vmem.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/hugetlb.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/setup.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. static DEFINE_MUTEX(vmem_mutex);
  19. struct memory_segment {
  20. struct list_head list;
  21. unsigned long start;
  22. unsigned long size;
  23. };
  24. static LIST_HEAD(mem_segs);
  25. static void __ref *vmem_alloc_pages(unsigned int order)
  26. {
  27. if (slab_is_available())
  28. return (void *)__get_free_pages(GFP_KERNEL, order);
  29. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  30. }
  31. static inline pud_t *vmem_pud_alloc(void)
  32. {
  33. pud_t *pud = NULL;
  34. #ifdef CONFIG_64BIT
  35. pud = vmem_alloc_pages(2);
  36. if (!pud)
  37. return NULL;
  38. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  39. #endif
  40. return pud;
  41. }
  42. static inline pmd_t *vmem_pmd_alloc(void)
  43. {
  44. pmd_t *pmd = NULL;
  45. #ifdef CONFIG_64BIT
  46. pmd = vmem_alloc_pages(2);
  47. if (!pmd)
  48. return NULL;
  49. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  50. #endif
  51. return pmd;
  52. }
  53. static pte_t __ref *vmem_pte_alloc(void)
  54. {
  55. pte_t *pte;
  56. if (slab_is_available())
  57. pte = (pte_t *) page_table_alloc(&init_mm);
  58. else
  59. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  60. if (!pte)
  61. return NULL;
  62. if (MACHINE_HAS_HPAGE)
  63. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY | _PAGE_CO,
  64. PTRS_PER_PTE * sizeof(pte_t));
  65. else
  66. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  67. PTRS_PER_PTE * sizeof(pte_t));
  68. return pte;
  69. }
  70. /*
  71. * Add a physical memory range to the 1:1 mapping.
  72. */
  73. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  74. {
  75. unsigned long address;
  76. pgd_t *pg_dir;
  77. pud_t *pu_dir;
  78. pmd_t *pm_dir;
  79. pte_t *pt_dir;
  80. pte_t pte;
  81. int ret = -ENOMEM;
  82. for (address = start; address < start + size; address += PAGE_SIZE) {
  83. pg_dir = pgd_offset_k(address);
  84. if (pgd_none(*pg_dir)) {
  85. pu_dir = vmem_pud_alloc();
  86. if (!pu_dir)
  87. goto out;
  88. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  89. }
  90. pu_dir = pud_offset(pg_dir, address);
  91. if (pud_none(*pu_dir)) {
  92. pm_dir = vmem_pmd_alloc();
  93. if (!pm_dir)
  94. goto out;
  95. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  96. }
  97. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  98. pm_dir = pmd_offset(pu_dir, address);
  99. #ifdef __s390x__
  100. if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
  101. (address + HPAGE_SIZE <= start + size) &&
  102. (address >= HPAGE_SIZE)) {
  103. pte_val(pte) |= _SEGMENT_ENTRY_LARGE |
  104. _SEGMENT_ENTRY_CO;
  105. pmd_val(*pm_dir) = pte_val(pte);
  106. address += HPAGE_SIZE - PAGE_SIZE;
  107. continue;
  108. }
  109. #endif
  110. if (pmd_none(*pm_dir)) {
  111. pt_dir = vmem_pte_alloc();
  112. if (!pt_dir)
  113. goto out;
  114. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  115. }
  116. pt_dir = pte_offset_kernel(pm_dir, address);
  117. *pt_dir = pte;
  118. }
  119. ret = 0;
  120. out:
  121. flush_tlb_kernel_range(start, start + size);
  122. return ret;
  123. }
  124. /*
  125. * Remove a physical memory range from the 1:1 mapping.
  126. * Currently only invalidates page table entries.
  127. */
  128. static void vmem_remove_range(unsigned long start, unsigned long size)
  129. {
  130. unsigned long address;
  131. pgd_t *pg_dir;
  132. pud_t *pu_dir;
  133. pmd_t *pm_dir;
  134. pte_t *pt_dir;
  135. pte_t pte;
  136. pte_val(pte) = _PAGE_TYPE_EMPTY;
  137. for (address = start; address < start + size; address += PAGE_SIZE) {
  138. pg_dir = pgd_offset_k(address);
  139. pu_dir = pud_offset(pg_dir, address);
  140. if (pud_none(*pu_dir))
  141. continue;
  142. pm_dir = pmd_offset(pu_dir, address);
  143. if (pmd_none(*pm_dir))
  144. continue;
  145. if (pmd_huge(*pm_dir)) {
  146. pmd_clear_kernel(pm_dir);
  147. address += HPAGE_SIZE - PAGE_SIZE;
  148. continue;
  149. }
  150. pt_dir = pte_offset_kernel(pm_dir, address);
  151. *pt_dir = pte;
  152. }
  153. flush_tlb_kernel_range(start, start + size);
  154. }
  155. /*
  156. * Add a backed mem_map array to the virtual mem_map array.
  157. */
  158. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  159. {
  160. unsigned long address, start_addr, end_addr;
  161. pgd_t *pg_dir;
  162. pud_t *pu_dir;
  163. pmd_t *pm_dir;
  164. pte_t *pt_dir;
  165. pte_t pte;
  166. int ret = -ENOMEM;
  167. start_addr = (unsigned long) start;
  168. end_addr = (unsigned long) (start + nr);
  169. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  170. pg_dir = pgd_offset_k(address);
  171. if (pgd_none(*pg_dir)) {
  172. pu_dir = vmem_pud_alloc();
  173. if (!pu_dir)
  174. goto out;
  175. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  176. }
  177. pu_dir = pud_offset(pg_dir, address);
  178. if (pud_none(*pu_dir)) {
  179. pm_dir = vmem_pmd_alloc();
  180. if (!pm_dir)
  181. goto out;
  182. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  183. }
  184. pm_dir = pmd_offset(pu_dir, address);
  185. if (pmd_none(*pm_dir)) {
  186. pt_dir = vmem_pte_alloc();
  187. if (!pt_dir)
  188. goto out;
  189. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  190. }
  191. pt_dir = pte_offset_kernel(pm_dir, address);
  192. if (pte_none(*pt_dir)) {
  193. unsigned long new_page;
  194. new_page =__pa(vmem_alloc_pages(0));
  195. if (!new_page)
  196. goto out;
  197. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  198. *pt_dir = pte;
  199. }
  200. }
  201. memset(start, 0, nr * sizeof(struct page));
  202. ret = 0;
  203. out:
  204. flush_tlb_kernel_range(start_addr, end_addr);
  205. return ret;
  206. }
  207. /*
  208. * Add memory segment to the segment list if it doesn't overlap with
  209. * an already present segment.
  210. */
  211. static int insert_memory_segment(struct memory_segment *seg)
  212. {
  213. struct memory_segment *tmp;
  214. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  215. seg->start + seg->size < seg->start)
  216. return -ERANGE;
  217. list_for_each_entry(tmp, &mem_segs, list) {
  218. if (seg->start >= tmp->start + tmp->size)
  219. continue;
  220. if (seg->start + seg->size <= tmp->start)
  221. continue;
  222. return -ENOSPC;
  223. }
  224. list_add(&seg->list, &mem_segs);
  225. return 0;
  226. }
  227. /*
  228. * Remove memory segment from the segment list.
  229. */
  230. static void remove_memory_segment(struct memory_segment *seg)
  231. {
  232. list_del(&seg->list);
  233. }
  234. static void __remove_shared_memory(struct memory_segment *seg)
  235. {
  236. remove_memory_segment(seg);
  237. vmem_remove_range(seg->start, seg->size);
  238. }
  239. int vmem_remove_mapping(unsigned long start, unsigned long size)
  240. {
  241. struct memory_segment *seg;
  242. int ret;
  243. mutex_lock(&vmem_mutex);
  244. ret = -ENOENT;
  245. list_for_each_entry(seg, &mem_segs, list) {
  246. if (seg->start == start && seg->size == size)
  247. break;
  248. }
  249. if (seg->start != start || seg->size != size)
  250. goto out;
  251. ret = 0;
  252. __remove_shared_memory(seg);
  253. kfree(seg);
  254. out:
  255. mutex_unlock(&vmem_mutex);
  256. return ret;
  257. }
  258. int vmem_add_mapping(unsigned long start, unsigned long size)
  259. {
  260. struct memory_segment *seg;
  261. int ret;
  262. mutex_lock(&vmem_mutex);
  263. ret = -ENOMEM;
  264. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  265. if (!seg)
  266. goto out;
  267. seg->start = start;
  268. seg->size = size;
  269. ret = insert_memory_segment(seg);
  270. if (ret)
  271. goto out_free;
  272. ret = vmem_add_mem(start, size, 0);
  273. if (ret)
  274. goto out_remove;
  275. goto out;
  276. out_remove:
  277. __remove_shared_memory(seg);
  278. out_free:
  279. kfree(seg);
  280. out:
  281. mutex_unlock(&vmem_mutex);
  282. return ret;
  283. }
  284. /*
  285. * map whole physical memory to virtual memory (identity mapping)
  286. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  287. * additional memory segments.
  288. */
  289. void __init vmem_map_init(void)
  290. {
  291. unsigned long ro_start, ro_end;
  292. unsigned long start, end;
  293. int i;
  294. spin_lock_init(&init_mm.context.list_lock);
  295. INIT_LIST_HEAD(&init_mm.context.crst_list);
  296. INIT_LIST_HEAD(&init_mm.context.pgtable_list);
  297. init_mm.context.noexec = 0;
  298. ro_start = ((unsigned long)&_stext) & PAGE_MASK;
  299. ro_end = PFN_ALIGN((unsigned long)&_eshared);
  300. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  301. start = memory_chunk[i].addr;
  302. end = memory_chunk[i].addr + memory_chunk[i].size;
  303. if (start >= ro_end || end <= ro_start)
  304. vmem_add_mem(start, end - start, 0);
  305. else if (start >= ro_start && end <= ro_end)
  306. vmem_add_mem(start, end - start, 1);
  307. else if (start >= ro_start) {
  308. vmem_add_mem(start, ro_end - start, 1);
  309. vmem_add_mem(ro_end, end - ro_end, 0);
  310. } else if (end < ro_end) {
  311. vmem_add_mem(start, ro_start - start, 0);
  312. vmem_add_mem(ro_start, end - ro_start, 1);
  313. } else {
  314. vmem_add_mem(start, ro_start - start, 0);
  315. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  316. vmem_add_mem(ro_end, end - ro_end, 0);
  317. }
  318. }
  319. }
  320. /*
  321. * Convert memory chunk array to a memory segment list so there is a single
  322. * list that contains both r/w memory and shared memory segments.
  323. */
  324. static int __init vmem_convert_memory_chunk(void)
  325. {
  326. struct memory_segment *seg;
  327. int i;
  328. mutex_lock(&vmem_mutex);
  329. for (i = 0; i < MEMORY_CHUNKS; i++) {
  330. if (!memory_chunk[i].size)
  331. continue;
  332. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  333. if (!seg)
  334. panic("Out of memory...\n");
  335. seg->start = memory_chunk[i].addr;
  336. seg->size = memory_chunk[i].size;
  337. insert_memory_segment(seg);
  338. }
  339. mutex_unlock(&vmem_mutex);
  340. return 0;
  341. }
  342. core_initcall(vmem_convert_memory_chunk);