smp.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * arch/sh/kernel/smp.c
  3. *
  4. * SMP support for the SuperH processors.
  5. *
  6. * Copyright (C) 2002 - 2008 Paul Mundt
  7. * Copyright (C) 2006 - 2007 Akio Idehara
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. */
  13. #include <linux/err.h>
  14. #include <linux/cache.h>
  15. #include <linux/cpumask.h>
  16. #include <linux/delay.h>
  17. #include <linux/init.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/mm.h>
  20. #include <linux/module.h>
  21. #include <linux/cpu.h>
  22. #include <linux/interrupt.h>
  23. #include <asm/atomic.h>
  24. #include <asm/processor.h>
  25. #include <asm/system.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/smp.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/sections.h>
  30. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  31. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  32. static inline void __init smp_store_cpu_info(unsigned int cpu)
  33. {
  34. struct sh_cpuinfo *c = cpu_data + cpu;
  35. memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
  36. c->loops_per_jiffy = loops_per_jiffy;
  37. }
  38. void __init smp_prepare_cpus(unsigned int max_cpus)
  39. {
  40. unsigned int cpu = smp_processor_id();
  41. init_new_context(current, &init_mm);
  42. current_thread_info()->cpu = cpu;
  43. plat_prepare_cpus(max_cpus);
  44. #ifndef CONFIG_HOTPLUG_CPU
  45. init_cpu_present(&cpu_possible_map);
  46. #endif
  47. }
  48. void __devinit smp_prepare_boot_cpu(void)
  49. {
  50. unsigned int cpu = smp_processor_id();
  51. __cpu_number_map[0] = cpu;
  52. __cpu_logical_map[0] = cpu;
  53. set_cpu_online(cpu, true);
  54. set_cpu_possible(cpu, true);
  55. }
  56. asmlinkage void __cpuinit start_secondary(void)
  57. {
  58. unsigned int cpu;
  59. struct mm_struct *mm = &init_mm;
  60. atomic_inc(&mm->mm_count);
  61. atomic_inc(&mm->mm_users);
  62. current->active_mm = mm;
  63. BUG_ON(current->mm);
  64. enter_lazy_tlb(mm, current);
  65. per_cpu_trap_init();
  66. preempt_disable();
  67. notify_cpu_starting(smp_processor_id());
  68. local_irq_enable();
  69. cpu = smp_processor_id();
  70. /* Enable local timers */
  71. local_timer_setup(cpu);
  72. calibrate_delay();
  73. smp_store_cpu_info(cpu);
  74. cpu_set(cpu, cpu_online_map);
  75. cpu_idle();
  76. }
  77. extern struct {
  78. unsigned long sp;
  79. unsigned long bss_start;
  80. unsigned long bss_end;
  81. void *start_kernel_fn;
  82. void *cpu_init_fn;
  83. void *thread_info;
  84. } stack_start;
  85. int __cpuinit __cpu_up(unsigned int cpu)
  86. {
  87. struct task_struct *tsk;
  88. unsigned long timeout;
  89. tsk = fork_idle(cpu);
  90. if (IS_ERR(tsk)) {
  91. printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu);
  92. return PTR_ERR(tsk);
  93. }
  94. /* Fill in data in head.S for secondary cpus */
  95. stack_start.sp = tsk->thread.sp;
  96. stack_start.thread_info = tsk->stack;
  97. stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
  98. stack_start.start_kernel_fn = start_secondary;
  99. flush_icache_range((unsigned long)&stack_start,
  100. (unsigned long)&stack_start + sizeof(stack_start));
  101. wmb();
  102. plat_start_cpu(cpu, (unsigned long)_stext);
  103. timeout = jiffies + HZ;
  104. while (time_before(jiffies, timeout)) {
  105. if (cpu_online(cpu))
  106. break;
  107. udelay(10);
  108. }
  109. if (cpu_online(cpu))
  110. return 0;
  111. return -ENOENT;
  112. }
  113. void __init smp_cpus_done(unsigned int max_cpus)
  114. {
  115. unsigned long bogosum = 0;
  116. int cpu;
  117. for_each_online_cpu(cpu)
  118. bogosum += cpu_data[cpu].loops_per_jiffy;
  119. printk(KERN_INFO "SMP: Total of %d processors activated "
  120. "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
  121. bogosum / (500000/HZ),
  122. (bogosum / (5000/HZ)) % 100);
  123. }
  124. void smp_send_reschedule(int cpu)
  125. {
  126. plat_send_ipi(cpu, SMP_MSG_RESCHEDULE);
  127. }
  128. static void stop_this_cpu(void *unused)
  129. {
  130. cpu_clear(smp_processor_id(), cpu_online_map);
  131. local_irq_disable();
  132. for (;;)
  133. cpu_relax();
  134. }
  135. void smp_send_stop(void)
  136. {
  137. smp_call_function(stop_this_cpu, 0, 0);
  138. }
  139. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  140. {
  141. int cpu;
  142. for_each_cpu(cpu, mask)
  143. plat_send_ipi(cpu, SMP_MSG_FUNCTION);
  144. }
  145. void arch_send_call_function_single_ipi(int cpu)
  146. {
  147. plat_send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
  148. }
  149. void smp_timer_broadcast(const struct cpumask *mask)
  150. {
  151. int cpu;
  152. for_each_cpu(cpu, mask)
  153. plat_send_ipi(cpu, SMP_MSG_TIMER);
  154. }
  155. static void ipi_timer(void)
  156. {
  157. irq_enter();
  158. local_timer_interrupt();
  159. irq_exit();
  160. }
  161. void smp_message_recv(unsigned int msg)
  162. {
  163. switch (msg) {
  164. case SMP_MSG_FUNCTION:
  165. generic_smp_call_function_interrupt();
  166. break;
  167. case SMP_MSG_RESCHEDULE:
  168. break;
  169. case SMP_MSG_FUNCTION_SINGLE:
  170. generic_smp_call_function_single_interrupt();
  171. break;
  172. case SMP_MSG_TIMER:
  173. ipi_timer();
  174. break;
  175. default:
  176. printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
  177. smp_processor_id(), __func__, msg);
  178. break;
  179. }
  180. }
  181. /* Not really SMP stuff ... */
  182. int setup_profiling_timer(unsigned int multiplier)
  183. {
  184. return 0;
  185. }
  186. static void flush_tlb_all_ipi(void *info)
  187. {
  188. local_flush_tlb_all();
  189. }
  190. void flush_tlb_all(void)
  191. {
  192. on_each_cpu(flush_tlb_all_ipi, 0, 1);
  193. }
  194. static void flush_tlb_mm_ipi(void *mm)
  195. {
  196. local_flush_tlb_mm((struct mm_struct *)mm);
  197. }
  198. /*
  199. * The following tlb flush calls are invoked when old translations are
  200. * being torn down, or pte attributes are changing. For single threaded
  201. * address spaces, a new context is obtained on the current cpu, and tlb
  202. * context on other cpus are invalidated to force a new context allocation
  203. * at switch_mm time, should the mm ever be used on other cpus. For
  204. * multithreaded address spaces, intercpu interrupts have to be sent.
  205. * Another case where intercpu interrupts are required is when the target
  206. * mm might be active on another cpu (eg debuggers doing the flushes on
  207. * behalf of debugees, kswapd stealing pages from another process etc).
  208. * Kanoj 07/00.
  209. */
  210. void flush_tlb_mm(struct mm_struct *mm)
  211. {
  212. preempt_disable();
  213. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  214. smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
  215. } else {
  216. int i;
  217. for (i = 0; i < num_online_cpus(); i++)
  218. if (smp_processor_id() != i)
  219. cpu_context(i, mm) = 0;
  220. }
  221. local_flush_tlb_mm(mm);
  222. preempt_enable();
  223. }
  224. struct flush_tlb_data {
  225. struct vm_area_struct *vma;
  226. unsigned long addr1;
  227. unsigned long addr2;
  228. };
  229. static void flush_tlb_range_ipi(void *info)
  230. {
  231. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  232. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  233. }
  234. void flush_tlb_range(struct vm_area_struct *vma,
  235. unsigned long start, unsigned long end)
  236. {
  237. struct mm_struct *mm = vma->vm_mm;
  238. preempt_disable();
  239. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  240. struct flush_tlb_data fd;
  241. fd.vma = vma;
  242. fd.addr1 = start;
  243. fd.addr2 = end;
  244. smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
  245. } else {
  246. int i;
  247. for (i = 0; i < num_online_cpus(); i++)
  248. if (smp_processor_id() != i)
  249. cpu_context(i, mm) = 0;
  250. }
  251. local_flush_tlb_range(vma, start, end);
  252. preempt_enable();
  253. }
  254. static void flush_tlb_kernel_range_ipi(void *info)
  255. {
  256. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  257. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  258. }
  259. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  260. {
  261. struct flush_tlb_data fd;
  262. fd.addr1 = start;
  263. fd.addr2 = end;
  264. on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
  265. }
  266. static void flush_tlb_page_ipi(void *info)
  267. {
  268. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  269. local_flush_tlb_page(fd->vma, fd->addr1);
  270. }
  271. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  272. {
  273. preempt_disable();
  274. if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
  275. (current->mm != vma->vm_mm)) {
  276. struct flush_tlb_data fd;
  277. fd.vma = vma;
  278. fd.addr1 = page;
  279. smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
  280. } else {
  281. int i;
  282. for (i = 0; i < num_online_cpus(); i++)
  283. if (smp_processor_id() != i)
  284. cpu_context(i, vma->vm_mm) = 0;
  285. }
  286. local_flush_tlb_page(vma, page);
  287. preempt_enable();
  288. }
  289. static void flush_tlb_one_ipi(void *info)
  290. {
  291. struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
  292. local_flush_tlb_one(fd->addr1, fd->addr2);
  293. }
  294. void flush_tlb_one(unsigned long asid, unsigned long vaddr)
  295. {
  296. struct flush_tlb_data fd;
  297. fd.addr1 = asid;
  298. fd.addr2 = vaddr;
  299. smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
  300. local_flush_tlb_one(asid, vaddr);
  301. }