process.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. #include <linux/errno.h>
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/smp.h>
  5. #include <linux/prctl.h>
  6. #include <linux/slab.h>
  7. #include <linux/sched.h>
  8. #include <linux/module.h>
  9. #include <linux/pm.h>
  10. #include <linux/clockchips.h>
  11. #include <linux/random.h>
  12. #include <linux/user-return-notifier.h>
  13. #include <linux/dmi.h>
  14. #include <linux/utsname.h>
  15. #include <trace/events/power.h>
  16. #include <linux/hw_breakpoint.h>
  17. #include <asm/system.h>
  18. #include <asm/apic.h>
  19. #include <asm/syscalls.h>
  20. #include <asm/idle.h>
  21. #include <asm/uaccess.h>
  22. #include <asm/i387.h>
  23. #include <asm/ds.h>
  24. #include <asm/debugreg.h>
  25. unsigned long idle_halt;
  26. EXPORT_SYMBOL(idle_halt);
  27. unsigned long idle_nomwait;
  28. EXPORT_SYMBOL(idle_nomwait);
  29. struct kmem_cache *task_xstate_cachep;
  30. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  31. {
  32. *dst = *src;
  33. if (src->thread.xstate) {
  34. dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
  35. GFP_KERNEL);
  36. if (!dst->thread.xstate)
  37. return -ENOMEM;
  38. WARN_ON((unsigned long)dst->thread.xstate & 15);
  39. memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
  40. }
  41. return 0;
  42. }
  43. void free_thread_xstate(struct task_struct *tsk)
  44. {
  45. if (tsk->thread.xstate) {
  46. kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
  47. tsk->thread.xstate = NULL;
  48. }
  49. WARN(tsk->thread.ds_ctx, "leaking DS context\n");
  50. }
  51. void free_thread_info(struct thread_info *ti)
  52. {
  53. free_thread_xstate(ti->task);
  54. free_pages((unsigned long)ti, get_order(THREAD_SIZE));
  55. }
  56. void arch_task_cache_init(void)
  57. {
  58. task_xstate_cachep =
  59. kmem_cache_create("task_xstate", xstate_size,
  60. __alignof__(union thread_xstate),
  61. SLAB_PANIC | SLAB_NOTRACK, NULL);
  62. }
  63. /*
  64. * Free current thread data structures etc..
  65. */
  66. void exit_thread(void)
  67. {
  68. struct task_struct *me = current;
  69. struct thread_struct *t = &me->thread;
  70. unsigned long *bp = t->io_bitmap_ptr;
  71. if (bp) {
  72. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  73. t->io_bitmap_ptr = NULL;
  74. clear_thread_flag(TIF_IO_BITMAP);
  75. /*
  76. * Careful, clear this in the TSS too:
  77. */
  78. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  79. t->io_bitmap_max = 0;
  80. put_cpu();
  81. kfree(bp);
  82. }
  83. }
  84. void show_regs_common(void)
  85. {
  86. const char *board, *product;
  87. board = dmi_get_system_info(DMI_BOARD_NAME);
  88. if (!board)
  89. board = "";
  90. product = dmi_get_system_info(DMI_PRODUCT_NAME);
  91. if (!product)
  92. product = "";
  93. printk(KERN_CONT "\n");
  94. printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
  95. current->pid, current->comm, print_tainted(),
  96. init_utsname()->release,
  97. (int)strcspn(init_utsname()->version, " "),
  98. init_utsname()->version, board, product);
  99. }
  100. void flush_thread(void)
  101. {
  102. struct task_struct *tsk = current;
  103. #ifdef CONFIG_X86_64
  104. if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
  105. clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
  106. if (test_tsk_thread_flag(tsk, TIF_IA32)) {
  107. clear_tsk_thread_flag(tsk, TIF_IA32);
  108. } else {
  109. set_tsk_thread_flag(tsk, TIF_IA32);
  110. current_thread_info()->status |= TS_COMPAT;
  111. }
  112. }
  113. #endif
  114. flush_ptrace_hw_breakpoint(tsk);
  115. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  116. /*
  117. * Forget coprocessor state..
  118. */
  119. tsk->fpu_counter = 0;
  120. clear_fpu(tsk);
  121. clear_used_math();
  122. }
  123. static void hard_disable_TSC(void)
  124. {
  125. write_cr4(read_cr4() | X86_CR4_TSD);
  126. }
  127. void disable_TSC(void)
  128. {
  129. preempt_disable();
  130. if (!test_and_set_thread_flag(TIF_NOTSC))
  131. /*
  132. * Must flip the CPU state synchronously with
  133. * TIF_NOTSC in the current running context.
  134. */
  135. hard_disable_TSC();
  136. preempt_enable();
  137. }
  138. static void hard_enable_TSC(void)
  139. {
  140. write_cr4(read_cr4() & ~X86_CR4_TSD);
  141. }
  142. static void enable_TSC(void)
  143. {
  144. preempt_disable();
  145. if (test_and_clear_thread_flag(TIF_NOTSC))
  146. /*
  147. * Must flip the CPU state synchronously with
  148. * TIF_NOTSC in the current running context.
  149. */
  150. hard_enable_TSC();
  151. preempt_enable();
  152. }
  153. int get_tsc_mode(unsigned long adr)
  154. {
  155. unsigned int val;
  156. if (test_thread_flag(TIF_NOTSC))
  157. val = PR_TSC_SIGSEGV;
  158. else
  159. val = PR_TSC_ENABLE;
  160. return put_user(val, (unsigned int __user *)adr);
  161. }
  162. int set_tsc_mode(unsigned int val)
  163. {
  164. if (val == PR_TSC_SIGSEGV)
  165. disable_TSC();
  166. else if (val == PR_TSC_ENABLE)
  167. enable_TSC();
  168. else
  169. return -EINVAL;
  170. return 0;
  171. }
  172. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  173. struct tss_struct *tss)
  174. {
  175. struct thread_struct *prev, *next;
  176. prev = &prev_p->thread;
  177. next = &next_p->thread;
  178. if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
  179. test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
  180. ds_switch_to(prev_p, next_p);
  181. else if (next->debugctlmsr != prev->debugctlmsr)
  182. update_debugctlmsr(next->debugctlmsr);
  183. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  184. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  185. /* prev and next are different */
  186. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  187. hard_disable_TSC();
  188. else
  189. hard_enable_TSC();
  190. }
  191. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  192. /*
  193. * Copy the relevant range of the IO bitmap.
  194. * Normally this is 128 bytes or less:
  195. */
  196. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  197. max(prev->io_bitmap_max, next->io_bitmap_max));
  198. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  199. /*
  200. * Clear any possible leftover bits:
  201. */
  202. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  203. }
  204. propagate_user_return_notify(prev_p, next_p);
  205. }
  206. int sys_fork(struct pt_regs *regs)
  207. {
  208. return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
  209. }
  210. /*
  211. * This is trivial, and on the face of it looks like it
  212. * could equally well be done in user mode.
  213. *
  214. * Not so, for quite unobvious reasons - register pressure.
  215. * In user mode vfork() cannot have a stack frame, and if
  216. * done by calling the "clone()" system call directly, you
  217. * do not have enough call-clobbered registers to hold all
  218. * the information you need.
  219. */
  220. int sys_vfork(struct pt_regs *regs)
  221. {
  222. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
  223. NULL, NULL);
  224. }
  225. long
  226. sys_clone(unsigned long clone_flags, unsigned long newsp,
  227. void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
  228. {
  229. if (!newsp)
  230. newsp = regs->sp;
  231. return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
  232. }
  233. /*
  234. * This gets run with %si containing the
  235. * function to call, and %di containing
  236. * the "args".
  237. */
  238. extern void kernel_thread_helper(void);
  239. /*
  240. * Create a kernel thread
  241. */
  242. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  243. {
  244. struct pt_regs regs;
  245. memset(&regs, 0, sizeof(regs));
  246. regs.si = (unsigned long) fn;
  247. regs.di = (unsigned long) arg;
  248. #ifdef CONFIG_X86_32
  249. regs.ds = __USER_DS;
  250. regs.es = __USER_DS;
  251. regs.fs = __KERNEL_PERCPU;
  252. regs.gs = __KERNEL_STACK_CANARY;
  253. #endif
  254. regs.orig_ax = -1;
  255. regs.ip = (unsigned long) kernel_thread_helper;
  256. regs.cs = __KERNEL_CS | get_kernel_rpl();
  257. regs.flags = X86_EFLAGS_IF | 0x2;
  258. /* Ok, create the new process.. */
  259. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  260. }
  261. EXPORT_SYMBOL(kernel_thread);
  262. /*
  263. * sys_execve() executes a new program.
  264. */
  265. long sys_execve(char __user *name, char __user * __user *argv,
  266. char __user * __user *envp, struct pt_regs *regs)
  267. {
  268. long error;
  269. char *filename;
  270. filename = getname(name);
  271. error = PTR_ERR(filename);
  272. if (IS_ERR(filename))
  273. return error;
  274. error = do_execve(filename, argv, envp, regs);
  275. #ifdef CONFIG_X86_32
  276. if (error == 0) {
  277. /* Make sure we don't return using sysenter.. */
  278. set_thread_flag(TIF_IRET);
  279. }
  280. #endif
  281. putname(filename);
  282. return error;
  283. }
  284. /*
  285. * Idle related variables and functions
  286. */
  287. unsigned long boot_option_idle_override = 0;
  288. EXPORT_SYMBOL(boot_option_idle_override);
  289. /*
  290. * Powermanagement idle function, if any..
  291. */
  292. void (*pm_idle)(void);
  293. EXPORT_SYMBOL(pm_idle);
  294. #ifdef CONFIG_X86_32
  295. /*
  296. * This halt magic was a workaround for ancient floppy DMA
  297. * wreckage. It should be safe to remove.
  298. */
  299. static int hlt_counter;
  300. void disable_hlt(void)
  301. {
  302. hlt_counter++;
  303. }
  304. EXPORT_SYMBOL(disable_hlt);
  305. void enable_hlt(void)
  306. {
  307. hlt_counter--;
  308. }
  309. EXPORT_SYMBOL(enable_hlt);
  310. static inline int hlt_use_halt(void)
  311. {
  312. return (!hlt_counter && boot_cpu_data.hlt_works_ok);
  313. }
  314. #else
  315. static inline int hlt_use_halt(void)
  316. {
  317. return 1;
  318. }
  319. #endif
  320. /*
  321. * We use this if we don't have any better
  322. * idle routine..
  323. */
  324. void default_idle(void)
  325. {
  326. if (hlt_use_halt()) {
  327. trace_power_start(POWER_CSTATE, 1);
  328. current_thread_info()->status &= ~TS_POLLING;
  329. /*
  330. * TS_POLLING-cleared state must be visible before we
  331. * test NEED_RESCHED:
  332. */
  333. smp_mb();
  334. if (!need_resched())
  335. safe_halt(); /* enables interrupts racelessly */
  336. else
  337. local_irq_enable();
  338. current_thread_info()->status |= TS_POLLING;
  339. } else {
  340. local_irq_enable();
  341. /* loop is done by the caller */
  342. cpu_relax();
  343. }
  344. }
  345. #ifdef CONFIG_APM_MODULE
  346. EXPORT_SYMBOL(default_idle);
  347. #endif
  348. void stop_this_cpu(void *dummy)
  349. {
  350. local_irq_disable();
  351. /*
  352. * Remove this CPU:
  353. */
  354. set_cpu_online(smp_processor_id(), false);
  355. disable_local_APIC();
  356. for (;;) {
  357. if (hlt_works(smp_processor_id()))
  358. halt();
  359. }
  360. }
  361. static void do_nothing(void *unused)
  362. {
  363. }
  364. /*
  365. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  366. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  367. * handler on SMP systems.
  368. *
  369. * Caller must have changed pm_idle to the new value before the call. Old
  370. * pm_idle value will not be used by any CPU after the return of this function.
  371. */
  372. void cpu_idle_wait(void)
  373. {
  374. smp_mb();
  375. /* kick all the CPUs so that they exit out of pm_idle */
  376. smp_call_function(do_nothing, NULL, 1);
  377. }
  378. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  379. /*
  380. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  381. * which can obviate IPI to trigger checking of need_resched.
  382. * We execute MONITOR against need_resched and enter optimized wait state
  383. * through MWAIT. Whenever someone changes need_resched, we would be woken
  384. * up from MWAIT (without an IPI).
  385. *
  386. * New with Core Duo processors, MWAIT can take some hints based on CPU
  387. * capability.
  388. */
  389. void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
  390. {
  391. trace_power_start(POWER_CSTATE, (ax>>4)+1);
  392. if (!need_resched()) {
  393. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  394. clflush((void *)&current_thread_info()->flags);
  395. __monitor((void *)&current_thread_info()->flags, 0, 0);
  396. smp_mb();
  397. if (!need_resched())
  398. __mwait(ax, cx);
  399. }
  400. }
  401. /* Default MONITOR/MWAIT with no hints, used for default C1 state */
  402. static void mwait_idle(void)
  403. {
  404. if (!need_resched()) {
  405. trace_power_start(POWER_CSTATE, 1);
  406. if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
  407. clflush((void *)&current_thread_info()->flags);
  408. __monitor((void *)&current_thread_info()->flags, 0, 0);
  409. smp_mb();
  410. if (!need_resched())
  411. __sti_mwait(0, 0);
  412. else
  413. local_irq_enable();
  414. } else
  415. local_irq_enable();
  416. }
  417. /*
  418. * On SMP it's slightly faster (but much more power-consuming!)
  419. * to poll the ->work.need_resched flag instead of waiting for the
  420. * cross-CPU IPI to arrive. Use this option with caution.
  421. */
  422. static void poll_idle(void)
  423. {
  424. trace_power_start(POWER_CSTATE, 0);
  425. local_irq_enable();
  426. while (!need_resched())
  427. cpu_relax();
  428. trace_power_end(0);
  429. }
  430. /*
  431. * mwait selection logic:
  432. *
  433. * It depends on the CPU. For AMD CPUs that support MWAIT this is
  434. * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
  435. * then depend on a clock divisor and current Pstate of the core. If
  436. * all cores of a processor are in halt state (C1) the processor can
  437. * enter the C1E (C1 enhanced) state. If mwait is used this will never
  438. * happen.
  439. *
  440. * idle=mwait overrides this decision and forces the usage of mwait.
  441. */
  442. static int __cpuinitdata force_mwait;
  443. #define MWAIT_INFO 0x05
  444. #define MWAIT_ECX_EXTENDED_INFO 0x01
  445. #define MWAIT_EDX_C1 0xf0
  446. static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
  447. {
  448. u32 eax, ebx, ecx, edx;
  449. if (force_mwait)
  450. return 1;
  451. if (c->cpuid_level < MWAIT_INFO)
  452. return 0;
  453. cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
  454. /* Check, whether EDX has extended info about MWAIT */
  455. if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
  456. return 1;
  457. /*
  458. * edx enumeratios MONITOR/MWAIT extensions. Check, whether
  459. * C1 supports MWAIT
  460. */
  461. return (edx & MWAIT_EDX_C1);
  462. }
  463. /*
  464. * Check for AMD CPUs, which have potentially C1E support
  465. */
  466. static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
  467. {
  468. if (c->x86_vendor != X86_VENDOR_AMD)
  469. return 0;
  470. if (c->x86 < 0x0F)
  471. return 0;
  472. /* Family 0x0f models < rev F do not have C1E */
  473. if (c->x86 == 0x0f && c->x86_model < 0x40)
  474. return 0;
  475. return 1;
  476. }
  477. static cpumask_var_t c1e_mask;
  478. static int c1e_detected;
  479. void c1e_remove_cpu(int cpu)
  480. {
  481. if (c1e_mask != NULL)
  482. cpumask_clear_cpu(cpu, c1e_mask);
  483. }
  484. /*
  485. * C1E aware idle routine. We check for C1E active in the interrupt
  486. * pending message MSR. If we detect C1E, then we handle it the same
  487. * way as C3 power states (local apic timer and TSC stop)
  488. */
  489. static void c1e_idle(void)
  490. {
  491. if (need_resched())
  492. return;
  493. if (!c1e_detected) {
  494. u32 lo, hi;
  495. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  496. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  497. c1e_detected = 1;
  498. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  499. mark_tsc_unstable("TSC halt in AMD C1E");
  500. printk(KERN_INFO "System has AMD C1E enabled\n");
  501. set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
  502. }
  503. }
  504. if (c1e_detected) {
  505. int cpu = smp_processor_id();
  506. if (!cpumask_test_cpu(cpu, c1e_mask)) {
  507. cpumask_set_cpu(cpu, c1e_mask);
  508. /*
  509. * Force broadcast so ACPI can not interfere.
  510. */
  511. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  512. &cpu);
  513. printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
  514. cpu);
  515. }
  516. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  517. default_idle();
  518. /*
  519. * The switch back from broadcast mode needs to be
  520. * called with interrupts disabled.
  521. */
  522. local_irq_disable();
  523. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  524. local_irq_enable();
  525. } else
  526. default_idle();
  527. }
  528. void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
  529. {
  530. #ifdef CONFIG_SMP
  531. if (pm_idle == poll_idle && smp_num_siblings > 1) {
  532. printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
  533. " performance may degrade.\n");
  534. }
  535. #endif
  536. if (pm_idle)
  537. return;
  538. if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
  539. /*
  540. * One CPU supports mwait => All CPUs supports mwait
  541. */
  542. printk(KERN_INFO "using mwait in idle threads.\n");
  543. pm_idle = mwait_idle;
  544. } else if (check_c1e_idle(c)) {
  545. printk(KERN_INFO "using C1E aware idle routine\n");
  546. pm_idle = c1e_idle;
  547. } else
  548. pm_idle = default_idle;
  549. }
  550. void __init init_c1e_mask(void)
  551. {
  552. /* If we're using c1e_idle, we need to allocate c1e_mask. */
  553. if (pm_idle == c1e_idle)
  554. zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
  555. }
  556. static int __init idle_setup(char *str)
  557. {
  558. if (!str)
  559. return -EINVAL;
  560. if (!strcmp(str, "poll")) {
  561. printk("using polling idle threads.\n");
  562. pm_idle = poll_idle;
  563. } else if (!strcmp(str, "mwait"))
  564. force_mwait = 1;
  565. else if (!strcmp(str, "halt")) {
  566. /*
  567. * When the boot option of idle=halt is added, halt is
  568. * forced to be used for CPU idle. In such case CPU C2/C3
  569. * won't be used again.
  570. * To continue to load the CPU idle driver, don't touch
  571. * the boot_option_idle_override.
  572. */
  573. pm_idle = default_idle;
  574. idle_halt = 1;
  575. return 0;
  576. } else if (!strcmp(str, "nomwait")) {
  577. /*
  578. * If the boot option of "idle=nomwait" is added,
  579. * it means that mwait will be disabled for CPU C2/C3
  580. * states. In such case it won't touch the variable
  581. * of boot_option_idle_override.
  582. */
  583. idle_nomwait = 1;
  584. return 0;
  585. } else
  586. return -1;
  587. boot_option_idle_override = 1;
  588. return 0;
  589. }
  590. early_param("idle", idle_setup);
  591. unsigned long arch_align_stack(unsigned long sp)
  592. {
  593. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  594. sp -= get_random_int() % 8192;
  595. return sp & ~0xf;
  596. }
  597. unsigned long arch_randomize_brk(struct mm_struct *mm)
  598. {
  599. unsigned long range_end = mm->brk + 0x02000000;
  600. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  601. }