uv_time.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /*
  2. * SGI RTC clock/timer routines.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
  19. * Copyright (c) Dimitri Sivanich
  20. */
  21. #include <linux/clockchips.h>
  22. #include <asm/uv/uv_mmrs.h>
  23. #include <asm/uv/uv_hub.h>
  24. #include <asm/uv/bios.h>
  25. #include <asm/uv/uv.h>
  26. #include <asm/apic.h>
  27. #include <asm/cpu.h>
  28. #define RTC_NAME "sgi_rtc"
  29. static cycle_t uv_read_rtc(struct clocksource *cs);
  30. static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
  31. static void uv_rtc_timer_setup(enum clock_event_mode,
  32. struct clock_event_device *);
  33. static struct clocksource clocksource_uv = {
  34. .name = RTC_NAME,
  35. .rating = 400,
  36. .read = uv_read_rtc,
  37. .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
  38. .shift = 10,
  39. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  40. };
  41. static struct clock_event_device clock_event_device_uv = {
  42. .name = RTC_NAME,
  43. .features = CLOCK_EVT_FEAT_ONESHOT,
  44. .shift = 20,
  45. .rating = 400,
  46. .irq = -1,
  47. .set_next_event = uv_rtc_next_event,
  48. .set_mode = uv_rtc_timer_setup,
  49. .event_handler = NULL,
  50. };
  51. static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
  52. /* There is one of these allocated per node */
  53. struct uv_rtc_timer_head {
  54. spinlock_t lock;
  55. /* next cpu waiting for timer, local node relative: */
  56. int next_cpu;
  57. /* number of cpus on this node: */
  58. int ncpus;
  59. struct {
  60. int lcpu; /* systemwide logical cpu number */
  61. u64 expires; /* next timer expiration for this cpu */
  62. } cpu[1];
  63. };
  64. /*
  65. * Access to uv_rtc_timer_head via blade id.
  66. */
  67. static struct uv_rtc_timer_head **blade_info __read_mostly;
  68. static int uv_rtc_evt_enable;
  69. /*
  70. * Hardware interface routines
  71. */
  72. /* Send IPIs to another node */
  73. static void uv_rtc_send_IPI(int cpu)
  74. {
  75. unsigned long apicid, val;
  76. int pnode;
  77. apicid = cpu_physical_id(cpu);
  78. pnode = uv_apicid_to_pnode(apicid);
  79. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  80. (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  81. (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
  82. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  83. }
  84. /* Check for an RTC interrupt pending */
  85. static int uv_intr_pending(int pnode)
  86. {
  87. return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
  88. UVH_EVENT_OCCURRED0_RTC1_MASK;
  89. }
  90. /* Setup interrupt and return non-zero if early expiration occurred. */
  91. static int uv_setup_intr(int cpu, u64 expires)
  92. {
  93. u64 val;
  94. int pnode = uv_cpu_to_pnode(cpu);
  95. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
  96. UVH_RTC1_INT_CONFIG_M_MASK);
  97. uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
  98. uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
  99. UVH_EVENT_OCCURRED0_RTC1_MASK);
  100. val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
  101. ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
  102. /* Set configuration */
  103. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
  104. /* Initialize comparator value */
  105. uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
  106. if (uv_read_rtc(NULL) <= expires)
  107. return 0;
  108. return !uv_intr_pending(pnode);
  109. }
  110. /*
  111. * Per-cpu timer tracking routines
  112. */
  113. static __init void uv_rtc_deallocate_timers(void)
  114. {
  115. int bid;
  116. for_each_possible_blade(bid) {
  117. kfree(blade_info[bid]);
  118. }
  119. kfree(blade_info);
  120. }
  121. /* Allocate per-node list of cpu timer expiration times. */
  122. static __init int uv_rtc_allocate_timers(void)
  123. {
  124. int cpu;
  125. blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
  126. if (!blade_info)
  127. return -ENOMEM;
  128. memset(blade_info, 0, uv_possible_blades * sizeof(void *));
  129. for_each_present_cpu(cpu) {
  130. int nid = cpu_to_node(cpu);
  131. int bid = uv_cpu_to_blade_id(cpu);
  132. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  133. struct uv_rtc_timer_head *head = blade_info[bid];
  134. if (!head) {
  135. head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
  136. (uv_blade_nr_possible_cpus(bid) *
  137. 2 * sizeof(u64)),
  138. GFP_KERNEL, nid);
  139. if (!head) {
  140. uv_rtc_deallocate_timers();
  141. return -ENOMEM;
  142. }
  143. spin_lock_init(&head->lock);
  144. head->ncpus = uv_blade_nr_possible_cpus(bid);
  145. head->next_cpu = -1;
  146. blade_info[bid] = head;
  147. }
  148. head->cpu[bcpu].lcpu = cpu;
  149. head->cpu[bcpu].expires = ULLONG_MAX;
  150. }
  151. return 0;
  152. }
  153. /* Find and set the next expiring timer. */
  154. static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
  155. {
  156. u64 lowest = ULLONG_MAX;
  157. int c, bcpu = -1;
  158. head->next_cpu = -1;
  159. for (c = 0; c < head->ncpus; c++) {
  160. u64 exp = head->cpu[c].expires;
  161. if (exp < lowest) {
  162. bcpu = c;
  163. lowest = exp;
  164. }
  165. }
  166. if (bcpu >= 0) {
  167. head->next_cpu = bcpu;
  168. c = head->cpu[bcpu].lcpu;
  169. if (uv_setup_intr(c, lowest))
  170. /* If we didn't set it up in time, trigger */
  171. uv_rtc_send_IPI(c);
  172. } else {
  173. uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
  174. UVH_RTC1_INT_CONFIG_M_MASK);
  175. }
  176. }
  177. /*
  178. * Set expiration time for current cpu.
  179. *
  180. * Returns 1 if we missed the expiration time.
  181. */
  182. static int uv_rtc_set_timer(int cpu, u64 expires)
  183. {
  184. int pnode = uv_cpu_to_pnode(cpu);
  185. int bid = uv_cpu_to_blade_id(cpu);
  186. struct uv_rtc_timer_head *head = blade_info[bid];
  187. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  188. u64 *t = &head->cpu[bcpu].expires;
  189. unsigned long flags;
  190. int next_cpu;
  191. spin_lock_irqsave(&head->lock, flags);
  192. next_cpu = head->next_cpu;
  193. *t = expires;
  194. /* Will this one be next to go off? */
  195. if (next_cpu < 0 || bcpu == next_cpu ||
  196. expires < head->cpu[next_cpu].expires) {
  197. head->next_cpu = bcpu;
  198. if (uv_setup_intr(cpu, expires)) {
  199. *t = ULLONG_MAX;
  200. uv_rtc_find_next_timer(head, pnode);
  201. spin_unlock_irqrestore(&head->lock, flags);
  202. return -ETIME;
  203. }
  204. }
  205. spin_unlock_irqrestore(&head->lock, flags);
  206. return 0;
  207. }
  208. /*
  209. * Unset expiration time for current cpu.
  210. *
  211. * Returns 1 if this timer was pending.
  212. */
  213. static int uv_rtc_unset_timer(int cpu, int force)
  214. {
  215. int pnode = uv_cpu_to_pnode(cpu);
  216. int bid = uv_cpu_to_blade_id(cpu);
  217. struct uv_rtc_timer_head *head = blade_info[bid];
  218. int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
  219. u64 *t = &head->cpu[bcpu].expires;
  220. unsigned long flags;
  221. int rc = 0;
  222. spin_lock_irqsave(&head->lock, flags);
  223. if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
  224. rc = 1;
  225. if (rc) {
  226. *t = ULLONG_MAX;
  227. /* Was the hardware setup for this timer? */
  228. if (head->next_cpu == bcpu)
  229. uv_rtc_find_next_timer(head, pnode);
  230. }
  231. spin_unlock_irqrestore(&head->lock, flags);
  232. return rc;
  233. }
  234. /*
  235. * Kernel interface routines.
  236. */
  237. /*
  238. * Read the RTC.
  239. */
  240. static cycle_t uv_read_rtc(struct clocksource *cs)
  241. {
  242. return (cycle_t)uv_read_local_mmr(UVH_RTC);
  243. }
  244. /*
  245. * Program the next event, relative to now
  246. */
  247. static int uv_rtc_next_event(unsigned long delta,
  248. struct clock_event_device *ced)
  249. {
  250. int ced_cpu = cpumask_first(ced->cpumask);
  251. return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
  252. }
  253. /*
  254. * Setup the RTC timer in oneshot mode
  255. */
  256. static void uv_rtc_timer_setup(enum clock_event_mode mode,
  257. struct clock_event_device *evt)
  258. {
  259. int ced_cpu = cpumask_first(evt->cpumask);
  260. switch (mode) {
  261. case CLOCK_EVT_MODE_PERIODIC:
  262. case CLOCK_EVT_MODE_ONESHOT:
  263. case CLOCK_EVT_MODE_RESUME:
  264. /* Nothing to do here yet */
  265. break;
  266. case CLOCK_EVT_MODE_UNUSED:
  267. case CLOCK_EVT_MODE_SHUTDOWN:
  268. uv_rtc_unset_timer(ced_cpu, 1);
  269. break;
  270. }
  271. }
  272. static void uv_rtc_interrupt(void)
  273. {
  274. int cpu = smp_processor_id();
  275. struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
  276. if (!ced || !ced->event_handler)
  277. return;
  278. if (uv_rtc_unset_timer(cpu, 0) != 1)
  279. return;
  280. ced->event_handler(ced);
  281. }
  282. static int __init uv_enable_evt_rtc(char *str)
  283. {
  284. uv_rtc_evt_enable = 1;
  285. return 1;
  286. }
  287. __setup("uvrtcevt", uv_enable_evt_rtc);
  288. static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
  289. {
  290. struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
  291. *ced = clock_event_device_uv;
  292. ced->cpumask = cpumask_of(smp_processor_id());
  293. clockevents_register_device(ced);
  294. }
  295. static __init int uv_rtc_setup_clock(void)
  296. {
  297. int rc;
  298. if (!is_uv_system())
  299. return -ENODEV;
  300. clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
  301. clocksource_uv.shift);
  302. /* If single blade, prefer tsc */
  303. if (uv_num_possible_blades() == 1)
  304. clocksource_uv.rating = 250;
  305. rc = clocksource_register(&clocksource_uv);
  306. if (rc)
  307. printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
  308. else
  309. printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
  310. sn_rtc_cycles_per_second/(unsigned long)1E6);
  311. if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
  312. return rc;
  313. /* Setup and register clockevents */
  314. rc = uv_rtc_allocate_timers();
  315. if (rc)
  316. goto error;
  317. x86_platform_ipi_callback = uv_rtc_interrupt;
  318. clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
  319. NSEC_PER_SEC, clock_event_device_uv.shift);
  320. clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
  321. sn_rtc_cycles_per_second;
  322. clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
  323. (NSEC_PER_SEC / sn_rtc_cycles_per_second);
  324. rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
  325. if (rc) {
  326. x86_platform_ipi_callback = NULL;
  327. uv_rtc_deallocate_timers();
  328. goto error;
  329. }
  330. printk(KERN_INFO "UV RTC clockevents registered\n");
  331. return 0;
  332. error:
  333. clocksource_unregister(&clocksource_uv);
  334. printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
  335. return rc;
  336. }
  337. arch_initcall(uv_rtc_setup_clock);