unaligned_64.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. /*
  2. * unaligned.c: Unaligned load/store trap handling with special
  3. * cases for the kernel to do them more quickly.
  4. *
  5. * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <linux/jiffies.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <asm/asi.h>
  14. #include <asm/ptrace.h>
  15. #include <asm/pstate.h>
  16. #include <asm/processor.h>
  17. #include <asm/system.h>
  18. #include <asm/uaccess.h>
  19. #include <linux/smp.h>
  20. #include <linux/bitops.h>
  21. #include <linux/perf_event.h>
  22. #include <asm/fpumacro.h>
  23. enum direction {
  24. load, /* ld, ldd, ldh, ldsh */
  25. store, /* st, std, sth, stsh */
  26. both, /* Swap, ldstub, cas, ... */
  27. fpld,
  28. fpst,
  29. invalid,
  30. };
  31. static inline enum direction decode_direction(unsigned int insn)
  32. {
  33. unsigned long tmp = (insn >> 21) & 1;
  34. if (!tmp)
  35. return load;
  36. else {
  37. switch ((insn>>19)&0xf) {
  38. case 15: /* swap* */
  39. return both;
  40. default:
  41. return store;
  42. }
  43. }
  44. }
  45. /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
  46. static inline int decode_access_size(unsigned int insn)
  47. {
  48. unsigned int tmp;
  49. tmp = ((insn >> 19) & 0xf);
  50. if (tmp == 11 || tmp == 14) /* ldx/stx */
  51. return 8;
  52. tmp &= 3;
  53. if (!tmp)
  54. return 4;
  55. else if (tmp == 3)
  56. return 16; /* ldd/std - Although it is actually 8 */
  57. else if (tmp == 2)
  58. return 2;
  59. else {
  60. printk("Impossible unaligned trap. insn=%08x\n", insn);
  61. die_if_kernel("Byte sized unaligned access?!?!", current_thread_info()->kregs);
  62. /* GCC should never warn that control reaches the end
  63. * of this function without returning a value because
  64. * die_if_kernel() is marked with attribute 'noreturn'.
  65. * Alas, some versions do...
  66. */
  67. return 0;
  68. }
  69. }
  70. static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
  71. {
  72. if (insn & 0x800000) {
  73. if (insn & 0x2000)
  74. return (unsigned char)(regs->tstate >> 24); /* %asi */
  75. else
  76. return (unsigned char)(insn >> 5); /* imm_asi */
  77. } else
  78. return ASI_P;
  79. }
  80. /* 0x400000 = signed, 0 = unsigned */
  81. static inline int decode_signedness(unsigned int insn)
  82. {
  83. return (insn & 0x400000);
  84. }
  85. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  86. unsigned int rd, int from_kernel)
  87. {
  88. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  89. if (from_kernel != 0)
  90. __asm__ __volatile__("flushw");
  91. else
  92. flushw_user();
  93. }
  94. }
  95. static inline long sign_extend_imm13(long imm)
  96. {
  97. return imm << 51 >> 51;
  98. }
  99. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  100. {
  101. unsigned long value;
  102. if (reg < 16)
  103. return (!reg ? 0 : regs->u_regs[reg]);
  104. if (regs->tstate & TSTATE_PRIV) {
  105. struct reg_window *win;
  106. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  107. value = win->locals[reg - 16];
  108. } else if (test_thread_flag(TIF_32BIT)) {
  109. struct reg_window32 __user *win32;
  110. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  111. get_user(value, &win32->locals[reg - 16]);
  112. } else {
  113. struct reg_window __user *win;
  114. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  115. get_user(value, &win->locals[reg - 16]);
  116. }
  117. return value;
  118. }
  119. static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
  120. {
  121. if (reg < 16)
  122. return &regs->u_regs[reg];
  123. if (regs->tstate & TSTATE_PRIV) {
  124. struct reg_window *win;
  125. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  126. return &win->locals[reg - 16];
  127. } else if (test_thread_flag(TIF_32BIT)) {
  128. struct reg_window32 *win32;
  129. win32 = (struct reg_window32 *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  130. return (unsigned long *)&win32->locals[reg - 16];
  131. } else {
  132. struct reg_window *win;
  133. win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  134. return &win->locals[reg - 16];
  135. }
  136. }
  137. unsigned long compute_effective_address(struct pt_regs *regs,
  138. unsigned int insn, unsigned int rd)
  139. {
  140. unsigned int rs1 = (insn >> 14) & 0x1f;
  141. unsigned int rs2 = insn & 0x1f;
  142. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  143. if (insn & 0x2000) {
  144. maybe_flush_windows(rs1, 0, rd, from_kernel);
  145. return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
  146. } else {
  147. maybe_flush_windows(rs1, rs2, rd, from_kernel);
  148. return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
  149. }
  150. }
  151. /* This is just to make gcc think die_if_kernel does return... */
  152. static void __used unaligned_panic(char *str, struct pt_regs *regs)
  153. {
  154. die_if_kernel(str, regs);
  155. }
  156. extern int do_int_load(unsigned long *dest_reg, int size,
  157. unsigned long *saddr, int is_signed, int asi);
  158. extern int __do_int_store(unsigned long *dst_addr, int size,
  159. unsigned long src_val, int asi);
  160. static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
  161. struct pt_regs *regs, int asi, int orig_asi)
  162. {
  163. unsigned long zero = 0;
  164. unsigned long *src_val_p = &zero;
  165. unsigned long src_val;
  166. if (size == 16) {
  167. size = 8;
  168. zero = (((long)(reg_num ?
  169. (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
  170. (unsigned)fetch_reg(reg_num + 1, regs);
  171. } else if (reg_num) {
  172. src_val_p = fetch_reg_addr(reg_num, regs);
  173. }
  174. src_val = *src_val_p;
  175. if (unlikely(asi != orig_asi)) {
  176. switch (size) {
  177. case 2:
  178. src_val = swab16(src_val);
  179. break;
  180. case 4:
  181. src_val = swab32(src_val);
  182. break;
  183. case 8:
  184. src_val = swab64(src_val);
  185. break;
  186. case 16:
  187. default:
  188. BUG();
  189. break;
  190. };
  191. }
  192. return __do_int_store(dst_addr, size, src_val, asi);
  193. }
  194. static inline void advance(struct pt_regs *regs)
  195. {
  196. regs->tpc = regs->tnpc;
  197. regs->tnpc += 4;
  198. if (test_thread_flag(TIF_32BIT)) {
  199. regs->tpc &= 0xffffffff;
  200. regs->tnpc &= 0xffffffff;
  201. }
  202. }
  203. static inline int floating_point_load_or_store_p(unsigned int insn)
  204. {
  205. return (insn >> 24) & 1;
  206. }
  207. static inline int ok_for_kernel(unsigned int insn)
  208. {
  209. return !floating_point_load_or_store_p(insn);
  210. }
  211. static void kernel_mna_trap_fault(int fixup_tstate_asi)
  212. {
  213. struct pt_regs *regs = current_thread_info()->kern_una_regs;
  214. unsigned int insn = current_thread_info()->kern_una_insn;
  215. const struct exception_table_entry *entry;
  216. entry = search_exception_tables(regs->tpc);
  217. if (!entry) {
  218. unsigned long address;
  219. address = compute_effective_address(regs, insn,
  220. ((insn >> 25) & 0x1f));
  221. if (address < PAGE_SIZE) {
  222. printk(KERN_ALERT "Unable to handle kernel NULL "
  223. "pointer dereference in mna handler");
  224. } else
  225. printk(KERN_ALERT "Unable to handle kernel paging "
  226. "request in mna handler");
  227. printk(KERN_ALERT " at virtual address %016lx\n",address);
  228. printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
  229. (current->mm ? CTX_HWBITS(current->mm->context) :
  230. CTX_HWBITS(current->active_mm->context)));
  231. printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
  232. (current->mm ? (unsigned long) current->mm->pgd :
  233. (unsigned long) current->active_mm->pgd));
  234. die_if_kernel("Oops", regs);
  235. /* Not reached */
  236. }
  237. regs->tpc = entry->fixup;
  238. regs->tnpc = regs->tpc + 4;
  239. if (fixup_tstate_asi) {
  240. regs->tstate &= ~TSTATE_ASI;
  241. regs->tstate |= (ASI_AIUS << 24UL);
  242. }
  243. }
  244. static void log_unaligned(struct pt_regs *regs)
  245. {
  246. static unsigned long count, last_time;
  247. if (time_after(jiffies, last_time + 5 * HZ))
  248. count = 0;
  249. if (count < 5) {
  250. last_time = jiffies;
  251. count++;
  252. printk("Kernel unaligned access at TPC[%lx] %pS\n",
  253. regs->tpc, (void *) regs->tpc);
  254. }
  255. }
  256. asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
  257. {
  258. enum direction dir = decode_direction(insn);
  259. int size = decode_access_size(insn);
  260. int orig_asi, asi;
  261. current_thread_info()->kern_una_regs = regs;
  262. current_thread_info()->kern_una_insn = insn;
  263. orig_asi = asi = decode_asi(insn, regs);
  264. /* If this is a {get,put}_user() on an unaligned userspace pointer,
  265. * just signal a fault and do not log the event.
  266. */
  267. if (asi == ASI_AIUS) {
  268. kernel_mna_trap_fault(0);
  269. return;
  270. }
  271. log_unaligned(regs);
  272. if (!ok_for_kernel(insn) || dir == both) {
  273. printk("Unsupported unaligned load/store trap for kernel "
  274. "at <%016lx>.\n", regs->tpc);
  275. unaligned_panic("Kernel does fpu/atomic "
  276. "unaligned load/store.", regs);
  277. kernel_mna_trap_fault(0);
  278. } else {
  279. unsigned long addr, *reg_addr;
  280. int err;
  281. addr = compute_effective_address(regs, insn,
  282. ((insn >> 25) & 0x1f));
  283. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, addr);
  284. switch (asi) {
  285. case ASI_NL:
  286. case ASI_AIUPL:
  287. case ASI_AIUSL:
  288. case ASI_PL:
  289. case ASI_SL:
  290. case ASI_PNFL:
  291. case ASI_SNFL:
  292. asi &= ~0x08;
  293. break;
  294. };
  295. switch (dir) {
  296. case load:
  297. reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
  298. err = do_int_load(reg_addr, size,
  299. (unsigned long *) addr,
  300. decode_signedness(insn), asi);
  301. if (likely(!err) && unlikely(asi != orig_asi)) {
  302. unsigned long val_in = *reg_addr;
  303. switch (size) {
  304. case 2:
  305. val_in = swab16(val_in);
  306. break;
  307. case 4:
  308. val_in = swab32(val_in);
  309. break;
  310. case 8:
  311. val_in = swab64(val_in);
  312. break;
  313. case 16:
  314. default:
  315. BUG();
  316. break;
  317. };
  318. *reg_addr = val_in;
  319. }
  320. break;
  321. case store:
  322. err = do_int_store(((insn>>25)&0x1f), size,
  323. (unsigned long *) addr, regs,
  324. asi, orig_asi);
  325. break;
  326. default:
  327. panic("Impossible kernel unaligned trap.");
  328. /* Not reached... */
  329. }
  330. if (unlikely(err))
  331. kernel_mna_trap_fault(1);
  332. else
  333. advance(regs);
  334. }
  335. }
  336. static char popc_helper[] = {
  337. 0, 1, 1, 2, 1, 2, 2, 3,
  338. 1, 2, 2, 3, 2, 3, 3, 4,
  339. };
  340. int handle_popc(u32 insn, struct pt_regs *regs)
  341. {
  342. u64 value;
  343. int ret, i, rd = ((insn >> 25) & 0x1f);
  344. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  345. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  346. if (insn & 0x2000) {
  347. maybe_flush_windows(0, 0, rd, from_kernel);
  348. value = sign_extend_imm13(insn);
  349. } else {
  350. maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
  351. value = fetch_reg(insn & 0x1f, regs);
  352. }
  353. for (ret = 0, i = 0; i < 16; i++) {
  354. ret += popc_helper[value & 0xf];
  355. value >>= 4;
  356. }
  357. if (rd < 16) {
  358. if (rd)
  359. regs->u_regs[rd] = ret;
  360. } else {
  361. if (test_thread_flag(TIF_32BIT)) {
  362. struct reg_window32 __user *win32;
  363. win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
  364. put_user(ret, &win32->locals[rd - 16]);
  365. } else {
  366. struct reg_window __user *win;
  367. win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
  368. put_user(ret, &win->locals[rd - 16]);
  369. }
  370. }
  371. advance(regs);
  372. return 1;
  373. }
  374. extern void do_fpother(struct pt_regs *regs);
  375. extern void do_privact(struct pt_regs *regs);
  376. extern void spitfire_data_access_exception(struct pt_regs *regs,
  377. unsigned long sfsr,
  378. unsigned long sfar);
  379. extern void sun4v_data_access_exception(struct pt_regs *regs,
  380. unsigned long addr,
  381. unsigned long type_ctx);
  382. int handle_ldf_stq(u32 insn, struct pt_regs *regs)
  383. {
  384. unsigned long addr = compute_effective_address(regs, insn, 0);
  385. int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  386. struct fpustate *f = FPUSTATE;
  387. int asi = decode_asi(insn, regs);
  388. int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  389. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  390. save_and_clear_fpu();
  391. current_thread_info()->xfsr[0] &= ~0x1c000;
  392. if (freg & 3) {
  393. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  394. do_fpother(regs);
  395. return 0;
  396. }
  397. if (insn & 0x200000) {
  398. /* STQ */
  399. u64 first = 0, second = 0;
  400. if (current_thread_info()->fpsaved[0] & flag) {
  401. first = *(u64 *)&f->regs[freg];
  402. second = *(u64 *)&f->regs[freg+2];
  403. }
  404. if (asi < 0x80) {
  405. do_privact(regs);
  406. return 1;
  407. }
  408. switch (asi) {
  409. case ASI_P:
  410. case ASI_S: break;
  411. case ASI_PL:
  412. case ASI_SL:
  413. {
  414. /* Need to convert endians */
  415. u64 tmp = __swab64p(&first);
  416. first = __swab64p(&second);
  417. second = tmp;
  418. break;
  419. }
  420. default:
  421. if (tlb_type == hypervisor)
  422. sun4v_data_access_exception(regs, addr, 0);
  423. else
  424. spitfire_data_access_exception(regs, 0, addr);
  425. return 1;
  426. }
  427. if (put_user (first >> 32, (u32 __user *)addr) ||
  428. __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
  429. __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
  430. __put_user ((u32)second, (u32 __user *)(addr + 12))) {
  431. if (tlb_type == hypervisor)
  432. sun4v_data_access_exception(regs, addr, 0);
  433. else
  434. spitfire_data_access_exception(regs, 0, addr);
  435. return 1;
  436. }
  437. } else {
  438. /* LDF, LDDF, LDQF */
  439. u32 data[4] __attribute__ ((aligned(8)));
  440. int size, i;
  441. int err;
  442. if (asi < 0x80) {
  443. do_privact(regs);
  444. return 1;
  445. } else if (asi > ASI_SNFL) {
  446. if (tlb_type == hypervisor)
  447. sun4v_data_access_exception(regs, addr, 0);
  448. else
  449. spitfire_data_access_exception(regs, 0, addr);
  450. return 1;
  451. }
  452. switch (insn & 0x180000) {
  453. case 0x000000: size = 1; break;
  454. case 0x100000: size = 4; break;
  455. default: size = 2; break;
  456. }
  457. for (i = 0; i < size; i++)
  458. data[i] = 0;
  459. err = get_user (data[0], (u32 __user *) addr);
  460. if (!err) {
  461. for (i = 1; i < size; i++)
  462. err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
  463. }
  464. if (err && !(asi & 0x2 /* NF */)) {
  465. if (tlb_type == hypervisor)
  466. sun4v_data_access_exception(regs, addr, 0);
  467. else
  468. spitfire_data_access_exception(regs, 0, addr);
  469. return 1;
  470. }
  471. if (asi & 0x8) /* Little */ {
  472. u64 tmp;
  473. switch (size) {
  474. case 1: data[0] = le32_to_cpup(data + 0); break;
  475. default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
  476. break;
  477. case 4: tmp = le64_to_cpup((u64 *)(data + 0));
  478. *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
  479. *(u64 *)(data + 2) = tmp;
  480. break;
  481. }
  482. }
  483. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  484. current_thread_info()->fpsaved[0] = FPRS_FEF;
  485. current_thread_info()->gsr[0] = 0;
  486. }
  487. if (!(current_thread_info()->fpsaved[0] & flag)) {
  488. if (freg < 32)
  489. memset(f->regs, 0, 32*sizeof(u32));
  490. else
  491. memset(f->regs+32, 0, 32*sizeof(u32));
  492. }
  493. memcpy(f->regs + freg, data, size * 4);
  494. current_thread_info()->fpsaved[0] |= flag;
  495. }
  496. advance(regs);
  497. return 1;
  498. }
  499. void handle_ld_nf(u32 insn, struct pt_regs *regs)
  500. {
  501. int rd = ((insn >> 25) & 0x1f);
  502. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  503. unsigned long *reg;
  504. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0);
  505. maybe_flush_windows(0, 0, rd, from_kernel);
  506. reg = fetch_reg_addr(rd, regs);
  507. if (from_kernel || rd < 16) {
  508. reg[0] = 0;
  509. if ((insn & 0x780000) == 0x180000)
  510. reg[1] = 0;
  511. } else if (test_thread_flag(TIF_32BIT)) {
  512. put_user(0, (int __user *) reg);
  513. if ((insn & 0x780000) == 0x180000)
  514. put_user(0, ((int __user *) reg) + 1);
  515. } else {
  516. put_user(0, (unsigned long __user *) reg);
  517. if ((insn & 0x780000) == 0x180000)
  518. put_user(0, (unsigned long __user *) reg + 1);
  519. }
  520. advance(regs);
  521. }
  522. void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  523. {
  524. unsigned long pc = regs->tpc;
  525. unsigned long tstate = regs->tstate;
  526. u32 insn;
  527. u64 value;
  528. u8 freg;
  529. int flag;
  530. struct fpustate *f = FPUSTATE;
  531. if (tstate & TSTATE_PRIV)
  532. die_if_kernel("lddfmna from kernel", regs);
  533. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
  534. if (test_thread_flag(TIF_32BIT))
  535. pc = (u32)pc;
  536. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  537. int asi = decode_asi(insn, regs);
  538. u32 first, second;
  539. int err;
  540. if ((asi > ASI_SNFL) ||
  541. (asi < ASI_P))
  542. goto daex;
  543. first = second = 0;
  544. err = get_user(first, (u32 __user *)sfar);
  545. if (!err)
  546. err = get_user(second, (u32 __user *)(sfar + 4));
  547. if (err) {
  548. if (!(asi & 0x2))
  549. goto daex;
  550. first = second = 0;
  551. }
  552. save_and_clear_fpu();
  553. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  554. value = (((u64)first) << 32) | second;
  555. if (asi & 0x8) /* Little */
  556. value = __swab64p(&value);
  557. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  558. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  559. current_thread_info()->fpsaved[0] = FPRS_FEF;
  560. current_thread_info()->gsr[0] = 0;
  561. }
  562. if (!(current_thread_info()->fpsaved[0] & flag)) {
  563. if (freg < 32)
  564. memset(f->regs, 0, 32*sizeof(u32));
  565. else
  566. memset(f->regs+32, 0, 32*sizeof(u32));
  567. }
  568. *(u64 *)(f->regs + freg) = value;
  569. current_thread_info()->fpsaved[0] |= flag;
  570. } else {
  571. daex:
  572. if (tlb_type == hypervisor)
  573. sun4v_data_access_exception(regs, sfar, sfsr);
  574. else
  575. spitfire_data_access_exception(regs, sfsr, sfar);
  576. return;
  577. }
  578. advance(regs);
  579. return;
  580. }
  581. void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  582. {
  583. unsigned long pc = regs->tpc;
  584. unsigned long tstate = regs->tstate;
  585. u32 insn;
  586. u64 value;
  587. u8 freg;
  588. int flag;
  589. struct fpustate *f = FPUSTATE;
  590. if (tstate & TSTATE_PRIV)
  591. die_if_kernel("stdfmna from kernel", regs);
  592. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, 0, regs, sfar);
  593. if (test_thread_flag(TIF_32BIT))
  594. pc = (u32)pc;
  595. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  596. int asi = decode_asi(insn, regs);
  597. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  598. value = 0;
  599. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  600. if ((asi > ASI_SNFL) ||
  601. (asi < ASI_P))
  602. goto daex;
  603. save_and_clear_fpu();
  604. if (current_thread_info()->fpsaved[0] & flag)
  605. value = *(u64 *)&f->regs[freg];
  606. switch (asi) {
  607. case ASI_P:
  608. case ASI_S: break;
  609. case ASI_PL:
  610. case ASI_SL:
  611. value = __swab64p(&value); break;
  612. default: goto daex;
  613. }
  614. if (put_user (value >> 32, (u32 __user *) sfar) ||
  615. __put_user ((u32)value, (u32 __user *)(sfar + 4)))
  616. goto daex;
  617. } else {
  618. daex:
  619. if (tlb_type == hypervisor)
  620. sun4v_data_access_exception(regs, sfar, sfsr);
  621. else
  622. spitfire_data_access_exception(regs, sfsr, sfar);
  623. return;
  624. }
  625. advance(regs);
  626. return;
  627. }