcpu);
  1451. }
  1452. static u64 construct_eptp(unsigned long root_hpa)
  1453. {
  1454. u64 eptp;
  1455. /* TODO write the value reading from MSR */
  1456. eptp = VMX_EPT_DEFAULT_MT |
  1457. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1458. eptp |= (root_hpa & PAGE_MASK);
  1459. return eptp;
  1460. }
  1461. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1462. {
  1463. unsigned long guest_cr3;
  1464. u64 eptp;
  1465. guest_cr3 = cr3;
  1466. if (enable_ept) {
  1467. eptp = construct_eptp(cr3);
  1468. vmcs_write64(EPT_POINTER, eptp);
  1469. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1470. vcpu->kvm->arch.ept_identity_map_addr;
  1471. ept_load_pdptrs(vcpu);
  1472. }
  1473. vmx_flush_tlb(vcpu);
  1474. vmcs_writel(GUEST_CR3, guest_cr3);
  1475. if (vcpu->arch.cr0 & X86_CR0_PE)
  1476. vmx_fpu_deactivate(vcpu);
  1477. }
  1478. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1479. {
  1480. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1481. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1482. vcpu->arch.cr4 = cr4;
  1483. if (enable_ept)
  1484. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1485. vmcs_writel(CR4_READ_SHADOW, cr4);
  1486. vmcs_writel(GUEST_CR4, hw_cr4);
  1487. }
  1488. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1489. {
  1490. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1491. return vmcs_readl(sf->base);
  1492. }
  1493. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1494. struct kvm_segment *var, int seg)
  1495. {
  1496. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1497. u32 ar;
  1498. var->base = vmcs_readl(sf->base);
  1499. var->limit = vmcs_read32(sf->limit);
  1500. var->selector = vmcs_read16(sf->selector);
  1501. ar = vmcs_read32(sf->ar_bytes);
  1502. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1503. ar = 0;
  1504. var->type = ar & 15;
  1505. var->s = (ar >> 4) & 1;
  1506. var->dpl = (ar >> 5) & 3;
  1507. var->present = (ar >> 7) & 1;
  1508. var->avl = (ar >> 12) & 1;
  1509. var->l = (ar >> 13) & 1;
  1510. var->db = (ar >> 14) & 1;
  1511. var->g = (ar >> 15) & 1;
  1512. var->unusable = (ar >> 16) & 1;
  1513. }
  1514. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1515. {
  1516. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1517. return 0;
  1518. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1519. return 3;
  1520. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1521. }
  1522. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1523. {
  1524. u32 ar;
  1525. if (var->unusable)
  1526. ar = 1 << 16;
  1527. else {
  1528. ar = var->type & 15;
  1529. ar |= (var->s & 1) << 4;
  1530. ar |= (var->dpl & 3) << 5;
  1531. ar |= (var->present & 1) << 7;
  1532. ar |= (var->avl & 1) << 12;
  1533. ar |= (var->l & 1) << 13;
  1534. ar |= (var->db & 1) << 14;
  1535. ar |= (var->g & 1) << 15;
  1536. }
  1537. if (ar == 0) /* a 0 value means unusable */
  1538. ar = AR_UNUSABLE_MASK;
  1539. return ar;
  1540. }
  1541. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1542. struct kvm_segment *var, int seg)
  1543. {
  1544. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1545. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1546. u32 ar;
  1547. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1548. vmx->rmode.tr.selector = var->selector;
  1549. vmx->rmode.tr.base = var->base;
  1550. vmx->rmode.tr.limit = var->limit;
  1551. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1552. return;
  1553. }
  1554. vmcs_writel(sf->base, var->base);
  1555. vmcs_write32(sf->limit, var->limit);
  1556. vmcs_write16(sf->selector, var->selector);
  1557. if (vmx->rmode.vm86_active && var->s) {
  1558. /*
  1559. * Hack real-mode segments into vm86 compatibility.
  1560. */
  1561. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1562. vmcs_writel(sf->base, 0xf0000);
  1563. ar = 0xf3;
  1564. } else
  1565. ar = vmx_segment_access_rights(var);
  1566. /*
  1567. * Fix the "Accessed" bit in AR field of segment registers for older
  1568. * qemu binaries.
  1569. * IA32 arch specifies that at the time of processor reset the
  1570. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1571. * is setting it to 0 in the usedland code. This causes invalid guest
  1572. * state vmexit when "unrestricted guest" mode is turned on.
  1573. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1574. * tree. Newer qemu binaries with that qemu fix would not need this
  1575. * kvm hack.
  1576. */
  1577. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1578. ar |= 0x1; /* Accessed */
  1579. vmcs_write32(sf->ar_bytes, ar);
  1580. }
  1581. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1582. {
  1583. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1584. *db = (ar >> 14) & 1;
  1585. *l = (ar >> 13) & 1;
  1586. }
  1587. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1588. {
  1589. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1590. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1591. }
  1592. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1593. {
  1594. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1595. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1596. }
  1597. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1598. {
  1599. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1600. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1601. }
  1602. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1603. {
  1604. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1605. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1606. }
  1607. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1608. {
  1609. struct kvm_segment var;
  1610. u32 ar;
  1611. vmx_get_segment(vcpu, &var, seg);
  1612. ar = vmx_segment_access_rights(&var);
  1613. if (var.base != (var.selector << 4))
  1614. return false;
  1615. if (var.limit != 0xffff)
  1616. return false;
  1617. if (ar != 0xf3)
  1618. return false;
  1619. return true;
  1620. }
  1621. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1622. {
  1623. struct kvm_segment cs;
  1624. unsigned int cs_rpl;
  1625. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1626. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1627. if (cs.unusable)
  1628. return false;
  1629. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1630. return false;
  1631. if (!cs.s)
  1632. return false;
  1633. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1634. if (cs.dpl > cs_rpl)
  1635. return false;
  1636. } else {
  1637. if (cs.dpl != cs_rpl)
  1638. return false;
  1639. }
  1640. if (!cs.present)
  1641. return false;
  1642. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1643. return true;
  1644. }
  1645. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1646. {
  1647. struct kvm_segment ss;
  1648. unsigned int ss_rpl;
  1649. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1650. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1651. if (ss.unusable)
  1652. return true;
  1653. if (ss.type != 3 && ss.type != 7)
  1654. return false;
  1655. if (!ss.s)
  1656. return false;
  1657. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1658. return false;
  1659. if (!ss.present)
  1660. return false;
  1661. return true;
  1662. }
  1663. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1664. {
  1665. struct kvm_segment var;
  1666. unsigned int rpl;
  1667. vmx_get_segment(vcpu, &var, seg);
  1668. rpl = var.selector & SELECTOR_RPL_MASK;
  1669. if (var.unusable)
  1670. return true;
  1671. if (!var.s)
  1672. return false;
  1673. if (!var.present)
  1674. return false;
  1675. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1676. if (var.dpl < rpl) /* DPL < RPL */
  1677. return false;
  1678. }
  1679. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1680. * rights flags
  1681. */
  1682. return true;
  1683. }
  1684. static bool tr_valid(struct kvm_vcpu *vcpu)
  1685. {
  1686. struct kvm_segment tr;
  1687. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1688. if (tr.unusable)
  1689. return false;
  1690. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1691. return false;
  1692. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1693. return false;
  1694. if (!tr.present)
  1695. return false;
  1696. return true;
  1697. }
  1698. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1699. {
  1700. struct kvm_segment ldtr;
  1701. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1702. if (ldtr.unusable)
  1703. return true;
  1704. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1705. return false;
  1706. if (ldtr.type != 2)
  1707. return false;
  1708. if (!ldtr.present)
  1709. return false;
  1710. return true;
  1711. }
  1712. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1713. {
  1714. struct kvm_segment cs, ss;
  1715. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1716. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1717. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1718. (ss.selector & SELECTOR_RPL_MASK));
  1719. }
  1720. /*
  1721. * Check if guest state is valid. Returns true if valid, false if
  1722. * not.
  1723. * We assume that registers are always usable
  1724. */
  1725. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1726. {
  1727. /* real mode guest state checks */
  1728. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1729. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1730. return false;
  1731. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1732. return false;
  1733. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1734. return false;
  1735. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1736. return false;
  1737. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1738. return false;
  1739. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1740. return false;
  1741. } else {
  1742. /* protected mode guest state checks */
  1743. if (!cs_ss_rpl_check(vcpu))
  1744. return false;
  1745. if (!code_segment_valid(vcpu))
  1746. return false;
  1747. if (!stack_segment_valid(vcpu))
  1748. return false;
  1749. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1750. return false;
  1751. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1752. return false;
  1753. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1754. return false;
  1755. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1756. return false;
  1757. if (!tr_valid(vcpu))
  1758. return false;
  1759. if (!ldtr_valid(vcpu))
  1760. return false;
  1761. }
  1762. /* TODO:
  1763. * - Add checks on RIP
  1764. * - Add checks on RFLAGS
  1765. */
  1766. return true;
  1767. }
  1768. static int init_rmode_tss(struct kvm *kvm)
  1769. {
  1770. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1771. u16 data = 0;
  1772. int ret = 0;
  1773. int r;
  1774. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1775. if (r < 0)
  1776. goto out;
  1777. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1778. r = kvm_write_guest_page(kvm, fn++, &data,
  1779. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1780. if (r < 0)
  1781. goto out;
  1782. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1783. if (r < 0)
  1784. goto out;
  1785. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1786. if (r < 0)
  1787. goto out;
  1788. data = ~0;
  1789. r = kvm_write_guest_page(kvm, fn, &data,
  1790. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1791. sizeof(u8));
  1792. if (r < 0)
  1793. goto out;
  1794. ret = 1;
  1795. out:
  1796. return ret;
  1797. }
  1798. static int init_rmode_identity_map(struct kvm *kvm)
  1799. {
  1800. int i, r, ret;
  1801. pfn_t identity_map_pfn;
  1802. u32 tmp;
  1803. if (!enable_ept)
  1804. return 1;
  1805. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1806. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1807. "haven't been allocated!\n");
  1808. return 0;
  1809. }
  1810. if (likely(kvm->arch.ept_identity_pagetable_done))
  1811. return 1;
  1812. ret = 0;
  1813. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1814. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1815. if (r < 0)
  1816. goto out;
  1817. /* Set up identity-mapping pagetable for EPT in real mode */
  1818. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1819. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1820. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1821. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1822. &tmp, i * sizeof(tmp), sizeof(tmp));
  1823. if (r < 0)
  1824. goto out;
  1825. }
  1826. kvm->arch.ept_identity_pagetable_done = true;
  1827. ret = 1;
  1828. out:
  1829. return ret;
  1830. }
  1831. static void seg_setup(int seg)
  1832. {
  1833. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1834. unsigned int ar;
  1835. vmcs_write16(sf->selector, 0);
  1836. vmcs_writel(sf->base, 0);
  1837. vmcs_write32(sf->limit, 0xffff);
  1838. if (enable_unrestricted_guest) {
  1839. ar = 0x93;
  1840. if (seg == VCPU_SREG_CS)
  1841. ar |= 0x08; /* code segment */
  1842. } else
  1843. ar = 0xf3;
  1844. vmcs_write32(sf->ar_bytes, ar);
  1845. }
  1846. static int alloc_apic_access_page(struct kvm *kvm)
  1847. {
  1848. struct kvm_userspace_memory_region kvm_userspace_mem;
  1849. int r = 0;
  1850. down_write(&kvm->slots_lock);
  1851. if (kvm->arch.apic_access_page)
  1852. goto out;
  1853. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1854. kvm_userspace_mem.flags = 0;
  1855. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1856. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1857. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1858. if (r)
  1859. goto out;
  1860. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1861. out:
  1862. up_write(&kvm->slots_lock);
  1863. return r;
  1864. }
  1865. static int alloc_identity_pagetable(struct kvm *kvm)
  1866. {
  1867. struct kvm_userspace_memory_region kvm_userspace_mem;
  1868. int r = 0;
  1869. down_write(&kvm->slots_lock);
  1870. if (kvm->arch.ept_identity_pagetable)
  1871. goto out;
  1872. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1873. kvm_userspace_mem.flags = 0;
  1874. kvm_userspace_mem.guest_phys_addr =
  1875. kvm->arch.ept_identity_map_addr;
  1876. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1877. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1878. if (r)
  1879. goto out;
  1880. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1881. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1882. out:
  1883. up_write(&kvm->slots_lock);
  1884. return r;
  1885. }
  1886. static void allocate_vpid(struct vcpu_vmx *vmx)
  1887. {
  1888. int vpid;
  1889. vmx->vpid = 0;
  1890. if (!enable_vpid)
  1891. return;
  1892. spin_lock(&vmx_vpid_lock);
  1893. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1894. if (vpid < VMX_NR_VPIDS) {
  1895. vmx->vpid = vpid;
  1896. __set_bit(vpid, vmx_vpid_bitmap);
  1897. }
  1898. spin_unlock(&vmx_vpid_lock);
  1899. }
  1900. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1901. {
  1902. int f = sizeof(unsigned long);
  1903. if (!cpu_has_vmx_msr_bitmap())
  1904. return;
  1905. /*
  1906. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1907. * have the write-low and read-high bitmap offsets the wrong way round.
  1908. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1909. */
  1910. if (msr <= 0x1fff) {
  1911. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1912. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1913. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1914. msr &= 0x1fff;
  1915. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1916. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1917. }
  1918. }
  1919. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1920. {
  1921. if (!longmode_only)
  1922. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1923. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1924. }
  1925. /*
  1926. * Sets up the vmcs for emulated real mode.
  1927. */
  1928. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1929. {
  1930. u32 host_sysenter_cs, msr_low, msr_high;
  1931. u32 junk;
  1932. u64 host_pat, tsc_this, tsc_base;
  1933. unsigned long a;
  1934. struct descriptor_table dt;
  1935. int i;
  1936. unsigned long kvm_vmx_return;
  1937. u32 exec_control;
  1938. /* I/O */
  1939. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1940. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1941. if (cpu_has_vmx_msr_bitmap())
  1942. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1943. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1944. /* Control */
  1945. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1946. vmcs_config.pin_based_exec_ctrl);
  1947. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1948. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1949. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1950. #ifdef CONFIG_X86_64
  1951. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1952. CPU_BASED_CR8_LOAD_EXITING;
  1953. #endif
  1954. }
  1955. if (!enable_ept)
  1956. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1957. CPU_BASED_CR3_LOAD_EXITING |
  1958. CPU_BASED_INVLPG_EXITING;
  1959. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1960. if (cpu_has_secondary_exec_ctrls()) {
  1961. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1962. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1963. exec_control &=
  1964. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1965. if (vmx->vpid == 0)
  1966. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1967. if (!enable_ept) {
  1968. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1969. enable_unrestricted_guest = 0;
  1970. }
  1971. if (!enable_unrestricted_guest)
  1972. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1973. if (!ple_gap)
  1974. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  1975. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1976. }
  1977. if (ple_gap) {
  1978. vmcs_write32(PLE_GAP, ple_gap);
  1979. vmcs_write32(PLE_WINDOW, ple_window);
  1980. }
  1981. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1982. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1983. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1984. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1985. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1986. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1987. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1988. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1989. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1990. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1991. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1992. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1993. #ifdef CONFIG_X86_64
  1994. rdmsrl(MSR_FS_BASE, a);
  1995. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1996. rdmsrl(MSR_GS_BASE, a);
  1997. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1998. #else
  1999. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2000. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2001. #endif
  2002. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2003. kvm_get_idt(&dt);
  2004. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2005. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2006. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2007. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2008. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2009. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2010. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2011. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2012. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2013. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2014. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2015. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2016. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2017. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2018. host_pat = msr_low | ((u64) msr_high << 32);
  2019. vmcs_write64(HOST_IA32_PAT, host_pat);
  2020. }
  2021. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2022. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2023. host_pat = msr_low | ((u64) msr_high << 32);
  2024. /* Write the default value follow host pat */
  2025. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2026. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2027. vmx->vcpu.arch.pat = host_pat;
  2028. }
  2029. for (i = 0; i < NR_VMX_MSR; ++i) {
  2030. u32 index = vmx_msr_index[i];
  2031. u32 data_low, data_high;
  2032. u64 data;
  2033. int j = vmx->nmsrs;
  2034. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2035. continue;
  2036. if (wrmsr_safe(index, data_low, data_high) < 0)
  2037. continue;
  2038. data = data_low | ((u64)data_high << 32);
  2039. vmx->guest_msrs[j].index = i;
  2040. vmx->guest_msrs[j].data = 0;
  2041. vmx->guest_msrs[j].mask = -1ull;
  2042. ++vmx->nmsrs;
  2043. }
  2044. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2045. /* 22.2.1, 20.8.1 */
  2046. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2047. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2048. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2049. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2050. rdtscll(tsc_this);
  2051. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2052. tsc_base = tsc_this;
  2053. guest_write_tsc(0, tsc_base);
  2054. return 0;
  2055. }
  2056. static int init_rmode(struct kvm *kvm)
  2057. {
  2058. if (!init_rmode_tss(kvm))
  2059. return 0;
  2060. if (!init_rmode_identity_map(kvm))
  2061. return 0;
  2062. return 1;
  2063. }
  2064. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2065. {
  2066. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2067. u64 msr;
  2068. int ret;
  2069. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2070. down_read(&vcpu->kvm->slots_lock);
  2071. if (!init_rmode(vmx->vcpu.kvm)) {
  2072. ret = -ENOMEM;
  2073. goto out;
  2074. }
  2075. vmx->rmode.vm86_active = 0;
  2076. vmx->soft_vnmi_blocked = 0;
  2077. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2078. kvm_set_cr8(&vmx->vcpu, 0);
  2079. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2080. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2081. msr |= MSR_IA32_APICBASE_BSP;
  2082. kvm_set_apic_base(&vmx->vcpu, msr);
  2083. fx_init(&vmx->vcpu);
  2084. seg_setup(VCPU_SREG_CS);
  2085. /*
  2086. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2087. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2088. */
  2089. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2090. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2091. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2092. } else {
  2093. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2094. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2095. }
  2096. seg_setup(VCPU_SREG_DS);
  2097. seg_setup(VCPU_SREG_ES);
  2098. seg_setup(VCPU_SREG_FS);
  2099. seg_setup(VCPU_SREG_GS);
  2100. seg_setup(VCPU_SREG_SS);
  2101. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2102. vmcs_writel(GUEST_TR_BASE, 0);
  2103. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2104. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2105. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2106. vmcs_writel(GUEST_LDTR_BASE, 0);
  2107. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2108. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2109. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2110. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2111. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2112. vmcs_writel(GUEST_RFLAGS, 0x02);
  2113. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2114. kvm_rip_write(vcpu, 0xfff0);
  2115. else
  2116. kvm_rip_write(vcpu, 0);
  2117. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2118. vmcs_writel(GUEST_DR7, 0x400);
  2119. vmcs_writel(GUEST_GDTR_BASE, 0);
  2120. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2121. vmcs_writel(GUEST_IDTR_BASE, 0);
  2122. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2123. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2124. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2125. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2126. /* Special registers */
  2127. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2128. setup_msrs(vmx);
  2129. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2130. if (cpu_has_vmx_tpr_shadow()) {
  2131. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2132. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2133. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2134. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2135. vmcs_write32(TPR_THRESHOLD, 0);
  2136. }
  2137. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2138. vmcs_write64(APIC_ACCESS_ADDR,
  2139. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2140. if (vmx->vpid != 0)
  2141. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2142. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2143. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2144. vmx_set_cr4(&vmx->vcpu, 0);
  2145. vmx_set_efer(&vmx->vcpu, 0);
  2146. vmx_fpu_activate(&vmx->vcpu);
  2147. update_exception_bitmap(&vmx->vcpu);
  2148. vpid_sync_vcpu_all(vmx);
  2149. ret = 0;
  2150. /* HACK: Don't enable emulation on guest boot/reset */
  2151. vmx->emulation_required = 0;
  2152. out:
  2153. up_read(&vcpu->kvm->slots_lock);
  2154. return ret;
  2155. }
  2156. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2157. {
  2158. u32 cpu_based_vm_exec_control;
  2159. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2160. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2161. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2162. }
  2163. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2164. {
  2165. u32 cpu_based_vm_exec_control;
  2166. if (!cpu_has_virtual_nmis()) {
  2167. enable_irq_window(vcpu);
  2168. return;
  2169. }
  2170. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2171. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2172. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2173. }
  2174. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2175. {
  2176. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2177. uint32_t intr;
  2178. int irq = vcpu->arch.interrupt.nr;
  2179. trace_kvm_inj_virq(irq);
  2180. ++vcpu->stat.irq_injections;
  2181. if (vmx->rmode.vm86_active) {
  2182. vmx->rmode.irq.pending = true;
  2183. vmx->rmode.irq.vector = irq;
  2184. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2185. if (vcpu->arch.interrupt.soft)
  2186. vmx->rmode.irq.rip +=
  2187. vmx->vcpu.arch.event_exit_inst_len;
  2188. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2189. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2190. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2191. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2192. return;
  2193. }
  2194. intr = irq | INTR_INFO_VALID_MASK;
  2195. if (vcpu->arch.interrupt.soft) {
  2196. intr |= INTR_TYPE_SOFT_INTR;
  2197. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2198. vmx->vcpu.arch.event_exit_inst_len);
  2199. } else
  2200. intr |= INTR_TYPE_EXT_INTR;
  2201. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2202. }
  2203. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2204. {
  2205. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2206. if (!cpu_has_virtual_nmis()) {
  2207. /*
  2208. * Tracking the NMI-blocked state in software is built upon
  2209. * finding the next open IRQ window. This, in turn, depends on
  2210. * well-behaving guests: They have to keep IRQs disabled at
  2211. * least as long as the NMI handler runs. Otherwise we may
  2212. * cause NMI nesting, maybe breaking the guest. But as this is
  2213. * highly unlikely, we can live with the residual risk.
  2214. */
  2215. vmx->soft_vnmi_blocked = 1;
  2216. vmx->vnmi_blocked_time = 0;
  2217. }
  2218. ++vcpu->stat.nmi_injections;
  2219. if (vmx->rmode.vm86_active) {
  2220. vmx->rmode.irq.pending = true;
  2221. vmx->rmode.irq.vector = NMI_VECTOR;
  2222. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2223. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2224. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2225. INTR_INFO_VALID_MASK);
  2226. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2227. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2228. return;
  2229. }
  2230. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2231. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2232. }
  2233. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2234. {
  2235. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2236. return 0;
  2237. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2238. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2239. GUEST_INTR_STATE_NMI));
  2240. }
  2241. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2242. {
  2243. if (!cpu_has_virtual_nmis())
  2244. return to_vmx(vcpu)->soft_vnmi_blocked;
  2245. else
  2246. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2247. GUEST_INTR_STATE_NMI);
  2248. }
  2249. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2250. {
  2251. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2252. if (!cpu_has_virtual_nmis()) {
  2253. if (vmx->soft_vnmi_blocked != masked) {
  2254. vmx->soft_vnmi_blocked = masked;
  2255. vmx->vnmi_blocked_time = 0;
  2256. }
  2257. } else {
  2258. if (masked)
  2259. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2260. GUEST_INTR_STATE_NMI);
  2261. else
  2262. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2263. GUEST_INTR_STATE_NMI);
  2264. }
  2265. }
  2266. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2267. {
  2268. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2269. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2270. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2271. }
  2272. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2273. {
  2274. int ret;
  2275. struct kvm_userspace_memory_region tss_mem = {
  2276. .slot = TSS_PRIVATE_MEMSLOT,
  2277. .guest_phys_addr = addr,
  2278. .memory_size = PAGE_SIZE * 3,
  2279. .flags = 0,
  2280. };
  2281. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2282. if (ret)
  2283. return ret;
  2284. kvm->arch.tss_addr = addr;
  2285. return 0;
  2286. }
  2287. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2288. int vec, u32 err_code)
  2289. {
  2290. /*
  2291. * Instruction with address size override prefix opcode 0x67
  2292. * Cause the #SS fault with 0 error code in VM86 mode.
  2293. */
  2294. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2295. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2296. return 1;
  2297. /*
  2298. * Forward all other exceptions that are valid in real mode.
  2299. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2300. * the required debugging infrastructure rework.
  2301. */
  2302. switch (vec) {
  2303. case DB_VECTOR:
  2304. if (vcpu->guest_debug &
  2305. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2306. return 0;
  2307. kvm_queue_exception(vcpu, vec);
  2308. return 1;
  2309. case BP_VECTOR:
  2310. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2311. return 0;
  2312. /* fall through */
  2313. case DE_VECTOR:
  2314. case OF_VECTOR:
  2315. case BR_VECTOR:
  2316. case UD_VECTOR:
  2317. case DF_VECTOR:
  2318. case SS_VECTOR:
  2319. case GP_VECTOR:
  2320. case MF_VECTOR:
  2321. kvm_queue_exception(vcpu, vec);
  2322. return 1;
  2323. }
  2324. return 0;
  2325. }
  2326. /*
  2327. * Trigger machine check on the host. We assume all the MSRs are already set up
  2328. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2329. * We pass a fake environment to the machine check handler because we want
  2330. * the guest to be always treated like user space, no matter what context
  2331. * it used internally.
  2332. */
  2333. static void kvm_machine_check(void)
  2334. {
  2335. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2336. struct pt_regs regs = {
  2337. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2338. .flags = X86_EFLAGS_IF,
  2339. };
  2340. do_machine_check(&regs, 0);
  2341. #endif
  2342. }
  2343. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2344. {
  2345. /* already handled by vcpu_run */
  2346. return 1;
  2347. }
  2348. static int handle_exception(struct kvm_vcpu *vcpu)
  2349. {
  2350. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2351. struct kvm_run *kvm_run = vcpu->run;
  2352. u32 intr_info, ex_no, error_code;
  2353. unsigned long cr2, rip, dr6;
  2354. u32 vect_info;
  2355. enum emulation_result er;
  2356. vect_info = vmx->idt_vectoring_info;
  2357. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2358. if (is_machine_check(intr_info))
  2359. return handle_machine_check(vcpu);
  2360. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2361. !is_page_fault(intr_info)) {
  2362. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2363. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2364. vcpu->run->internal.ndata = 2;
  2365. vcpu->run->internal.data[0] = vect_info;
  2366. vcpu->run->internal.data[1] = intr_info;
  2367. return 0;
  2368. }
  2369. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2370. return 1; /* already handled by vmx_vcpu_run() */
  2371. if (is_no_device(intr_info)) {
  2372. vmx_fpu_activate(vcpu);
  2373. return 1;
  2374. }
  2375. if (is_invalid_opcode(intr_info)) {
  2376. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2377. if (er != EMULATE_DONE)
  2378. kvm_queue_exception(vcpu, UD_VECTOR);
  2379. return 1;
  2380. }
  2381. error_code = 0;
  2382. rip = kvm_rip_read(vcpu);
  2383. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2384. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2385. if (is_page_fault(intr_info)) {
  2386. /* EPT won't cause page fault directly */
  2387. if (enable_ept)
  2388. BUG();
  2389. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2390. trace_kvm_page_fault(cr2, error_code);
  2391. if (kvm_event_needs_reinjection(vcpu))
  2392. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2393. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2394. }
  2395. if (vmx->rmode.vm86_active &&
  2396. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2397. error_code)) {
  2398. if (vcpu->arch.halt_request) {
  2399. vcpu->arch.halt_request = 0;
  2400. return kvm_emulate_halt(vcpu);
  2401. }
  2402. return 1;
  2403. }
  2404. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2405. switch (ex_no) {
  2406. case DB_VECTOR:
  2407. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2408. if (!(vcpu->guest_debug &
  2409. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2410. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2411. kvm_queue_exception(vcpu, DB_VECTOR);
  2412. return 1;
  2413. }
  2414. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2415. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2416. /* fall through */
  2417. case BP_VECTOR:
  2418. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2419. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2420. kvm_run->debug.arch.exception = ex_no;
  2421. break;
  2422. default:
  2423. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2424. kvm_run->ex.exception = ex_no;
  2425. kvm_run->ex.error_code = error_code;
  2426. break;
  2427. }
  2428. return 0;
  2429. }
  2430. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2431. {
  2432. ++vcpu->stat.irq_exits;
  2433. return 1;
  2434. }
  2435. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2436. {
  2437. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2438. return 0;
  2439. }
  2440. static int handle_io(struct kvm_vcpu *vcpu)
  2441. {
  2442. unsigned long exit_qualification;
  2443. int size, in, string;
  2444. unsigned port;
  2445. ++vcpu->stat.io_exits;
  2446. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2447. string = (exit_qualification & 16) != 0;
  2448. if (string) {
  2449. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2450. return 0;
  2451. return 1;
  2452. }
  2453. size = (exit_qualification & 7) + 1;
  2454. in = (exit_qualification & 8) != 0;
  2455. port = exit_qualification >> 16;
  2456. skip_emulated_instruction(vcpu);
  2457. return kvm_emulate_pio(vcpu, in, size, port);
  2458. }
  2459. static void
  2460. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2461. {
  2462. /*
  2463. * Patch in the VMCALL instruction:
  2464. */
  2465. hypercall[0] = 0x0f;
  2466. hypercall[1] = 0x01;
  2467. hypercall[2] = 0xc1;
  2468. }
  2469. static int handle_cr(struct kvm_vcpu *vcpu)
  2470. {
  2471. unsigned long exit_qualification, val;
  2472. int cr;
  2473. int reg;
  2474. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2475. cr = exit_qualification & 15;
  2476. reg = (exit_qualification >> 8) & 15;
  2477. switch ((exit_qualification >> 4) & 3) {
  2478. case 0: /* mov to cr */
  2479. val = kvm_register_read(vcpu, reg);
  2480. trace_kvm_cr_write(cr, val);
  2481. switch (cr) {
  2482. case 0:
  2483. kvm_set_cr0(vcpu, val);
  2484. skip_emulated_instruction(vcpu);
  2485. return 1;
  2486. case 3:
  2487. kvm_set_cr3(vcpu, val);
  2488. skip_emulated_instruction(vcpu);
  2489. return 1;
  2490. case 4:
  2491. kvm_set_cr4(vcpu, val);
  2492. skip_emulated_instruction(vcpu);
  2493. return 1;
  2494. case 8: {
  2495. u8 cr8_prev = kvm_get_cr8(vcpu);
  2496. u8 cr8 = kvm_register_read(vcpu, reg);
  2497. kvm_set_cr8(vcpu, cr8);
  2498. skip_emulated_instruction(vcpu);
  2499. if (irqchip_in_kernel(vcpu->kvm))
  2500. return 1;
  2501. if (cr8_prev <= cr8)
  2502. return 1;
  2503. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2504. return 0;
  2505. }
  2506. };
  2507. break;
  2508. case 2: /* clts */
  2509. vmx_fpu_deactivate(vcpu);
  2510. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2511. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2512. vmx_fpu_activate(vcpu);
  2513. skip_emulated_instruction(vcpu);
  2514. return 1;
  2515. case 1: /*mov from cr*/
  2516. switch (cr) {
  2517. case 3:
  2518. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2519. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2520. skip_emulated_instruction(vcpu);
  2521. return 1;
  2522. case 8:
  2523. val = kvm_get_cr8(vcpu);
  2524. kvm_register_write(vcpu, reg, val);
  2525. trace_kvm_cr_read(cr, val);
  2526. skip_emulated_instruction(vcpu);
  2527. return 1;
  2528. }
  2529. break;
  2530. case 3: /* lmsw */
  2531. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2532. skip_emulated_instruction(vcpu);
  2533. return 1;
  2534. default:
  2535. break;
  2536. }
  2537. vcpu->run->exit_reason = 0;
  2538. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2539. (int)(exit_qualification >> 4) & 3, cr);
  2540. return 0;
  2541. }
  2542. static int handle_dr(struct kvm_vcpu *vcpu)
  2543. {
  2544. unsigned long exit_qualification;
  2545. unsigned long val;
  2546. int dr, reg;
  2547. if (!kvm_require_cpl(vcpu, 0))
  2548. return 1;
  2549. dr = vmcs_readl(GUEST_DR7);
  2550. if (dr & DR7_GD) {
  2551. /*
  2552. * As the vm-exit takes precedence over the debug trap, we
  2553. * need to emulate the latter, either for the host or the
  2554. * guest debugging itself.
  2555. */
  2556. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2557. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2558. vcpu->run->debug.arch.dr7 = dr;
  2559. vcpu->run->debug.arch.pc =
  2560. vmcs_readl(GUEST_CS_BASE) +
  2561. vmcs_readl(GUEST_RIP);
  2562. vcpu->run->debug.arch.exception = DB_VECTOR;
  2563. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2564. return 0;
  2565. } else {
  2566. vcpu->arch.dr7 &= ~DR7_GD;
  2567. vcpu->arch.dr6 |= DR6_BD;
  2568. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2569. kvm_queue_exception(vcpu, DB_VECTOR);
  2570. return 1;
  2571. }
  2572. }
  2573. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2574. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2575. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2576. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2577. switch (dr) {
  2578. case 0 ... 3:
  2579. val = vcpu->arch.db[dr];
  2580. break;
  2581. case 6:
  2582. val = vcpu->arch.dr6;
  2583. break;
  2584. case 7:
  2585. val = vcpu->arch.dr7;
  2586. break;
  2587. default:
  2588. val = 0;
  2589. }
  2590. kvm_register_write(vcpu, reg, val);
  2591. } else {
  2592. val = vcpu->arch.regs[reg];
  2593. switch (dr) {
  2594. case 0 ... 3:
  2595. vcpu->arch.db[dr] = val;
  2596. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2597. vcpu->arch.eff_db[dr] = val;
  2598. break;
  2599. case 4 ... 5:
  2600. if (vcpu->arch.cr4 & X86_CR4_DE)
  2601. kvm_queue_exception(vcpu, UD_VECTOR);
  2602. break;
  2603. case 6:
  2604. if (val & 0xffffffff00000000ULL) {
  2605. kvm_queue_exception(vcpu, GP_VECTOR);
  2606. break;
  2607. }
  2608. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2609. break;
  2610. case 7:
  2611. if (val & 0xffffffff00000000ULL) {
  2612. kvm_queue_exception(vcpu, GP_VECTOR);
  2613. break;
  2614. }
  2615. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2616. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2617. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2618. vcpu->arch.switch_db_regs =
  2619. (val & DR7_BP_EN_MASK);
  2620. }
  2621. break;
  2622. }
  2623. }
  2624. skip_emulated_instruction(vcpu);
  2625. return 1;
  2626. }
  2627. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2628. {
  2629. kvm_emulate_cpuid(vcpu);
  2630. return 1;
  2631. }
  2632. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2633. {
  2634. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2635. u64 data;
  2636. if (vmx_get_msr(vcpu, ecx, &data)) {
  2637. kvm_inject_gp(vcpu, 0);
  2638. return 1;
  2639. }
  2640. trace_kvm_msr_read(ecx, data);
  2641. /* FIXME: handling of bits 32:63 of rax, rdx */
  2642. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2643. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2644. skip_emulated_instruction(vcpu);
  2645. return 1;
  2646. }
  2647. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2648. {
  2649. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2650. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2651. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2652. trace_kvm_msr_write(ecx, data);
  2653. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2654. kvm_inject_gp(vcpu, 0);
  2655. return 1;
  2656. }
  2657. skip_emulated_instruction(vcpu);
  2658. return 1;
  2659. }
  2660. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2661. {
  2662. return 1;
  2663. }
  2664. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2665. {
  2666. u32 cpu_based_vm_exec_control;
  2667. /* clear pending irq */
  2668. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2669. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2670. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2671. ++vcpu->stat.irq_window_exits;
  2672. /*
  2673. * If the user space waits to inject interrupts, exit as soon as
  2674. * possible
  2675. */
  2676. if (!irqchip_in_kernel(vcpu->kvm) &&
  2677. vcpu->run->request_interrupt_window &&
  2678. !kvm_cpu_has_interrupt(vcpu)) {
  2679. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2680. return 0;
  2681. }
  2682. return 1;
  2683. }
  2684. static int handle_halt(struct kvm_vcpu *vcpu)
  2685. {
  2686. skip_emulated_instruction(vcpu);
  2687. return kvm_emulate_halt(vcpu);
  2688. }
  2689. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2690. {
  2691. skip_emulated_instruction(vcpu);
  2692. kvm_emulate_hypercall(vcpu);
  2693. return 1;
  2694. }
  2695. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2696. {
  2697. kvm_queue_exception(vcpu, UD_VECTOR);
  2698. return 1;
  2699. }
  2700. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2701. {
  2702. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2703. kvm_mmu_invlpg(vcpu, exit_qualification);
  2704. skip_emulated_instruction(vcpu);
  2705. return 1;
  2706. }
  2707. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2708. {
  2709. skip_emulated_instruction(vcpu);
  2710. /* TODO: Add support for VT-d/pass-through device */
  2711. return 1;
  2712. }
  2713. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2714. {
  2715. unsigned long exit_qualification;
  2716. enum emulation_result er;
  2717. unsigned long offset;
  2718. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2719. offset = exit_qualification & 0xffful;
  2720. er = emulate_instruction(vcpu, 0, 0, 0);
  2721. if (er != EMULATE_DONE) {
  2722. printk(KERN_ERR
  2723. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2724. offset);
  2725. return -ENOEXEC;
  2726. }
  2727. return 1;
  2728. }
  2729. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2730. {
  2731. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2732. unsigned long exit_qualification;
  2733. u16 tss_selector;
  2734. int reason, type, idt_v;
  2735. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2736. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2737. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2738. reason = (u32)exit_qualification >> 30;
  2739. if (reason == TASK_SWITCH_GATE && idt_v) {
  2740. switch (type) {
  2741. case INTR_TYPE_NMI_INTR:
  2742. vcpu->arch.nmi_injected = false;
  2743. if (cpu_has_virtual_nmis())
  2744. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2745. GUEST_INTR_STATE_NMI);
  2746. break;
  2747. case INTR_TYPE_EXT_INTR:
  2748. case INTR_TYPE_SOFT_INTR:
  2749. kvm_clear_interrupt_queue(vcpu);
  2750. break;
  2751. case INTR_TYPE_HARD_EXCEPTION:
  2752. case INTR_TYPE_SOFT_EXCEPTION:
  2753. kvm_clear_exception_queue(vcpu);
  2754. break;
  2755. default:
  2756. break;
  2757. }
  2758. }
  2759. tss_selector = exit_qualification;
  2760. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2761. type != INTR_TYPE_EXT_INTR &&
  2762. type != INTR_TYPE_NMI_INTR))
  2763. skip_emulated_instruction(vcpu);
  2764. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2765. return 0;
  2766. /* clear all local breakpoint enable flags */
  2767. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2768. /*
  2769. * TODO: What about debug traps on tss switch?
  2770. * Are we supposed to inject them and update dr6?
  2771. */
  2772. return 1;
  2773. }
  2774. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2775. {
  2776. unsigned long exit_qualification;
  2777. gpa_t gpa;
  2778. int gla_validity;
  2779. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2780. if (exit_qualification & (1 << 6)) {
  2781. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2782. return -EINVAL;
  2783. }
  2784. gla_validity = (exit_qualification >> 7) & 0x3;
  2785. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2786. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2787. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2788. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2789. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2790. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2791. (long unsigned int)exit_qualification);
  2792. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2793. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2794. return 0;
  2795. }
  2796. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2797. trace_kvm_page_fault(gpa, exit_qualification);
  2798. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2799. }
  2800. static u64 ept_rsvd_mask(u64 spte, int level)
  2801. {
  2802. int i;
  2803. u64 mask = 0;
  2804. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2805. mask |= (1ULL << i);
  2806. if (level > 2)
  2807. /* bits 7:3 reserved */
  2808. mask |= 0xf8;
  2809. else if (level == 2) {
  2810. if (spte & (1ULL << 7))
  2811. /* 2MB ref, bits 20:12 reserved */
  2812. mask |= 0x1ff000;
  2813. else
  2814. /* bits 6:3 reserved */
  2815. mask |= 0x78;
  2816. }
  2817. return mask;
  2818. }
  2819. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2820. int level)
  2821. {
  2822. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2823. /* 010b (write-only) */
  2824. WARN_ON((spte & 0x7) == 0x2);
  2825. /* 110b (write/execute) */
  2826. WARN_ON((spte & 0x7) == 0x6);
  2827. /* 100b (execute-only) and value not supported by logical processor */
  2828. if (!cpu_has_vmx_ept_execute_only())
  2829. WARN_ON((spte & 0x7) == 0x4);
  2830. /* not 000b */
  2831. if ((spte & 0x7)) {
  2832. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2833. if (rsvd_bits != 0) {
  2834. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2835. __func__, rsvd_bits);
  2836. WARN_ON(1);
  2837. }
  2838. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2839. u64 ept_mem_type = (spte & 0x38) >> 3;
  2840. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2841. ept_mem_type == 7) {
  2842. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2843. __func__, ept_mem_type);
  2844. WARN_ON(1);
  2845. }
  2846. }
  2847. }
  2848. }
  2849. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2850. {
  2851. u64 sptes[4];
  2852. int nr_sptes, i;
  2853. gpa_t gpa;
  2854. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2855. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2856. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2857. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2858. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2859. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2860. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2861. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2862. return 0;
  2863. }
  2864. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2865. {
  2866. u32 cpu_based_vm_exec_control;
  2867. /* clear pending NMI */
  2868. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2869. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2870. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2871. ++vcpu->stat.nmi_window_exits;
  2872. return 1;
  2873. }
  2874. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2875. {
  2876. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2877. enum emulation_result err = EMULATE_DONE;
  2878. int ret = 1;
  2879. while (!guest_state_valid(vcpu)) {
  2880. err = emulate_instruction(vcpu, 0, 0, 0);
  2881. if (err == EMULATE_DO_MMIO) {
  2882. ret = 0;
  2883. goto out;
  2884. }
  2885. if (err != EMULATE_DONE) {
  2886. kvm_report_emulation_failure(vcpu, "emulation failure");
  2887. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2888. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2889. vcpu->run->internal.ndata = 0;
  2890. ret = 0;
  2891. goto out;
  2892. }
  2893. if (signal_pending(current))
  2894. goto out;
  2895. if (need_resched())
  2896. schedule();
  2897. }
  2898. vmx->emulation_required = 0;
  2899. out:
  2900. return ret;
  2901. }
  2902. /*
  2903. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2904. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2905. */
  2906. static int handle_pause(struct kvm_vcpu *vcpu)
  2907. {
  2908. skip_emulated_instruction(vcpu);
  2909. kvm_vcpu_on_spin(vcpu);
  2910. return 1;
  2911. }
  2912. /*
  2913. * The exit handlers return 1 if the exit was handled fully and guest execution
  2914. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2915. * to be done to userspace and return 0.
  2916. */
  2917. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2918. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2919. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2920. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2921. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2922. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2923. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2924. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2925. [EXIT_REASON_CPUID] = handle_cpuid,
  2926. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2927. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2928. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2929. [EXIT_REASON_HLT] = handle_halt,
  2930. [EXIT_REASON_INVLPG] = handle_invlpg,
  2931. [EXIT_REASON_VMCALL] = handle_vmcall,
  2932. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2933. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2934. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2935. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2936. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2937. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2938. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2939. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2940. [EXIT_REASON_VMON] = handle_vmx_insn,
  2941. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2942. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2943. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2944. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2945. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2946. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2947. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2948. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  2949. };
  2950. static const int kvm_vmx_max_exit_handlers =
  2951. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2952. /*
  2953. * The guest has exited. See if we can fix it or if we need userspace
  2954. * assistance.
  2955. */
  2956. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  2957. {
  2958. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2959. u32 exit_reason = vmx->exit_reason;
  2960. u32 vectoring_info = vmx->idt_vectoring_info;
  2961. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2962. /* If guest state is invalid, start emulating */
  2963. if (vmx->emulation_required && emulate_invalid_guest_state)
  2964. return handle_invalid_guest_state(vcpu);
  2965. /* Access CR3 don't cause VMExit in paging mode, so we need
  2966. * to sync with guest real CR3. */
  2967. if (enable_ept && is_paging(vcpu))
  2968. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2969. if (unlikely(vmx->fail)) {
  2970. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2971. vcpu->run->fail_entry.hardware_entry_failure_reason
  2972. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2973. return 0;
  2974. }
  2975. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2976. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2977. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2978. exit_reason != EXIT_REASON_TASK_SWITCH))
  2979. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2980. "(0x%x) and exit reason is 0x%x\n",
  2981. __func__, vectoring_info, exit_reason);
  2982. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2983. if (vmx_interrupt_allowed(vcpu)) {
  2984. vmx->soft_vnmi_blocked = 0;
  2985. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2986. vcpu->arch.nmi_pending) {
  2987. /*
  2988. * This CPU don't support us in finding the end of an
  2989. * NMI-blocked window if the guest runs with IRQs
  2990. * disabled. So we pull the trigger after 1 s of
  2991. * futile waiting, but inform the user about this.
  2992. */
  2993. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2994. "state on VCPU %d after 1 s timeout\n",
  2995. __func__, vcpu->vcpu_id);
  2996. vmx->soft_vnmi_blocked = 0;
  2997. }
  2998. }
  2999. if (exit_reason < kvm_vmx_max_exit_handlers
  3000. && kvm_vmx_exit_handlers[exit_reason])
  3001. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3002. else {
  3003. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3004. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3005. }
  3006. return 0;
  3007. }
  3008. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3009. {
  3010. if (irr == -1 || tpr < irr) {
  3011. vmcs_write32(TPR_THRESHOLD, 0);
  3012. return;
  3013. }
  3014. vmcs_write32(TPR_THRESHOLD, irr);
  3015. }
  3016. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3017. {
  3018. u32 exit_intr_info;
  3019. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3020. bool unblock_nmi;
  3021. u8 vector;
  3022. int type;
  3023. bool idtv_info_valid;
  3024. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3025. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3026. /* Handle machine checks before interrupts are enabled */
  3027. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3028. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3029. && is_machine_check(exit_intr_info)))
  3030. kvm_machine_check();
  3031. /* We need to handle NMIs before interrupts are enabled */
  3032. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3033. (exit_intr_info & INTR_INFO_VALID_MASK))
  3034. asm("int $2");
  3035. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3036. if (cpu_has_virtual_nmis()) {
  3037. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3038. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3039. /*
  3040. * SDM 3: 27.7.1.2 (September 2008)
  3041. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3042. * a guest IRET fault.
  3043. * SDM 3: 23.2.2 (September 2008)
  3044. * Bit 12 is undefined in any of the following cases:
  3045. * If the VM exit sets the valid bit in the IDT-vectoring
  3046. * information field.
  3047. * If the VM exit is due to a double fault.
  3048. */
  3049. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3050. vector != DF_VECTOR && !idtv_info_valid)
  3051. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3052. GUEST_INTR_STATE_NMI);
  3053. } else if (unlikely(vmx->soft_vnmi_blocked))
  3054. vmx->vnmi_blocked_time +=
  3055. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3056. vmx->vcpu.arch.nmi_injected = false;
  3057. kvm_clear_exception_queue(&vmx->vcpu);
  3058. kvm_clear_interrupt_queue(&vmx->vcpu);
  3059. if (!idtv_info_valid)
  3060. return;
  3061. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3062. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3063. switch (type) {
  3064. case INTR_TYPE_NMI_INTR:
  3065. vmx->vcpu.arch.nmi_injected = true;
  3066. /*
  3067. * SDM 3: 27.7.1.2 (September 2008)
  3068. * Clear bit "block by NMI" before VM entry if a NMI
  3069. * delivery faulted.
  3070. */
  3071. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3072. GUEST_INTR_STATE_NMI);
  3073. break;
  3074. case INTR_TYPE_SOFT_EXCEPTION:
  3075. vmx->vcpu.arch.event_exit_inst_len =
  3076. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3077. /* fall through */
  3078. case INTR_TYPE_HARD_EXCEPTION:
  3079. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3080. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3081. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3082. } else
  3083. kvm_queue_exception(&vmx->vcpu, vector);
  3084. break;
  3085. case INTR_TYPE_SOFT_INTR:
  3086. vmx->vcpu.arch.event_exit_inst_len =
  3087. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3088. /* fall through */
  3089. case INTR_TYPE_EXT_INTR:
  3090. kvm_queue_interrupt(&vmx->vcpu, vector,
  3091. type == INTR_TYPE_SOFT_INTR);
  3092. break;
  3093. default:
  3094. break;
  3095. }
  3096. }
  3097. /*
  3098. * Failure to inject an interrupt should give us the information
  3099. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3100. * when fetching the interrupt redirection bitmap in the real-mode
  3101. * tss, this doesn't happen. So we do it ourselves.
  3102. */
  3103. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3104. {
  3105. vmx->rmode.irq.pending = 0;
  3106. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3107. return;
  3108. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3109. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3110. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3111. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3112. return;
  3113. }
  3114. vmx->idt_vectoring_info =
  3115. VECTORING_INFO_VALID_MASK
  3116. | INTR_TYPE_EXT_INTR
  3117. | vmx->rmode.irq.vector;
  3118. }
  3119. #ifdef CONFIG_X86_64
  3120. #define R "r"
  3121. #define Q "q"
  3122. #else
  3123. #define R "e"
  3124. #define Q "l"
  3125. #endif
  3126. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3127. {
  3128. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3129. /* Record the guest's net vcpu time for enforced NMI injections. */
  3130. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3131. vmx->entry_time = ktime_get();
  3132. /* Don't enter VMX if guest state is invalid, let the exit handler
  3133. start emulation until we arrive back to a valid state */
  3134. if (vmx->emulation_required && emulate_invalid_guest_state)
  3135. return;
  3136. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3137. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3138. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3139. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3140. /* When single-stepping over STI and MOV SS, we must clear the
  3141. * corresponding interruptibility bits in the guest state. Otherwise
  3142. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3143. * exceptions being set, but that's not correct for the guest debugging
  3144. * case. */
  3145. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3146. vmx_set_interrupt_shadow(vcpu, 0);
  3147. /*
  3148. * Loading guest fpu may have cleared host cr0.ts
  3149. */
  3150. vmcs_writel(HOST_CR0, read_cr0());
  3151. if (vcpu->arch.switch_db_regs)
  3152. set_debugreg(vcpu->arch.dr6, 6);
  3153. asm(
  3154. /* Store host registers */
  3155. "push %%"R"dx; push %%"R"bp;"
  3156. "push %%"R"cx \n\t"
  3157. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3158. "je 1f \n\t"
  3159. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3160. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3161. "1: \n\t"
  3162. /* Reload cr2 if changed */
  3163. "mov %c[cr2](%0), %%"R"ax \n\t"
  3164. "mov %%cr2, %%"R"dx \n\t"
  3165. "cmp %%"R"ax, %%"R"dx \n\t"
  3166. "je 2f \n\t"
  3167. "mov %%"R"ax, %%cr2 \n\t"
  3168. "2: \n\t"
  3169. /* Check if vmlaunch of vmresume is needed */
  3170. "cmpl $0, %c[launched](%0) \n\t"
  3171. /* Load guest registers. Don't clobber flags. */
  3172. "mov %c[rax](%0), %%"R"ax \n\t"
  3173. "mov %c[rbx](%0), %%"R"bx \n\t"
  3174. "mov %c[rdx](%0), %%"R"dx \n\t"
  3175. "mov %c[rsi](%0), %%"R"si \n\t"
  3176. "mov %c[rdi](%0), %%"R"di \n\t"
  3177. "mov %c[rbp](%0), %%"R"bp \n\t"
  3178. #ifdef CONFIG_X86_64
  3179. "mov %c[r8](%0), %%r8 \n\t"
  3180. "mov %c[r9](%0), %%r9 \n\t"
  3181. "mov %c[r10](%0), %%r10 \n\t"
  3182. "mov %c[r11](%0), %%r11 \n\t"
  3183. "mov %c[r12](%0), %%r12 \n\t"
  3184. "mov %c[r13](%0), %%r13 \n\t"
  3185. "mov %c[r14](%0), %%r14 \n\t"
  3186. "mov %c[r15](%0), %%r15 \n\t"
  3187. #endif
  3188. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3189. /* Enter guest mode */
  3190. "jne .Llaunched \n\t"
  3191. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3192. "jmp .Lkvm_vmx_return \n\t"
  3193. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3194. ".Lkvm_vmx_return: "
  3195. /* Save guest registers, load host registers, keep flags */
  3196. "xchg %0, (%%"R"sp) \n\t"
  3197. "mov %%"R"ax, %c[rax](%0) \n\t"
  3198. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3199. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3200. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3201. "mov %%"R"si, %c[rsi](%0) \n\t"
  3202. "mov %%"R"di, %c[rdi](%0) \n\t"
  3203. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3204. #ifdef CONFIG_X86_64
  3205. "mov %%r8, %c[r8](%0) \n\t"
  3206. "mov %%r9, %c[r9](%0) \n\t"
  3207. "mov %%r10, %c[r10](%0) \n\t"
  3208. "mov %%r11, %c[r11](%0) \n\t"
  3209. "mov %%r12, %c[r12](%0) \n\t"
  3210. "mov %%r13, %c[r13](%0) \n\t"
  3211. "mov %%r14, %c[r14](%0) \n\t"
  3212. "mov %%r15, %c[r15](%0) \n\t"
  3213. #endif
  3214. "mov %%cr2, %%"R"ax \n\t"
  3215. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3216. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3217. "setbe %c[fail](%0) \n\t"
  3218. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3219. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3220. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3221. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3222. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3223. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3224. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3225. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3226. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3227. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3228. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3229. #ifdef CONFIG_X86_64
  3230. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3231. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3232. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3233. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3234. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3235. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3236. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3237. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3238. #endif
  3239. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3240. : "cc", "memory"
  3241. , R"bx", R"di", R"si"
  3242. #ifdef CONFIG_X86_64
  3243. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3244. #endif
  3245. );
  3246. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3247. | (1 << VCPU_EXREG_PDPTR));
  3248. vcpu->arch.regs_dirty = 0;
  3249. if (vcpu->arch.switch_db_regs)
  3250. get_debugreg(vcpu->arch.dr6, 6);
  3251. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3252. if (vmx->rmode.irq.pending)
  3253. fixup_rmode_irq(vmx);
  3254. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3255. vmx->launched = 1;
  3256. vmx_complete_interrupts(vmx);
  3257. }
  3258. #undef R
  3259. #undef Q
  3260. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3261. {
  3262. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3263. if (vmx->vmcs) {
  3264. vcpu_clear(vmx);
  3265. free_vmcs(vmx->vmcs);
  3266. vmx->vmcs = NULL;
  3267. }
  3268. }
  3269. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3270. {
  3271. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3272. spin_lock(&vmx_vpid_lock);
  3273. if (vmx->vpid != 0)
  3274. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3275. spin_unlock(&vmx_vpid_lock);
  3276. vmx_free_vmcs(vcpu);
  3277. kfree(vmx->guest_msrs);
  3278. kvm_vcpu_uninit(vcpu);
  3279. kmem_cache_free(kvm_vcpu_cache, vmx);
  3280. }
  3281. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3282. {
  3283. int err;
  3284. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3285. int cpu;
  3286. if (!vmx)
  3287. return ERR_PTR(-ENOMEM);
  3288. allocate_vpid(vmx);
  3289. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3290. if (err)
  3291. goto free_vcpu;
  3292. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3293. if (!vmx->guest_msrs) {
  3294. err = -ENOMEM;
  3295. goto uninit_vcpu;
  3296. }
  3297. vmx->vmcs = alloc_vmcs();
  3298. if (!vmx->vmcs)
  3299. goto free_msrs;
  3300. vmcs_clear(vmx->vmcs);
  3301. cpu = get_cpu();
  3302. vmx_vcpu_load(&vmx->vcpu, cpu);
  3303. err = vmx_vcpu_setup(vmx);
  3304. vmx_vcpu_put(&vmx->vcpu);
  3305. put_cpu();
  3306. if (err)
  3307. goto free_vmcs;
  3308. if (vm_need_virtualize_apic_accesses(kvm))
  3309. if (alloc_apic_access_page(kvm) != 0)
  3310. goto free_vmcs;
  3311. if (enable_ept) {
  3312. if (!kvm->arch.ept_identity_map_addr)
  3313. kvm->arch.ept_identity_map_addr =
  3314. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3315. if (alloc_identity_pagetable(kvm) != 0)
  3316. goto free_vmcs;
  3317. }
  3318. return &vmx->vcpu;
  3319. free_vmcs:
  3320. free_vmcs(vmx->vmcs);
  3321. free_msrs:
  3322. kfree(vmx->guest_msrs);
  3323. uninit_vcpu:
  3324. kvm_vcpu_uninit(&vmx->vcpu);
  3325. free_vcpu:
  3326. kmem_cache_free(kvm_vcpu_cache, vmx);
  3327. return ERR_PTR(err);
  3328. }
  3329. static void __init vmx_check_processor_compat(void *rtn)
  3330. {
  3331. struct vmcs_config vmcs_conf;
  3332. *(int *)rtn = 0;
  3333. if (setup_vmcs_config(&vmcs_conf) < 0)
  3334. *(int *)rtn = -EIO;
  3335. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3336. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3337. smp_processor_id());
  3338. *(int *)rtn = -EIO;
  3339. }
  3340. }
  3341. static int get_ept_level(void)
  3342. {
  3343. return VMX_EPT_DEFAULT_GAW + 1;
  3344. }
  3345. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3346. {
  3347. u64 ret;
  3348. /* For VT-d and EPT combination
  3349. * 1. MMIO: always map as UC
  3350. * 2. EPT with VT-d:
  3351. * a. VT-d without snooping control feature: can't guarantee the
  3352. * result, try to trust guest.
  3353. * b. VT-d with snooping control feature: snooping control feature of
  3354. * VT-d engine can guarantee the cache correctness. Just set it
  3355. * to WB to keep consistent with host. So the same as item 3.
  3356. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3357. * consistent with host MTRR
  3358. */
  3359. if (is_mmio)
  3360. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3361. else if (vcpu->kvm->arch.iommu_domain &&
  3362. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3363. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3364. VMX_EPT_MT_EPTE_SHIFT;
  3365. else
  3366. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3367. | VMX_EPT_IGMT_BIT;
  3368. return ret;
  3369. }
  3370. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3371. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3372. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3373. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3374. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3375. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3376. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3377. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3378. { EXIT_REASON_CPUID, "cpuid" },
  3379. { EXIT_REASON_MSR_READ, "rdmsr" },
  3380. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3381. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3382. { EXIT_REASON_HLT, "halt" },
  3383. { EXIT_REASON_INVLPG, "invlpg" },
  3384. { EXIT_REASON_VMCALL, "hypercall" },
  3385. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3386. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3387. { EXIT_REASON_WBINVD, "wbinvd" },
  3388. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3389. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3390. { -1, NULL }
  3391. };
  3392. static bool vmx_gb_page_enable(void)
  3393. {
  3394. return false;
  3395. }
  3396. static struct kvm_x86_ops vmx_x86_ops = {
  3397. .cpu_has_kvm_support = cpu_has_kvm_support,
  3398. .disabled_by_bios = vmx_disabled_by_bios,
  3399. .hardware_setup = hardware_setup,
  3400. .hardware_unsetup = hardware_unsetup,
  3401. .check_processor_compatibility = vmx_check_processor_compat,
  3402. .hardware_enable = hardware_enable,
  3403. .hardware_disable = hardware_disable,
  3404. .cpu_has_accelerated_tpr = report_flexpriority,
  3405. .vcpu_create = vmx_create_vcpu,
  3406. .vcpu_free = vmx_free_vcpu,
  3407. .vcpu_reset = vmx_vcpu_reset,
  3408. .prepare_guest_switch = vmx_save_host_state,
  3409. .vcpu_load = vmx_vcpu_load,
  3410. .vcpu_put = vmx_vcpu_put,
  3411. .set_guest_debug = set_guest_debug,
  3412. .get_msr = vmx_get_msr,
  3413. .set_msr = vmx_set_msr,
  3414. .get_segment_base = vmx_get_segment_base,
  3415. .get_segment = vmx_get_segment,
  3416. .set_segment = vmx_set_segment,
  3417. .get_cpl = vmx_get_cpl,
  3418. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3419. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3420. .set_cr0 = vmx_set_cr0,
  3421. .set_cr3 = vmx_set_cr3,
  3422. .set_cr4 = vmx_set_cr4,
  3423. .set_efer = vmx_set_efer,
  3424. .get_idt = vmx_get_idt,
  3425. .set_idt = vmx_set_idt,
  3426. .get_gdt = vmx_get_gdt,
  3427. .set_gdt = vmx_set_gdt,
  3428. .cache_reg = vmx_cache_reg,
  3429. .get_rflags = vmx_get_rflags,
  3430. .set_rflags = vmx_set_rflags,
  3431. .tlb_flush = vmx_flush_tlb,
  3432. .run = vmx_vcpu_run,
  3433. .handle_exit = vmx_handle_exit,
  3434. .skip_emulated_instruction = skip_emulated_instruction,
  3435. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3436. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3437. .patch_hypercall = vmx_patch_hypercall,
  3438. .set_irq = vmx_inject_irq,
  3439. .set_nmi = vmx_inject_nmi,
  3440. .queue_exception = vmx_queue_exception,
  3441. .interrupt_allowed = vmx_interrupt_allowed,
  3442. .nmi_allowed = vmx_nmi_allowed,
  3443. .get_nmi_mask = vmx_get_nmi_mask,
  3444. .set_nmi_mask = vmx_set_nmi_mask,
  3445. .enable_nmi_window = enable_nmi_window,
  3446. .enable_irq_window = enable_irq_window,
  3447. .update_cr8_intercept = update_cr8_intercept,
  3448. .set_tss_addr = vmx_set_tss_addr,
  3449. .get_tdp_level = get_ept_level,
  3450. .get_mt_mask = vmx_get_mt_mask,
  3451. .exit_reasons_str = vmx_exit_reasons_str,
  3452. .gb_page_enable = vmx_gb_page_enable,
  3453. };
  3454. static int __init vmx_init(void)
  3455. {
  3456. int r, i;
  3457. rdmsrl_safe(MSR_EFER, &host_efer);
  3458. for (i = 0; i < NR_VMX_MSR; ++i)
  3459. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3460. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3461. if (!vmx_io_bitmap_a)
  3462. return -ENOMEM;
  3463. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3464. if (!vmx_io_bitmap_b) {
  3465. r = -ENOMEM;
  3466. goto out;
  3467. }
  3468. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3469. if (!vmx_msr_bitmap_legacy) {
  3470. r = -ENOMEM;
  3471. goto out1;
  3472. }
  3473. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3474. if (!vmx_msr_bitmap_longmode) {
  3475. r = -ENOMEM;
  3476. goto out2;
  3477. }
  3478. /*
  3479. * Allow direct access to the PC debug port (it is often used for I/O
  3480. * delays, but the vmexits simply slow things down).
  3481. */
  3482. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3483. clear_bit(0x80, vmx_io_bitmap_a);
  3484. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3485. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3486. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3487. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3488. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3489. if (r)
  3490. goto out3;
  3491. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3492. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3493. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3494. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3495. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3496. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3497. if (enable_ept) {
  3498. bypass_guest_pf = 0;
  3499. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3500. VMX_EPT_WRITABLE_MASK);
  3501. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3502. VMX_EPT_EXECUTABLE_MASK);
  3503. kvm_enable_tdp();
  3504. } else
  3505. kvm_disable_tdp();
  3506. if (bypass_guest_pf)
  3507. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3508. return 0;
  3509. out3:
  3510. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3511. out2:
  3512. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3513. out1:
  3514. free_page((unsigned long)vmx_io_bitmap_b);
  3515. out:
  3516. free_page((unsigned long)vmx_io_bitmap_a);
  3517. return r;
  3518. }
  3519. static void __exit vmx_exit(void)
  3520. {
  3521. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3522. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3523. free_page((unsigned long)vmx_io_bitmap_b);
  3524. free_page((unsigned long)vmx_io_bitmap_a);
  3525. kvm_exit();
  3526. }
  3527. module_init(vmx_init)
  3528. module_exit(vmx_exit)