contig.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/nmi.h>
  21. #include <linux/swap.h>
  22. #include <asm/meminit.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/pgtable.h>
  25. #include <asm/sections.h>
  26. #include <asm/mca.h>
  27. #ifdef CONFIG_VIRTUAL_MEM_MAP
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - give short summary of memory stats
  32. *
  33. * Shows a simple page count of reserved and used pages in the system.
  34. * For discontig machines, it does this on a per-pgdat basis.
  35. */
  36. void show_mem(void)
  37. {
  38. int i, total_reserved = 0;
  39. int total_shared = 0, total_cached = 0;
  40. unsigned long total_present = 0;
  41. pg_data_t *pgdat;
  42. printk(KERN_INFO "Mem-info:\n");
  43. show_free_areas();
  44. printk(KERN_INFO "Node memory in pages:\n");
  45. for_each_online_pgdat(pgdat) {
  46. unsigned long present;
  47. unsigned long flags;
  48. int shared = 0, cached = 0, reserved = 0;
  49. pgdat_resize_lock(pgdat, &flags);
  50. present = pgdat->node_present_pages;
  51. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  52. struct page *page;
  53. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  54. touch_nmi_watchdog();
  55. if (pfn_valid(pgdat->node_start_pfn + i))
  56. page = pfn_to_page(pgdat->node_start_pfn + i);
  57. else {
  58. #ifdef CONFIG_VIRTUAL_MEM_MAP
  59. if (max_gap < LARGE_GAP)
  60. continue;
  61. #endif
  62. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  63. i) - 1;
  64. continue;
  65. }
  66. if (PageReserved(page))
  67. reserved++;
  68. else if (PageSwapCache(page))
  69. cached++;
  70. else if (page_count(page))
  71. shared += page_count(page)-1;
  72. }
  73. pgdat_resize_unlock(pgdat, &flags);
  74. total_present += present;
  75. total_reserved += reserved;
  76. total_cached += cached;
  77. total_shared += shared;
  78. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  79. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  80. present, reserved, shared, cached);
  81. }
  82. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  83. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  84. printk(KERN_INFO "%d pages shared\n", total_shared);
  85. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  86. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  87. quicklist_total_size());
  88. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  89. }
  90. /* physical address where the bootmem map is located */
  91. unsigned long bootmap_start;
  92. /**
  93. * find_bootmap_location - callback to find a memory area for the bootmap
  94. * @start: start of region
  95. * @end: end of region
  96. * @arg: unused callback data
  97. *
  98. * Find a place to put the bootmap and return its starting address in
  99. * bootmap_start. This address must be page-aligned.
  100. */
  101. static int __init
  102. find_bootmap_location (u64 start, u64 end, void *arg)
  103. {
  104. u64 needed = *(unsigned long *)arg;
  105. u64 range_start, range_end, free_start;
  106. int i;
  107. #if IGNORE_PFN0
  108. if (start == PAGE_OFFSET) {
  109. start += PAGE_SIZE;
  110. if (start >= end)
  111. return 0;
  112. }
  113. #endif
  114. free_start = PAGE_OFFSET;
  115. for (i = 0; i < num_rsvd_regions; i++) {
  116. range_start = max(start, free_start);
  117. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  118. free_start = PAGE_ALIGN(rsvd_region[i].end);
  119. if (range_end <= range_start)
  120. continue; /* skip over empty range */
  121. if (range_end - range_start >= needed) {
  122. bootmap_start = __pa(range_start);
  123. return -1; /* done */
  124. }
  125. /* nothing more available in this segment */
  126. if (range_end == end)
  127. return 0;
  128. }
  129. return 0;
  130. }
  131. #ifdef CONFIG_SMP
  132. static void *cpu_data;
  133. /**
  134. * per_cpu_init - setup per-cpu variables
  135. *
  136. * Allocate and setup per-cpu data areas.
  137. */
  138. void * __cpuinit
  139. per_cpu_init (void)
  140. {
  141. static bool first_time = true;
  142. void *cpu0_data = __cpu0_per_cpu;
  143. unsigned int cpu;
  144. if (!first_time)
  145. goto skip;
  146. first_time = false;
  147. /*
  148. * get_free_pages() cannot be used before cpu_init() done.
  149. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
  150. * to avoid that AP calls get_zeroed_page().
  151. */
  152. for_each_possible_cpu(cpu) {
  153. void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
  154. memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
  155. __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
  156. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  157. /*
  158. * percpu area for cpu0 is moved from the __init area
  159. * which is setup by head.S and used till this point.
  160. * Update ar.k3. This move is ensures that percpu
  161. * area for cpu0 is on the correct node and its
  162. * virtual address isn't insanely far from other
  163. * percpu areas which is important for congruent
  164. * percpu allocator.
  165. */
  166. if (cpu == 0)
  167. ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
  168. (unsigned long)__per_cpu_start);
  169. cpu_data += PERCPU_PAGE_SIZE;
  170. }
  171. skip:
  172. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  173. }
  174. static inline void
  175. alloc_per_cpu_data(void)
  176. {
  177. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
  178. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  179. }
  180. /**
  181. * setup_per_cpu_areas - setup percpu areas
  182. *
  183. * Arch code has already allocated and initialized percpu areas. All
  184. * this function has to do is to teach the determined layout to the
  185. * dynamic percpu allocator, which happens to be more complex than
  186. * creating whole new ones using helpers.
  187. */
  188. void __init
  189. setup_per_cpu_areas(void)
  190. {
  191. struct pcpu_alloc_info *ai;
  192. struct pcpu_group_info *gi;
  193. unsigned int cpu;
  194. ssize_t static_size, reserved_size, dyn_size;
  195. int rc;
  196. ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
  197. if (!ai)
  198. panic("failed to allocate pcpu_alloc_info");
  199. gi = &ai->groups[0];
  200. /* units are assigned consecutively to possible cpus */
  201. for_each_possible_cpu(cpu)
  202. gi->cpu_map[gi->nr_units++] = cpu;
  203. /* set parameters */
  204. static_size = __per_cpu_end - __per_cpu_start;
  205. reserved_size = PERCPU_MODULE_RESERVE;
  206. dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
  207. if (dyn_size < 0)
  208. panic("percpu area overflow static=%zd reserved=%zd\n",
  209. static_size, reserved_size);
  210. ai->static_size = static_size;
  211. ai->reserved_size = reserved_size;
  212. ai->dyn_size = dyn_size;
  213. ai->unit_size = PERCPU_PAGE_SIZE;
  214. ai->atom_size = PAGE_SIZE;
  215. ai->alloc_size = PERCPU_PAGE_SIZE;
  216. rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
  217. if (rc)
  218. panic("failed to setup percpu area (err=%d)", rc);
  219. pcpu_free_alloc_info(ai);
  220. }
  221. #else
  222. #define alloc_per_cpu_data() do { } while (0)
  223. #endif /* CONFIG_SMP */
  224. /**
  225. * find_memory - setup memory map
  226. *
  227. * Walk the EFI memory map and find usable memory for the system, taking
  228. * into account reserved areas.
  229. */
  230. void __init
  231. find_memory (void)
  232. {
  233. unsigned long bootmap_size;
  234. reserve_memory();
  235. /* first find highest page frame number */
  236. min_low_pfn = ~0UL;
  237. max_low_pfn = 0;
  238. efi_memmap_walk(find_max_min_low_pfn, NULL);
  239. max_pfn = max_low_pfn;
  240. /* how many bytes to cover all the pages */
  241. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  242. /* look for a location to hold the bootmap */
  243. bootmap_start = ~0UL;
  244. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  245. if (bootmap_start == ~0UL)
  246. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  247. bootmap_size = init_bootmem_node(NODE_DATA(0),
  248. (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
  249. /* Free all available memory, then mark bootmem-map as being in use. */
  250. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  251. reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
  252. find_initrd();
  253. alloc_per_cpu_data();
  254. }
  255. static int count_pages(u64 start, u64 end, void *arg)
  256. {
  257. unsigned long *count = arg;
  258. *count += (end - start) >> PAGE_SHIFT;
  259. return 0;
  260. }
  261. /*
  262. * Set up the page tables.
  263. */
  264. void __init
  265. paging_init (void)
  266. {
  267. unsigned long max_dma;
  268. unsigned long max_zone_pfns[MAX_NR_ZONES];
  269. num_physpages = 0;
  270. efi_memmap_walk(count_pages, &num_physpages);
  271. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  272. #ifdef CONFIG_ZONE_DMA
  273. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  274. max_zone_pfns[ZONE_DMA] = max_dma;
  275. #endif
  276. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  277. #ifdef CONFIG_VIRTUAL_MEM_MAP
  278. efi_memmap_walk(filter_memory, register_active_ranges);
  279. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  280. if (max_gap < LARGE_GAP) {
  281. vmem_map = (struct page *) 0;
  282. free_area_init_nodes(max_zone_pfns);
  283. } else {
  284. unsigned long map_size;
  285. /* allocate virtual_mem_map */
  286. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  287. sizeof(struct page));
  288. VMALLOC_END -= map_size;
  289. vmem_map = (struct page *) VMALLOC_END;
  290. efi_memmap_walk(create_mem_map_page_table, NULL);
  291. /*
  292. * alloc_node_mem_map makes an adjustment for mem_map
  293. * which isn't compatible with vmem_map.
  294. */
  295. NODE_DATA(0)->node_mem_map = vmem_map +
  296. find_min_pfn_with_active_regions();
  297. free_area_init_nodes(max_zone_pfns);
  298. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  299. }
  300. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  301. add_active_range(0, 0, max_low_pfn);
  302. free_area_init_nodes(max_zone_pfns);
  303. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  304. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  305. }