hugetlbpage.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. /*
  2. * PPC64 (POWER4) Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2003 David Gibson, IBM Corporation.
  5. *
  6. * Based on the IA-32 version:
  7. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/io.h>
  11. #include <linux/hugetlb.h>
  12. #include <asm/pgtable.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/tlb.h>
  15. #define PAGE_SHIFT_64K 16
  16. #define PAGE_SHIFT_16M 24
  17. #define PAGE_SHIFT_16G 34
  18. #define MAX_NUMBER_GPAGES 1024
  19. /* Tracks the 16G pages after the device tree is scanned and before the
  20. * huge_boot_pages list is ready. */
  21. static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
  22. static unsigned nr_gpages;
  23. /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
  24. * will choke on pointers to hugepte tables, which is handy for
  25. * catching screwups early. */
  26. static inline int shift_to_mmu_psize(unsigned int shift)
  27. {
  28. int psize;
  29. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  30. if (mmu_psize_defs[psize].shift == shift)
  31. return psize;
  32. return -1;
  33. }
  34. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  35. {
  36. if (mmu_psize_defs[mmu_psize].shift)
  37. return mmu_psize_defs[mmu_psize].shift;
  38. BUG();
  39. }
  40. #define hugepd_none(hpd) ((hpd).pd == 0)
  41. static inline pte_t *hugepd_page(hugepd_t hpd)
  42. {
  43. BUG_ON(!hugepd_ok(hpd));
  44. return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
  45. }
  46. static inline unsigned int hugepd_shift(hugepd_t hpd)
  47. {
  48. return hpd.pd & HUGEPD_SHIFT_MASK;
  49. }
  50. static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
  51. {
  52. unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
  53. pte_t *dir = hugepd_page(*hpdp);
  54. return dir + idx;
  55. }
  56. pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
  57. {
  58. pgd_t *pg;
  59. pud_t *pu;
  60. pmd_t *pm;
  61. hugepd_t *hpdp = NULL;
  62. unsigned pdshift = PGDIR_SHIFT;
  63. if (shift)
  64. *shift = 0;
  65. pg = pgdir + pgd_index(ea);
  66. if (is_hugepd(pg)) {
  67. hpdp = (hugepd_t *)pg;
  68. } else if (!pgd_none(*pg)) {
  69. pdshift = PUD_SHIFT;
  70. pu = pud_offset(pg, ea);
  71. if (is_hugepd(pu))
  72. hpdp = (hugepd_t *)pu;
  73. else if (!pud_none(*pu)) {
  74. pdshift = PMD_SHIFT;
  75. pm = pmd_offset(pu, ea);
  76. if (is_hugepd(pm))
  77. hpdp = (hugepd_t *)pm;
  78. else if (!pmd_none(*pm)) {
  79. return pte_offset_map(pm, ea);
  80. }
  81. }
  82. }
  83. if (!hpdp)
  84. return NULL;
  85. if (shift)
  86. *shift = hugepd_shift(*hpdp);
  87. return hugepte_offset(hpdp, ea, pdshift);
  88. }
  89. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  90. {
  91. return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
  92. }
  93. static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  94. unsigned long address, unsigned pdshift, unsigned pshift)
  95. {
  96. pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
  97. GFP_KERNEL|__GFP_REPEAT);
  98. BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  99. BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  100. if (! new)
  101. return -ENOMEM;
  102. spin_lock(&mm->page_table_lock);
  103. if (!hugepd_none(*hpdp))
  104. kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
  105. else
  106. hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
  107. spin_unlock(&mm->page_table_lock);
  108. return 0;
  109. }
  110. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  111. {
  112. pgd_t *pg;
  113. pud_t *pu;
  114. pmd_t *pm;
  115. hugepd_t *hpdp = NULL;
  116. unsigned pshift = __ffs(sz);
  117. unsigned pdshift = PGDIR_SHIFT;
  118. addr &= ~(sz-1);
  119. pg = pgd_offset(mm, addr);
  120. if (pshift >= PUD_SHIFT) {
  121. hpdp = (hugepd_t *)pg;
  122. } else {
  123. pdshift = PUD_SHIFT;
  124. pu = pud_alloc(mm, pg, addr);
  125. if (pshift >= PMD_SHIFT) {
  126. hpdp = (hugepd_t *)pu;
  127. } else {
  128. pdshift = PMD_SHIFT;
  129. pm = pmd_alloc(mm, pu, addr);
  130. hpdp = (hugepd_t *)pm;
  131. }
  132. }
  133. if (!hpdp)
  134. return NULL;
  135. BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
  136. if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
  137. return NULL;
  138. return hugepte_offset(hpdp, addr, pdshift);
  139. }
  140. /* Build list of addresses of gigantic pages. This function is used in early
  141. * boot before the buddy or bootmem allocator is setup.
  142. */
  143. void add_gpage(unsigned long addr, unsigned long page_size,
  144. unsigned long number_of_pages)
  145. {
  146. if (!addr)
  147. return;
  148. while (number_of_pages > 0) {
  149. gpage_freearray[nr_gpages] = addr;
  150. nr_gpages++;
  151. number_of_pages--;
  152. addr += page_size;
  153. }
  154. }
  155. /* Moves the gigantic page addresses from the temporary list to the
  156. * huge_boot_pages list.
  157. */
  158. int alloc_bootmem_huge_page(struct hstate *hstate)
  159. {
  160. struct huge_bootmem_page *m;
  161. if (nr_gpages == 0)
  162. return 0;
  163. m = phys_to_virt(gpage_freearray[--nr_gpages]);
  164. gpage_freearray[nr_gpages] = 0;
  165. list_add(&m->list, &huge_boot_pages);
  166. m->hstate = hstate;
  167. return 1;
  168. }
  169. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  170. {
  171. return 0;
  172. }
  173. static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
  174. unsigned long start, unsigned long end,
  175. unsigned long floor, unsigned long ceiling)
  176. {
  177. pte_t *hugepte = hugepd_page(*hpdp);
  178. unsigned shift = hugepd_shift(*hpdp);
  179. unsigned long pdmask = ~((1UL << pdshift) - 1);
  180. start &= pdmask;
  181. if (start < floor)
  182. return;
  183. if (ceiling) {
  184. ceiling &= pdmask;
  185. if (! ceiling)
  186. return;
  187. }
  188. if (end - 1 > ceiling - 1)
  189. return;
  190. hpdp->pd = 0;
  191. tlb->need_flush = 1;
  192. pgtable_free_tlb(tlb, hugepte, pdshift - shift);
  193. }
  194. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  195. unsigned long addr, unsigned long end,
  196. unsigned long floor, unsigned long ceiling)
  197. {
  198. pmd_t *pmd;
  199. unsigned long next;
  200. unsigned long start;
  201. start = addr;
  202. pmd = pmd_offset(pud, addr);
  203. do {
  204. next = pmd_addr_end(addr, end);
  205. if (pmd_none(*pmd))
  206. continue;
  207. free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
  208. addr, next, floor, ceiling);
  209. } while (pmd++, addr = next, addr != end);
  210. start &= PUD_MASK;
  211. if (start < floor)
  212. return;
  213. if (ceiling) {
  214. ceiling &= PUD_MASK;
  215. if (!ceiling)
  216. return;
  217. }
  218. if (end - 1 > ceiling - 1)
  219. return;
  220. pmd = pmd_offset(pud, start);
  221. pud_clear(pud);
  222. pmd_free_tlb(tlb, pmd, start);
  223. }
  224. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  225. unsigned long addr, unsigned long end,
  226. unsigned long floor, unsigned long ceiling)
  227. {
  228. pud_t *pud;
  229. unsigned long next;
  230. unsigned long start;
  231. start = addr;
  232. pud = pud_offset(pgd, addr);
  233. do {
  234. next = pud_addr_end(addr, end);
  235. if (!is_hugepd(pud)) {
  236. if (pud_none_or_clear_bad(pud))
  237. continue;
  238. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  239. ceiling);
  240. } else {
  241. free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
  242. addr, next, floor, ceiling);
  243. }
  244. } while (pud++, addr = next, addr != end);
  245. start &= PGDIR_MASK;
  246. if (start < floor)
  247. return;
  248. if (ceiling) {
  249. ceiling &= PGDIR_MASK;
  250. if (!ceiling)
  251. return;
  252. }
  253. if (end - 1 > ceiling - 1)
  254. return;
  255. pud = pud_offset(pgd, start);
  256. pgd_clear(pgd);
  257. pud_free_tlb(tlb, pud, start);
  258. }
  259. /*
  260. * This function frees user-level page tables of a process.
  261. *
  262. * Must be called with pagetable lock held.
  263. */
  264. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  265. unsigned long addr, unsigned long end,
  266. unsigned long floor, unsigned long ceiling)
  267. {
  268. pgd_t *pgd;
  269. unsigned long next;
  270. /*
  271. * Because there are a number of different possible pagetable
  272. * layouts for hugepage ranges, we limit knowledge of how
  273. * things should be laid out to the allocation path
  274. * (huge_pte_alloc(), above). Everything else works out the
  275. * structure as it goes from information in the hugepd
  276. * pointers. That means that we can't here use the
  277. * optimization used in the normal page free_pgd_range(), of
  278. * checking whether we're actually covering a large enough
  279. * range to have to do anything at the top level of the walk
  280. * instead of at the bottom.
  281. *
  282. * To make sense of this, you should probably go read the big
  283. * block comment at the top of the normal free_pgd_range(),
  284. * too.
  285. */
  286. pgd = pgd_offset(tlb->mm, addr);
  287. do {
  288. next = pgd_addr_end(addr, end);
  289. if (!is_hugepd(pgd)) {
  290. if (pgd_none_or_clear_bad(pgd))
  291. continue;
  292. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  293. } else {
  294. free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
  295. addr, next, floor, ceiling);
  296. }
  297. } while (pgd++, addr = next, addr != end);
  298. }
  299. struct page *
  300. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  301. {
  302. pte_t *ptep;
  303. struct page *page;
  304. unsigned shift;
  305. unsigned long mask;
  306. ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
  307. /* Verify it is a huge page else bail. */
  308. if (!ptep || !shift)
  309. return ERR_PTR(-EINVAL);
  310. mask = (1UL << shift) - 1;
  311. page = pte_page(*ptep);
  312. if (page)
  313. page += (address & mask) / PAGE_SIZE;
  314. return page;
  315. }
  316. int pmd_huge(pmd_t pmd)
  317. {
  318. return 0;
  319. }
  320. int pud_huge(pud_t pud)
  321. {
  322. return 0;
  323. }
  324. struct page *
  325. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  326. pmd_t *pmd, int write)
  327. {
  328. BUG();
  329. return NULL;
  330. }
  331. static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
  332. unsigned long end, int write, struct page **pages, int *nr)
  333. {
  334. unsigned long mask;
  335. unsigned long pte_end;
  336. struct page *head, *page;
  337. pte_t pte;
  338. int refs;
  339. pte_end = (addr + sz) & ~(sz-1);
  340. if (pte_end < end)
  341. end = pte_end;
  342. pte = *ptep;
  343. mask = _PAGE_PRESENT | _PAGE_USER;
  344. if (write)
  345. mask |= _PAGE_RW;
  346. if ((pte_val(pte) & mask) != mask)
  347. return 0;
  348. /* hugepages are never "special" */
  349. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  350. refs = 0;
  351. head = pte_page(pte);
  352. page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
  353. do {
  354. VM_BUG_ON(compound_head(page) != head);
  355. pages[*nr] = page;
  356. (*nr)++;
  357. page++;
  358. refs++;
  359. } while (addr += PAGE_SIZE, addr != end);
  360. if (!page_cache_add_speculative(head, refs)) {
  361. *nr -= refs;
  362. return 0;
  363. }
  364. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  365. /* Could be optimized better */
  366. while (*nr) {
  367. put_page(page);
  368. (*nr)--;
  369. }
  370. }
  371. return 1;
  372. }
  373. static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
  374. unsigned long sz)
  375. {
  376. unsigned long __boundary = (addr + sz) & ~(sz-1);
  377. return (__boundary - 1 < end - 1) ? __boundary : end;
  378. }
  379. int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
  380. unsigned long addr, unsigned long end,
  381. int write, struct page **pages, int *nr)
  382. {
  383. pte_t *ptep;
  384. unsigned long sz = 1UL << hugepd_shift(*hugepd);
  385. unsigned long next;
  386. ptep = hugepte_offset(hugepd, addr, pdshift);
  387. do {
  388. next = hugepte_addr_end(addr, end, sz);
  389. if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
  390. return 0;
  391. } while (ptep++, addr = next, addr != end);
  392. return 1;
  393. }
  394. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  395. unsigned long len, unsigned long pgoff,
  396. unsigned long flags)
  397. {
  398. struct hstate *hstate = hstate_file(file);
  399. int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
  400. return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
  401. }
  402. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  403. {
  404. unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
  405. return 1UL << mmu_psize_to_shift(psize);
  406. }
  407. static int __init add_huge_page_size(unsigned long long size)
  408. {
  409. int shift = __ffs(size);
  410. int mmu_psize;
  411. /* Check that it is a page size supported by the hardware and
  412. * that it fits within pagetable and slice limits. */
  413. if (!is_power_of_2(size)
  414. || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
  415. return -EINVAL;
  416. if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
  417. return -EINVAL;
  418. #ifdef CONFIG_SPU_FS_64K_LS
  419. /* Disable support for 64K huge pages when 64K SPU local store
  420. * support is enabled as the current implementation conflicts.
  421. */
  422. if (shift == PAGE_SHIFT_64K)
  423. return -EINVAL;
  424. #endif /* CONFIG_SPU_FS_64K_LS */
  425. BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
  426. /* Return if huge page size has already been setup */
  427. if (size_to_hstate(size))
  428. return 0;
  429. hugetlb_add_hstate(shift - PAGE_SHIFT);
  430. return 0;
  431. }
  432. static int __init hugepage_setup_sz(char *str)
  433. {
  434. unsigned long long size;
  435. size = memparse(str, &str);
  436. if (add_huge_page_size(size) != 0)
  437. printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
  438. return 1;
  439. }
  440. __setup("hugepagesz=", hugepage_setup_sz);
  441. static int __init hugetlbpage_init(void)
  442. {
  443. int psize;
  444. if (!cpu_has_feature(CPU_FTR_16M_PAGE))
  445. return -ENODEV;
  446. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  447. unsigned shift;
  448. unsigned pdshift;
  449. if (!mmu_psize_defs[psize].shift)
  450. continue;
  451. shift = mmu_psize_to_shift(psize);
  452. if (add_huge_page_size(1ULL << shift) < 0)
  453. continue;
  454. if (shift < PMD_SHIFT)
  455. pdshift = PMD_SHIFT;
  456. else if (shift < PUD_SHIFT)
  457. pdshift = PUD_SHIFT;
  458. else
  459. pdshift = PGDIR_SHIFT;
  460. pgtable_cache_add(pdshift - shift, NULL);
  461. if (!PGT_CACHE(pdshift - shift))
  462. panic("hugetlbpage_init(): could not create "
  463. "pgtable cache for %d bit pagesize\n", shift);
  464. }
  465. /* Set default large page size. Currently, we pick 16M or 1M
  466. * depending on what is available
  467. */
  468. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  469. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
  470. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  471. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
  472. return 0;
  473. }
  474. module_init(hugetlbpage_init);
  475. void flush_dcache_icache_hugepage(struct page *page)
  476. {
  477. int i;
  478. BUG_ON(!PageCompound(page));
  479. for (i = 0; i < (1UL << compound_order(page)); i++)
  480. __flush_dcache_icache(page_address(page+i));
  481. }