book3s_32_mmu.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright SUSE Linux Products GmbH 2009
  16. *
  17. * Authors: Alexander Graf <agraf@suse.de>
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/kvm.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/highmem.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/kvm_ppc.h>
  26. #include <asm/kvm_book3s.h>
  27. /* #define DEBUG_MMU */
  28. /* #define DEBUG_MMU_PTE */
  29. /* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
  30. #ifdef DEBUG_MMU
  31. #define dprintk(X...) printk(KERN_INFO X)
  32. #else
  33. #define dprintk(X...) do { } while(0)
  34. #endif
  35. #ifdef DEBUG_PTE
  36. #define dprintk_pte(X...) printk(KERN_INFO X)
  37. #else
  38. #define dprintk_pte(X...) do { } while(0)
  39. #endif
  40. #define PTEG_FLAG_ACCESSED 0x00000100
  41. #define PTEG_FLAG_DIRTY 0x00000080
  42. static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
  43. {
  44. #ifdef DEBUG_MMU_PTE_IP
  45. return vcpu->arch.pc == DEBUG_MMU_PTE_IP;
  46. #else
  47. return true;
  48. #endif
  49. }
  50. static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
  51. struct kvmppc_pte *pte, bool data);
  52. static struct kvmppc_sr *find_sr(struct kvmppc_vcpu_book3s *vcpu_book3s, gva_t eaddr)
  53. {
  54. return &vcpu_book3s->sr[(eaddr >> 28) & 0xf];
  55. }
  56. static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
  57. bool data)
  58. {
  59. struct kvmppc_sr *sre = find_sr(to_book3s(vcpu), eaddr);
  60. struct kvmppc_pte pte;
  61. if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data))
  62. return pte.vpage;
  63. return (((u64)eaddr >> 12) & 0xffff) | (((u64)sre->vsid) << 16);
  64. }
  65. static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
  66. {
  67. kvmppc_set_msr(vcpu, 0);
  68. }
  69. static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvmppc_vcpu_book3s *vcpu_book3s,
  70. struct kvmppc_sr *sre, gva_t eaddr,
  71. bool primary)
  72. {
  73. u32 page, hash, pteg, htabmask;
  74. hva_t r;
  75. page = (eaddr & 0x0FFFFFFF) >> 12;
  76. htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
  77. hash = ((sre->vsid ^ page) << 6);
  78. if (!primary)
  79. hash = ~hash;
  80. hash &= htabmask;
  81. pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
  82. dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
  83. vcpu_book3s->vcpu.arch.pc, eaddr, vcpu_book3s->sdr1, pteg,
  84. sre->vsid);
  85. r = gfn_to_hva(vcpu_book3s->vcpu.kvm, pteg >> PAGE_SHIFT);
  86. if (kvm_is_error_hva(r))
  87. return r;
  88. return r | (pteg & ~PAGE_MASK);
  89. }
  90. static u32 kvmppc_mmu_book3s_32_get_ptem(struct kvmppc_sr *sre, gva_t eaddr,
  91. bool primary)
  92. {
  93. return ((eaddr & 0x0fffffff) >> 22) | (sre->vsid << 7) |
  94. (primary ? 0 : 0x40) | 0x80000000;
  95. }
  96. static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
  97. struct kvmppc_pte *pte, bool data)
  98. {
  99. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  100. struct kvmppc_bat *bat;
  101. int i;
  102. for (i = 0; i < 8; i++) {
  103. if (data)
  104. bat = &vcpu_book3s->dbat[i];
  105. else
  106. bat = &vcpu_book3s->ibat[i];
  107. if (vcpu->arch.msr & MSR_PR) {
  108. if (!bat->vp)
  109. continue;
  110. } else {
  111. if (!bat->vs)
  112. continue;
  113. }
  114. if (check_debug_ip(vcpu))
  115. {
  116. dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
  117. data ? 'd' : 'i', i, eaddr, bat->bepi,
  118. bat->bepi_mask);
  119. }
  120. if ((eaddr & bat->bepi_mask) == bat->bepi) {
  121. pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
  122. pte->vpage = (eaddr >> 12) | VSID_BAT;
  123. pte->may_read = bat->pp;
  124. pte->may_write = bat->pp > 1;
  125. pte->may_execute = true;
  126. if (!pte->may_read) {
  127. printk(KERN_INFO "BAT is not readable!\n");
  128. continue;
  129. }
  130. if (!pte->may_write) {
  131. /* let's treat r/o BATs as not-readable for now */
  132. dprintk_pte("BAT is read-only!\n");
  133. continue;
  134. }
  135. return 0;
  136. }
  137. }
  138. return -ENOENT;
  139. }
  140. static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
  141. struct kvmppc_pte *pte, bool data,
  142. bool primary)
  143. {
  144. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  145. struct kvmppc_sr *sre;
  146. hva_t ptegp;
  147. u32 pteg[16];
  148. u64 ptem = 0;
  149. int i;
  150. int found = 0;
  151. sre = find_sr(vcpu_book3s, eaddr);
  152. dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
  153. sre->vsid, sre->raw);
  154. pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
  155. ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu_book3s, sre, eaddr, primary);
  156. if (kvm_is_error_hva(ptegp)) {
  157. printk(KERN_INFO "KVM: Invalid PTEG!\n");
  158. goto no_page_found;
  159. }
  160. ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
  161. if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
  162. printk(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp);
  163. goto no_page_found;
  164. }
  165. for (i=0; i<16; i+=2) {
  166. if (ptem == pteg[i]) {
  167. u8 pp;
  168. pte->raddr = (pteg[i+1] & ~(0xFFFULL)) | (eaddr & 0xFFF);
  169. pp = pteg[i+1] & 3;
  170. if ((sre->Kp && (vcpu->arch.msr & MSR_PR)) ||
  171. (sre->Ks && !(vcpu->arch.msr & MSR_PR)))
  172. pp |= 4;
  173. pte->may_write = false;
  174. pte->may_read = false;
  175. pte->may_execute = true;
  176. switch (pp) {
  177. case 0:
  178. case 1:
  179. case 2:
  180. case 6:
  181. pte->may_write = true;
  182. case 3:
  183. case 5:
  184. case 7:
  185. pte->may_read = true;
  186. break;
  187. }
  188. if ( !pte->may_read )
  189. continue;
  190. dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
  191. pteg[i], pteg[i+1], pp);
  192. found = 1;
  193. break;
  194. }
  195. }
  196. /* Update PTE C and A bits, so the guest's swapper knows we used the
  197. page */
  198. if (found) {
  199. u32 oldpte = pteg[i+1];
  200. if (pte->may_read)
  201. pteg[i+1] |= PTEG_FLAG_ACCESSED;
  202. if (pte->may_write)
  203. pteg[i+1] |= PTEG_FLAG_DIRTY;
  204. else
  205. dprintk_pte("KVM: Mapping read-only page!\n");
  206. /* Write back into the PTEG */
  207. if (pteg[i+1] != oldpte)
  208. copy_to_user((void __user *)ptegp, pteg, sizeof(pteg));
  209. return 0;
  210. }
  211. no_page_found:
  212. if (check_debug_ip(vcpu)) {
  213. dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
  214. to_book3s(vcpu)->sdr1, ptegp);
  215. for (i=0; i<16; i+=2) {
  216. dprintk_pte(" %02d: 0x%x - 0x%x (0x%llx)\n",
  217. i, pteg[i], pteg[i+1], ptem);
  218. }
  219. }
  220. return -ENOENT;
  221. }
  222. static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  223. struct kvmppc_pte *pte, bool data)
  224. {
  225. int r;
  226. pte->eaddr = eaddr;
  227. r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data);
  228. if (r < 0)
  229. r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, true);
  230. if (r < 0)
  231. r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte, data, false);
  232. return r;
  233. }
  234. static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
  235. {
  236. return to_book3s(vcpu)->sr[srnum].raw;
  237. }
  238. static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
  239. ulong value)
  240. {
  241. struct kvmppc_sr *sre;
  242. sre = &to_book3s(vcpu)->sr[srnum];
  243. /* Flush any left-over shadows from the previous SR */
  244. /* XXX Not necessary? */
  245. /* kvmppc_mmu_pte_flush(vcpu, ((u64)sre->vsid) << 28, 0xf0000000ULL); */
  246. /* And then put in the new SR */
  247. sre->raw = value;
  248. sre->vsid = (value & 0x0fffffff);
  249. sre->Ks = (value & 0x40000000) ? true : false;
  250. sre->Kp = (value & 0x20000000) ? true : false;
  251. sre->nx = (value & 0x10000000) ? true : false;
  252. /* Map the new segment */
  253. kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
  254. }
  255. static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
  256. {
  257. kvmppc_mmu_pte_flush(vcpu, ea, ~0xFFFULL);
  258. }
  259. static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, u64 esid,
  260. u64 *vsid)
  261. {
  262. /* In case we only have one of MSR_IR or MSR_DR set, let's put
  263. that in the real-mode context (and hope RM doesn't access
  264. high memory) */
  265. switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
  266. case 0:
  267. *vsid = (VSID_REAL >> 16) | esid;
  268. break;
  269. case MSR_IR:
  270. *vsid = (VSID_REAL_IR >> 16) | esid;
  271. break;
  272. case MSR_DR:
  273. *vsid = (VSID_REAL_DR >> 16) | esid;
  274. break;
  275. case MSR_DR|MSR_IR:
  276. {
  277. ulong ea;
  278. ea = esid << SID_SHIFT;
  279. *vsid = find_sr(to_book3s(vcpu), ea)->vsid;
  280. break;
  281. }
  282. default:
  283. BUG();
  284. }
  285. return 0;
  286. }
  287. static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
  288. {
  289. return true;
  290. }
  291. void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
  292. {
  293. struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
  294. mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
  295. mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
  296. mmu->xlate = kvmppc_mmu_book3s_32_xlate;
  297. mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr;
  298. mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
  299. mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
  300. mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
  301. mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
  302. mmu->slbmte = NULL;
  303. mmu->slbmfee = NULL;
  304. mmu->slbmfev = NULL;
  305. mmu->slbie = NULL;
  306. mmu->slbia = NULL;
  307. }