cleanup.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * MTRR (Memory Type Range Register) cleanup
  3. *
  4. * Copyright (C) 2009 Yinghai Lu
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Library General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Library General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Library General Public
  17. * License along with this library; if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/smp.h>
  24. #include <linux/cpu.h>
  25. #include <linux/sort.h>
  26. #include <linux/mutex.h>
  27. #include <linux/uaccess.h>
  28. #include <linux/kvm_para.h>
  29. #include <asm/processor.h>
  30. #include <asm/e820.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/msr.h>
  33. #include "mtrr.h"
  34. struct res_range {
  35. unsigned long start;
  36. unsigned long end;
  37. };
  38. struct var_mtrr_range_state {
  39. unsigned long base_pfn;
  40. unsigned long size_pfn;
  41. mtrr_type type;
  42. };
  43. struct var_mtrr_state {
  44. unsigned long range_startk;
  45. unsigned long range_sizek;
  46. unsigned long chunk_sizek;
  47. unsigned long gran_sizek;
  48. unsigned int reg;
  49. };
  50. /* Should be related to MTRR_VAR_RANGES nums */
  51. #define RANGE_NUM 256
  52. static struct res_range __initdata range[RANGE_NUM];
  53. static int __initdata nr_range;
  54. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  55. static int __initdata debug_print;
  56. #define Dprintk(x...) do { if (debug_print) printk(KERN_DEBUG x); } while (0)
  57. static int __init
  58. add_range(struct res_range *range, int nr_range,
  59. unsigned long start, unsigned long end)
  60. {
  61. /* Out of slots: */
  62. if (nr_range >= RANGE_NUM)
  63. return nr_range;
  64. range[nr_range].start = start;
  65. range[nr_range].end = end;
  66. nr_range++;
  67. return nr_range;
  68. }
  69. static int __init
  70. add_range_with_merge(struct res_range *range, int nr_range,
  71. unsigned long start, unsigned long end)
  72. {
  73. int i;
  74. /* Try to merge it with old one: */
  75. for (i = 0; i < nr_range; i++) {
  76. unsigned long final_start, final_end;
  77. unsigned long common_start, common_end;
  78. if (!range[i].end)
  79. continue;
  80. common_start = max(range[i].start, start);
  81. common_end = min(range[i].end, end);
  82. if (common_start > common_end + 1)
  83. continue;
  84. final_start = min(range[i].start, start);
  85. final_end = max(range[i].end, end);
  86. range[i].start = final_start;
  87. range[i].end = final_end;
  88. return nr_range;
  89. }
  90. /* Need to add it: */
  91. return add_range(range, nr_range, start, end);
  92. }
  93. static void __init
  94. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  95. {
  96. int i, j;
  97. for (j = 0; j < RANGE_NUM; j++) {
  98. if (!range[j].end)
  99. continue;
  100. if (start <= range[j].start && end >= range[j].end) {
  101. range[j].start = 0;
  102. range[j].end = 0;
  103. continue;
  104. }
  105. if (start <= range[j].start && end < range[j].end &&
  106. range[j].start < end + 1) {
  107. range[j].start = end + 1;
  108. continue;
  109. }
  110. if (start > range[j].start && end >= range[j].end &&
  111. range[j].end > start - 1) {
  112. range[j].end = start - 1;
  113. continue;
  114. }
  115. if (start > range[j].start && end < range[j].end) {
  116. /* Find the new spare: */
  117. for (i = 0; i < RANGE_NUM; i++) {
  118. if (range[i].end == 0)
  119. break;
  120. }
  121. if (i < RANGE_NUM) {
  122. range[i].end = range[j].end;
  123. range[i].start = end + 1;
  124. } else {
  125. printk(KERN_ERR "run of slot in ranges\n");
  126. }
  127. range[j].end = start - 1;
  128. continue;
  129. }
  130. }
  131. }
  132. static int __init cmp_range(const void *x1, const void *x2)
  133. {
  134. const struct res_range *r1 = x1;
  135. const struct res_range *r2 = x2;
  136. long start1, start2;
  137. start1 = r1->start;
  138. start2 = r2->start;
  139. return start1 - start2;
  140. }
  141. static int __init clean_sort_range(struct res_range *range, int az)
  142. {
  143. int i, j, k = az - 1, nr_range = 0;
  144. for (i = 0; i < k; i++) {
  145. if (range[i].end)
  146. continue;
  147. for (j = k; j > i; j--) {
  148. if (range[j].end) {
  149. k = j;
  150. break;
  151. }
  152. }
  153. if (j == i)
  154. break;
  155. range[i].start = range[k].start;
  156. range[i].end = range[k].end;
  157. range[k].start = 0;
  158. range[k].end = 0;
  159. k--;
  160. }
  161. /* count it */
  162. for (i = 0; i < az; i++) {
  163. if (!range[i].end) {
  164. nr_range = i;
  165. break;
  166. }
  167. }
  168. /* sort them */
  169. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  170. return nr_range;
  171. }
  172. #define BIOS_BUG_MSG KERN_WARNING \
  173. "WARNING: BIOS bug: VAR MTRR %d contains strange UC entry under 1M, check with your system vendor!\n"
  174. static int __init
  175. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  176. unsigned long extra_remove_base,
  177. unsigned long extra_remove_size)
  178. {
  179. unsigned long base, size;
  180. mtrr_type type;
  181. int i;
  182. for (i = 0; i < num_var_ranges; i++) {
  183. type = range_state[i].type;
  184. if (type != MTRR_TYPE_WRBACK)
  185. continue;
  186. base = range_state[i].base_pfn;
  187. size = range_state[i].size_pfn;
  188. nr_range = add_range_with_merge(range, nr_range, base,
  189. base + size - 1);
  190. }
  191. if (debug_print) {
  192. printk(KERN_DEBUG "After WB checking\n");
  193. for (i = 0; i < nr_range; i++)
  194. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  195. range[i].start, range[i].end + 1);
  196. }
  197. /* Take out UC ranges: */
  198. for (i = 0; i < num_var_ranges; i++) {
  199. type = range_state[i].type;
  200. if (type != MTRR_TYPE_UNCACHABLE &&
  201. type != MTRR_TYPE_WRPROT)
  202. continue;
  203. size = range_state[i].size_pfn;
  204. if (!size)
  205. continue;
  206. base = range_state[i].base_pfn;
  207. if (base < (1<<(20-PAGE_SHIFT)) && mtrr_state.have_fixed &&
  208. (mtrr_state.enabled & 1)) {
  209. /* Var MTRR contains UC entry below 1M? Skip it: */
  210. printk(BIOS_BUG_MSG, i);
  211. if (base + size <= (1<<(20-PAGE_SHIFT)))
  212. continue;
  213. size -= (1<<(20-PAGE_SHIFT)) - base;
  214. base = 1<<(20-PAGE_SHIFT);
  215. }
  216. subtract_range(range, base, base + size - 1);
  217. }
  218. if (extra_remove_size)
  219. subtract_range(range, extra_remove_base,
  220. extra_remove_base + extra_remove_size - 1);
  221. if (debug_print) {
  222. printk(KERN_DEBUG "After UC checking\n");
  223. for (i = 0; i < RANGE_NUM; i++) {
  224. if (!range[i].end)
  225. continue;
  226. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  227. range[i].start, range[i].end + 1);
  228. }
  229. }
  230. /* sort the ranges */
  231. nr_range = clean_sort_range(range, RANGE_NUM);
  232. if (debug_print) {
  233. printk(KERN_DEBUG "After sorting\n");
  234. for (i = 0; i < nr_range; i++)
  235. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  236. range[i].start, range[i].end + 1);
  237. }
  238. /* clear those is not used */
  239. for (i = nr_range; i < RANGE_NUM; i++)
  240. memset(&range[i], 0, sizeof(range[i]));
  241. return nr_range;
  242. }
  243. #ifdef CONFIG_MTRR_SANITIZER
  244. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  245. {
  246. unsigned long sum = 0;
  247. int i;
  248. for (i = 0; i < nr_range; i++)
  249. sum += range[i].end + 1 - range[i].start;
  250. return sum;
  251. }
  252. static int enable_mtrr_cleanup __initdata =
  253. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  254. static int __init disable_mtrr_cleanup_setup(char *str)
  255. {
  256. enable_mtrr_cleanup = 0;
  257. return 0;
  258. }
  259. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  260. static int __init enable_mtrr_cleanup_setup(char *str)
  261. {
  262. enable_mtrr_cleanup = 1;
  263. return 0;
  264. }
  265. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  266. static int __init mtrr_cleanup_debug_setup(char *str)
  267. {
  268. debug_print = 1;
  269. return 0;
  270. }
  271. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  272. static void __init
  273. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  274. unsigned char type, unsigned int address_bits)
  275. {
  276. u32 base_lo, base_hi, mask_lo, mask_hi;
  277. u64 base, mask;
  278. if (!sizek) {
  279. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  280. return;
  281. }
  282. mask = (1ULL << address_bits) - 1;
  283. mask &= ~((((u64)sizek) << 10) - 1);
  284. base = ((u64)basek) << 10;
  285. base |= type;
  286. mask |= 0x800;
  287. base_lo = base & ((1ULL<<32) - 1);
  288. base_hi = base >> 32;
  289. mask_lo = mask & ((1ULL<<32) - 1);
  290. mask_hi = mask >> 32;
  291. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  292. }
  293. static void __init
  294. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  295. unsigned char type)
  296. {
  297. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  298. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  299. range_state[reg].type = type;
  300. }
  301. static void __init set_var_mtrr_all(unsigned int address_bits)
  302. {
  303. unsigned long basek, sizek;
  304. unsigned char type;
  305. unsigned int reg;
  306. for (reg = 0; reg < num_var_ranges; reg++) {
  307. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  308. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  309. type = range_state[reg].type;
  310. set_var_mtrr(reg, basek, sizek, type, address_bits);
  311. }
  312. }
  313. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  314. {
  315. unsigned long base = sizek;
  316. char factor;
  317. if (base & ((1<<10) - 1)) {
  318. /* Not MB-aligned: */
  319. factor = 'K';
  320. } else if (base & ((1<<20) - 1)) {
  321. factor = 'M';
  322. base >>= 10;
  323. } else {
  324. factor = 'G';
  325. base >>= 20;
  326. }
  327. *factorp = factor;
  328. return base;
  329. }
  330. static unsigned int __init
  331. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  332. unsigned long range_sizek, unsigned char type)
  333. {
  334. if (!range_sizek || (reg >= num_var_ranges))
  335. return reg;
  336. while (range_sizek) {
  337. unsigned long max_align, align;
  338. unsigned long sizek;
  339. /* Compute the maximum size with which we can make a range: */
  340. if (range_startk)
  341. max_align = ffs(range_startk) - 1;
  342. else
  343. max_align = 32;
  344. align = fls(range_sizek) - 1;
  345. if (align > max_align)
  346. align = max_align;
  347. sizek = 1 << align;
  348. if (debug_print) {
  349. char start_factor = 'K', size_factor = 'K';
  350. unsigned long start_base, size_base;
  351. start_base = to_size_factor(range_startk, &start_factor);
  352. size_base = to_size_factor(sizek, &size_factor);
  353. Dprintk("Setting variable MTRR %d, "
  354. "base: %ld%cB, range: %ld%cB, type %s\n",
  355. reg, start_base, start_factor,
  356. size_base, size_factor,
  357. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  358. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")
  359. );
  360. }
  361. save_var_mtrr(reg++, range_startk, sizek, type);
  362. range_startk += sizek;
  363. range_sizek -= sizek;
  364. if (reg >= num_var_ranges)
  365. break;
  366. }
  367. return reg;
  368. }
  369. static unsigned __init
  370. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  371. unsigned long sizek)
  372. {
  373. unsigned long hole_basek, hole_sizek;
  374. unsigned long second_basek, second_sizek;
  375. unsigned long range0_basek, range0_sizek;
  376. unsigned long range_basek, range_sizek;
  377. unsigned long chunk_sizek;
  378. unsigned long gran_sizek;
  379. hole_basek = 0;
  380. hole_sizek = 0;
  381. second_basek = 0;
  382. second_sizek = 0;
  383. chunk_sizek = state->chunk_sizek;
  384. gran_sizek = state->gran_sizek;
  385. /* Align with gran size, prevent small block used up MTRRs: */
  386. range_basek = ALIGN(state->range_startk, gran_sizek);
  387. if ((range_basek > basek) && basek)
  388. return second_sizek;
  389. state->range_sizek -= (range_basek - state->range_startk);
  390. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  391. while (range_sizek > state->range_sizek) {
  392. range_sizek -= gran_sizek;
  393. if (!range_sizek)
  394. return 0;
  395. }
  396. state->range_sizek = range_sizek;
  397. /* Try to append some small hole: */
  398. range0_basek = state->range_startk;
  399. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  400. /* No increase: */
  401. if (range0_sizek == state->range_sizek) {
  402. Dprintk("rangeX: %016lx - %016lx\n",
  403. range0_basek<<10,
  404. (range0_basek + state->range_sizek)<<10);
  405. state->reg = range_to_mtrr(state->reg, range0_basek,
  406. state->range_sizek, MTRR_TYPE_WRBACK);
  407. return 0;
  408. }
  409. /* Only cut back when it is not the last: */
  410. if (sizek) {
  411. while (range0_basek + range0_sizek > (basek + sizek)) {
  412. if (range0_sizek >= chunk_sizek)
  413. range0_sizek -= chunk_sizek;
  414. else
  415. range0_sizek = 0;
  416. if (!range0_sizek)
  417. break;
  418. }
  419. }
  420. second_try:
  421. range_basek = range0_basek + range0_sizek;
  422. /* One hole in the middle: */
  423. if (range_basek > basek && range_basek <= (basek + sizek))
  424. second_sizek = range_basek - basek;
  425. if (range0_sizek > state->range_sizek) {
  426. /* One hole in middle or at the end: */
  427. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  428. /* Hole size should be less than half of range0 size: */
  429. if (hole_sizek >= (range0_sizek >> 1) &&
  430. range0_sizek >= chunk_sizek) {
  431. range0_sizek -= chunk_sizek;
  432. second_sizek = 0;
  433. hole_sizek = 0;
  434. goto second_try;
  435. }
  436. }
  437. if (range0_sizek) {
  438. Dprintk("range0: %016lx - %016lx\n",
  439. range0_basek<<10,
  440. (range0_basek + range0_sizek)<<10);
  441. state->reg = range_to_mtrr(state->reg, range0_basek,
  442. range0_sizek, MTRR_TYPE_WRBACK);
  443. }
  444. if (range0_sizek < state->range_sizek) {
  445. /* Need to handle left over range: */
  446. range_sizek = state->range_sizek - range0_sizek;
  447. Dprintk("range: %016lx - %016lx\n",
  448. range_basek<<10,
  449. (range_basek + range_sizek)<<10);
  450. state->reg = range_to_mtrr(state->reg, range_basek,
  451. range_sizek, MTRR_TYPE_WRBACK);
  452. }
  453. if (hole_sizek) {
  454. hole_basek = range_basek - hole_sizek - second_sizek;
  455. Dprintk("hole: %016lx - %016lx\n",
  456. hole_basek<<10,
  457. (hole_basek + hole_sizek)<<10);
  458. state->reg = range_to_mtrr(state->reg, hole_basek,
  459. hole_sizek, MTRR_TYPE_UNCACHABLE);
  460. }
  461. return second_sizek;
  462. }
  463. static void __init
  464. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  465. unsigned long size_pfn)
  466. {
  467. unsigned long basek, sizek;
  468. unsigned long second_sizek = 0;
  469. if (state->reg >= num_var_ranges)
  470. return;
  471. basek = base_pfn << (PAGE_SHIFT - 10);
  472. sizek = size_pfn << (PAGE_SHIFT - 10);
  473. /* See if I can merge with the last range: */
  474. if ((basek <= 1024) ||
  475. (state->range_startk + state->range_sizek == basek)) {
  476. unsigned long endk = basek + sizek;
  477. state->range_sizek = endk - state->range_startk;
  478. return;
  479. }
  480. /* Write the range mtrrs: */
  481. if (state->range_sizek != 0)
  482. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  483. /* Allocate an msr: */
  484. state->range_startk = basek + second_sizek;
  485. state->range_sizek = sizek - second_sizek;
  486. }
  487. /* Mininum size of mtrr block that can take hole: */
  488. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  489. static int __init parse_mtrr_chunk_size_opt(char *p)
  490. {
  491. if (!p)
  492. return -EINVAL;
  493. mtrr_chunk_size = memparse(p, &p);
  494. return 0;
  495. }
  496. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  497. /* Granularity of mtrr of block: */
  498. static u64 mtrr_gran_size __initdata;
  499. static int __init parse_mtrr_gran_size_opt(char *p)
  500. {
  501. if (!p)
  502. return -EINVAL;
  503. mtrr_gran_size = memparse(p, &p);
  504. return 0;
  505. }
  506. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  507. static unsigned long nr_mtrr_spare_reg __initdata =
  508. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  509. static int __init parse_mtrr_spare_reg(char *arg)
  510. {
  511. if (arg)
  512. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  513. return 0;
  514. }
  515. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  516. static int __init
  517. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  518. u64 chunk_size, u64 gran_size)
  519. {
  520. struct var_mtrr_state var_state;
  521. int num_reg;
  522. int i;
  523. var_state.range_startk = 0;
  524. var_state.range_sizek = 0;
  525. var_state.reg = 0;
  526. var_state.chunk_sizek = chunk_size >> 10;
  527. var_state.gran_sizek = gran_size >> 10;
  528. memset(range_state, 0, sizeof(range_state));
  529. /* Write the range: */
  530. for (i = 0; i < nr_range; i++) {
  531. set_var_mtrr_range(&var_state, range[i].start,
  532. range[i].end - range[i].start + 1);
  533. }
  534. /* Write the last range: */
  535. if (var_state.range_sizek != 0)
  536. range_to_mtrr_with_hole(&var_state, 0, 0);
  537. num_reg = var_state.reg;
  538. /* Clear out the extra MTRR's: */
  539. while (var_state.reg < num_var_ranges) {
  540. save_var_mtrr(var_state.reg, 0, 0, 0);
  541. var_state.reg++;
  542. }
  543. return num_reg;
  544. }
  545. struct mtrr_cleanup_result {
  546. unsigned long gran_sizek;
  547. unsigned long chunk_sizek;
  548. unsigned long lose_cover_sizek;
  549. unsigned int num_reg;
  550. int bad;
  551. };
  552. /*
  553. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  554. * chunk size: gran_size, ..., 2G
  555. * so we need (1+16)*8
  556. */
  557. #define NUM_RESULT 136
  558. #define PSHIFT (PAGE_SHIFT - 10)
  559. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  560. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  561. static void __init print_out_mtrr_range_state(void)
  562. {
  563. char start_factor = 'K', size_factor = 'K';
  564. unsigned long start_base, size_base;
  565. mtrr_type type;
  566. int i;
  567. for (i = 0; i < num_var_ranges; i++) {
  568. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  569. if (!size_base)
  570. continue;
  571. size_base = to_size_factor(size_base, &size_factor),
  572. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  573. start_base = to_size_factor(start_base, &start_factor),
  574. type = range_state[i].type;
  575. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  576. i, start_base, start_factor,
  577. size_base, size_factor,
  578. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  579. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  580. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  581. );
  582. }
  583. }
  584. static int __init mtrr_need_cleanup(void)
  585. {
  586. int i;
  587. mtrr_type type;
  588. unsigned long size;
  589. /* Extra one for all 0: */
  590. int num[MTRR_NUM_TYPES + 1];
  591. /* Check entries number: */
  592. memset(num, 0, sizeof(num));
  593. for (i = 0; i < num_var_ranges; i++) {
  594. type = range_state[i].type;
  595. size = range_state[i].size_pfn;
  596. if (type >= MTRR_NUM_TYPES)
  597. continue;
  598. if (!size)
  599. type = MTRR_NUM_TYPES;
  600. num[type]++;
  601. }
  602. /* Check if we got UC entries: */
  603. if (!num[MTRR_TYPE_UNCACHABLE])
  604. return 0;
  605. /* Check if we only had WB and UC */
  606. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  607. num_var_ranges - num[MTRR_NUM_TYPES])
  608. return 0;
  609. return 1;
  610. }
  611. static unsigned long __initdata range_sums;
  612. static void __init
  613. mtrr_calc_range_state(u64 chunk_size, u64 gran_size,
  614. unsigned long x_remove_base,
  615. unsigned long x_remove_size, int i)
  616. {
  617. static struct res_range range_new[RANGE_NUM];
  618. unsigned long range_sums_new;
  619. static int nr_range_new;
  620. int num_reg;
  621. /* Convert ranges to var ranges state: */
  622. num_reg = x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  623. /* We got new setting in range_state, check it: */
  624. memset(range_new, 0, sizeof(range_new));
  625. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  626. x_remove_base, x_remove_size);
  627. range_sums_new = sum_ranges(range_new, nr_range_new);
  628. result[i].chunk_sizek = chunk_size >> 10;
  629. result[i].gran_sizek = gran_size >> 10;
  630. result[i].num_reg = num_reg;
  631. if (range_sums < range_sums_new) {
  632. result[i].lose_cover_sizek = (range_sums_new - range_sums) << PSHIFT;
  633. result[i].bad = 1;
  634. } else {
  635. result[i].lose_cover_sizek = (range_sums - range_sums_new) << PSHIFT;
  636. }
  637. /* Double check it: */
  638. if (!result[i].bad && !result[i].lose_cover_sizek) {
  639. if (nr_range_new != nr_range || memcmp(range, range_new, sizeof(range)))
  640. result[i].bad = 1;
  641. }
  642. if (!result[i].bad && (range_sums - range_sums_new < min_loss_pfn[num_reg]))
  643. min_loss_pfn[num_reg] = range_sums - range_sums_new;
  644. }
  645. static void __init mtrr_print_out_one_result(int i)
  646. {
  647. unsigned long gran_base, chunk_base, lose_base;
  648. char gran_factor, chunk_factor, lose_factor;
  649. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  650. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  651. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  652. pr_info("%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  653. result[i].bad ? "*BAD*" : " ",
  654. gran_base, gran_factor, chunk_base, chunk_factor);
  655. pr_cont("num_reg: %d \tlose cover RAM: %s%ld%c\n",
  656. result[i].num_reg, result[i].bad ? "-" : "",
  657. lose_base, lose_factor);
  658. }
  659. static int __init mtrr_search_optimal_index(void)
  660. {
  661. int num_reg_good;
  662. int index_good;
  663. int i;
  664. if (nr_mtrr_spare_reg >= num_var_ranges)
  665. nr_mtrr_spare_reg = num_var_ranges - 1;
  666. num_reg_good = -1;
  667. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  668. if (!min_loss_pfn[i])
  669. num_reg_good = i;
  670. }
  671. index_good = -1;
  672. if (num_reg_good != -1) {
  673. for (i = 0; i < NUM_RESULT; i++) {
  674. if (!result[i].bad &&
  675. result[i].num_reg == num_reg_good &&
  676. !result[i].lose_cover_sizek) {
  677. index_good = i;
  678. break;
  679. }
  680. }
  681. }
  682. return index_good;
  683. }
  684. int __init mtrr_cleanup(unsigned address_bits)
  685. {
  686. unsigned long x_remove_base, x_remove_size;
  687. unsigned long base, size, def, dummy;
  688. u64 chunk_size, gran_size;
  689. mtrr_type type;
  690. int index_good;
  691. int i;
  692. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  693. return 0;
  694. rdmsr(MSR_MTRRdefType, def, dummy);
  695. def &= 0xff;
  696. if (def != MTRR_TYPE_UNCACHABLE)
  697. return 0;
  698. /* Get it and store it aside: */
  699. memset(range_state, 0, sizeof(range_state));
  700. for (i = 0; i < num_var_ranges; i++) {
  701. mtrr_if->get(i, &base, &size, &type);
  702. range_state[i].base_pfn = base;
  703. range_state[i].size_pfn = size;
  704. range_state[i].type = type;
  705. }
  706. /* Check if we need handle it and can handle it: */
  707. if (!mtrr_need_cleanup())
  708. return 0;
  709. /* Print original var MTRRs at first, for debugging: */
  710. printk(KERN_DEBUG "original variable MTRRs\n");
  711. print_out_mtrr_range_state();
  712. memset(range, 0, sizeof(range));
  713. x_remove_size = 0;
  714. x_remove_base = 1 << (32 - PAGE_SHIFT);
  715. if (mtrr_tom2)
  716. x_remove_size = (mtrr_tom2 >> PAGE_SHIFT) - x_remove_base;
  717. nr_range = x86_get_mtrr_mem_range(range, 0, x_remove_base, x_remove_size);
  718. /*
  719. * [0, 1M) should always be covered by var mtrr with WB
  720. * and fixed mtrrs should take effect before var mtrr for it:
  721. */
  722. nr_range = add_range_with_merge(range, nr_range, 0,
  723. (1ULL<<(20 - PAGE_SHIFT)) - 1);
  724. /* Sort the ranges: */
  725. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  726. range_sums = sum_ranges(range, nr_range);
  727. printk(KERN_INFO "total RAM covered: %ldM\n",
  728. range_sums >> (20 - PAGE_SHIFT));
  729. if (mtrr_chunk_size && mtrr_gran_size) {
  730. i = 0;
  731. mtrr_calc_range_state(mtrr_chunk_size, mtrr_gran_size,
  732. x_remove_base, x_remove_size, i);
  733. mtrr_print_out_one_result(i);
  734. if (!result[i].bad) {
  735. set_var_mtrr_all(address_bits);
  736. printk(KERN_DEBUG "New variable MTRRs\n");
  737. print_out_mtrr_range_state();
  738. return 1;
  739. }
  740. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  741. "will find optimal one\n");
  742. }
  743. i = 0;
  744. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  745. memset(result, 0, sizeof(result));
  746. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  747. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  748. chunk_size <<= 1) {
  749. if (i >= NUM_RESULT)
  750. continue;
  751. mtrr_calc_range_state(chunk_size, gran_size,
  752. x_remove_base, x_remove_size, i);
  753. if (debug_print) {
  754. mtrr_print_out_one_result(i);
  755. printk(KERN_INFO "\n");
  756. }
  757. i++;
  758. }
  759. }
  760. /* Try to find the optimal index: */
  761. index_good = mtrr_search_optimal_index();
  762. if (index_good != -1) {
  763. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  764. i = index_good;
  765. mtrr_print_out_one_result(i);
  766. /* Convert ranges to var ranges state: */
  767. chunk_size = result[i].chunk_sizek;
  768. chunk_size <<= 10;
  769. gran_size = result[i].gran_sizek;
  770. gran_size <<= 10;
  771. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  772. set_var_mtrr_all(address_bits);
  773. printk(KERN_DEBUG "New variable MTRRs\n");
  774. print_out_mtrr_range_state();
  775. return 1;
  776. } else {
  777. /* print out all */
  778. for (i = 0; i < NUM_RESULT; i++)
  779. mtrr_print_out_one_result(i);
  780. }
  781. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  782. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  783. return 0;
  784. }
  785. #else
  786. int __init mtrr_cleanup(unsigned address_bits)
  787. {
  788. return 0;
  789. }
  790. #endif
  791. static int disable_mtrr_trim;
  792. static int __init disable_mtrr_trim_setup(char *str)
  793. {
  794. disable_mtrr_trim = 1;
  795. return 0;
  796. }
  797. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  798. /*
  799. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  800. * for memory >4GB. Check for that here.
  801. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  802. * apply to are wrong, but so far we don't know of any such case in the wild.
  803. */
  804. #define Tom2Enabled (1U << 21)
  805. #define Tom2ForceMemTypeWB (1U << 22)
  806. int __init amd_special_default_mtrr(void)
  807. {
  808. u32 l, h;
  809. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  810. return 0;
  811. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  812. return 0;
  813. /* In case some hypervisor doesn't pass SYSCFG through: */
  814. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  815. return 0;
  816. /*
  817. * Memory between 4GB and top of mem is forced WB by this magic bit.
  818. * Reserved before K8RevF, but should be zero there.
  819. */
  820. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  821. (Tom2Enabled | Tom2ForceMemTypeWB))
  822. return 1;
  823. return 0;
  824. }
  825. static u64 __init
  826. real_trim_memory(unsigned long start_pfn, unsigned long limit_pfn)
  827. {
  828. u64 trim_start, trim_size;
  829. trim_start = start_pfn;
  830. trim_start <<= PAGE_SHIFT;
  831. trim_size = limit_pfn;
  832. trim_size <<= PAGE_SHIFT;
  833. trim_size -= trim_start;
  834. return e820_update_range(trim_start, trim_size, E820_RAM, E820_RESERVED);
  835. }
  836. /**
  837. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  838. * @end_pfn: ending page frame number
  839. *
  840. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  841. * memory configurations. This routine checks that the highest MTRR matches
  842. * the end of memory, to make sure the MTRRs having a write back type cover
  843. * all of the memory the kernel is intending to use. If not, it'll trim any
  844. * memory off the end by adjusting end_pfn, removing it from the kernel's
  845. * allocation pools, warning the user with an obnoxious message.
  846. */
  847. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  848. {
  849. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  850. mtrr_type type;
  851. u64 total_trim_size;
  852. /* extra one for all 0 */
  853. int num[MTRR_NUM_TYPES + 1];
  854. /*
  855. * Make sure we only trim uncachable memory on machines that
  856. * support the Intel MTRR architecture:
  857. */
  858. if (!is_cpu(INTEL) || disable_mtrr_trim)
  859. return 0;
  860. rdmsr(MSR_MTRRdefType, def, dummy);
  861. def &= 0xff;
  862. if (def != MTRR_TYPE_UNCACHABLE)
  863. return 0;
  864. /* Get it and store it aside: */
  865. memset(range_state, 0, sizeof(range_state));
  866. for (i = 0; i < num_var_ranges; i++) {
  867. mtrr_if->get(i, &base, &size, &type);
  868. range_state[i].base_pfn = base;
  869. range_state[i].size_pfn = size;
  870. range_state[i].type = type;
  871. }
  872. /* Find highest cached pfn: */
  873. for (i = 0; i < num_var_ranges; i++) {
  874. type = range_state[i].type;
  875. if (type != MTRR_TYPE_WRBACK)
  876. continue;
  877. base = range_state[i].base_pfn;
  878. size = range_state[i].size_pfn;
  879. if (highest_pfn < base + size)
  880. highest_pfn = base + size;
  881. }
  882. /* kvm/qemu doesn't have mtrr set right, don't trim them all: */
  883. if (!highest_pfn) {
  884. printk(KERN_INFO "CPU MTRRs all blank - virtualized system.\n");
  885. return 0;
  886. }
  887. /* Check entries number: */
  888. memset(num, 0, sizeof(num));
  889. for (i = 0; i < num_var_ranges; i++) {
  890. type = range_state[i].type;
  891. if (type >= MTRR_NUM_TYPES)
  892. continue;
  893. size = range_state[i].size_pfn;
  894. if (!size)
  895. type = MTRR_NUM_TYPES;
  896. num[type]++;
  897. }
  898. /* No entry for WB? */
  899. if (!num[MTRR_TYPE_WRBACK])
  900. return 0;
  901. /* Check if we only had WB and UC: */
  902. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  903. num_var_ranges - num[MTRR_NUM_TYPES])
  904. return 0;
  905. memset(range, 0, sizeof(range));
  906. nr_range = 0;
  907. if (mtrr_tom2) {
  908. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  909. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  910. if (highest_pfn < range[nr_range].end + 1)
  911. highest_pfn = range[nr_range].end + 1;
  912. nr_range++;
  913. }
  914. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  915. /* Check the head: */
  916. total_trim_size = 0;
  917. if (range[0].start)
  918. total_trim_size += real_trim_memory(0, range[0].start);
  919. /* Check the holes: */
  920. for (i = 0; i < nr_range - 1; i++) {
  921. if (range[i].end + 1 < range[i+1].start)
  922. total_trim_size += real_trim_memory(range[i].end + 1,
  923. range[i+1].start);
  924. }
  925. /* Check the top: */
  926. i = nr_range - 1;
  927. if (range[i].end + 1 < end_pfn)
  928. total_trim_size += real_trim_memory(range[i].end + 1,
  929. end_pfn);
  930. if (total_trim_size) {
  931. pr_warning("WARNING: BIOS bug: CPU MTRRs don't cover all of memory, losing %lluMB of RAM.\n", total_trim_size >> 20);
  932. if (!changed_by_mtrr_cleanup)
  933. WARN_ON(1);
  934. pr_info("update e820 for mtrr\n");
  935. update_e820();
  936. return 1;
  937. }
  938. return 0;
  939. }