iommu.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874
  1. /* iommu.c: Generic sparc64 IOMMU support.
  2. *
  3. * Copyright (C) 1999, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/delay.h>
  9. #include <linux/device.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/errno.h>
  12. #include <linux/iommu-helper.h>
  13. #include <linux/bitmap.h>
  14. #ifdef CONFIG_PCI
  15. #include <linux/pci.h>
  16. #endif
  17. #include <asm/iommu.h>
  18. #include "iommu_common.h"
  19. #define STC_CTXMATCH_ADDR(STC, CTX) \
  20. ((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
  21. #define STC_FLUSHFLAG_INIT(STC) \
  22. (*((STC)->strbuf_flushflag) = 0UL)
  23. #define STC_FLUSHFLAG_SET(STC) \
  24. (*((STC)->strbuf_flushflag) != 0UL)
  25. #define iommu_read(__reg) \
  26. ({ u64 __ret; \
  27. __asm__ __volatile__("ldxa [%1] %2, %0" \
  28. : "=r" (__ret) \
  29. : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
  30. : "memory"); \
  31. __ret; \
  32. })
  33. #define iommu_write(__reg, __val) \
  34. __asm__ __volatile__("stxa %0, [%1] %2" \
  35. : /* no outputs */ \
  36. : "r" (__val), "r" (__reg), \
  37. "i" (ASI_PHYS_BYPASS_EC_E))
  38. /* Must be invoked under the IOMMU lock. */
  39. static void iommu_flushall(struct iommu *iommu)
  40. {
  41. if (iommu->iommu_flushinv) {
  42. iommu_write(iommu->iommu_flushinv, ~(u64)0);
  43. } else {
  44. unsigned long tag;
  45. int entry;
  46. tag = iommu->iommu_tags;
  47. for (entry = 0; entry < 16; entry++) {
  48. iommu_write(tag, 0);
  49. tag += 8;
  50. }
  51. /* Ensure completion of previous PIO writes. */
  52. (void) iommu_read(iommu->write_complete_reg);
  53. }
  54. }
  55. #define IOPTE_CONSISTENT(CTX) \
  56. (IOPTE_VALID | IOPTE_CACHE | \
  57. (((CTX) << 47) & IOPTE_CONTEXT))
  58. #define IOPTE_STREAMING(CTX) \
  59. (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
  60. /* Existing mappings are never marked invalid, instead they
  61. * are pointed to a dummy page.
  62. */
  63. #define IOPTE_IS_DUMMY(iommu, iopte) \
  64. ((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
  65. static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
  66. {
  67. unsigned long val = iopte_val(*iopte);
  68. val &= ~IOPTE_PAGE;
  69. val |= iommu->dummy_page_pa;
  70. iopte_val(*iopte) = val;
  71. }
  72. /* Based almost entirely upon the ppc64 iommu allocator. If you use the 'handle'
  73. * facility it must all be done in one pass while under the iommu lock.
  74. *
  75. * On sun4u platforms, we only flush the IOMMU once every time we've passed
  76. * over the entire page table doing allocations. Therefore we only ever advance
  77. * the hint and cannot backtrack it.
  78. */
  79. unsigned long iommu_range_alloc(struct device *dev,
  80. struct iommu *iommu,
  81. unsigned long npages,
  82. unsigned long *handle)
  83. {
  84. unsigned long n, end, start, limit, boundary_size;
  85. struct iommu_arena *arena = &iommu->arena;
  86. int pass = 0;
  87. /* This allocator was derived from x86_64's bit string search */
  88. /* Sanity check */
  89. if (unlikely(npages == 0)) {
  90. if (printk_ratelimit())
  91. WARN_ON(1);
  92. return DMA_ERROR_CODE;
  93. }
  94. if (handle && *handle)
  95. start = *handle;
  96. else
  97. start = arena->hint;
  98. limit = arena->limit;
  99. /* The case below can happen if we have a small segment appended
  100. * to a large, or when the previous alloc was at the very end of
  101. * the available space. If so, go back to the beginning and flush.
  102. */
  103. if (start >= limit) {
  104. start = 0;
  105. if (iommu->flush_all)
  106. iommu->flush_all(iommu);
  107. }
  108. again:
  109. if (dev)
  110. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  111. 1 << IO_PAGE_SHIFT);
  112. else
  113. boundary_size = ALIGN(1UL << 32, 1 << IO_PAGE_SHIFT);
  114. n = iommu_area_alloc(arena->map, limit, start, npages,
  115. iommu->page_table_map_base >> IO_PAGE_SHIFT,
  116. boundary_size >> IO_PAGE_SHIFT, 0);
  117. if (n == -1) {
  118. if (likely(pass < 1)) {
  119. /* First failure, rescan from the beginning. */
  120. start = 0;
  121. if (iommu->flush_all)
  122. iommu->flush_all(iommu);
  123. pass++;
  124. goto again;
  125. } else {
  126. /* Second failure, give up */
  127. return DMA_ERROR_CODE;
  128. }
  129. }
  130. end = n + npages;
  131. arena->hint = end;
  132. /* Update handle for SG allocations */
  133. if (handle)
  134. *handle = end;
  135. return n;
  136. }
  137. void iommu_range_free(struct iommu *iommu, dma_addr_t dma_addr, unsigned long npages)
  138. {
  139. struct iommu_arena *arena = &iommu->arena;
  140. unsigned long entry;
  141. entry = (dma_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  142. bitmap_clear(arena->map, entry, npages);
  143. }
  144. int iommu_table_init(struct iommu *iommu, int tsbsize,
  145. u32 dma_offset, u32 dma_addr_mask,
  146. int numa_node)
  147. {
  148. unsigned long i, order, sz, num_tsb_entries;
  149. struct page *page;
  150. num_tsb_entries = tsbsize / sizeof(iopte_t);
  151. /* Setup initial software IOMMU state. */
  152. spin_lock_init(&iommu->lock);
  153. iommu->ctx_lowest_free = 1;
  154. iommu->page_table_map_base = dma_offset;
  155. iommu->dma_addr_mask = dma_addr_mask;
  156. /* Allocate and initialize the free area map. */
  157. sz = num_tsb_entries / 8;
  158. sz = (sz + 7UL) & ~7UL;
  159. iommu->arena.map = kmalloc_node(sz, GFP_KERNEL, numa_node);
  160. if (!iommu->arena.map) {
  161. printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
  162. return -ENOMEM;
  163. }
  164. memset(iommu->arena.map, 0, sz);
  165. iommu->arena.limit = num_tsb_entries;
  166. if (tlb_type != hypervisor)
  167. iommu->flush_all = iommu_flushall;
  168. /* Allocate and initialize the dummy page which we
  169. * set inactive IO PTEs to point to.
  170. */
  171. page = alloc_pages_node(numa_node, GFP_KERNEL, 0);
  172. if (!page) {
  173. printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
  174. goto out_free_map;
  175. }
  176. iommu->dummy_page = (unsigned long) page_address(page);
  177. memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
  178. iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
  179. /* Now allocate and setup the IOMMU page table itself. */
  180. order = get_order(tsbsize);
  181. page = alloc_pages_node(numa_node, GFP_KERNEL, order);
  182. if (!page) {
  183. printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
  184. goto out_free_dummy_page;
  185. }
  186. iommu->page_table = (iopte_t *)page_address(page);
  187. for (i = 0; i < num_tsb_entries; i++)
  188. iopte_make_dummy(iommu, &iommu->page_table[i]);
  189. return 0;
  190. out_free_dummy_page:
  191. free_page(iommu->dummy_page);
  192. iommu->dummy_page = 0UL;
  193. out_free_map:
  194. kfree(iommu->arena.map);
  195. iommu->arena.map = NULL;
  196. return -ENOMEM;
  197. }
  198. static inline iopte_t *alloc_npages(struct device *dev, struct iommu *iommu,
  199. unsigned long npages)
  200. {
  201. unsigned long entry;
  202. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  203. if (unlikely(entry == DMA_ERROR_CODE))
  204. return NULL;
  205. return iommu->page_table + entry;
  206. }
  207. static int iommu_alloc_ctx(struct iommu *iommu)
  208. {
  209. int lowest = iommu->ctx_lowest_free;
  210. int sz = IOMMU_NUM_CTXS - lowest;
  211. int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
  212. if (unlikely(n == sz)) {
  213. n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
  214. if (unlikely(n == lowest)) {
  215. printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
  216. n = 0;
  217. }
  218. }
  219. if (n)
  220. __set_bit(n, iommu->ctx_bitmap);
  221. return n;
  222. }
  223. static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
  224. {
  225. if (likely(ctx)) {
  226. __clear_bit(ctx, iommu->ctx_bitmap);
  227. if (ctx < iommu->ctx_lowest_free)
  228. iommu->ctx_lowest_free = ctx;
  229. }
  230. }
  231. static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
  232. dma_addr_t *dma_addrp, gfp_t gfp)
  233. {
  234. unsigned long flags, order, first_page;
  235. struct iommu *iommu;
  236. struct page *page;
  237. int npages, nid;
  238. iopte_t *iopte;
  239. void *ret;
  240. size = IO_PAGE_ALIGN(size);
  241. order = get_order(size);
  242. if (order >= 10)
  243. return NULL;
  244. nid = dev->archdata.numa_node;
  245. page = alloc_pages_node(nid, gfp, order);
  246. if (unlikely(!page))
  247. return NULL;
  248. first_page = (unsigned long) page_address(page);
  249. memset((char *)first_page, 0, PAGE_SIZE << order);
  250. iommu = dev->archdata.iommu;
  251. spin_lock_irqsave(&iommu->lock, flags);
  252. iopte = alloc_npages(dev, iommu, size >> IO_PAGE_SHIFT);
  253. spin_unlock_irqrestore(&iommu->lock, flags);
  254. if (unlikely(iopte == NULL)) {
  255. free_pages(first_page, order);
  256. return NULL;
  257. }
  258. *dma_addrp = (iommu->page_table_map_base +
  259. ((iopte - iommu->page_table) << IO_PAGE_SHIFT));
  260. ret = (void *) first_page;
  261. npages = size >> IO_PAGE_SHIFT;
  262. first_page = __pa(first_page);
  263. while (npages--) {
  264. iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
  265. IOPTE_WRITE |
  266. (first_page & IOPTE_PAGE));
  267. iopte++;
  268. first_page += IO_PAGE_SIZE;
  269. }
  270. return ret;
  271. }
  272. static void dma_4u_free_coherent(struct device *dev, size_t size,
  273. void *cpu, dma_addr_t dvma)
  274. {
  275. struct iommu *iommu;
  276. iopte_t *iopte;
  277. unsigned long flags, order, npages;
  278. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  279. iommu = dev->archdata.iommu;
  280. iopte = iommu->page_table +
  281. ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  282. spin_lock_irqsave(&iommu->lock, flags);
  283. iommu_range_free(iommu, dvma, npages);
  284. spin_unlock_irqrestore(&iommu->lock, flags);
  285. order = get_order(size);
  286. if (order < 10)
  287. free_pages((unsigned long)cpu, order);
  288. }
  289. static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page,
  290. unsigned long offset, size_t sz,
  291. enum dma_data_direction direction,
  292. struct dma_attrs *attrs)
  293. {
  294. struct iommu *iommu;
  295. struct strbuf *strbuf;
  296. iopte_t *base;
  297. unsigned long flags, npages, oaddr;
  298. unsigned long i, base_paddr, ctx;
  299. u32 bus_addr, ret;
  300. unsigned long iopte_protection;
  301. iommu = dev->archdata.iommu;
  302. strbuf = dev->archdata.stc;
  303. if (unlikely(direction == DMA_NONE))
  304. goto bad_no_ctx;
  305. oaddr = (unsigned long)(page_address(page) + offset);
  306. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  307. npages >>= IO_PAGE_SHIFT;
  308. spin_lock_irqsave(&iommu->lock, flags);
  309. base = alloc_npages(dev, iommu, npages);
  310. ctx = 0;
  311. if (iommu->iommu_ctxflush)
  312. ctx = iommu_alloc_ctx(iommu);
  313. spin_unlock_irqrestore(&iommu->lock, flags);
  314. if (unlikely(!base))
  315. goto bad;
  316. bus_addr = (iommu->page_table_map_base +
  317. ((base - iommu->page_table) << IO_PAGE_SHIFT));
  318. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  319. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  320. if (strbuf->strbuf_enabled)
  321. iopte_protection = IOPTE_STREAMING(ctx);
  322. else
  323. iopte_protection = IOPTE_CONSISTENT(ctx);
  324. if (direction != DMA_TO_DEVICE)
  325. iopte_protection |= IOPTE_WRITE;
  326. for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
  327. iopte_val(*base) = iopte_protection | base_paddr;
  328. return ret;
  329. bad:
  330. iommu_free_ctx(iommu, ctx);
  331. bad_no_ctx:
  332. if (printk_ratelimit())
  333. WARN_ON(1);
  334. return DMA_ERROR_CODE;
  335. }
  336. static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
  337. u32 vaddr, unsigned long ctx, unsigned long npages,
  338. enum dma_data_direction direction)
  339. {
  340. int limit;
  341. if (strbuf->strbuf_ctxflush &&
  342. iommu->iommu_ctxflush) {
  343. unsigned long matchreg, flushreg;
  344. u64 val;
  345. flushreg = strbuf->strbuf_ctxflush;
  346. matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
  347. iommu_write(flushreg, ctx);
  348. val = iommu_read(matchreg);
  349. val &= 0xffff;
  350. if (!val)
  351. goto do_flush_sync;
  352. while (val) {
  353. if (val & 0x1)
  354. iommu_write(flushreg, ctx);
  355. val >>= 1;
  356. }
  357. val = iommu_read(matchreg);
  358. if (unlikely(val)) {
  359. printk(KERN_WARNING "strbuf_flush: ctx flush "
  360. "timeout matchreg[%llx] ctx[%lx]\n",
  361. val, ctx);
  362. goto do_page_flush;
  363. }
  364. } else {
  365. unsigned long i;
  366. do_page_flush:
  367. for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
  368. iommu_write(strbuf->strbuf_pflush, vaddr);
  369. }
  370. do_flush_sync:
  371. /* If the device could not have possibly put dirty data into
  372. * the streaming cache, no flush-flag synchronization needs
  373. * to be performed.
  374. */
  375. if (direction == DMA_TO_DEVICE)
  376. return;
  377. STC_FLUSHFLAG_INIT(strbuf);
  378. iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
  379. (void) iommu_read(iommu->write_complete_reg);
  380. limit = 100000;
  381. while (!STC_FLUSHFLAG_SET(strbuf)) {
  382. limit--;
  383. if (!limit)
  384. break;
  385. udelay(1);
  386. rmb();
  387. }
  388. if (!limit)
  389. printk(KERN_WARNING "strbuf_flush: flushflag timeout "
  390. "vaddr[%08x] ctx[%lx] npages[%ld]\n",
  391. vaddr, ctx, npages);
  392. }
  393. static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
  394. size_t sz, enum dma_data_direction direction,
  395. struct dma_attrs *attrs)
  396. {
  397. struct iommu *iommu;
  398. struct strbuf *strbuf;
  399. iopte_t *base;
  400. unsigned long flags, npages, ctx, i;
  401. if (unlikely(direction == DMA_NONE)) {
  402. if (printk_ratelimit())
  403. WARN_ON(1);
  404. return;
  405. }
  406. iommu = dev->archdata.iommu;
  407. strbuf = dev->archdata.stc;
  408. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  409. npages >>= IO_PAGE_SHIFT;
  410. base = iommu->page_table +
  411. ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  412. bus_addr &= IO_PAGE_MASK;
  413. spin_lock_irqsave(&iommu->lock, flags);
  414. /* Record the context, if any. */
  415. ctx = 0;
  416. if (iommu->iommu_ctxflush)
  417. ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
  418. /* Step 1: Kick data out of streaming buffers if necessary. */
  419. if (strbuf->strbuf_enabled)
  420. strbuf_flush(strbuf, iommu, bus_addr, ctx,
  421. npages, direction);
  422. /* Step 2: Clear out TSB entries. */
  423. for (i = 0; i < npages; i++)
  424. iopte_make_dummy(iommu, base + i);
  425. iommu_range_free(iommu, bus_addr, npages);
  426. iommu_free_ctx(iommu, ctx);
  427. spin_unlock_irqrestore(&iommu->lock, flags);
  428. }
  429. static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
  430. int nelems, enum dma_data_direction direction,
  431. struct dma_attrs *attrs)
  432. {
  433. struct scatterlist *s, *outs, *segstart;
  434. unsigned long flags, handle, prot, ctx;
  435. dma_addr_t dma_next = 0, dma_addr;
  436. unsigned int max_seg_size;
  437. unsigned long seg_boundary_size;
  438. int outcount, incount, i;
  439. struct strbuf *strbuf;
  440. struct iommu *iommu;
  441. unsigned long base_shift;
  442. BUG_ON(direction == DMA_NONE);
  443. iommu = dev->archdata.iommu;
  444. strbuf = dev->archdata.stc;
  445. if (nelems == 0 || !iommu)
  446. return 0;
  447. spin_lock_irqsave(&iommu->lock, flags);
  448. ctx = 0;
  449. if (iommu->iommu_ctxflush)
  450. ctx = iommu_alloc_ctx(iommu);
  451. if (strbuf->strbuf_enabled)
  452. prot = IOPTE_STREAMING(ctx);
  453. else
  454. prot = IOPTE_CONSISTENT(ctx);
  455. if (direction != DMA_TO_DEVICE)
  456. prot |= IOPTE_WRITE;
  457. outs = s = segstart = &sglist[0];
  458. outcount = 1;
  459. incount = nelems;
  460. handle = 0;
  461. /* Init first segment length for backout at failure */
  462. outs->dma_length = 0;
  463. max_seg_size = dma_get_max_seg_size(dev);
  464. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  465. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  466. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  467. for_each_sg(sglist, s, nelems, i) {
  468. unsigned long paddr, npages, entry, out_entry = 0, slen;
  469. iopte_t *base;
  470. slen = s->length;
  471. /* Sanity check */
  472. if (slen == 0) {
  473. dma_next = 0;
  474. continue;
  475. }
  476. /* Allocate iommu entries for that segment */
  477. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  478. npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
  479. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  480. /* Handle failure */
  481. if (unlikely(entry == DMA_ERROR_CODE)) {
  482. if (printk_ratelimit())
  483. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  484. " npages %lx\n", iommu, paddr, npages);
  485. goto iommu_map_failed;
  486. }
  487. base = iommu->page_table + entry;
  488. /* Convert entry to a dma_addr_t */
  489. dma_addr = iommu->page_table_map_base +
  490. (entry << IO_PAGE_SHIFT);
  491. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  492. /* Insert into HW table */
  493. paddr &= IO_PAGE_MASK;
  494. while (npages--) {
  495. iopte_val(*base) = prot | paddr;
  496. base++;
  497. paddr += IO_PAGE_SIZE;
  498. }
  499. /* If we are in an open segment, try merging */
  500. if (segstart != s) {
  501. /* We cannot merge if:
  502. * - allocated dma_addr isn't contiguous to previous allocation
  503. */
  504. if ((dma_addr != dma_next) ||
  505. (outs->dma_length + s->length > max_seg_size) ||
  506. (is_span_boundary(out_entry, base_shift,
  507. seg_boundary_size, outs, s))) {
  508. /* Can't merge: create a new segment */
  509. segstart = s;
  510. outcount++;
  511. outs = sg_next(outs);
  512. } else {
  513. outs->dma_length += s->length;
  514. }
  515. }
  516. if (segstart == s) {
  517. /* This is a new segment, fill entries */
  518. outs->dma_address = dma_addr;
  519. outs->dma_length = slen;
  520. out_entry = entry;
  521. }
  522. /* Calculate next page pointer for contiguous check */
  523. dma_next = dma_addr + slen;
  524. }
  525. spin_unlock_irqrestore(&iommu->lock, flags);
  526. if (outcount < incount) {
  527. outs = sg_next(outs);
  528. outs->dma_address = DMA_ERROR_CODE;
  529. outs->dma_length = 0;
  530. }
  531. return outcount;
  532. iommu_map_failed:
  533. for_each_sg(sglist, s, nelems, i) {
  534. if (s->dma_length != 0) {
  535. unsigned long vaddr, npages, entry, j;
  536. iopte_t *base;
  537. vaddr = s->dma_address & IO_PAGE_MASK;
  538. npages = iommu_num_pages(s->dma_address, s->dma_length,
  539. IO_PAGE_SIZE);
  540. iommu_range_free(iommu, vaddr, npages);
  541. entry = (vaddr - iommu->page_table_map_base)
  542. >> IO_PAGE_SHIFT;
  543. base = iommu->page_table + entry;
  544. for (j = 0; j < npages; j++)
  545. iopte_make_dummy(iommu, base + j);
  546. s->dma_address = DMA_ERROR_CODE;
  547. s->dma_length = 0;
  548. }
  549. if (s == outs)
  550. break;
  551. }
  552. spin_unlock_irqrestore(&iommu->lock, flags);
  553. return 0;
  554. }
  555. /* If contexts are being used, they are the same in all of the mappings
  556. * we make for a particular SG.
  557. */
  558. static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg)
  559. {
  560. unsigned long ctx = 0;
  561. if (iommu->iommu_ctxflush) {
  562. iopte_t *base;
  563. u32 bus_addr;
  564. bus_addr = sg->dma_address & IO_PAGE_MASK;
  565. base = iommu->page_table +
  566. ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  567. ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
  568. }
  569. return ctx;
  570. }
  571. static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
  572. int nelems, enum dma_data_direction direction,
  573. struct dma_attrs *attrs)
  574. {
  575. unsigned long flags, ctx;
  576. struct scatterlist *sg;
  577. struct strbuf *strbuf;
  578. struct iommu *iommu;
  579. BUG_ON(direction == DMA_NONE);
  580. iommu = dev->archdata.iommu;
  581. strbuf = dev->archdata.stc;
  582. ctx = fetch_sg_ctx(iommu, sglist);
  583. spin_lock_irqsave(&iommu->lock, flags);
  584. sg = sglist;
  585. while (nelems--) {
  586. dma_addr_t dma_handle = sg->dma_address;
  587. unsigned int len = sg->dma_length;
  588. unsigned long npages, entry;
  589. iopte_t *base;
  590. int i;
  591. if (!len)
  592. break;
  593. npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
  594. iommu_range_free(iommu, dma_handle, npages);
  595. entry = ((dma_handle - iommu->page_table_map_base)
  596. >> IO_PAGE_SHIFT);
  597. base = iommu->page_table + entry;
  598. dma_handle &= IO_PAGE_MASK;
  599. if (strbuf->strbuf_enabled)
  600. strbuf_flush(strbuf, iommu, dma_handle, ctx,
  601. npages, direction);
  602. for (i = 0; i < npages; i++)
  603. iopte_make_dummy(iommu, base + i);
  604. sg = sg_next(sg);
  605. }
  606. iommu_free_ctx(iommu, ctx);
  607. spin_unlock_irqrestore(&iommu->lock, flags);
  608. }
  609. static void dma_4u_sync_single_for_cpu(struct device *dev,
  610. dma_addr_t bus_addr, size_t sz,
  611. enum dma_data_direction direction)
  612. {
  613. struct iommu *iommu;
  614. struct strbuf *strbuf;
  615. unsigned long flags, ctx, npages;
  616. iommu = dev->archdata.iommu;
  617. strbuf = dev->archdata.stc;
  618. if (!strbuf->strbuf_enabled)
  619. return;
  620. spin_lock_irqsave(&iommu->lock, flags);
  621. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  622. npages >>= IO_PAGE_SHIFT;
  623. bus_addr &= IO_PAGE_MASK;
  624. /* Step 1: Record the context, if any. */
  625. ctx = 0;
  626. if (iommu->iommu_ctxflush &&
  627. strbuf->strbuf_ctxflush) {
  628. iopte_t *iopte;
  629. iopte = iommu->page_table +
  630. ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
  631. ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
  632. }
  633. /* Step 2: Kick data out of streaming buffers. */
  634. strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
  635. spin_unlock_irqrestore(&iommu->lock, flags);
  636. }
  637. static void dma_4u_sync_sg_for_cpu(struct device *dev,
  638. struct scatterlist *sglist, int nelems,
  639. enum dma_data_direction direction)
  640. {
  641. struct iommu *iommu;
  642. struct strbuf *strbuf;
  643. unsigned long flags, ctx, npages, i;
  644. struct scatterlist *sg, *sgprv;
  645. u32 bus_addr;
  646. iommu = dev->archdata.iommu;
  647. strbuf = dev->archdata.stc;
  648. if (!strbuf->strbuf_enabled)
  649. return;
  650. spin_lock_irqsave(&iommu->lock, flags);
  651. /* Step 1: Record the context, if any. */
  652. ctx = 0;
  653. if (iommu->iommu_ctxflush &&
  654. strbuf->strbuf_ctxflush) {
  655. iopte_t *iopte;
  656. iopte = iommu->page_table +
  657. ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  658. ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
  659. }
  660. /* Step 2: Kick data out of streaming buffers. */
  661. bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
  662. sgprv = NULL;
  663. for_each_sg(sglist, sg, nelems, i) {
  664. if (sg->dma_length == 0)
  665. break;
  666. sgprv = sg;
  667. }
  668. npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
  669. - bus_addr) >> IO_PAGE_SHIFT;
  670. strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
  671. spin_unlock_irqrestore(&iommu->lock, flags);
  672. }
  673. static struct dma_map_ops sun4u_dma_ops = {
  674. .alloc_coherent = dma_4u_alloc_coherent,
  675. .free_coherent = dma_4u_free_coherent,
  676. .map_page = dma_4u_map_page,
  677. .unmap_page = dma_4u_unmap_page,
  678. .map_sg = dma_4u_map_sg,
  679. .unmap_sg = dma_4u_unmap_sg,
  680. .sync_single_for_cpu = dma_4u_sync_single_for_cpu,
  681. .sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
  682. };
  683. struct dma_map_ops *dma_ops = &sun4u_dma_ops;
  684. EXPORT_SYMBOL(dma_ops);
  685. extern int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask);
  686. int dma_supported(struct device *dev, u64 device_mask)
  687. {
  688. struct iommu *iommu = dev->archdata.iommu;
  689. u64 dma_addr_mask = iommu->dma_addr_mask;
  690. if (device_mask >= (1UL << 32UL))
  691. return 0;
  692. if ((device_mask & dma_addr_mask) == dma_addr_mask)
  693. return 1;
  694. #ifdef CONFIG_PCI
  695. if (dev->bus == &pci_bus_type)
  696. return pci64_dma_supported(to_pci_dev(dev), device_mask);
  697. #endif
  698. return 0;
  699. }
  700. EXPORT_SYMBOL(dma_supported);
  701. int dma_set_mask(struct device *dev, u64 dma_mask)
  702. {
  703. #ifdef CONFIG_PCI
  704. if (dev->bus == &pci_bus_type)
  705. return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
  706. #endif
  707. return -EINVAL;
  708. }
  709. EXPORT_SYMBOL(dma_set_mask);