perfmon.c 169 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835
  1. /*
  2. * This file implements the perfmon-2 subsystem which is used
  3. * to program the IA-64 Performance Monitoring Unit (PMU).
  4. *
  5. * The initial version of perfmon.c was written by
  6. * Ganesh Venkitachalam, IBM Corp.
  7. *
  8. * Then it was modified for perfmon-1.x by Stephane Eranian and
  9. * David Mosberger, Hewlett Packard Co.
  10. *
  11. * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12. * by Stephane Eranian, Hewlett Packard Co.
  13. *
  14. * Copyright (C) 1999-2005 Hewlett Packard Co
  15. * Stephane Eranian <eranian@hpl.hp.com>
  16. * David Mosberger-Tang <davidm@hpl.hp.com>
  17. *
  18. * More information about perfmon available at:
  19. * http://www.hpl.hp.com/research/linux/perfmon
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/sched.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/init.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/mm.h>
  30. #include <linux/sysctl.h>
  31. #include <linux/list.h>
  32. #include <linux/file.h>
  33. #include <linux/poll.h>
  34. #include <linux/vfs.h>
  35. #include <linux/smp.h>
  36. #include <linux/pagemap.h>
  37. #include <linux/mount.h>
  38. #include <linux/bitops.h>
  39. #include <linux/capability.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/completion.h>
  42. #include <linux/tracehook.h>
  43. #include <asm/errno.h>
  44. #include <asm/intrinsics.h>
  45. #include <asm/page.h>
  46. #include <asm/perfmon.h>
  47. #include <asm/processor.h>
  48. #include <asm/signal.h>
  49. #include <asm/system.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/delay.h>
  52. #ifdef CONFIG_PERFMON
  53. /*
  54. * perfmon context state
  55. */
  56. #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
  57. #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
  58. #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
  59. #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
  60. #define PFM_INVALID_ACTIVATION (~0UL)
  61. #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
  62. #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
  63. /*
  64. * depth of message queue
  65. */
  66. #define PFM_MAX_MSGS 32
  67. #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  68. /*
  69. * type of a PMU register (bitmask).
  70. * bitmask structure:
  71. * bit0 : register implemented
  72. * bit1 : end marker
  73. * bit2-3 : reserved
  74. * bit4 : pmc has pmc.pm
  75. * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
  76. * bit6-7 : register type
  77. * bit8-31: reserved
  78. */
  79. #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
  80. #define PFM_REG_IMPL 0x1 /* register implemented */
  81. #define PFM_REG_END 0x2 /* end marker */
  82. #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  83. #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  84. #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  85. #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
  86. #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  87. #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  88. #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  89. #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
  90. /* i assumed unsigned */
  91. #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
  92. #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
  93. /* XXX: these assume that register i is implemented */
  94. #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  95. #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  96. #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
  97. #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
  98. #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
  99. #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
  100. #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
  101. #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
  102. #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
  103. #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
  104. #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
  105. #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
  106. #define PFM_CTX_TASK(h) (h)->ctx_task
  107. #define PMU_PMC_OI 5 /* position of pmc.oi bit */
  108. /* XXX: does not support more than 64 PMDs */
  109. #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
  110. #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
  111. #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
  112. #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
  113. #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
  114. #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
  115. #define PFM_CODE_RR 0 /* requesting code range restriction */
  116. #define PFM_DATA_RR 1 /* requestion data range restriction */
  117. #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
  118. #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
  119. #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
  120. #define RDEP(x) (1UL<<(x))
  121. /*
  122. * context protection macros
  123. * in SMP:
  124. * - we need to protect against CPU concurrency (spin_lock)
  125. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  126. * in UP:
  127. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  128. *
  129. * spin_lock_irqsave()/spin_unlock_irqrestore():
  130. * in SMP: local_irq_disable + spin_lock
  131. * in UP : local_irq_disable
  132. *
  133. * spin_lock()/spin_lock():
  134. * in UP : removed automatically
  135. * in SMP: protect against context accesses from other CPU. interrupts
  136. * are not masked. This is useful for the PMU interrupt handler
  137. * because we know we will not get PMU concurrency in that code.
  138. */
  139. #define PROTECT_CTX(c, f) \
  140. do { \
  141. DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
  142. spin_lock_irqsave(&(c)->ctx_lock, f); \
  143. DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
  144. } while(0)
  145. #define UNPROTECT_CTX(c, f) \
  146. do { \
  147. DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
  148. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  149. } while(0)
  150. #define PROTECT_CTX_NOPRINT(c, f) \
  151. do { \
  152. spin_lock_irqsave(&(c)->ctx_lock, f); \
  153. } while(0)
  154. #define UNPROTECT_CTX_NOPRINT(c, f) \
  155. do { \
  156. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  157. } while(0)
  158. #define PROTECT_CTX_NOIRQ(c) \
  159. do { \
  160. spin_lock(&(c)->ctx_lock); \
  161. } while(0)
  162. #define UNPROTECT_CTX_NOIRQ(c) \
  163. do { \
  164. spin_unlock(&(c)->ctx_lock); \
  165. } while(0)
  166. #ifdef CONFIG_SMP
  167. #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
  168. #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
  169. #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
  170. #else /* !CONFIG_SMP */
  171. #define SET_ACTIVATION(t) do {} while(0)
  172. #define GET_ACTIVATION(t) do {} while(0)
  173. #define INC_ACTIVATION(t) do {} while(0)
  174. #endif /* CONFIG_SMP */
  175. #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
  176. #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
  177. #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
  178. #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
  179. #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
  180. #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
  181. /*
  182. * cmp0 must be the value of pmc0
  183. */
  184. #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
  185. #define PFMFS_MAGIC 0xa0b4d889
  186. /*
  187. * debugging
  188. */
  189. #define PFM_DEBUGGING 1
  190. #ifdef PFM_DEBUGGING
  191. #define DPRINT(a) \
  192. do { \
  193. if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
  194. } while (0)
  195. #define DPRINT_ovfl(a) \
  196. do { \
  197. if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
  198. } while (0)
  199. #endif
  200. /*
  201. * 64-bit software counter structure
  202. *
  203. * the next_reset_type is applied to the next call to pfm_reset_regs()
  204. */
  205. typedef struct {
  206. unsigned long val; /* virtual 64bit counter value */
  207. unsigned long lval; /* last reset value */
  208. unsigned long long_reset; /* reset value on sampling overflow */
  209. unsigned long short_reset; /* reset value on overflow */
  210. unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
  211. unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
  212. unsigned long seed; /* seed for random-number generator */
  213. unsigned long mask; /* mask for random-number generator */
  214. unsigned int flags; /* notify/do not notify */
  215. unsigned long eventid; /* overflow event identifier */
  216. } pfm_counter_t;
  217. /*
  218. * context flags
  219. */
  220. typedef struct {
  221. unsigned int block:1; /* when 1, task will blocked on user notifications */
  222. unsigned int system:1; /* do system wide monitoring */
  223. unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
  224. unsigned int is_sampling:1; /* true if using a custom format */
  225. unsigned int excl_idle:1; /* exclude idle task in system wide session */
  226. unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
  227. unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
  228. unsigned int no_msg:1; /* no message sent on overflow */
  229. unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
  230. unsigned int reserved:22;
  231. } pfm_context_flags_t;
  232. #define PFM_TRAP_REASON_NONE 0x0 /* default value */
  233. #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
  234. #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
  235. /*
  236. * perfmon context: encapsulates all the state of a monitoring session
  237. */
  238. typedef struct pfm_context {
  239. spinlock_t ctx_lock; /* context protection */
  240. pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
  241. unsigned int ctx_state; /* state: active/inactive (no bitfield) */
  242. struct task_struct *ctx_task; /* task to which context is attached */
  243. unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
  244. struct completion ctx_restart_done; /* use for blocking notification mode */
  245. unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
  246. unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
  247. unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
  248. unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
  249. unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
  250. unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
  251. unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
  252. unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
  253. unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
  254. unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
  255. unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
  256. pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
  257. unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
  258. unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
  259. unsigned long ctx_saved_psr_up; /* only contains psr.up value */
  260. unsigned long ctx_last_activation; /* context last activation number for last_cpu */
  261. unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
  262. unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
  263. int ctx_fd; /* file descriptor used my this context */
  264. pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
  265. pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
  266. void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
  267. unsigned long ctx_smpl_size; /* size of sampling buffer */
  268. void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
  269. wait_queue_head_t ctx_msgq_wait;
  270. pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
  271. int ctx_msgq_head;
  272. int ctx_msgq_tail;
  273. struct fasync_struct *ctx_async_queue;
  274. wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
  275. } pfm_context_t;
  276. /*
  277. * magic number used to verify that structure is really
  278. * a perfmon context
  279. */
  280. #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
  281. #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
  282. #ifdef CONFIG_SMP
  283. #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
  284. #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
  285. #else
  286. #define SET_LAST_CPU(ctx, v) do {} while(0)
  287. #define GET_LAST_CPU(ctx) do {} while(0)
  288. #endif
  289. #define ctx_fl_block ctx_flags.block
  290. #define ctx_fl_system ctx_flags.system
  291. #define ctx_fl_using_dbreg ctx_flags.using_dbreg
  292. #define ctx_fl_is_sampling ctx_flags.is_sampling
  293. #define ctx_fl_excl_idle ctx_flags.excl_idle
  294. #define ctx_fl_going_zombie ctx_flags.going_zombie
  295. #define ctx_fl_trap_reason ctx_flags.trap_reason
  296. #define ctx_fl_no_msg ctx_flags.no_msg
  297. #define ctx_fl_can_restart ctx_flags.can_restart
  298. #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
  299. #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
  300. /*
  301. * global information about all sessions
  302. * mostly used to synchronize between system wide and per-process
  303. */
  304. typedef struct {
  305. spinlock_t pfs_lock; /* lock the structure */
  306. unsigned int pfs_task_sessions; /* number of per task sessions */
  307. unsigned int pfs_sys_sessions; /* number of per system wide sessions */
  308. unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
  309. unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
  310. struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
  311. } pfm_session_t;
  312. /*
  313. * information about a PMC or PMD.
  314. * dep_pmd[]: a bitmask of dependent PMD registers
  315. * dep_pmc[]: a bitmask of dependent PMC registers
  316. */
  317. typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
  318. typedef struct {
  319. unsigned int type;
  320. int pm_pos;
  321. unsigned long default_value; /* power-on default value */
  322. unsigned long reserved_mask; /* bitmask of reserved bits */
  323. pfm_reg_check_t read_check;
  324. pfm_reg_check_t write_check;
  325. unsigned long dep_pmd[4];
  326. unsigned long dep_pmc[4];
  327. } pfm_reg_desc_t;
  328. /* assume cnum is a valid monitor */
  329. #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
  330. /*
  331. * This structure is initialized at boot time and contains
  332. * a description of the PMU main characteristics.
  333. *
  334. * If the probe function is defined, detection is based
  335. * on its return value:
  336. * - 0 means recognized PMU
  337. * - anything else means not supported
  338. * When the probe function is not defined, then the pmu_family field
  339. * is used and it must match the host CPU family such that:
  340. * - cpu->family & config->pmu_family != 0
  341. */
  342. typedef struct {
  343. unsigned long ovfl_val; /* overflow value for counters */
  344. pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
  345. pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
  346. unsigned int num_pmcs; /* number of PMCS: computed at init time */
  347. unsigned int num_pmds; /* number of PMDS: computed at init time */
  348. unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
  349. unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
  350. char *pmu_name; /* PMU family name */
  351. unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
  352. unsigned int flags; /* pmu specific flags */
  353. unsigned int num_ibrs; /* number of IBRS: computed at init time */
  354. unsigned int num_dbrs; /* number of DBRS: computed at init time */
  355. unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
  356. int (*probe)(void); /* customized probe routine */
  357. unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
  358. } pmu_config_t;
  359. /*
  360. * PMU specific flags
  361. */
  362. #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
  363. /*
  364. * debug register related type definitions
  365. */
  366. typedef struct {
  367. unsigned long ibr_mask:56;
  368. unsigned long ibr_plm:4;
  369. unsigned long ibr_ig:3;
  370. unsigned long ibr_x:1;
  371. } ibr_mask_reg_t;
  372. typedef struct {
  373. unsigned long dbr_mask:56;
  374. unsigned long dbr_plm:4;
  375. unsigned long dbr_ig:2;
  376. unsigned long dbr_w:1;
  377. unsigned long dbr_r:1;
  378. } dbr_mask_reg_t;
  379. typedef union {
  380. unsigned long val;
  381. ibr_mask_reg_t ibr;
  382. dbr_mask_reg_t dbr;
  383. } dbreg_t;
  384. /*
  385. * perfmon command descriptions
  386. */
  387. typedef struct {
  388. int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  389. char *cmd_name;
  390. int cmd_flags;
  391. unsigned int cmd_narg;
  392. size_t cmd_argsize;
  393. int (*cmd_getsize)(void *arg, size_t *sz);
  394. } pfm_cmd_desc_t;
  395. #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
  396. #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
  397. #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
  398. #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
  399. #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
  400. #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
  401. #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
  402. #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
  403. #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
  404. #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
  405. typedef struct {
  406. unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
  407. unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
  408. unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
  409. unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
  410. unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
  411. unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
  412. unsigned long pfm_smpl_handler_calls;
  413. unsigned long pfm_smpl_handler_cycles;
  414. char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
  415. } pfm_stats_t;
  416. /*
  417. * perfmon internal variables
  418. */
  419. static pfm_stats_t pfm_stats[NR_CPUS];
  420. static pfm_session_t pfm_sessions; /* global sessions information */
  421. static DEFINE_SPINLOCK(pfm_alt_install_check);
  422. static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
  423. static struct proc_dir_entry *perfmon_dir;
  424. static pfm_uuid_t pfm_null_uuid = {0,};
  425. static spinlock_t pfm_buffer_fmt_lock;
  426. static LIST_HEAD(pfm_buffer_fmt_list);
  427. static pmu_config_t *pmu_conf;
  428. /* sysctl() controls */
  429. pfm_sysctl_t pfm_sysctl;
  430. EXPORT_SYMBOL(pfm_sysctl);
  431. static ctl_table pfm_ctl_table[]={
  432. {
  433. .procname = "debug",
  434. .data = &pfm_sysctl.debug,
  435. .maxlen = sizeof(int),
  436. .mode = 0666,
  437. .proc_handler = proc_dointvec,
  438. },
  439. {
  440. .procname = "debug_ovfl",
  441. .data = &pfm_sysctl.debug_ovfl,
  442. .maxlen = sizeof(int),
  443. .mode = 0666,
  444. .proc_handler = proc_dointvec,
  445. },
  446. {
  447. .procname = "fastctxsw",
  448. .data = &pfm_sysctl.fastctxsw,
  449. .maxlen = sizeof(int),
  450. .mode = 0600,
  451. .proc_handler = proc_dointvec,
  452. },
  453. {
  454. .procname = "expert_mode",
  455. .data = &pfm_sysctl.expert_mode,
  456. .maxlen = sizeof(int),
  457. .mode = 0600,
  458. .proc_handler = proc_dointvec,
  459. },
  460. {}
  461. };
  462. static ctl_table pfm_sysctl_dir[] = {
  463. {
  464. .procname = "perfmon",
  465. .mode = 0555,
  466. .child = pfm_ctl_table,
  467. },
  468. {}
  469. };
  470. static ctl_table pfm_sysctl_root[] = {
  471. {
  472. .procname = "kernel",
  473. .mode = 0555,
  474. .child = pfm_sysctl_dir,
  475. },
  476. {}
  477. };
  478. static struct ctl_table_header *pfm_sysctl_header;
  479. static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  480. #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
  481. #define pfm_get_cpu_data(a,b) per_cpu(a, b)
  482. static inline void
  483. pfm_put_task(struct task_struct *task)
  484. {
  485. if (task != current) put_task_struct(task);
  486. }
  487. static inline void
  488. pfm_reserve_page(unsigned long a)
  489. {
  490. SetPageReserved(vmalloc_to_page((void *)a));
  491. }
  492. static inline void
  493. pfm_unreserve_page(unsigned long a)
  494. {
  495. ClearPageReserved(vmalloc_to_page((void*)a));
  496. }
  497. static inline unsigned long
  498. pfm_protect_ctx_ctxsw(pfm_context_t *x)
  499. {
  500. spin_lock(&(x)->ctx_lock);
  501. return 0UL;
  502. }
  503. static inline void
  504. pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
  505. {
  506. spin_unlock(&(x)->ctx_lock);
  507. }
  508. static inline unsigned int
  509. pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
  510. {
  511. return do_munmap(mm, addr, len);
  512. }
  513. static inline unsigned long
  514. pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
  515. {
  516. return get_unmapped_area(file, addr, len, pgoff, flags);
  517. }
  518. static int
  519. pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
  520. struct vfsmount *mnt)
  521. {
  522. return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
  523. }
  524. static struct file_system_type pfm_fs_type = {
  525. .name = "pfmfs",
  526. .get_sb = pfmfs_get_sb,
  527. .kill_sb = kill_anon_super,
  528. };
  529. DEFINE_PER_CPU(unsigned long, pfm_syst_info);
  530. DEFINE_PER_CPU(struct task_struct *, pmu_owner);
  531. DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
  532. DEFINE_PER_CPU(unsigned long, pmu_activation_number);
  533. EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
  534. /* forward declaration */
  535. static const struct file_operations pfm_file_ops;
  536. /*
  537. * forward declarations
  538. */
  539. #ifndef CONFIG_SMP
  540. static void pfm_lazy_save_regs (struct task_struct *ta);
  541. #endif
  542. void dump_pmu_state(const char *);
  543. static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  544. #include "perfmon_itanium.h"
  545. #include "perfmon_mckinley.h"
  546. #include "perfmon_montecito.h"
  547. #include "perfmon_generic.h"
  548. static pmu_config_t *pmu_confs[]={
  549. &pmu_conf_mont,
  550. &pmu_conf_mck,
  551. &pmu_conf_ita,
  552. &pmu_conf_gen, /* must be last */
  553. NULL
  554. };
  555. static int pfm_end_notify_user(pfm_context_t *ctx);
  556. static inline void
  557. pfm_clear_psr_pp(void)
  558. {
  559. ia64_rsm(IA64_PSR_PP);
  560. ia64_srlz_i();
  561. }
  562. static inline void
  563. pfm_set_psr_pp(void)
  564. {
  565. ia64_ssm(IA64_PSR_PP);
  566. ia64_srlz_i();
  567. }
  568. static inline void
  569. pfm_clear_psr_up(void)
  570. {
  571. ia64_rsm(IA64_PSR_UP);
  572. ia64_srlz_i();
  573. }
  574. static inline void
  575. pfm_set_psr_up(void)
  576. {
  577. ia64_ssm(IA64_PSR_UP);
  578. ia64_srlz_i();
  579. }
  580. static inline unsigned long
  581. pfm_get_psr(void)
  582. {
  583. unsigned long tmp;
  584. tmp = ia64_getreg(_IA64_REG_PSR);
  585. ia64_srlz_i();
  586. return tmp;
  587. }
  588. static inline void
  589. pfm_set_psr_l(unsigned long val)
  590. {
  591. ia64_setreg(_IA64_REG_PSR_L, val);
  592. ia64_srlz_i();
  593. }
  594. static inline void
  595. pfm_freeze_pmu(void)
  596. {
  597. ia64_set_pmc(0,1UL);
  598. ia64_srlz_d();
  599. }
  600. static inline void
  601. pfm_unfreeze_pmu(void)
  602. {
  603. ia64_set_pmc(0,0UL);
  604. ia64_srlz_d();
  605. }
  606. static inline void
  607. pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
  608. {
  609. int i;
  610. for (i=0; i < nibrs; i++) {
  611. ia64_set_ibr(i, ibrs[i]);
  612. ia64_dv_serialize_instruction();
  613. }
  614. ia64_srlz_i();
  615. }
  616. static inline void
  617. pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
  618. {
  619. int i;
  620. for (i=0; i < ndbrs; i++) {
  621. ia64_set_dbr(i, dbrs[i]);
  622. ia64_dv_serialize_data();
  623. }
  624. ia64_srlz_d();
  625. }
  626. /*
  627. * PMD[i] must be a counter. no check is made
  628. */
  629. static inline unsigned long
  630. pfm_read_soft_counter(pfm_context_t *ctx, int i)
  631. {
  632. return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
  633. }
  634. /*
  635. * PMD[i] must be a counter. no check is made
  636. */
  637. static inline void
  638. pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
  639. {
  640. unsigned long ovfl_val = pmu_conf->ovfl_val;
  641. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  642. /*
  643. * writing to unimplemented part is ignore, so we do not need to
  644. * mask off top part
  645. */
  646. ia64_set_pmd(i, val & ovfl_val);
  647. }
  648. static pfm_msg_t *
  649. pfm_get_new_msg(pfm_context_t *ctx)
  650. {
  651. int idx, next;
  652. next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
  653. DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  654. if (next == ctx->ctx_msgq_head) return NULL;
  655. idx = ctx->ctx_msgq_tail;
  656. ctx->ctx_msgq_tail = next;
  657. DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
  658. return ctx->ctx_msgq+idx;
  659. }
  660. static pfm_msg_t *
  661. pfm_get_next_msg(pfm_context_t *ctx)
  662. {
  663. pfm_msg_t *msg;
  664. DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  665. if (PFM_CTXQ_EMPTY(ctx)) return NULL;
  666. /*
  667. * get oldest message
  668. */
  669. msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
  670. /*
  671. * and move forward
  672. */
  673. ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
  674. DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
  675. return msg;
  676. }
  677. static void
  678. pfm_reset_msgq(pfm_context_t *ctx)
  679. {
  680. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  681. DPRINT(("ctx=%p msgq reset\n", ctx));
  682. }
  683. static void *
  684. pfm_rvmalloc(unsigned long size)
  685. {
  686. void *mem;
  687. unsigned long addr;
  688. size = PAGE_ALIGN(size);
  689. mem = vmalloc(size);
  690. if (mem) {
  691. //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
  692. memset(mem, 0, size);
  693. addr = (unsigned long)mem;
  694. while (size > 0) {
  695. pfm_reserve_page(addr);
  696. addr+=PAGE_SIZE;
  697. size-=PAGE_SIZE;
  698. }
  699. }
  700. return mem;
  701. }
  702. static void
  703. pfm_rvfree(void *mem, unsigned long size)
  704. {
  705. unsigned long addr;
  706. if (mem) {
  707. DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
  708. addr = (unsigned long) mem;
  709. while ((long) size > 0) {
  710. pfm_unreserve_page(addr);
  711. addr+=PAGE_SIZE;
  712. size-=PAGE_SIZE;
  713. }
  714. vfree(mem);
  715. }
  716. return;
  717. }
  718. static pfm_context_t *
  719. pfm_context_alloc(int ctx_flags)
  720. {
  721. pfm_context_t *ctx;
  722. /*
  723. * allocate context descriptor
  724. * must be able to free with interrupts disabled
  725. */
  726. ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
  727. if (ctx) {
  728. DPRINT(("alloc ctx @%p\n", ctx));
  729. /*
  730. * init context protection lock
  731. */
  732. spin_lock_init(&ctx->ctx_lock);
  733. /*
  734. * context is unloaded
  735. */
  736. ctx->ctx_state = PFM_CTX_UNLOADED;
  737. /*
  738. * initialization of context's flags
  739. */
  740. ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
  741. ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
  742. ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
  743. /*
  744. * will move to set properties
  745. * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
  746. */
  747. /*
  748. * init restart semaphore to locked
  749. */
  750. init_completion(&ctx->ctx_restart_done);
  751. /*
  752. * activation is used in SMP only
  753. */
  754. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  755. SET_LAST_CPU(ctx, -1);
  756. /*
  757. * initialize notification message queue
  758. */
  759. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  760. init_waitqueue_head(&ctx->ctx_msgq_wait);
  761. init_waitqueue_head(&ctx->ctx_zombieq);
  762. }
  763. return ctx;
  764. }
  765. static void
  766. pfm_context_free(pfm_context_t *ctx)
  767. {
  768. if (ctx) {
  769. DPRINT(("free ctx @%p\n", ctx));
  770. kfree(ctx);
  771. }
  772. }
  773. static void
  774. pfm_mask_monitoring(struct task_struct *task)
  775. {
  776. pfm_context_t *ctx = PFM_GET_CTX(task);
  777. unsigned long mask, val, ovfl_mask;
  778. int i;
  779. DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
  780. ovfl_mask = pmu_conf->ovfl_val;
  781. /*
  782. * monitoring can only be masked as a result of a valid
  783. * counter overflow. In UP, it means that the PMU still
  784. * has an owner. Note that the owner can be different
  785. * from the current task. However the PMU state belongs
  786. * to the owner.
  787. * In SMP, a valid overflow only happens when task is
  788. * current. Therefore if we come here, we know that
  789. * the PMU state belongs to the current task, therefore
  790. * we can access the live registers.
  791. *
  792. * So in both cases, the live register contains the owner's
  793. * state. We can ONLY touch the PMU registers and NOT the PSR.
  794. *
  795. * As a consequence to this call, the ctx->th_pmds[] array
  796. * contains stale information which must be ignored
  797. * when context is reloaded AND monitoring is active (see
  798. * pfm_restart).
  799. */
  800. mask = ctx->ctx_used_pmds[0];
  801. for (i = 0; mask; i++, mask>>=1) {
  802. /* skip non used pmds */
  803. if ((mask & 0x1) == 0) continue;
  804. val = ia64_get_pmd(i);
  805. if (PMD_IS_COUNTING(i)) {
  806. /*
  807. * we rebuild the full 64 bit value of the counter
  808. */
  809. ctx->ctx_pmds[i].val += (val & ovfl_mask);
  810. } else {
  811. ctx->ctx_pmds[i].val = val;
  812. }
  813. DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  814. i,
  815. ctx->ctx_pmds[i].val,
  816. val & ovfl_mask));
  817. }
  818. /*
  819. * mask monitoring by setting the privilege level to 0
  820. * we cannot use psr.pp/psr.up for this, it is controlled by
  821. * the user
  822. *
  823. * if task is current, modify actual registers, otherwise modify
  824. * thread save state, i.e., what will be restored in pfm_load_regs()
  825. */
  826. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  827. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  828. if ((mask & 0x1) == 0UL) continue;
  829. ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
  830. ctx->th_pmcs[i] &= ~0xfUL;
  831. DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  832. }
  833. /*
  834. * make all of this visible
  835. */
  836. ia64_srlz_d();
  837. }
  838. /*
  839. * must always be done with task == current
  840. *
  841. * context must be in MASKED state when calling
  842. */
  843. static void
  844. pfm_restore_monitoring(struct task_struct *task)
  845. {
  846. pfm_context_t *ctx = PFM_GET_CTX(task);
  847. unsigned long mask, ovfl_mask;
  848. unsigned long psr, val;
  849. int i, is_system;
  850. is_system = ctx->ctx_fl_system;
  851. ovfl_mask = pmu_conf->ovfl_val;
  852. if (task != current) {
  853. printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
  854. return;
  855. }
  856. if (ctx->ctx_state != PFM_CTX_MASKED) {
  857. printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
  858. task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
  859. return;
  860. }
  861. psr = pfm_get_psr();
  862. /*
  863. * monitoring is masked via the PMC.
  864. * As we restore their value, we do not want each counter to
  865. * restart right away. We stop monitoring using the PSR,
  866. * restore the PMC (and PMD) and then re-establish the psr
  867. * as it was. Note that there can be no pending overflow at
  868. * this point, because monitoring was MASKED.
  869. *
  870. * system-wide session are pinned and self-monitoring
  871. */
  872. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  873. /* disable dcr pp */
  874. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  875. pfm_clear_psr_pp();
  876. } else {
  877. pfm_clear_psr_up();
  878. }
  879. /*
  880. * first, we restore the PMD
  881. */
  882. mask = ctx->ctx_used_pmds[0];
  883. for (i = 0; mask; i++, mask>>=1) {
  884. /* skip non used pmds */
  885. if ((mask & 0x1) == 0) continue;
  886. if (PMD_IS_COUNTING(i)) {
  887. /*
  888. * we split the 64bit value according to
  889. * counter width
  890. */
  891. val = ctx->ctx_pmds[i].val & ovfl_mask;
  892. ctx->ctx_pmds[i].val &= ~ovfl_mask;
  893. } else {
  894. val = ctx->ctx_pmds[i].val;
  895. }
  896. ia64_set_pmd(i, val);
  897. DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  898. i,
  899. ctx->ctx_pmds[i].val,
  900. val));
  901. }
  902. /*
  903. * restore the PMCs
  904. */
  905. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  906. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  907. if ((mask & 0x1) == 0UL) continue;
  908. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  909. ia64_set_pmc(i, ctx->th_pmcs[i]);
  910. DPRINT(("[%d] pmc[%d]=0x%lx\n",
  911. task_pid_nr(task), i, ctx->th_pmcs[i]));
  912. }
  913. ia64_srlz_d();
  914. /*
  915. * must restore DBR/IBR because could be modified while masked
  916. * XXX: need to optimize
  917. */
  918. if (ctx->ctx_fl_using_dbreg) {
  919. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  920. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  921. }
  922. /*
  923. * now restore PSR
  924. */
  925. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  926. /* enable dcr pp */
  927. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  928. ia64_srlz_i();
  929. }
  930. pfm_set_psr_l(psr);
  931. }
  932. static inline void
  933. pfm_save_pmds(unsigned long *pmds, unsigned long mask)
  934. {
  935. int i;
  936. ia64_srlz_d();
  937. for (i=0; mask; i++, mask>>=1) {
  938. if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
  939. }
  940. }
  941. /*
  942. * reload from thread state (used for ctxw only)
  943. */
  944. static inline void
  945. pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
  946. {
  947. int i;
  948. unsigned long val, ovfl_val = pmu_conf->ovfl_val;
  949. for (i=0; mask; i++, mask>>=1) {
  950. if ((mask & 0x1) == 0) continue;
  951. val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
  952. ia64_set_pmd(i, val);
  953. }
  954. ia64_srlz_d();
  955. }
  956. /*
  957. * propagate PMD from context to thread-state
  958. */
  959. static inline void
  960. pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
  961. {
  962. unsigned long ovfl_val = pmu_conf->ovfl_val;
  963. unsigned long mask = ctx->ctx_all_pmds[0];
  964. unsigned long val;
  965. int i;
  966. DPRINT(("mask=0x%lx\n", mask));
  967. for (i=0; mask; i++, mask>>=1) {
  968. val = ctx->ctx_pmds[i].val;
  969. /*
  970. * We break up the 64 bit value into 2 pieces
  971. * the lower bits go to the machine state in the
  972. * thread (will be reloaded on ctxsw in).
  973. * The upper part stays in the soft-counter.
  974. */
  975. if (PMD_IS_COUNTING(i)) {
  976. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  977. val &= ovfl_val;
  978. }
  979. ctx->th_pmds[i] = val;
  980. DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
  981. i,
  982. ctx->th_pmds[i],
  983. ctx->ctx_pmds[i].val));
  984. }
  985. }
  986. /*
  987. * propagate PMC from context to thread-state
  988. */
  989. static inline void
  990. pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
  991. {
  992. unsigned long mask = ctx->ctx_all_pmcs[0];
  993. int i;
  994. DPRINT(("mask=0x%lx\n", mask));
  995. for (i=0; mask; i++, mask>>=1) {
  996. /* masking 0 with ovfl_val yields 0 */
  997. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  998. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  999. }
  1000. }
  1001. static inline void
  1002. pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
  1003. {
  1004. int i;
  1005. for (i=0; mask; i++, mask>>=1) {
  1006. if ((mask & 0x1) == 0) continue;
  1007. ia64_set_pmc(i, pmcs[i]);
  1008. }
  1009. ia64_srlz_d();
  1010. }
  1011. static inline int
  1012. pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
  1013. {
  1014. return memcmp(a, b, sizeof(pfm_uuid_t));
  1015. }
  1016. static inline int
  1017. pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
  1018. {
  1019. int ret = 0;
  1020. if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
  1021. return ret;
  1022. }
  1023. static inline int
  1024. pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
  1025. {
  1026. int ret = 0;
  1027. if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
  1028. return ret;
  1029. }
  1030. static inline int
  1031. pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
  1032. int cpu, void *arg)
  1033. {
  1034. int ret = 0;
  1035. if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
  1036. return ret;
  1037. }
  1038. static inline int
  1039. pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
  1040. int cpu, void *arg)
  1041. {
  1042. int ret = 0;
  1043. if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
  1044. return ret;
  1045. }
  1046. static inline int
  1047. pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1048. {
  1049. int ret = 0;
  1050. if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
  1051. return ret;
  1052. }
  1053. static inline int
  1054. pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1055. {
  1056. int ret = 0;
  1057. if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
  1058. return ret;
  1059. }
  1060. static pfm_buffer_fmt_t *
  1061. __pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1062. {
  1063. struct list_head * pos;
  1064. pfm_buffer_fmt_t * entry;
  1065. list_for_each(pos, &pfm_buffer_fmt_list) {
  1066. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  1067. if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
  1068. return entry;
  1069. }
  1070. return NULL;
  1071. }
  1072. /*
  1073. * find a buffer format based on its uuid
  1074. */
  1075. static pfm_buffer_fmt_t *
  1076. pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1077. {
  1078. pfm_buffer_fmt_t * fmt;
  1079. spin_lock(&pfm_buffer_fmt_lock);
  1080. fmt = __pfm_find_buffer_fmt(uuid);
  1081. spin_unlock(&pfm_buffer_fmt_lock);
  1082. return fmt;
  1083. }
  1084. int
  1085. pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
  1086. {
  1087. int ret = 0;
  1088. /* some sanity checks */
  1089. if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
  1090. /* we need at least a handler */
  1091. if (fmt->fmt_handler == NULL) return -EINVAL;
  1092. /*
  1093. * XXX: need check validity of fmt_arg_size
  1094. */
  1095. spin_lock(&pfm_buffer_fmt_lock);
  1096. if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
  1097. printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
  1098. ret = -EBUSY;
  1099. goto out;
  1100. }
  1101. list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
  1102. printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
  1103. out:
  1104. spin_unlock(&pfm_buffer_fmt_lock);
  1105. return ret;
  1106. }
  1107. EXPORT_SYMBOL(pfm_register_buffer_fmt);
  1108. int
  1109. pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
  1110. {
  1111. pfm_buffer_fmt_t *fmt;
  1112. int ret = 0;
  1113. spin_lock(&pfm_buffer_fmt_lock);
  1114. fmt = __pfm_find_buffer_fmt(uuid);
  1115. if (!fmt) {
  1116. printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
  1117. ret = -EINVAL;
  1118. goto out;
  1119. }
  1120. list_del_init(&fmt->fmt_list);
  1121. printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
  1122. out:
  1123. spin_unlock(&pfm_buffer_fmt_lock);
  1124. return ret;
  1125. }
  1126. EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
  1127. extern void update_pal_halt_status(int);
  1128. static int
  1129. pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
  1130. {
  1131. unsigned long flags;
  1132. /*
  1133. * validity checks on cpu_mask have been done upstream
  1134. */
  1135. LOCK_PFS(flags);
  1136. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1137. pfm_sessions.pfs_sys_sessions,
  1138. pfm_sessions.pfs_task_sessions,
  1139. pfm_sessions.pfs_sys_use_dbregs,
  1140. is_syswide,
  1141. cpu));
  1142. if (is_syswide) {
  1143. /*
  1144. * cannot mix system wide and per-task sessions
  1145. */
  1146. if (pfm_sessions.pfs_task_sessions > 0UL) {
  1147. DPRINT(("system wide not possible, %u conflicting task_sessions\n",
  1148. pfm_sessions.pfs_task_sessions));
  1149. goto abort;
  1150. }
  1151. if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
  1152. DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
  1153. pfm_sessions.pfs_sys_session[cpu] = task;
  1154. pfm_sessions.pfs_sys_sessions++ ;
  1155. } else {
  1156. if (pfm_sessions.pfs_sys_sessions) goto abort;
  1157. pfm_sessions.pfs_task_sessions++;
  1158. }
  1159. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1160. pfm_sessions.pfs_sys_sessions,
  1161. pfm_sessions.pfs_task_sessions,
  1162. pfm_sessions.pfs_sys_use_dbregs,
  1163. is_syswide,
  1164. cpu));
  1165. /*
  1166. * disable default_idle() to go to PAL_HALT
  1167. */
  1168. update_pal_halt_status(0);
  1169. UNLOCK_PFS(flags);
  1170. return 0;
  1171. error_conflict:
  1172. DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
  1173. task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
  1174. cpu));
  1175. abort:
  1176. UNLOCK_PFS(flags);
  1177. return -EBUSY;
  1178. }
  1179. static int
  1180. pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
  1181. {
  1182. unsigned long flags;
  1183. /*
  1184. * validity checks on cpu_mask have been done upstream
  1185. */
  1186. LOCK_PFS(flags);
  1187. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1188. pfm_sessions.pfs_sys_sessions,
  1189. pfm_sessions.pfs_task_sessions,
  1190. pfm_sessions.pfs_sys_use_dbregs,
  1191. is_syswide,
  1192. cpu));
  1193. if (is_syswide) {
  1194. pfm_sessions.pfs_sys_session[cpu] = NULL;
  1195. /*
  1196. * would not work with perfmon+more than one bit in cpu_mask
  1197. */
  1198. if (ctx && ctx->ctx_fl_using_dbreg) {
  1199. if (pfm_sessions.pfs_sys_use_dbregs == 0) {
  1200. printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
  1201. } else {
  1202. pfm_sessions.pfs_sys_use_dbregs--;
  1203. }
  1204. }
  1205. pfm_sessions.pfs_sys_sessions--;
  1206. } else {
  1207. pfm_sessions.pfs_task_sessions--;
  1208. }
  1209. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1210. pfm_sessions.pfs_sys_sessions,
  1211. pfm_sessions.pfs_task_sessions,
  1212. pfm_sessions.pfs_sys_use_dbregs,
  1213. is_syswide,
  1214. cpu));
  1215. /*
  1216. * if possible, enable default_idle() to go into PAL_HALT
  1217. */
  1218. if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
  1219. update_pal_halt_status(1);
  1220. UNLOCK_PFS(flags);
  1221. return 0;
  1222. }
  1223. /*
  1224. * removes virtual mapping of the sampling buffer.
  1225. * IMPORTANT: cannot be called with interrupts disable, e.g. inside
  1226. * a PROTECT_CTX() section.
  1227. */
  1228. static int
  1229. pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
  1230. {
  1231. int r;
  1232. /* sanity checks */
  1233. if (task->mm == NULL || size == 0UL || vaddr == NULL) {
  1234. printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
  1235. return -EINVAL;
  1236. }
  1237. DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
  1238. /*
  1239. * does the actual unmapping
  1240. */
  1241. down_write(&task->mm->mmap_sem);
  1242. DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
  1243. r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
  1244. up_write(&task->mm->mmap_sem);
  1245. if (r !=0) {
  1246. printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
  1247. }
  1248. DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
  1249. return 0;
  1250. }
  1251. /*
  1252. * free actual physical storage used by sampling buffer
  1253. */
  1254. #if 0
  1255. static int
  1256. pfm_free_smpl_buffer(pfm_context_t *ctx)
  1257. {
  1258. pfm_buffer_fmt_t *fmt;
  1259. if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
  1260. /*
  1261. * we won't use the buffer format anymore
  1262. */
  1263. fmt = ctx->ctx_buf_fmt;
  1264. DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
  1265. ctx->ctx_smpl_hdr,
  1266. ctx->ctx_smpl_size,
  1267. ctx->ctx_smpl_vaddr));
  1268. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1269. /*
  1270. * free the buffer
  1271. */
  1272. pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
  1273. ctx->ctx_smpl_hdr = NULL;
  1274. ctx->ctx_smpl_size = 0UL;
  1275. return 0;
  1276. invalid_free:
  1277. printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
  1278. return -EINVAL;
  1279. }
  1280. #endif
  1281. static inline void
  1282. pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
  1283. {
  1284. if (fmt == NULL) return;
  1285. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1286. }
  1287. /*
  1288. * pfmfs should _never_ be mounted by userland - too much of security hassle,
  1289. * no real gain from having the whole whorehouse mounted. So we don't need
  1290. * any operations on the root directory. However, we need a non-trivial
  1291. * d_name - pfm: will go nicely and kill the special-casing in procfs.
  1292. */
  1293. static struct vfsmount *pfmfs_mnt;
  1294. static int __init
  1295. init_pfm_fs(void)
  1296. {
  1297. int err = register_filesystem(&pfm_fs_type);
  1298. if (!err) {
  1299. pfmfs_mnt = kern_mount(&pfm_fs_type);
  1300. err = PTR_ERR(pfmfs_mnt);
  1301. if (IS_ERR(pfmfs_mnt))
  1302. unregister_filesystem(&pfm_fs_type);
  1303. else
  1304. err = 0;
  1305. }
  1306. return err;
  1307. }
  1308. static ssize_t
  1309. pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
  1310. {
  1311. pfm_context_t *ctx;
  1312. pfm_msg_t *msg;
  1313. ssize_t ret;
  1314. unsigned long flags;
  1315. DECLARE_WAITQUEUE(wait, current);
  1316. if (PFM_IS_FILE(filp) == 0) {
  1317. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
  1318. return -EINVAL;
  1319. }
  1320. ctx = (pfm_context_t *)filp->private_data;
  1321. if (ctx == NULL) {
  1322. printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
  1323. return -EINVAL;
  1324. }
  1325. /*
  1326. * check even when there is no message
  1327. */
  1328. if (size < sizeof(pfm_msg_t)) {
  1329. DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
  1330. return -EINVAL;
  1331. }
  1332. PROTECT_CTX(ctx, flags);
  1333. /*
  1334. * put ourselves on the wait queue
  1335. */
  1336. add_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1337. for(;;) {
  1338. /*
  1339. * check wait queue
  1340. */
  1341. set_current_state(TASK_INTERRUPTIBLE);
  1342. DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  1343. ret = 0;
  1344. if(PFM_CTXQ_EMPTY(ctx) == 0) break;
  1345. UNPROTECT_CTX(ctx, flags);
  1346. /*
  1347. * check non-blocking read
  1348. */
  1349. ret = -EAGAIN;
  1350. if(filp->f_flags & O_NONBLOCK) break;
  1351. /*
  1352. * check pending signals
  1353. */
  1354. if(signal_pending(current)) {
  1355. ret = -EINTR;
  1356. break;
  1357. }
  1358. /*
  1359. * no message, so wait
  1360. */
  1361. schedule();
  1362. PROTECT_CTX(ctx, flags);
  1363. }
  1364. DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
  1365. set_current_state(TASK_RUNNING);
  1366. remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1367. if (ret < 0) goto abort;
  1368. ret = -EINVAL;
  1369. msg = pfm_get_next_msg(ctx);
  1370. if (msg == NULL) {
  1371. printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
  1372. goto abort_locked;
  1373. }
  1374. DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
  1375. ret = -EFAULT;
  1376. if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
  1377. abort_locked:
  1378. UNPROTECT_CTX(ctx, flags);
  1379. abort:
  1380. return ret;
  1381. }
  1382. static ssize_t
  1383. pfm_write(struct file *file, const char __user *ubuf,
  1384. size_t size, loff_t *ppos)
  1385. {
  1386. DPRINT(("pfm_write called\n"));
  1387. return -EINVAL;
  1388. }
  1389. static unsigned int
  1390. pfm_poll(struct file *filp, poll_table * wait)
  1391. {
  1392. pfm_context_t *ctx;
  1393. unsigned long flags;
  1394. unsigned int mask = 0;
  1395. if (PFM_IS_FILE(filp) == 0) {
  1396. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
  1397. return 0;
  1398. }
  1399. ctx = (pfm_context_t *)filp->private_data;
  1400. if (ctx == NULL) {
  1401. printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
  1402. return 0;
  1403. }
  1404. DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
  1405. poll_wait(filp, &ctx->ctx_msgq_wait, wait);
  1406. PROTECT_CTX(ctx, flags);
  1407. if (PFM_CTXQ_EMPTY(ctx) == 0)
  1408. mask = POLLIN | POLLRDNORM;
  1409. UNPROTECT_CTX(ctx, flags);
  1410. DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
  1411. return mask;
  1412. }
  1413. static int
  1414. pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1415. {
  1416. DPRINT(("pfm_ioctl called\n"));
  1417. return -EINVAL;
  1418. }
  1419. /*
  1420. * interrupt cannot be masked when coming here
  1421. */
  1422. static inline int
  1423. pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
  1424. {
  1425. int ret;
  1426. ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
  1427. DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1428. task_pid_nr(current),
  1429. fd,
  1430. on,
  1431. ctx->ctx_async_queue, ret));
  1432. return ret;
  1433. }
  1434. static int
  1435. pfm_fasync(int fd, struct file *filp, int on)
  1436. {
  1437. pfm_context_t *ctx;
  1438. int ret;
  1439. if (PFM_IS_FILE(filp) == 0) {
  1440. printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
  1441. return -EBADF;
  1442. }
  1443. ctx = (pfm_context_t *)filp->private_data;
  1444. if (ctx == NULL) {
  1445. printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
  1446. return -EBADF;
  1447. }
  1448. /*
  1449. * we cannot mask interrupts during this call because this may
  1450. * may go to sleep if memory is not readily avalaible.
  1451. *
  1452. * We are protected from the conetxt disappearing by the get_fd()/put_fd()
  1453. * done in caller. Serialization of this function is ensured by caller.
  1454. */
  1455. ret = pfm_do_fasync(fd, filp, ctx, on);
  1456. DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1457. fd,
  1458. on,
  1459. ctx->ctx_async_queue, ret));
  1460. return ret;
  1461. }
  1462. #ifdef CONFIG_SMP
  1463. /*
  1464. * this function is exclusively called from pfm_close().
  1465. * The context is not protected at that time, nor are interrupts
  1466. * on the remote CPU. That's necessary to avoid deadlocks.
  1467. */
  1468. static void
  1469. pfm_syswide_force_stop(void *info)
  1470. {
  1471. pfm_context_t *ctx = (pfm_context_t *)info;
  1472. struct pt_regs *regs = task_pt_regs(current);
  1473. struct task_struct *owner;
  1474. unsigned long flags;
  1475. int ret;
  1476. if (ctx->ctx_cpu != smp_processor_id()) {
  1477. printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
  1478. ctx->ctx_cpu,
  1479. smp_processor_id());
  1480. return;
  1481. }
  1482. owner = GET_PMU_OWNER();
  1483. if (owner != ctx->ctx_task) {
  1484. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
  1485. smp_processor_id(),
  1486. task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
  1487. return;
  1488. }
  1489. if (GET_PMU_CTX() != ctx) {
  1490. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
  1491. smp_processor_id(),
  1492. GET_PMU_CTX(), ctx);
  1493. return;
  1494. }
  1495. DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
  1496. /*
  1497. * the context is already protected in pfm_close(), we simply
  1498. * need to mask interrupts to avoid a PMU interrupt race on
  1499. * this CPU
  1500. */
  1501. local_irq_save(flags);
  1502. ret = pfm_context_unload(ctx, NULL, 0, regs);
  1503. if (ret) {
  1504. DPRINT(("context_unload returned %d\n", ret));
  1505. }
  1506. /*
  1507. * unmask interrupts, PMU interrupts are now spurious here
  1508. */
  1509. local_irq_restore(flags);
  1510. }
  1511. static void
  1512. pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
  1513. {
  1514. int ret;
  1515. DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
  1516. ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
  1517. DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
  1518. }
  1519. #endif /* CONFIG_SMP */
  1520. /*
  1521. * called for each close(). Partially free resources.
  1522. * When caller is self-monitoring, the context is unloaded.
  1523. */
  1524. static int
  1525. pfm_flush(struct file *filp, fl_owner_t id)
  1526. {
  1527. pfm_context_t *ctx;
  1528. struct task_struct *task;
  1529. struct pt_regs *regs;
  1530. unsigned long flags;
  1531. unsigned long smpl_buf_size = 0UL;
  1532. void *smpl_buf_vaddr = NULL;
  1533. int state, is_system;
  1534. if (PFM_IS_FILE(filp) == 0) {
  1535. DPRINT(("bad magic for\n"));
  1536. return -EBADF;
  1537. }
  1538. ctx = (pfm_context_t *)filp->private_data;
  1539. if (ctx == NULL) {
  1540. printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
  1541. return -EBADF;
  1542. }
  1543. /*
  1544. * remove our file from the async queue, if we use this mode.
  1545. * This can be done without the context being protected. We come
  1546. * here when the context has become unreachable by other tasks.
  1547. *
  1548. * We may still have active monitoring at this point and we may
  1549. * end up in pfm_overflow_handler(). However, fasync_helper()
  1550. * operates with interrupts disabled and it cleans up the
  1551. * queue. If the PMU handler is called prior to entering
  1552. * fasync_helper() then it will send a signal. If it is
  1553. * invoked after, it will find an empty queue and no
  1554. * signal will be sent. In both case, we are safe
  1555. */
  1556. PROTECT_CTX(ctx, flags);
  1557. state = ctx->ctx_state;
  1558. is_system = ctx->ctx_fl_system;
  1559. task = PFM_CTX_TASK(ctx);
  1560. regs = task_pt_regs(task);
  1561. DPRINT(("ctx_state=%d is_current=%d\n",
  1562. state,
  1563. task == current ? 1 : 0));
  1564. /*
  1565. * if state == UNLOADED, then task is NULL
  1566. */
  1567. /*
  1568. * we must stop and unload because we are losing access to the context.
  1569. */
  1570. if (task == current) {
  1571. #ifdef CONFIG_SMP
  1572. /*
  1573. * the task IS the owner but it migrated to another CPU: that's bad
  1574. * but we must handle this cleanly. Unfortunately, the kernel does
  1575. * not provide a mechanism to block migration (while the context is loaded).
  1576. *
  1577. * We need to release the resource on the ORIGINAL cpu.
  1578. */
  1579. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  1580. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  1581. /*
  1582. * keep context protected but unmask interrupt for IPI
  1583. */
  1584. local_irq_restore(flags);
  1585. pfm_syswide_cleanup_other_cpu(ctx);
  1586. /*
  1587. * restore interrupt masking
  1588. */
  1589. local_irq_save(flags);
  1590. /*
  1591. * context is unloaded at this point
  1592. */
  1593. } else
  1594. #endif /* CONFIG_SMP */
  1595. {
  1596. DPRINT(("forcing unload\n"));
  1597. /*
  1598. * stop and unload, returning with state UNLOADED
  1599. * and session unreserved.
  1600. */
  1601. pfm_context_unload(ctx, NULL, 0, regs);
  1602. DPRINT(("ctx_state=%d\n", ctx->ctx_state));
  1603. }
  1604. }
  1605. /*
  1606. * remove virtual mapping, if any, for the calling task.
  1607. * cannot reset ctx field until last user is calling close().
  1608. *
  1609. * ctx_smpl_vaddr must never be cleared because it is needed
  1610. * by every task with access to the context
  1611. *
  1612. * When called from do_exit(), the mm context is gone already, therefore
  1613. * mm is NULL, i.e., the VMA is already gone and we do not have to
  1614. * do anything here
  1615. */
  1616. if (ctx->ctx_smpl_vaddr && current->mm) {
  1617. smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
  1618. smpl_buf_size = ctx->ctx_smpl_size;
  1619. }
  1620. UNPROTECT_CTX(ctx, flags);
  1621. /*
  1622. * if there was a mapping, then we systematically remove it
  1623. * at this point. Cannot be done inside critical section
  1624. * because some VM function reenables interrupts.
  1625. *
  1626. */
  1627. if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
  1628. return 0;
  1629. }
  1630. /*
  1631. * called either on explicit close() or from exit_files().
  1632. * Only the LAST user of the file gets to this point, i.e., it is
  1633. * called only ONCE.
  1634. *
  1635. * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
  1636. * (fput()),i.e, last task to access the file. Nobody else can access the
  1637. * file at this point.
  1638. *
  1639. * When called from exit_files(), the VMA has been freed because exit_mm()
  1640. * is executed before exit_files().
  1641. *
  1642. * When called from exit_files(), the current task is not yet ZOMBIE but we
  1643. * flush the PMU state to the context.
  1644. */
  1645. static int
  1646. pfm_close(struct inode *inode, struct file *filp)
  1647. {
  1648. pfm_context_t *ctx;
  1649. struct task_struct *task;
  1650. struct pt_regs *regs;
  1651. DECLARE_WAITQUEUE(wait, current);
  1652. unsigned long flags;
  1653. unsigned long smpl_buf_size = 0UL;
  1654. void *smpl_buf_addr = NULL;
  1655. int free_possible = 1;
  1656. int state, is_system;
  1657. DPRINT(("pfm_close called private=%p\n", filp->private_data));
  1658. if (PFM_IS_FILE(filp) == 0) {
  1659. DPRINT(("bad magic\n"));
  1660. return -EBADF;
  1661. }
  1662. ctx = (pfm_context_t *)filp->private_data;
  1663. if (ctx == NULL) {
  1664. printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
  1665. return -EBADF;
  1666. }
  1667. PROTECT_CTX(ctx, flags);
  1668. state = ctx->ctx_state;
  1669. is_system = ctx->ctx_fl_system;
  1670. task = PFM_CTX_TASK(ctx);
  1671. regs = task_pt_regs(task);
  1672. DPRINT(("ctx_state=%d is_current=%d\n",
  1673. state,
  1674. task == current ? 1 : 0));
  1675. /*
  1676. * if task == current, then pfm_flush() unloaded the context
  1677. */
  1678. if (state == PFM_CTX_UNLOADED) goto doit;
  1679. /*
  1680. * context is loaded/masked and task != current, we need to
  1681. * either force an unload or go zombie
  1682. */
  1683. /*
  1684. * The task is currently blocked or will block after an overflow.
  1685. * we must force it to wakeup to get out of the
  1686. * MASKED state and transition to the unloaded state by itself.
  1687. *
  1688. * This situation is only possible for per-task mode
  1689. */
  1690. if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
  1691. /*
  1692. * set a "partial" zombie state to be checked
  1693. * upon return from down() in pfm_handle_work().
  1694. *
  1695. * We cannot use the ZOMBIE state, because it is checked
  1696. * by pfm_load_regs() which is called upon wakeup from down().
  1697. * In such case, it would free the context and then we would
  1698. * return to pfm_handle_work() which would access the
  1699. * stale context. Instead, we set a flag invisible to pfm_load_regs()
  1700. * but visible to pfm_handle_work().
  1701. *
  1702. * For some window of time, we have a zombie context with
  1703. * ctx_state = MASKED and not ZOMBIE
  1704. */
  1705. ctx->ctx_fl_going_zombie = 1;
  1706. /*
  1707. * force task to wake up from MASKED state
  1708. */
  1709. complete(&ctx->ctx_restart_done);
  1710. DPRINT(("waking up ctx_state=%d\n", state));
  1711. /*
  1712. * put ourself to sleep waiting for the other
  1713. * task to report completion
  1714. *
  1715. * the context is protected by mutex, therefore there
  1716. * is no risk of being notified of completion before
  1717. * begin actually on the waitq.
  1718. */
  1719. set_current_state(TASK_INTERRUPTIBLE);
  1720. add_wait_queue(&ctx->ctx_zombieq, &wait);
  1721. UNPROTECT_CTX(ctx, flags);
  1722. /*
  1723. * XXX: check for signals :
  1724. * - ok for explicit close
  1725. * - not ok when coming from exit_files()
  1726. */
  1727. schedule();
  1728. PROTECT_CTX(ctx, flags);
  1729. remove_wait_queue(&ctx->ctx_zombieq, &wait);
  1730. set_current_state(TASK_RUNNING);
  1731. /*
  1732. * context is unloaded at this point
  1733. */
  1734. DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
  1735. }
  1736. else if (task != current) {
  1737. #ifdef CONFIG_SMP
  1738. /*
  1739. * switch context to zombie state
  1740. */
  1741. ctx->ctx_state = PFM_CTX_ZOMBIE;
  1742. DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
  1743. /*
  1744. * cannot free the context on the spot. deferred until
  1745. * the task notices the ZOMBIE state
  1746. */
  1747. free_possible = 0;
  1748. #else
  1749. pfm_context_unload(ctx, NULL, 0, regs);
  1750. #endif
  1751. }
  1752. doit:
  1753. /* reload state, may have changed during opening of critical section */
  1754. state = ctx->ctx_state;
  1755. /*
  1756. * the context is still attached to a task (possibly current)
  1757. * we cannot destroy it right now
  1758. */
  1759. /*
  1760. * we must free the sampling buffer right here because
  1761. * we cannot rely on it being cleaned up later by the
  1762. * monitored task. It is not possible to free vmalloc'ed
  1763. * memory in pfm_load_regs(). Instead, we remove the buffer
  1764. * now. should there be subsequent PMU overflow originally
  1765. * meant for sampling, the will be converted to spurious
  1766. * and that's fine because the monitoring tools is gone anyway.
  1767. */
  1768. if (ctx->ctx_smpl_hdr) {
  1769. smpl_buf_addr = ctx->ctx_smpl_hdr;
  1770. smpl_buf_size = ctx->ctx_smpl_size;
  1771. /* no more sampling */
  1772. ctx->ctx_smpl_hdr = NULL;
  1773. ctx->ctx_fl_is_sampling = 0;
  1774. }
  1775. DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
  1776. state,
  1777. free_possible,
  1778. smpl_buf_addr,
  1779. smpl_buf_size));
  1780. if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
  1781. /*
  1782. * UNLOADED that the session has already been unreserved.
  1783. */
  1784. if (state == PFM_CTX_ZOMBIE) {
  1785. pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
  1786. }
  1787. /*
  1788. * disconnect file descriptor from context must be done
  1789. * before we unlock.
  1790. */
  1791. filp->private_data = NULL;
  1792. /*
  1793. * if we free on the spot, the context is now completely unreachable
  1794. * from the callers side. The monitored task side is also cut, so we
  1795. * can freely cut.
  1796. *
  1797. * If we have a deferred free, only the caller side is disconnected.
  1798. */
  1799. UNPROTECT_CTX(ctx, flags);
  1800. /*
  1801. * All memory free operations (especially for vmalloc'ed memory)
  1802. * MUST be done with interrupts ENABLED.
  1803. */
  1804. if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
  1805. /*
  1806. * return the memory used by the context
  1807. */
  1808. if (free_possible) pfm_context_free(ctx);
  1809. return 0;
  1810. }
  1811. static int
  1812. pfm_no_open(struct inode *irrelevant, struct file *dontcare)
  1813. {
  1814. DPRINT(("pfm_no_open called\n"));
  1815. return -ENXIO;
  1816. }
  1817. static const struct file_operations pfm_file_ops = {
  1818. .llseek = no_llseek,
  1819. .read = pfm_read,
  1820. .write = pfm_write,
  1821. .poll = pfm_poll,
  1822. .ioctl = pfm_ioctl,
  1823. .open = pfm_no_open, /* special open code to disallow open via /proc */
  1824. .fasync = pfm_fasync,
  1825. .release = pfm_close,
  1826. .flush = pfm_flush
  1827. };
  1828. static int
  1829. pfmfs_delete_dentry(struct dentry *dentry)
  1830. {
  1831. return 1;
  1832. }
  1833. static const struct dentry_operations pfmfs_dentry_operations = {
  1834. .d_delete = pfmfs_delete_dentry,
  1835. };
  1836. static struct file *
  1837. pfm_alloc_file(pfm_context_t *ctx)
  1838. {
  1839. struct file *file;
  1840. struct inode *inode;
  1841. struct path path;
  1842. char name[32];
  1843. struct qstr this;
  1844. /*
  1845. * allocate a new inode
  1846. */
  1847. inode = new_inode(pfmfs_mnt->mnt_sb);
  1848. if (!inode)
  1849. return ERR_PTR(-ENOMEM);
  1850. DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
  1851. inode->i_mode = S_IFCHR|S_IRUGO;
  1852. inode->i_uid = current_fsuid();
  1853. inode->i_gid = current_fsgid();
  1854. sprintf(name, "[%lu]", inode->i_ino);
  1855. this.name = name;
  1856. this.len = strlen(name);
  1857. this.hash = inode->i_ino;
  1858. /*
  1859. * allocate a new dcache entry
  1860. */
  1861. path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
  1862. if (!path.dentry) {
  1863. iput(inode);
  1864. return ERR_PTR(-ENOMEM);
  1865. }
  1866. path.mnt = mntget(pfmfs_mnt);
  1867. path.dentry->d_op = &pfmfs_dentry_operations;
  1868. d_add(path.dentry, inode);
  1869. file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
  1870. if (!file) {
  1871. path_put(&path);
  1872. return ERR_PTR(-ENFILE);
  1873. }
  1874. file->f_flags = O_RDONLY;
  1875. file->private_data = ctx;
  1876. return file;
  1877. }
  1878. static int
  1879. pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
  1880. {
  1881. DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
  1882. while (size > 0) {
  1883. unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
  1884. if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
  1885. return -ENOMEM;
  1886. addr += PAGE_SIZE;
  1887. buf += PAGE_SIZE;
  1888. size -= PAGE_SIZE;
  1889. }
  1890. return 0;
  1891. }
  1892. /*
  1893. * allocate a sampling buffer and remaps it into the user address space of the task
  1894. */
  1895. static int
  1896. pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
  1897. {
  1898. struct mm_struct *mm = task->mm;
  1899. struct vm_area_struct *vma = NULL;
  1900. unsigned long size;
  1901. void *smpl_buf;
  1902. /*
  1903. * the fixed header + requested size and align to page boundary
  1904. */
  1905. size = PAGE_ALIGN(rsize);
  1906. DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
  1907. /*
  1908. * check requested size to avoid Denial-of-service attacks
  1909. * XXX: may have to refine this test
  1910. * Check against address space limit.
  1911. *
  1912. * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
  1913. * return -ENOMEM;
  1914. */
  1915. if (size > task_rlimit(task, RLIMIT_MEMLOCK))
  1916. return -ENOMEM;
  1917. /*
  1918. * We do the easy to undo allocations first.
  1919. *
  1920. * pfm_rvmalloc(), clears the buffer, so there is no leak
  1921. */
  1922. smpl_buf = pfm_rvmalloc(size);
  1923. if (smpl_buf == NULL) {
  1924. DPRINT(("Can't allocate sampling buffer\n"));
  1925. return -ENOMEM;
  1926. }
  1927. DPRINT(("smpl_buf @%p\n", smpl_buf));
  1928. /* allocate vma */
  1929. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  1930. if (!vma) {
  1931. DPRINT(("Cannot allocate vma\n"));
  1932. goto error_kmem;
  1933. }
  1934. /*
  1935. * partially initialize the vma for the sampling buffer
  1936. */
  1937. vma->vm_mm = mm;
  1938. vma->vm_file = filp;
  1939. vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
  1940. vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
  1941. /*
  1942. * Now we have everything we need and we can initialize
  1943. * and connect all the data structures
  1944. */
  1945. ctx->ctx_smpl_hdr = smpl_buf;
  1946. ctx->ctx_smpl_size = size; /* aligned size */
  1947. /*
  1948. * Let's do the difficult operations next.
  1949. *
  1950. * now we atomically find some area in the address space and
  1951. * remap the buffer in it.
  1952. */
  1953. down_write(&task->mm->mmap_sem);
  1954. /* find some free area in address space, must have mmap sem held */
  1955. vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
  1956. if (vma->vm_start == 0UL) {
  1957. DPRINT(("Cannot find unmapped area for size %ld\n", size));
  1958. up_write(&task->mm->mmap_sem);
  1959. goto error;
  1960. }
  1961. vma->vm_end = vma->vm_start + size;
  1962. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  1963. DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
  1964. /* can only be applied to current task, need to have the mm semaphore held when called */
  1965. if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
  1966. DPRINT(("Can't remap buffer\n"));
  1967. up_write(&task->mm->mmap_sem);
  1968. goto error;
  1969. }
  1970. get_file(filp);
  1971. /*
  1972. * now insert the vma in the vm list for the process, must be
  1973. * done with mmap lock held
  1974. */
  1975. insert_vm_struct(mm, vma);
  1976. mm->total_vm += size >> PAGE_SHIFT;
  1977. vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
  1978. vma_pages(vma));
  1979. up_write(&task->mm->mmap_sem);
  1980. /*
  1981. * keep track of user level virtual address
  1982. */
  1983. ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
  1984. *(unsigned long *)user_vaddr = vma->vm_start;
  1985. return 0;
  1986. error:
  1987. kmem_cache_free(vm_area_cachep, vma);
  1988. error_kmem:
  1989. pfm_rvfree(smpl_buf, size);
  1990. return -ENOMEM;
  1991. }
  1992. /*
  1993. * XXX: do something better here
  1994. */
  1995. static int
  1996. pfm_bad_permissions(struct task_struct *task)
  1997. {
  1998. const struct cred *tcred;
  1999. uid_t uid = current_uid();
  2000. gid_t gid = current_gid();
  2001. int ret;
  2002. rcu_read_lock();
  2003. tcred = __task_cred(task);
  2004. /* inspired by ptrace_attach() */
  2005. DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
  2006. uid,
  2007. gid,
  2008. tcred->euid,
  2009. tcred->suid,
  2010. tcred->uid,
  2011. tcred->egid,
  2012. tcred->sgid));
  2013. ret = ((uid != tcred->euid)
  2014. || (uid != tcred->suid)
  2015. || (uid != tcred->uid)
  2016. || (gid != tcred->egid)
  2017. || (gid != tcred->sgid)
  2018. || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
  2019. rcu_read_unlock();
  2020. return ret;
  2021. }
  2022. static int
  2023. pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
  2024. {
  2025. int ctx_flags;
  2026. /* valid signal */
  2027. ctx_flags = pfx->ctx_flags;
  2028. if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
  2029. /*
  2030. * cannot block in this mode
  2031. */
  2032. if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
  2033. DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
  2034. return -EINVAL;
  2035. }
  2036. } else {
  2037. }
  2038. /* probably more to add here */
  2039. return 0;
  2040. }
  2041. static int
  2042. pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
  2043. unsigned int cpu, pfarg_context_t *arg)
  2044. {
  2045. pfm_buffer_fmt_t *fmt = NULL;
  2046. unsigned long size = 0UL;
  2047. void *uaddr = NULL;
  2048. void *fmt_arg = NULL;
  2049. int ret = 0;
  2050. #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
  2051. /* invoke and lock buffer format, if found */
  2052. fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
  2053. if (fmt == NULL) {
  2054. DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
  2055. return -EINVAL;
  2056. }
  2057. /*
  2058. * buffer argument MUST be contiguous to pfarg_context_t
  2059. */
  2060. if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
  2061. ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
  2062. DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
  2063. if (ret) goto error;
  2064. /* link buffer format and context */
  2065. ctx->ctx_buf_fmt = fmt;
  2066. ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
  2067. /*
  2068. * check if buffer format wants to use perfmon buffer allocation/mapping service
  2069. */
  2070. ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
  2071. if (ret) goto error;
  2072. if (size) {
  2073. /*
  2074. * buffer is always remapped into the caller's address space
  2075. */
  2076. ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
  2077. if (ret) goto error;
  2078. /* keep track of user address of buffer */
  2079. arg->ctx_smpl_vaddr = uaddr;
  2080. }
  2081. ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
  2082. error:
  2083. return ret;
  2084. }
  2085. static void
  2086. pfm_reset_pmu_state(pfm_context_t *ctx)
  2087. {
  2088. int i;
  2089. /*
  2090. * install reset values for PMC.
  2091. */
  2092. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  2093. if (PMC_IS_IMPL(i) == 0) continue;
  2094. ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
  2095. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
  2096. }
  2097. /*
  2098. * PMD registers are set to 0UL when the context in memset()
  2099. */
  2100. /*
  2101. * On context switched restore, we must restore ALL pmc and ALL pmd even
  2102. * when they are not actively used by the task. In UP, the incoming process
  2103. * may otherwise pick up left over PMC, PMD state from the previous process.
  2104. * As opposed to PMD, stale PMC can cause harm to the incoming
  2105. * process because they may change what is being measured.
  2106. * Therefore, we must systematically reinstall the entire
  2107. * PMC state. In SMP, the same thing is possible on the
  2108. * same CPU but also on between 2 CPUs.
  2109. *
  2110. * The problem with PMD is information leaking especially
  2111. * to user level when psr.sp=0
  2112. *
  2113. * There is unfortunately no easy way to avoid this problem
  2114. * on either UP or SMP. This definitively slows down the
  2115. * pfm_load_regs() function.
  2116. */
  2117. /*
  2118. * bitmask of all PMCs accessible to this context
  2119. *
  2120. * PMC0 is treated differently.
  2121. */
  2122. ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
  2123. /*
  2124. * bitmask of all PMDs that are accessible to this context
  2125. */
  2126. ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
  2127. DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
  2128. /*
  2129. * useful in case of re-enable after disable
  2130. */
  2131. ctx->ctx_used_ibrs[0] = 0UL;
  2132. ctx->ctx_used_dbrs[0] = 0UL;
  2133. }
  2134. static int
  2135. pfm_ctx_getsize(void *arg, size_t *sz)
  2136. {
  2137. pfarg_context_t *req = (pfarg_context_t *)arg;
  2138. pfm_buffer_fmt_t *fmt;
  2139. *sz = 0;
  2140. if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
  2141. fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
  2142. if (fmt == NULL) {
  2143. DPRINT(("cannot find buffer format\n"));
  2144. return -EINVAL;
  2145. }
  2146. /* get just enough to copy in user parameters */
  2147. *sz = fmt->fmt_arg_size;
  2148. DPRINT(("arg_size=%lu\n", *sz));
  2149. return 0;
  2150. }
  2151. /*
  2152. * cannot attach if :
  2153. * - kernel task
  2154. * - task not owned by caller
  2155. * - task incompatible with context mode
  2156. */
  2157. static int
  2158. pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
  2159. {
  2160. /*
  2161. * no kernel task or task not owner by caller
  2162. */
  2163. if (task->mm == NULL) {
  2164. DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
  2165. return -EPERM;
  2166. }
  2167. if (pfm_bad_permissions(task)) {
  2168. DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
  2169. return -EPERM;
  2170. }
  2171. /*
  2172. * cannot block in self-monitoring mode
  2173. */
  2174. if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
  2175. DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
  2176. return -EINVAL;
  2177. }
  2178. if (task->exit_state == EXIT_ZOMBIE) {
  2179. DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
  2180. return -EBUSY;
  2181. }
  2182. /*
  2183. * always ok for self
  2184. */
  2185. if (task == current) return 0;
  2186. if (!task_is_stopped_or_traced(task)) {
  2187. DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
  2188. return -EBUSY;
  2189. }
  2190. /*
  2191. * make sure the task is off any CPU
  2192. */
  2193. wait_task_inactive(task, 0);
  2194. /* more to come... */
  2195. return 0;
  2196. }
  2197. static int
  2198. pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
  2199. {
  2200. struct task_struct *p = current;
  2201. int ret;
  2202. /* XXX: need to add more checks here */
  2203. if (pid < 2) return -EPERM;
  2204. if (pid != task_pid_vnr(current)) {
  2205. read_lock(&tasklist_lock);
  2206. p = find_task_by_vpid(pid);
  2207. /* make sure task cannot go away while we operate on it */
  2208. if (p) get_task_struct(p);
  2209. read_unlock(&tasklist_lock);
  2210. if (p == NULL) return -ESRCH;
  2211. }
  2212. ret = pfm_task_incompatible(ctx, p);
  2213. if (ret == 0) {
  2214. *task = p;
  2215. } else if (p != current) {
  2216. pfm_put_task(p);
  2217. }
  2218. return ret;
  2219. }
  2220. static int
  2221. pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2222. {
  2223. pfarg_context_t *req = (pfarg_context_t *)arg;
  2224. struct file *filp;
  2225. struct path path;
  2226. int ctx_flags;
  2227. int fd;
  2228. int ret;
  2229. /* let's check the arguments first */
  2230. ret = pfarg_is_sane(current, req);
  2231. if (ret < 0)
  2232. return ret;
  2233. ctx_flags = req->ctx_flags;
  2234. ret = -ENOMEM;
  2235. fd = get_unused_fd();
  2236. if (fd < 0)
  2237. return fd;
  2238. ctx = pfm_context_alloc(ctx_flags);
  2239. if (!ctx)
  2240. goto error;
  2241. filp = pfm_alloc_file(ctx);
  2242. if (IS_ERR(filp)) {
  2243. ret = PTR_ERR(filp);
  2244. goto error_file;
  2245. }
  2246. req->ctx_fd = ctx->ctx_fd = fd;
  2247. /*
  2248. * does the user want to sample?
  2249. */
  2250. if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
  2251. ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
  2252. if (ret)
  2253. goto buffer_error;
  2254. }
  2255. DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
  2256. ctx,
  2257. ctx_flags,
  2258. ctx->ctx_fl_system,
  2259. ctx->ctx_fl_block,
  2260. ctx->ctx_fl_excl_idle,
  2261. ctx->ctx_fl_no_msg,
  2262. ctx->ctx_fd));
  2263. /*
  2264. * initialize soft PMU state
  2265. */
  2266. pfm_reset_pmu_state(ctx);
  2267. fd_install(fd, filp);
  2268. return 0;
  2269. buffer_error:
  2270. path = filp->f_path;
  2271. put_filp(filp);
  2272. path_put(&path);
  2273. if (ctx->ctx_buf_fmt) {
  2274. pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
  2275. }
  2276. error_file:
  2277. pfm_context_free(ctx);
  2278. error:
  2279. put_unused_fd(fd);
  2280. return ret;
  2281. }
  2282. static inline unsigned long
  2283. pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
  2284. {
  2285. unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
  2286. unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
  2287. extern unsigned long carta_random32 (unsigned long seed);
  2288. if (reg->flags & PFM_REGFL_RANDOM) {
  2289. new_seed = carta_random32(old_seed);
  2290. val -= (old_seed & mask); /* counter values are negative numbers! */
  2291. if ((mask >> 32) != 0)
  2292. /* construct a full 64-bit random value: */
  2293. new_seed |= carta_random32(old_seed >> 32) << 32;
  2294. reg->seed = new_seed;
  2295. }
  2296. reg->lval = val;
  2297. return val;
  2298. }
  2299. static void
  2300. pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2301. {
  2302. unsigned long mask = ovfl_regs[0];
  2303. unsigned long reset_others = 0UL;
  2304. unsigned long val;
  2305. int i;
  2306. /*
  2307. * now restore reset value on sampling overflowed counters
  2308. */
  2309. mask >>= PMU_FIRST_COUNTER;
  2310. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2311. if ((mask & 0x1UL) == 0UL) continue;
  2312. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2313. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2314. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2315. }
  2316. /*
  2317. * Now take care of resetting the other registers
  2318. */
  2319. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2320. if ((reset_others & 0x1) == 0) continue;
  2321. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2322. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2323. is_long_reset ? "long" : "short", i, val));
  2324. }
  2325. }
  2326. static void
  2327. pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2328. {
  2329. unsigned long mask = ovfl_regs[0];
  2330. unsigned long reset_others = 0UL;
  2331. unsigned long val;
  2332. int i;
  2333. DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
  2334. if (ctx->ctx_state == PFM_CTX_MASKED) {
  2335. pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
  2336. return;
  2337. }
  2338. /*
  2339. * now restore reset value on sampling overflowed counters
  2340. */
  2341. mask >>= PMU_FIRST_COUNTER;
  2342. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2343. if ((mask & 0x1UL) == 0UL) continue;
  2344. val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2345. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2346. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2347. pfm_write_soft_counter(ctx, i, val);
  2348. }
  2349. /*
  2350. * Now take care of resetting the other registers
  2351. */
  2352. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2353. if ((reset_others & 0x1) == 0) continue;
  2354. val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2355. if (PMD_IS_COUNTING(i)) {
  2356. pfm_write_soft_counter(ctx, i, val);
  2357. } else {
  2358. ia64_set_pmd(i, val);
  2359. }
  2360. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2361. is_long_reset ? "long" : "short", i, val));
  2362. }
  2363. ia64_srlz_d();
  2364. }
  2365. static int
  2366. pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2367. {
  2368. struct task_struct *task;
  2369. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2370. unsigned long value, pmc_pm;
  2371. unsigned long smpl_pmds, reset_pmds, impl_pmds;
  2372. unsigned int cnum, reg_flags, flags, pmc_type;
  2373. int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
  2374. int is_monitor, is_counting, state;
  2375. int ret = -EINVAL;
  2376. pfm_reg_check_t wr_func;
  2377. #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
  2378. state = ctx->ctx_state;
  2379. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2380. is_system = ctx->ctx_fl_system;
  2381. task = ctx->ctx_task;
  2382. impl_pmds = pmu_conf->impl_pmds[0];
  2383. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2384. if (is_loaded) {
  2385. /*
  2386. * In system wide and when the context is loaded, access can only happen
  2387. * when the caller is running on the CPU being monitored by the session.
  2388. * It does not have to be the owner (ctx_task) of the context per se.
  2389. */
  2390. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2391. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2392. return -EBUSY;
  2393. }
  2394. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2395. }
  2396. expert_mode = pfm_sysctl.expert_mode;
  2397. for (i = 0; i < count; i++, req++) {
  2398. cnum = req->reg_num;
  2399. reg_flags = req->reg_flags;
  2400. value = req->reg_value;
  2401. smpl_pmds = req->reg_smpl_pmds[0];
  2402. reset_pmds = req->reg_reset_pmds[0];
  2403. flags = 0;
  2404. if (cnum >= PMU_MAX_PMCS) {
  2405. DPRINT(("pmc%u is invalid\n", cnum));
  2406. goto error;
  2407. }
  2408. pmc_type = pmu_conf->pmc_desc[cnum].type;
  2409. pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
  2410. is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
  2411. is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
  2412. /*
  2413. * we reject all non implemented PMC as well
  2414. * as attempts to modify PMC[0-3] which are used
  2415. * as status registers by the PMU
  2416. */
  2417. if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
  2418. DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
  2419. goto error;
  2420. }
  2421. wr_func = pmu_conf->pmc_desc[cnum].write_check;
  2422. /*
  2423. * If the PMC is a monitor, then if the value is not the default:
  2424. * - system-wide session: PMCx.pm=1 (privileged monitor)
  2425. * - per-task : PMCx.pm=0 (user monitor)
  2426. */
  2427. if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
  2428. DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
  2429. cnum,
  2430. pmc_pm,
  2431. is_system));
  2432. goto error;
  2433. }
  2434. if (is_counting) {
  2435. /*
  2436. * enforce generation of overflow interrupt. Necessary on all
  2437. * CPUs.
  2438. */
  2439. value |= 1 << PMU_PMC_OI;
  2440. if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
  2441. flags |= PFM_REGFL_OVFL_NOTIFY;
  2442. }
  2443. if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
  2444. /* verify validity of smpl_pmds */
  2445. if ((smpl_pmds & impl_pmds) != smpl_pmds) {
  2446. DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
  2447. goto error;
  2448. }
  2449. /* verify validity of reset_pmds */
  2450. if ((reset_pmds & impl_pmds) != reset_pmds) {
  2451. DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
  2452. goto error;
  2453. }
  2454. } else {
  2455. if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
  2456. DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
  2457. goto error;
  2458. }
  2459. /* eventid on non-counting monitors are ignored */
  2460. }
  2461. /*
  2462. * execute write checker, if any
  2463. */
  2464. if (likely(expert_mode == 0 && wr_func)) {
  2465. ret = (*wr_func)(task, ctx, cnum, &value, regs);
  2466. if (ret) goto error;
  2467. ret = -EINVAL;
  2468. }
  2469. /*
  2470. * no error on this register
  2471. */
  2472. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2473. /*
  2474. * Now we commit the changes to the software state
  2475. */
  2476. /*
  2477. * update overflow information
  2478. */
  2479. if (is_counting) {
  2480. /*
  2481. * full flag update each time a register is programmed
  2482. */
  2483. ctx->ctx_pmds[cnum].flags = flags;
  2484. ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
  2485. ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
  2486. ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
  2487. /*
  2488. * Mark all PMDS to be accessed as used.
  2489. *
  2490. * We do not keep track of PMC because we have to
  2491. * systematically restore ALL of them.
  2492. *
  2493. * We do not update the used_monitors mask, because
  2494. * if we have not programmed them, then will be in
  2495. * a quiescent state, therefore we will not need to
  2496. * mask/restore then when context is MASKED.
  2497. */
  2498. CTX_USED_PMD(ctx, reset_pmds);
  2499. CTX_USED_PMD(ctx, smpl_pmds);
  2500. /*
  2501. * make sure we do not try to reset on
  2502. * restart because we have established new values
  2503. */
  2504. if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2505. }
  2506. /*
  2507. * Needed in case the user does not initialize the equivalent
  2508. * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
  2509. * possible leak here.
  2510. */
  2511. CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
  2512. /*
  2513. * keep track of the monitor PMC that we are using.
  2514. * we save the value of the pmc in ctx_pmcs[] and if
  2515. * the monitoring is not stopped for the context we also
  2516. * place it in the saved state area so that it will be
  2517. * picked up later by the context switch code.
  2518. *
  2519. * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
  2520. *
  2521. * The value in th_pmcs[] may be modified on overflow, i.e., when
  2522. * monitoring needs to be stopped.
  2523. */
  2524. if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
  2525. /*
  2526. * update context state
  2527. */
  2528. ctx->ctx_pmcs[cnum] = value;
  2529. if (is_loaded) {
  2530. /*
  2531. * write thread state
  2532. */
  2533. if (is_system == 0) ctx->th_pmcs[cnum] = value;
  2534. /*
  2535. * write hardware register if we can
  2536. */
  2537. if (can_access_pmu) {
  2538. ia64_set_pmc(cnum, value);
  2539. }
  2540. #ifdef CONFIG_SMP
  2541. else {
  2542. /*
  2543. * per-task SMP only here
  2544. *
  2545. * we are guaranteed that the task is not running on the other CPU,
  2546. * we indicate that this PMD will need to be reloaded if the task
  2547. * is rescheduled on the CPU it ran last on.
  2548. */
  2549. ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
  2550. }
  2551. #endif
  2552. }
  2553. DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
  2554. cnum,
  2555. value,
  2556. is_loaded,
  2557. can_access_pmu,
  2558. flags,
  2559. ctx->ctx_all_pmcs[0],
  2560. ctx->ctx_used_pmds[0],
  2561. ctx->ctx_pmds[cnum].eventid,
  2562. smpl_pmds,
  2563. reset_pmds,
  2564. ctx->ctx_reload_pmcs[0],
  2565. ctx->ctx_used_monitors[0],
  2566. ctx->ctx_ovfl_regs[0]));
  2567. }
  2568. /*
  2569. * make sure the changes are visible
  2570. */
  2571. if (can_access_pmu) ia64_srlz_d();
  2572. return 0;
  2573. error:
  2574. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2575. return ret;
  2576. }
  2577. static int
  2578. pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2579. {
  2580. struct task_struct *task;
  2581. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2582. unsigned long value, hw_value, ovfl_mask;
  2583. unsigned int cnum;
  2584. int i, can_access_pmu = 0, state;
  2585. int is_counting, is_loaded, is_system, expert_mode;
  2586. int ret = -EINVAL;
  2587. pfm_reg_check_t wr_func;
  2588. state = ctx->ctx_state;
  2589. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2590. is_system = ctx->ctx_fl_system;
  2591. ovfl_mask = pmu_conf->ovfl_val;
  2592. task = ctx->ctx_task;
  2593. if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
  2594. /*
  2595. * on both UP and SMP, we can only write to the PMC when the task is
  2596. * the owner of the local PMU.
  2597. */
  2598. if (likely(is_loaded)) {
  2599. /*
  2600. * In system wide and when the context is loaded, access can only happen
  2601. * when the caller is running on the CPU being monitored by the session.
  2602. * It does not have to be the owner (ctx_task) of the context per se.
  2603. */
  2604. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2605. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2606. return -EBUSY;
  2607. }
  2608. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2609. }
  2610. expert_mode = pfm_sysctl.expert_mode;
  2611. for (i = 0; i < count; i++, req++) {
  2612. cnum = req->reg_num;
  2613. value = req->reg_value;
  2614. if (!PMD_IS_IMPL(cnum)) {
  2615. DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
  2616. goto abort_mission;
  2617. }
  2618. is_counting = PMD_IS_COUNTING(cnum);
  2619. wr_func = pmu_conf->pmd_desc[cnum].write_check;
  2620. /*
  2621. * execute write checker, if any
  2622. */
  2623. if (unlikely(expert_mode == 0 && wr_func)) {
  2624. unsigned long v = value;
  2625. ret = (*wr_func)(task, ctx, cnum, &v, regs);
  2626. if (ret) goto abort_mission;
  2627. value = v;
  2628. ret = -EINVAL;
  2629. }
  2630. /*
  2631. * no error on this register
  2632. */
  2633. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2634. /*
  2635. * now commit changes to software state
  2636. */
  2637. hw_value = value;
  2638. /*
  2639. * update virtualized (64bits) counter
  2640. */
  2641. if (is_counting) {
  2642. /*
  2643. * write context state
  2644. */
  2645. ctx->ctx_pmds[cnum].lval = value;
  2646. /*
  2647. * when context is load we use the split value
  2648. */
  2649. if (is_loaded) {
  2650. hw_value = value & ovfl_mask;
  2651. value = value & ~ovfl_mask;
  2652. }
  2653. }
  2654. /*
  2655. * update reset values (not just for counters)
  2656. */
  2657. ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
  2658. ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
  2659. /*
  2660. * update randomization parameters (not just for counters)
  2661. */
  2662. ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
  2663. ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
  2664. /*
  2665. * update context value
  2666. */
  2667. ctx->ctx_pmds[cnum].val = value;
  2668. /*
  2669. * Keep track of what we use
  2670. *
  2671. * We do not keep track of PMC because we have to
  2672. * systematically restore ALL of them.
  2673. */
  2674. CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
  2675. /*
  2676. * mark this PMD register used as well
  2677. */
  2678. CTX_USED_PMD(ctx, RDEP(cnum));
  2679. /*
  2680. * make sure we do not try to reset on
  2681. * restart because we have established new values
  2682. */
  2683. if (is_counting && state == PFM_CTX_MASKED) {
  2684. ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2685. }
  2686. if (is_loaded) {
  2687. /*
  2688. * write thread state
  2689. */
  2690. if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
  2691. /*
  2692. * write hardware register if we can
  2693. */
  2694. if (can_access_pmu) {
  2695. ia64_set_pmd(cnum, hw_value);
  2696. } else {
  2697. #ifdef CONFIG_SMP
  2698. /*
  2699. * we are guaranteed that the task is not running on the other CPU,
  2700. * we indicate that this PMD will need to be reloaded if the task
  2701. * is rescheduled on the CPU it ran last on.
  2702. */
  2703. ctx->ctx_reload_pmds[0] |= 1UL << cnum;
  2704. #endif
  2705. }
  2706. }
  2707. DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
  2708. "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
  2709. cnum,
  2710. value,
  2711. is_loaded,
  2712. can_access_pmu,
  2713. hw_value,
  2714. ctx->ctx_pmds[cnum].val,
  2715. ctx->ctx_pmds[cnum].short_reset,
  2716. ctx->ctx_pmds[cnum].long_reset,
  2717. PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
  2718. ctx->ctx_pmds[cnum].seed,
  2719. ctx->ctx_pmds[cnum].mask,
  2720. ctx->ctx_used_pmds[0],
  2721. ctx->ctx_pmds[cnum].reset_pmds[0],
  2722. ctx->ctx_reload_pmds[0],
  2723. ctx->ctx_all_pmds[0],
  2724. ctx->ctx_ovfl_regs[0]));
  2725. }
  2726. /*
  2727. * make changes visible
  2728. */
  2729. if (can_access_pmu) ia64_srlz_d();
  2730. return 0;
  2731. abort_mission:
  2732. /*
  2733. * for now, we have only one possibility for error
  2734. */
  2735. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2736. return ret;
  2737. }
  2738. /*
  2739. * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
  2740. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
  2741. * interrupt is delivered during the call, it will be kept pending until we leave, making
  2742. * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
  2743. * guaranteed to return consistent data to the user, it may simply be old. It is not
  2744. * trivial to treat the overflow while inside the call because you may end up in
  2745. * some module sampling buffer code causing deadlocks.
  2746. */
  2747. static int
  2748. pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2749. {
  2750. struct task_struct *task;
  2751. unsigned long val = 0UL, lval, ovfl_mask, sval;
  2752. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2753. unsigned int cnum, reg_flags = 0;
  2754. int i, can_access_pmu = 0, state;
  2755. int is_loaded, is_system, is_counting, expert_mode;
  2756. int ret = -EINVAL;
  2757. pfm_reg_check_t rd_func;
  2758. /*
  2759. * access is possible when loaded only for
  2760. * self-monitoring tasks or in UP mode
  2761. */
  2762. state = ctx->ctx_state;
  2763. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2764. is_system = ctx->ctx_fl_system;
  2765. ovfl_mask = pmu_conf->ovfl_val;
  2766. task = ctx->ctx_task;
  2767. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2768. if (likely(is_loaded)) {
  2769. /*
  2770. * In system wide and when the context is loaded, access can only happen
  2771. * when the caller is running on the CPU being monitored by the session.
  2772. * It does not have to be the owner (ctx_task) of the context per se.
  2773. */
  2774. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2775. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2776. return -EBUSY;
  2777. }
  2778. /*
  2779. * this can be true when not self-monitoring only in UP
  2780. */
  2781. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2782. if (can_access_pmu) ia64_srlz_d();
  2783. }
  2784. expert_mode = pfm_sysctl.expert_mode;
  2785. DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
  2786. is_loaded,
  2787. can_access_pmu,
  2788. state));
  2789. /*
  2790. * on both UP and SMP, we can only read the PMD from the hardware register when
  2791. * the task is the owner of the local PMU.
  2792. */
  2793. for (i = 0; i < count; i++, req++) {
  2794. cnum = req->reg_num;
  2795. reg_flags = req->reg_flags;
  2796. if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
  2797. /*
  2798. * we can only read the register that we use. That includes
  2799. * the one we explicitly initialize AND the one we want included
  2800. * in the sampling buffer (smpl_regs).
  2801. *
  2802. * Having this restriction allows optimization in the ctxsw routine
  2803. * without compromising security (leaks)
  2804. */
  2805. if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
  2806. sval = ctx->ctx_pmds[cnum].val;
  2807. lval = ctx->ctx_pmds[cnum].lval;
  2808. is_counting = PMD_IS_COUNTING(cnum);
  2809. /*
  2810. * If the task is not the current one, then we check if the
  2811. * PMU state is still in the local live register due to lazy ctxsw.
  2812. * If true, then we read directly from the registers.
  2813. */
  2814. if (can_access_pmu){
  2815. val = ia64_get_pmd(cnum);
  2816. } else {
  2817. /*
  2818. * context has been saved
  2819. * if context is zombie, then task does not exist anymore.
  2820. * In this case, we use the full value saved in the context (pfm_flush_regs()).
  2821. */
  2822. val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
  2823. }
  2824. rd_func = pmu_conf->pmd_desc[cnum].read_check;
  2825. if (is_counting) {
  2826. /*
  2827. * XXX: need to check for overflow when loaded
  2828. */
  2829. val &= ovfl_mask;
  2830. val += sval;
  2831. }
  2832. /*
  2833. * execute read checker, if any
  2834. */
  2835. if (unlikely(expert_mode == 0 && rd_func)) {
  2836. unsigned long v = val;
  2837. ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
  2838. if (ret) goto error;
  2839. val = v;
  2840. ret = -EINVAL;
  2841. }
  2842. PFM_REG_RETFLAG_SET(reg_flags, 0);
  2843. DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
  2844. /*
  2845. * update register return value, abort all if problem during copy.
  2846. * we only modify the reg_flags field. no check mode is fine because
  2847. * access has been verified upfront in sys_perfmonctl().
  2848. */
  2849. req->reg_value = val;
  2850. req->reg_flags = reg_flags;
  2851. req->reg_last_reset_val = lval;
  2852. }
  2853. return 0;
  2854. error:
  2855. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2856. return ret;
  2857. }
  2858. int
  2859. pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2860. {
  2861. pfm_context_t *ctx;
  2862. if (req == NULL) return -EINVAL;
  2863. ctx = GET_PMU_CTX();
  2864. if (ctx == NULL) return -EINVAL;
  2865. /*
  2866. * for now limit to current task, which is enough when calling
  2867. * from overflow handler
  2868. */
  2869. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2870. return pfm_write_pmcs(ctx, req, nreq, regs);
  2871. }
  2872. EXPORT_SYMBOL(pfm_mod_write_pmcs);
  2873. int
  2874. pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2875. {
  2876. pfm_context_t *ctx;
  2877. if (req == NULL) return -EINVAL;
  2878. ctx = GET_PMU_CTX();
  2879. if (ctx == NULL) return -EINVAL;
  2880. /*
  2881. * for now limit to current task, which is enough when calling
  2882. * from overflow handler
  2883. */
  2884. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2885. return pfm_read_pmds(ctx, req, nreq, regs);
  2886. }
  2887. EXPORT_SYMBOL(pfm_mod_read_pmds);
  2888. /*
  2889. * Only call this function when a process it trying to
  2890. * write the debug registers (reading is always allowed)
  2891. */
  2892. int
  2893. pfm_use_debug_registers(struct task_struct *task)
  2894. {
  2895. pfm_context_t *ctx = task->thread.pfm_context;
  2896. unsigned long flags;
  2897. int ret = 0;
  2898. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2899. DPRINT(("called for [%d]\n", task_pid_nr(task)));
  2900. /*
  2901. * do it only once
  2902. */
  2903. if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
  2904. /*
  2905. * Even on SMP, we do not need to use an atomic here because
  2906. * the only way in is via ptrace() and this is possible only when the
  2907. * process is stopped. Even in the case where the ctxsw out is not totally
  2908. * completed by the time we come here, there is no way the 'stopped' process
  2909. * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
  2910. * So this is always safe.
  2911. */
  2912. if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
  2913. LOCK_PFS(flags);
  2914. /*
  2915. * We cannot allow setting breakpoints when system wide monitoring
  2916. * sessions are using the debug registers.
  2917. */
  2918. if (pfm_sessions.pfs_sys_use_dbregs> 0)
  2919. ret = -1;
  2920. else
  2921. pfm_sessions.pfs_ptrace_use_dbregs++;
  2922. DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
  2923. pfm_sessions.pfs_ptrace_use_dbregs,
  2924. pfm_sessions.pfs_sys_use_dbregs,
  2925. task_pid_nr(task), ret));
  2926. UNLOCK_PFS(flags);
  2927. return ret;
  2928. }
  2929. /*
  2930. * This function is called for every task that exits with the
  2931. * IA64_THREAD_DBG_VALID set. This indicates a task which was
  2932. * able to use the debug registers for debugging purposes via
  2933. * ptrace(). Therefore we know it was not using them for
  2934. * performance monitoring, so we only decrement the number
  2935. * of "ptraced" debug register users to keep the count up to date
  2936. */
  2937. int
  2938. pfm_release_debug_registers(struct task_struct *task)
  2939. {
  2940. unsigned long flags;
  2941. int ret;
  2942. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2943. LOCK_PFS(flags);
  2944. if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
  2945. printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
  2946. ret = -1;
  2947. } else {
  2948. pfm_sessions.pfs_ptrace_use_dbregs--;
  2949. ret = 0;
  2950. }
  2951. UNLOCK_PFS(flags);
  2952. return ret;
  2953. }
  2954. static int
  2955. pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2956. {
  2957. struct task_struct *task;
  2958. pfm_buffer_fmt_t *fmt;
  2959. pfm_ovfl_ctrl_t rst_ctrl;
  2960. int state, is_system;
  2961. int ret = 0;
  2962. state = ctx->ctx_state;
  2963. fmt = ctx->ctx_buf_fmt;
  2964. is_system = ctx->ctx_fl_system;
  2965. task = PFM_CTX_TASK(ctx);
  2966. switch(state) {
  2967. case PFM_CTX_MASKED:
  2968. break;
  2969. case PFM_CTX_LOADED:
  2970. if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
  2971. /* fall through */
  2972. case PFM_CTX_UNLOADED:
  2973. case PFM_CTX_ZOMBIE:
  2974. DPRINT(("invalid state=%d\n", state));
  2975. return -EBUSY;
  2976. default:
  2977. DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
  2978. return -EINVAL;
  2979. }
  2980. /*
  2981. * In system wide and when the context is loaded, access can only happen
  2982. * when the caller is running on the CPU being monitored by the session.
  2983. * It does not have to be the owner (ctx_task) of the context per se.
  2984. */
  2985. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2986. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2987. return -EBUSY;
  2988. }
  2989. /* sanity check */
  2990. if (unlikely(task == NULL)) {
  2991. printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
  2992. return -EINVAL;
  2993. }
  2994. if (task == current || is_system) {
  2995. fmt = ctx->ctx_buf_fmt;
  2996. DPRINT(("restarting self %d ovfl=0x%lx\n",
  2997. task_pid_nr(task),
  2998. ctx->ctx_ovfl_regs[0]));
  2999. if (CTX_HAS_SMPL(ctx)) {
  3000. prefetch(ctx->ctx_smpl_hdr);
  3001. rst_ctrl.bits.mask_monitoring = 0;
  3002. rst_ctrl.bits.reset_ovfl_pmds = 0;
  3003. if (state == PFM_CTX_LOADED)
  3004. ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3005. else
  3006. ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3007. } else {
  3008. rst_ctrl.bits.mask_monitoring = 0;
  3009. rst_ctrl.bits.reset_ovfl_pmds = 1;
  3010. }
  3011. if (ret == 0) {
  3012. if (rst_ctrl.bits.reset_ovfl_pmds)
  3013. pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
  3014. if (rst_ctrl.bits.mask_monitoring == 0) {
  3015. DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
  3016. if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
  3017. } else {
  3018. DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
  3019. // cannot use pfm_stop_monitoring(task, regs);
  3020. }
  3021. }
  3022. /*
  3023. * clear overflowed PMD mask to remove any stale information
  3024. */
  3025. ctx->ctx_ovfl_regs[0] = 0UL;
  3026. /*
  3027. * back to LOADED state
  3028. */
  3029. ctx->ctx_state = PFM_CTX_LOADED;
  3030. /*
  3031. * XXX: not really useful for self monitoring
  3032. */
  3033. ctx->ctx_fl_can_restart = 0;
  3034. return 0;
  3035. }
  3036. /*
  3037. * restart another task
  3038. */
  3039. /*
  3040. * When PFM_CTX_MASKED, we cannot issue a restart before the previous
  3041. * one is seen by the task.
  3042. */
  3043. if (state == PFM_CTX_MASKED) {
  3044. if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
  3045. /*
  3046. * will prevent subsequent restart before this one is
  3047. * seen by other task
  3048. */
  3049. ctx->ctx_fl_can_restart = 0;
  3050. }
  3051. /*
  3052. * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
  3053. * the task is blocked or on its way to block. That's the normal
  3054. * restart path. If the monitoring is not masked, then the task
  3055. * can be actively monitoring and we cannot directly intervene.
  3056. * Therefore we use the trap mechanism to catch the task and
  3057. * force it to reset the buffer/reset PMDs.
  3058. *
  3059. * if non-blocking, then we ensure that the task will go into
  3060. * pfm_handle_work() before returning to user mode.
  3061. *
  3062. * We cannot explicitly reset another task, it MUST always
  3063. * be done by the task itself. This works for system wide because
  3064. * the tool that is controlling the session is logically doing
  3065. * "self-monitoring".
  3066. */
  3067. if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
  3068. DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
  3069. complete(&ctx->ctx_restart_done);
  3070. } else {
  3071. DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
  3072. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
  3073. PFM_SET_WORK_PENDING(task, 1);
  3074. set_notify_resume(task);
  3075. /*
  3076. * XXX: send reschedule if task runs on another CPU
  3077. */
  3078. }
  3079. return 0;
  3080. }
  3081. static int
  3082. pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3083. {
  3084. unsigned int m = *(unsigned int *)arg;
  3085. pfm_sysctl.debug = m == 0 ? 0 : 1;
  3086. printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
  3087. if (m == 0) {
  3088. memset(pfm_stats, 0, sizeof(pfm_stats));
  3089. for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
  3090. }
  3091. return 0;
  3092. }
  3093. /*
  3094. * arg can be NULL and count can be zero for this function
  3095. */
  3096. static int
  3097. pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3098. {
  3099. struct thread_struct *thread = NULL;
  3100. struct task_struct *task;
  3101. pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
  3102. unsigned long flags;
  3103. dbreg_t dbreg;
  3104. unsigned int rnum;
  3105. int first_time;
  3106. int ret = 0, state;
  3107. int i, can_access_pmu = 0;
  3108. int is_system, is_loaded;
  3109. if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
  3110. state = ctx->ctx_state;
  3111. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  3112. is_system = ctx->ctx_fl_system;
  3113. task = ctx->ctx_task;
  3114. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  3115. /*
  3116. * on both UP and SMP, we can only write to the PMC when the task is
  3117. * the owner of the local PMU.
  3118. */
  3119. if (is_loaded) {
  3120. thread = &task->thread;
  3121. /*
  3122. * In system wide and when the context is loaded, access can only happen
  3123. * when the caller is running on the CPU being monitored by the session.
  3124. * It does not have to be the owner (ctx_task) of the context per se.
  3125. */
  3126. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  3127. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3128. return -EBUSY;
  3129. }
  3130. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  3131. }
  3132. /*
  3133. * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
  3134. * ensuring that no real breakpoint can be installed via this call.
  3135. *
  3136. * IMPORTANT: regs can be NULL in this function
  3137. */
  3138. first_time = ctx->ctx_fl_using_dbreg == 0;
  3139. /*
  3140. * don't bother if we are loaded and task is being debugged
  3141. */
  3142. if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
  3143. DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
  3144. return -EBUSY;
  3145. }
  3146. /*
  3147. * check for debug registers in system wide mode
  3148. *
  3149. * If though a check is done in pfm_context_load(),
  3150. * we must repeat it here, in case the registers are
  3151. * written after the context is loaded
  3152. */
  3153. if (is_loaded) {
  3154. LOCK_PFS(flags);
  3155. if (first_time && is_system) {
  3156. if (pfm_sessions.pfs_ptrace_use_dbregs)
  3157. ret = -EBUSY;
  3158. else
  3159. pfm_sessions.pfs_sys_use_dbregs++;
  3160. }
  3161. UNLOCK_PFS(flags);
  3162. }
  3163. if (ret != 0) return ret;
  3164. /*
  3165. * mark ourself as user of the debug registers for
  3166. * perfmon purposes.
  3167. */
  3168. ctx->ctx_fl_using_dbreg = 1;
  3169. /*
  3170. * clear hardware registers to make sure we don't
  3171. * pick up stale state.
  3172. *
  3173. * for a system wide session, we do not use
  3174. * thread.dbr, thread.ibr because this process
  3175. * never leaves the current CPU and the state
  3176. * is shared by all processes running on it
  3177. */
  3178. if (first_time && can_access_pmu) {
  3179. DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
  3180. for (i=0; i < pmu_conf->num_ibrs; i++) {
  3181. ia64_set_ibr(i, 0UL);
  3182. ia64_dv_serialize_instruction();
  3183. }
  3184. ia64_srlz_i();
  3185. for (i=0; i < pmu_conf->num_dbrs; i++) {
  3186. ia64_set_dbr(i, 0UL);
  3187. ia64_dv_serialize_data();
  3188. }
  3189. ia64_srlz_d();
  3190. }
  3191. /*
  3192. * Now install the values into the registers
  3193. */
  3194. for (i = 0; i < count; i++, req++) {
  3195. rnum = req->dbreg_num;
  3196. dbreg.val = req->dbreg_value;
  3197. ret = -EINVAL;
  3198. if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
  3199. DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
  3200. rnum, dbreg.val, mode, i, count));
  3201. goto abort_mission;
  3202. }
  3203. /*
  3204. * make sure we do not install enabled breakpoint
  3205. */
  3206. if (rnum & 0x1) {
  3207. if (mode == PFM_CODE_RR)
  3208. dbreg.ibr.ibr_x = 0;
  3209. else
  3210. dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
  3211. }
  3212. PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
  3213. /*
  3214. * Debug registers, just like PMC, can only be modified
  3215. * by a kernel call. Moreover, perfmon() access to those
  3216. * registers are centralized in this routine. The hardware
  3217. * does not modify the value of these registers, therefore,
  3218. * if we save them as they are written, we can avoid having
  3219. * to save them on context switch out. This is made possible
  3220. * by the fact that when perfmon uses debug registers, ptrace()
  3221. * won't be able to modify them concurrently.
  3222. */
  3223. if (mode == PFM_CODE_RR) {
  3224. CTX_USED_IBR(ctx, rnum);
  3225. if (can_access_pmu) {
  3226. ia64_set_ibr(rnum, dbreg.val);
  3227. ia64_dv_serialize_instruction();
  3228. }
  3229. ctx->ctx_ibrs[rnum] = dbreg.val;
  3230. DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
  3231. rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
  3232. } else {
  3233. CTX_USED_DBR(ctx, rnum);
  3234. if (can_access_pmu) {
  3235. ia64_set_dbr(rnum, dbreg.val);
  3236. ia64_dv_serialize_data();
  3237. }
  3238. ctx->ctx_dbrs[rnum] = dbreg.val;
  3239. DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
  3240. rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
  3241. }
  3242. }
  3243. return 0;
  3244. abort_mission:
  3245. /*
  3246. * in case it was our first attempt, we undo the global modifications
  3247. */
  3248. if (first_time) {
  3249. LOCK_PFS(flags);
  3250. if (ctx->ctx_fl_system) {
  3251. pfm_sessions.pfs_sys_use_dbregs--;
  3252. }
  3253. UNLOCK_PFS(flags);
  3254. ctx->ctx_fl_using_dbreg = 0;
  3255. }
  3256. /*
  3257. * install error return flag
  3258. */
  3259. PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
  3260. return ret;
  3261. }
  3262. static int
  3263. pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3264. {
  3265. return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
  3266. }
  3267. static int
  3268. pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3269. {
  3270. return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
  3271. }
  3272. int
  3273. pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3274. {
  3275. pfm_context_t *ctx;
  3276. if (req == NULL) return -EINVAL;
  3277. ctx = GET_PMU_CTX();
  3278. if (ctx == NULL) return -EINVAL;
  3279. /*
  3280. * for now limit to current task, which is enough when calling
  3281. * from overflow handler
  3282. */
  3283. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3284. return pfm_write_ibrs(ctx, req, nreq, regs);
  3285. }
  3286. EXPORT_SYMBOL(pfm_mod_write_ibrs);
  3287. int
  3288. pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3289. {
  3290. pfm_context_t *ctx;
  3291. if (req == NULL) return -EINVAL;
  3292. ctx = GET_PMU_CTX();
  3293. if (ctx == NULL) return -EINVAL;
  3294. /*
  3295. * for now limit to current task, which is enough when calling
  3296. * from overflow handler
  3297. */
  3298. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3299. return pfm_write_dbrs(ctx, req, nreq, regs);
  3300. }
  3301. EXPORT_SYMBOL(pfm_mod_write_dbrs);
  3302. static int
  3303. pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3304. {
  3305. pfarg_features_t *req = (pfarg_features_t *)arg;
  3306. req->ft_version = PFM_VERSION;
  3307. return 0;
  3308. }
  3309. static int
  3310. pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3311. {
  3312. struct pt_regs *tregs;
  3313. struct task_struct *task = PFM_CTX_TASK(ctx);
  3314. int state, is_system;
  3315. state = ctx->ctx_state;
  3316. is_system = ctx->ctx_fl_system;
  3317. /*
  3318. * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
  3319. */
  3320. if (state == PFM_CTX_UNLOADED) return -EINVAL;
  3321. /*
  3322. * In system wide and when the context is loaded, access can only happen
  3323. * when the caller is running on the CPU being monitored by the session.
  3324. * It does not have to be the owner (ctx_task) of the context per se.
  3325. */
  3326. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3327. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3328. return -EBUSY;
  3329. }
  3330. DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
  3331. task_pid_nr(PFM_CTX_TASK(ctx)),
  3332. state,
  3333. is_system));
  3334. /*
  3335. * in system mode, we need to update the PMU directly
  3336. * and the user level state of the caller, which may not
  3337. * necessarily be the creator of the context.
  3338. */
  3339. if (is_system) {
  3340. /*
  3341. * Update local PMU first
  3342. *
  3343. * disable dcr pp
  3344. */
  3345. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  3346. ia64_srlz_i();
  3347. /*
  3348. * update local cpuinfo
  3349. */
  3350. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3351. /*
  3352. * stop monitoring, does srlz.i
  3353. */
  3354. pfm_clear_psr_pp();
  3355. /*
  3356. * stop monitoring in the caller
  3357. */
  3358. ia64_psr(regs)->pp = 0;
  3359. return 0;
  3360. }
  3361. /*
  3362. * per-task mode
  3363. */
  3364. if (task == current) {
  3365. /* stop monitoring at kernel level */
  3366. pfm_clear_psr_up();
  3367. /*
  3368. * stop monitoring at the user level
  3369. */
  3370. ia64_psr(regs)->up = 0;
  3371. } else {
  3372. tregs = task_pt_regs(task);
  3373. /*
  3374. * stop monitoring at the user level
  3375. */
  3376. ia64_psr(tregs)->up = 0;
  3377. /*
  3378. * monitoring disabled in kernel at next reschedule
  3379. */
  3380. ctx->ctx_saved_psr_up = 0;
  3381. DPRINT(("task=[%d]\n", task_pid_nr(task)));
  3382. }
  3383. return 0;
  3384. }
  3385. static int
  3386. pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3387. {
  3388. struct pt_regs *tregs;
  3389. int state, is_system;
  3390. state = ctx->ctx_state;
  3391. is_system = ctx->ctx_fl_system;
  3392. if (state != PFM_CTX_LOADED) return -EINVAL;
  3393. /*
  3394. * In system wide and when the context is loaded, access can only happen
  3395. * when the caller is running on the CPU being monitored by the session.
  3396. * It does not have to be the owner (ctx_task) of the context per se.
  3397. */
  3398. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3399. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3400. return -EBUSY;
  3401. }
  3402. /*
  3403. * in system mode, we need to update the PMU directly
  3404. * and the user level state of the caller, which may not
  3405. * necessarily be the creator of the context.
  3406. */
  3407. if (is_system) {
  3408. /*
  3409. * set user level psr.pp for the caller
  3410. */
  3411. ia64_psr(regs)->pp = 1;
  3412. /*
  3413. * now update the local PMU and cpuinfo
  3414. */
  3415. PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
  3416. /*
  3417. * start monitoring at kernel level
  3418. */
  3419. pfm_set_psr_pp();
  3420. /* enable dcr pp */
  3421. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  3422. ia64_srlz_i();
  3423. return 0;
  3424. }
  3425. /*
  3426. * per-process mode
  3427. */
  3428. if (ctx->ctx_task == current) {
  3429. /* start monitoring at kernel level */
  3430. pfm_set_psr_up();
  3431. /*
  3432. * activate monitoring at user level
  3433. */
  3434. ia64_psr(regs)->up = 1;
  3435. } else {
  3436. tregs = task_pt_regs(ctx->ctx_task);
  3437. /*
  3438. * start monitoring at the kernel level the next
  3439. * time the task is scheduled
  3440. */
  3441. ctx->ctx_saved_psr_up = IA64_PSR_UP;
  3442. /*
  3443. * activate monitoring at user level
  3444. */
  3445. ia64_psr(tregs)->up = 1;
  3446. }
  3447. return 0;
  3448. }
  3449. static int
  3450. pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3451. {
  3452. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  3453. unsigned int cnum;
  3454. int i;
  3455. int ret = -EINVAL;
  3456. for (i = 0; i < count; i++, req++) {
  3457. cnum = req->reg_num;
  3458. if (!PMC_IS_IMPL(cnum)) goto abort_mission;
  3459. req->reg_value = PMC_DFL_VAL(cnum);
  3460. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  3461. DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
  3462. }
  3463. return 0;
  3464. abort_mission:
  3465. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  3466. return ret;
  3467. }
  3468. static int
  3469. pfm_check_task_exist(pfm_context_t *ctx)
  3470. {
  3471. struct task_struct *g, *t;
  3472. int ret = -ESRCH;
  3473. read_lock(&tasklist_lock);
  3474. do_each_thread (g, t) {
  3475. if (t->thread.pfm_context == ctx) {
  3476. ret = 0;
  3477. goto out;
  3478. }
  3479. } while_each_thread (g, t);
  3480. out:
  3481. read_unlock(&tasklist_lock);
  3482. DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
  3483. return ret;
  3484. }
  3485. static int
  3486. pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3487. {
  3488. struct task_struct *task;
  3489. struct thread_struct *thread;
  3490. struct pfm_context_t *old;
  3491. unsigned long flags;
  3492. #ifndef CONFIG_SMP
  3493. struct task_struct *owner_task = NULL;
  3494. #endif
  3495. pfarg_load_t *req = (pfarg_load_t *)arg;
  3496. unsigned long *pmcs_source, *pmds_source;
  3497. int the_cpu;
  3498. int ret = 0;
  3499. int state, is_system, set_dbregs = 0;
  3500. state = ctx->ctx_state;
  3501. is_system = ctx->ctx_fl_system;
  3502. /*
  3503. * can only load from unloaded or terminated state
  3504. */
  3505. if (state != PFM_CTX_UNLOADED) {
  3506. DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
  3507. req->load_pid,
  3508. ctx->ctx_state));
  3509. return -EBUSY;
  3510. }
  3511. DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
  3512. if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
  3513. DPRINT(("cannot use blocking mode on self\n"));
  3514. return -EINVAL;
  3515. }
  3516. ret = pfm_get_task(ctx, req->load_pid, &task);
  3517. if (ret) {
  3518. DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
  3519. return ret;
  3520. }
  3521. ret = -EINVAL;
  3522. /*
  3523. * system wide is self monitoring only
  3524. */
  3525. if (is_system && task != current) {
  3526. DPRINT(("system wide is self monitoring only load_pid=%d\n",
  3527. req->load_pid));
  3528. goto error;
  3529. }
  3530. thread = &task->thread;
  3531. ret = 0;
  3532. /*
  3533. * cannot load a context which is using range restrictions,
  3534. * into a task that is being debugged.
  3535. */
  3536. if (ctx->ctx_fl_using_dbreg) {
  3537. if (thread->flags & IA64_THREAD_DBG_VALID) {
  3538. ret = -EBUSY;
  3539. DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
  3540. goto error;
  3541. }
  3542. LOCK_PFS(flags);
  3543. if (is_system) {
  3544. if (pfm_sessions.pfs_ptrace_use_dbregs) {
  3545. DPRINT(("cannot load [%d] dbregs in use\n",
  3546. task_pid_nr(task)));
  3547. ret = -EBUSY;
  3548. } else {
  3549. pfm_sessions.pfs_sys_use_dbregs++;
  3550. DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
  3551. set_dbregs = 1;
  3552. }
  3553. }
  3554. UNLOCK_PFS(flags);
  3555. if (ret) goto error;
  3556. }
  3557. /*
  3558. * SMP system-wide monitoring implies self-monitoring.
  3559. *
  3560. * The programming model expects the task to
  3561. * be pinned on a CPU throughout the session.
  3562. * Here we take note of the current CPU at the
  3563. * time the context is loaded. No call from
  3564. * another CPU will be allowed.
  3565. *
  3566. * The pinning via shed_setaffinity()
  3567. * must be done by the calling task prior
  3568. * to this call.
  3569. *
  3570. * systemwide: keep track of CPU this session is supposed to run on
  3571. */
  3572. the_cpu = ctx->ctx_cpu = smp_processor_id();
  3573. ret = -EBUSY;
  3574. /*
  3575. * now reserve the session
  3576. */
  3577. ret = pfm_reserve_session(current, is_system, the_cpu);
  3578. if (ret) goto error;
  3579. /*
  3580. * task is necessarily stopped at this point.
  3581. *
  3582. * If the previous context was zombie, then it got removed in
  3583. * pfm_save_regs(). Therefore we should not see it here.
  3584. * If we see a context, then this is an active context
  3585. *
  3586. * XXX: needs to be atomic
  3587. */
  3588. DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
  3589. thread->pfm_context, ctx));
  3590. ret = -EBUSY;
  3591. old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
  3592. if (old != NULL) {
  3593. DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
  3594. goto error_unres;
  3595. }
  3596. pfm_reset_msgq(ctx);
  3597. ctx->ctx_state = PFM_CTX_LOADED;
  3598. /*
  3599. * link context to task
  3600. */
  3601. ctx->ctx_task = task;
  3602. if (is_system) {
  3603. /*
  3604. * we load as stopped
  3605. */
  3606. PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
  3607. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3608. if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
  3609. } else {
  3610. thread->flags |= IA64_THREAD_PM_VALID;
  3611. }
  3612. /*
  3613. * propagate into thread-state
  3614. */
  3615. pfm_copy_pmds(task, ctx);
  3616. pfm_copy_pmcs(task, ctx);
  3617. pmcs_source = ctx->th_pmcs;
  3618. pmds_source = ctx->th_pmds;
  3619. /*
  3620. * always the case for system-wide
  3621. */
  3622. if (task == current) {
  3623. if (is_system == 0) {
  3624. /* allow user level control */
  3625. ia64_psr(regs)->sp = 0;
  3626. DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
  3627. SET_LAST_CPU(ctx, smp_processor_id());
  3628. INC_ACTIVATION();
  3629. SET_ACTIVATION(ctx);
  3630. #ifndef CONFIG_SMP
  3631. /*
  3632. * push the other task out, if any
  3633. */
  3634. owner_task = GET_PMU_OWNER();
  3635. if (owner_task) pfm_lazy_save_regs(owner_task);
  3636. #endif
  3637. }
  3638. /*
  3639. * load all PMD from ctx to PMU (as opposed to thread state)
  3640. * restore all PMC from ctx to PMU
  3641. */
  3642. pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
  3643. pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
  3644. ctx->ctx_reload_pmcs[0] = 0UL;
  3645. ctx->ctx_reload_pmds[0] = 0UL;
  3646. /*
  3647. * guaranteed safe by earlier check against DBG_VALID
  3648. */
  3649. if (ctx->ctx_fl_using_dbreg) {
  3650. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  3651. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  3652. }
  3653. /*
  3654. * set new ownership
  3655. */
  3656. SET_PMU_OWNER(task, ctx);
  3657. DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
  3658. } else {
  3659. /*
  3660. * when not current, task MUST be stopped, so this is safe
  3661. */
  3662. regs = task_pt_regs(task);
  3663. /* force a full reload */
  3664. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3665. SET_LAST_CPU(ctx, -1);
  3666. /* initial saved psr (stopped) */
  3667. ctx->ctx_saved_psr_up = 0UL;
  3668. ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
  3669. }
  3670. ret = 0;
  3671. error_unres:
  3672. if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
  3673. error:
  3674. /*
  3675. * we must undo the dbregs setting (for system-wide)
  3676. */
  3677. if (ret && set_dbregs) {
  3678. LOCK_PFS(flags);
  3679. pfm_sessions.pfs_sys_use_dbregs--;
  3680. UNLOCK_PFS(flags);
  3681. }
  3682. /*
  3683. * release task, there is now a link with the context
  3684. */
  3685. if (is_system == 0 && task != current) {
  3686. pfm_put_task(task);
  3687. if (ret == 0) {
  3688. ret = pfm_check_task_exist(ctx);
  3689. if (ret) {
  3690. ctx->ctx_state = PFM_CTX_UNLOADED;
  3691. ctx->ctx_task = NULL;
  3692. }
  3693. }
  3694. }
  3695. return ret;
  3696. }
  3697. /*
  3698. * in this function, we do not need to increase the use count
  3699. * for the task via get_task_struct(), because we hold the
  3700. * context lock. If the task were to disappear while having
  3701. * a context attached, it would go through pfm_exit_thread()
  3702. * which also grabs the context lock and would therefore be blocked
  3703. * until we are here.
  3704. */
  3705. static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
  3706. static int
  3707. pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3708. {
  3709. struct task_struct *task = PFM_CTX_TASK(ctx);
  3710. struct pt_regs *tregs;
  3711. int prev_state, is_system;
  3712. int ret;
  3713. DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
  3714. prev_state = ctx->ctx_state;
  3715. is_system = ctx->ctx_fl_system;
  3716. /*
  3717. * unload only when necessary
  3718. */
  3719. if (prev_state == PFM_CTX_UNLOADED) {
  3720. DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
  3721. return 0;
  3722. }
  3723. /*
  3724. * clear psr and dcr bits
  3725. */
  3726. ret = pfm_stop(ctx, NULL, 0, regs);
  3727. if (ret) return ret;
  3728. ctx->ctx_state = PFM_CTX_UNLOADED;
  3729. /*
  3730. * in system mode, we need to update the PMU directly
  3731. * and the user level state of the caller, which may not
  3732. * necessarily be the creator of the context.
  3733. */
  3734. if (is_system) {
  3735. /*
  3736. * Update cpuinfo
  3737. *
  3738. * local PMU is taken care of in pfm_stop()
  3739. */
  3740. PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
  3741. PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
  3742. /*
  3743. * save PMDs in context
  3744. * release ownership
  3745. */
  3746. pfm_flush_pmds(current, ctx);
  3747. /*
  3748. * at this point we are done with the PMU
  3749. * so we can unreserve the resource.
  3750. */
  3751. if (prev_state != PFM_CTX_ZOMBIE)
  3752. pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
  3753. /*
  3754. * disconnect context from task
  3755. */
  3756. task->thread.pfm_context = NULL;
  3757. /*
  3758. * disconnect task from context
  3759. */
  3760. ctx->ctx_task = NULL;
  3761. /*
  3762. * There is nothing more to cleanup here.
  3763. */
  3764. return 0;
  3765. }
  3766. /*
  3767. * per-task mode
  3768. */
  3769. tregs = task == current ? regs : task_pt_regs(task);
  3770. if (task == current) {
  3771. /*
  3772. * cancel user level control
  3773. */
  3774. ia64_psr(regs)->sp = 1;
  3775. DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
  3776. }
  3777. /*
  3778. * save PMDs to context
  3779. * release ownership
  3780. */
  3781. pfm_flush_pmds(task, ctx);
  3782. /*
  3783. * at this point we are done with the PMU
  3784. * so we can unreserve the resource.
  3785. *
  3786. * when state was ZOMBIE, we have already unreserved.
  3787. */
  3788. if (prev_state != PFM_CTX_ZOMBIE)
  3789. pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
  3790. /*
  3791. * reset activation counter and psr
  3792. */
  3793. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3794. SET_LAST_CPU(ctx, -1);
  3795. /*
  3796. * PMU state will not be restored
  3797. */
  3798. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  3799. /*
  3800. * break links between context and task
  3801. */
  3802. task->thread.pfm_context = NULL;
  3803. ctx->ctx_task = NULL;
  3804. PFM_SET_WORK_PENDING(task, 0);
  3805. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  3806. ctx->ctx_fl_can_restart = 0;
  3807. ctx->ctx_fl_going_zombie = 0;
  3808. DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
  3809. return 0;
  3810. }
  3811. /*
  3812. * called only from exit_thread(): task == current
  3813. * we come here only if current has a context attached (loaded or masked)
  3814. */
  3815. void
  3816. pfm_exit_thread(struct task_struct *task)
  3817. {
  3818. pfm_context_t *ctx;
  3819. unsigned long flags;
  3820. struct pt_regs *regs = task_pt_regs(task);
  3821. int ret, state;
  3822. int free_ok = 0;
  3823. ctx = PFM_GET_CTX(task);
  3824. PROTECT_CTX(ctx, flags);
  3825. DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
  3826. state = ctx->ctx_state;
  3827. switch(state) {
  3828. case PFM_CTX_UNLOADED:
  3829. /*
  3830. * only comes to this function if pfm_context is not NULL, i.e., cannot
  3831. * be in unloaded state
  3832. */
  3833. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
  3834. break;
  3835. case PFM_CTX_LOADED:
  3836. case PFM_CTX_MASKED:
  3837. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3838. if (ret) {
  3839. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
  3840. }
  3841. DPRINT(("ctx unloaded for current state was %d\n", state));
  3842. pfm_end_notify_user(ctx);
  3843. break;
  3844. case PFM_CTX_ZOMBIE:
  3845. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3846. if (ret) {
  3847. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
  3848. }
  3849. free_ok = 1;
  3850. break;
  3851. default:
  3852. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
  3853. break;
  3854. }
  3855. UNPROTECT_CTX(ctx, flags);
  3856. { u64 psr = pfm_get_psr();
  3857. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  3858. BUG_ON(GET_PMU_OWNER());
  3859. BUG_ON(ia64_psr(regs)->up);
  3860. BUG_ON(ia64_psr(regs)->pp);
  3861. }
  3862. /*
  3863. * All memory free operations (especially for vmalloc'ed memory)
  3864. * MUST be done with interrupts ENABLED.
  3865. */
  3866. if (free_ok) pfm_context_free(ctx);
  3867. }
  3868. /*
  3869. * functions MUST be listed in the increasing order of their index (see permfon.h)
  3870. */
  3871. #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
  3872. #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
  3873. #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
  3874. #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
  3875. #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
  3876. static pfm_cmd_desc_t pfm_cmd_tab[]={
  3877. /* 0 */PFM_CMD_NONE,
  3878. /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3879. /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3880. /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3881. /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
  3882. /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
  3883. /* 6 */PFM_CMD_NONE,
  3884. /* 7 */PFM_CMD_NONE,
  3885. /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
  3886. /* 9 */PFM_CMD_NONE,
  3887. /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
  3888. /* 11 */PFM_CMD_NONE,
  3889. /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
  3890. /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
  3891. /* 14 */PFM_CMD_NONE,
  3892. /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3893. /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
  3894. /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
  3895. /* 18 */PFM_CMD_NONE,
  3896. /* 19 */PFM_CMD_NONE,
  3897. /* 20 */PFM_CMD_NONE,
  3898. /* 21 */PFM_CMD_NONE,
  3899. /* 22 */PFM_CMD_NONE,
  3900. /* 23 */PFM_CMD_NONE,
  3901. /* 24 */PFM_CMD_NONE,
  3902. /* 25 */PFM_CMD_NONE,
  3903. /* 26 */PFM_CMD_NONE,
  3904. /* 27 */PFM_CMD_NONE,
  3905. /* 28 */PFM_CMD_NONE,
  3906. /* 29 */PFM_CMD_NONE,
  3907. /* 30 */PFM_CMD_NONE,
  3908. /* 31 */PFM_CMD_NONE,
  3909. /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
  3910. /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
  3911. };
  3912. #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
  3913. static int
  3914. pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
  3915. {
  3916. struct task_struct *task;
  3917. int state, old_state;
  3918. recheck:
  3919. state = ctx->ctx_state;
  3920. task = ctx->ctx_task;
  3921. if (task == NULL) {
  3922. DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
  3923. return 0;
  3924. }
  3925. DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
  3926. ctx->ctx_fd,
  3927. state,
  3928. task_pid_nr(task),
  3929. task->state, PFM_CMD_STOPPED(cmd)));
  3930. /*
  3931. * self-monitoring always ok.
  3932. *
  3933. * for system-wide the caller can either be the creator of the
  3934. * context (to one to which the context is attached to) OR
  3935. * a task running on the same CPU as the session.
  3936. */
  3937. if (task == current || ctx->ctx_fl_system) return 0;
  3938. /*
  3939. * we are monitoring another thread
  3940. */
  3941. switch(state) {
  3942. case PFM_CTX_UNLOADED:
  3943. /*
  3944. * if context is UNLOADED we are safe to go
  3945. */
  3946. return 0;
  3947. case PFM_CTX_ZOMBIE:
  3948. /*
  3949. * no command can operate on a zombie context
  3950. */
  3951. DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
  3952. return -EINVAL;
  3953. case PFM_CTX_MASKED:
  3954. /*
  3955. * PMU state has been saved to software even though
  3956. * the thread may still be running.
  3957. */
  3958. if (cmd != PFM_UNLOAD_CONTEXT) return 0;
  3959. }
  3960. /*
  3961. * context is LOADED or MASKED. Some commands may need to have
  3962. * the task stopped.
  3963. *
  3964. * We could lift this restriction for UP but it would mean that
  3965. * the user has no guarantee the task would not run between
  3966. * two successive calls to perfmonctl(). That's probably OK.
  3967. * If this user wants to ensure the task does not run, then
  3968. * the task must be stopped.
  3969. */
  3970. if (PFM_CMD_STOPPED(cmd)) {
  3971. if (!task_is_stopped_or_traced(task)) {
  3972. DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
  3973. return -EBUSY;
  3974. }
  3975. /*
  3976. * task is now stopped, wait for ctxsw out
  3977. *
  3978. * This is an interesting point in the code.
  3979. * We need to unprotect the context because
  3980. * the pfm_save_regs() routines needs to grab
  3981. * the same lock. There are danger in doing
  3982. * this because it leaves a window open for
  3983. * another task to get access to the context
  3984. * and possibly change its state. The one thing
  3985. * that is not possible is for the context to disappear
  3986. * because we are protected by the VFS layer, i.e.,
  3987. * get_fd()/put_fd().
  3988. */
  3989. old_state = state;
  3990. UNPROTECT_CTX(ctx, flags);
  3991. wait_task_inactive(task, 0);
  3992. PROTECT_CTX(ctx, flags);
  3993. /*
  3994. * we must recheck to verify if state has changed
  3995. */
  3996. if (ctx->ctx_state != old_state) {
  3997. DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
  3998. goto recheck;
  3999. }
  4000. }
  4001. return 0;
  4002. }
  4003. /*
  4004. * system-call entry point (must return long)
  4005. */
  4006. asmlinkage long
  4007. sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
  4008. {
  4009. struct file *file = NULL;
  4010. pfm_context_t *ctx = NULL;
  4011. unsigned long flags = 0UL;
  4012. void *args_k = NULL;
  4013. long ret; /* will expand int return types */
  4014. size_t base_sz, sz, xtra_sz = 0;
  4015. int narg, completed_args = 0, call_made = 0, cmd_flags;
  4016. int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  4017. int (*getsize)(void *arg, size_t *sz);
  4018. #define PFM_MAX_ARGSIZE 4096
  4019. /*
  4020. * reject any call if perfmon was disabled at initialization
  4021. */
  4022. if (unlikely(pmu_conf == NULL)) return -ENOSYS;
  4023. if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
  4024. DPRINT(("invalid cmd=%d\n", cmd));
  4025. return -EINVAL;
  4026. }
  4027. func = pfm_cmd_tab[cmd].cmd_func;
  4028. narg = pfm_cmd_tab[cmd].cmd_narg;
  4029. base_sz = pfm_cmd_tab[cmd].cmd_argsize;
  4030. getsize = pfm_cmd_tab[cmd].cmd_getsize;
  4031. cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
  4032. if (unlikely(func == NULL)) {
  4033. DPRINT(("invalid cmd=%d\n", cmd));
  4034. return -EINVAL;
  4035. }
  4036. DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
  4037. PFM_CMD_NAME(cmd),
  4038. cmd,
  4039. narg,
  4040. base_sz,
  4041. count));
  4042. /*
  4043. * check if number of arguments matches what the command expects
  4044. */
  4045. if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
  4046. return -EINVAL;
  4047. restart_args:
  4048. sz = xtra_sz + base_sz*count;
  4049. /*
  4050. * limit abuse to min page size
  4051. */
  4052. if (unlikely(sz > PFM_MAX_ARGSIZE)) {
  4053. printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
  4054. return -E2BIG;
  4055. }
  4056. /*
  4057. * allocate default-sized argument buffer
  4058. */
  4059. if (likely(count && args_k == NULL)) {
  4060. args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
  4061. if (args_k == NULL) return -ENOMEM;
  4062. }
  4063. ret = -EFAULT;
  4064. /*
  4065. * copy arguments
  4066. *
  4067. * assume sz = 0 for command without parameters
  4068. */
  4069. if (sz && copy_from_user(args_k, arg, sz)) {
  4070. DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
  4071. goto error_args;
  4072. }
  4073. /*
  4074. * check if command supports extra parameters
  4075. */
  4076. if (completed_args == 0 && getsize) {
  4077. /*
  4078. * get extra parameters size (based on main argument)
  4079. */
  4080. ret = (*getsize)(args_k, &xtra_sz);
  4081. if (ret) goto error_args;
  4082. completed_args = 1;
  4083. DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
  4084. /* retry if necessary */
  4085. if (likely(xtra_sz)) goto restart_args;
  4086. }
  4087. if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
  4088. ret = -EBADF;
  4089. file = fget(fd);
  4090. if (unlikely(file == NULL)) {
  4091. DPRINT(("invalid fd %d\n", fd));
  4092. goto error_args;
  4093. }
  4094. if (unlikely(PFM_IS_FILE(file) == 0)) {
  4095. DPRINT(("fd %d not related to perfmon\n", fd));
  4096. goto error_args;
  4097. }
  4098. ctx = (pfm_context_t *)file->private_data;
  4099. if (unlikely(ctx == NULL)) {
  4100. DPRINT(("no context for fd %d\n", fd));
  4101. goto error_args;
  4102. }
  4103. prefetch(&ctx->ctx_state);
  4104. PROTECT_CTX(ctx, flags);
  4105. /*
  4106. * check task is stopped
  4107. */
  4108. ret = pfm_check_task_state(ctx, cmd, flags);
  4109. if (unlikely(ret)) goto abort_locked;
  4110. skip_fd:
  4111. ret = (*func)(ctx, args_k, count, task_pt_regs(current));
  4112. call_made = 1;
  4113. abort_locked:
  4114. if (likely(ctx)) {
  4115. DPRINT(("context unlocked\n"));
  4116. UNPROTECT_CTX(ctx, flags);
  4117. }
  4118. /* copy argument back to user, if needed */
  4119. if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
  4120. error_args:
  4121. if (file)
  4122. fput(file);
  4123. kfree(args_k);
  4124. DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
  4125. return ret;
  4126. }
  4127. static void
  4128. pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
  4129. {
  4130. pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
  4131. pfm_ovfl_ctrl_t rst_ctrl;
  4132. int state;
  4133. int ret = 0;
  4134. state = ctx->ctx_state;
  4135. /*
  4136. * Unlock sampling buffer and reset index atomically
  4137. * XXX: not really needed when blocking
  4138. */
  4139. if (CTX_HAS_SMPL(ctx)) {
  4140. rst_ctrl.bits.mask_monitoring = 0;
  4141. rst_ctrl.bits.reset_ovfl_pmds = 0;
  4142. if (state == PFM_CTX_LOADED)
  4143. ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4144. else
  4145. ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4146. } else {
  4147. rst_ctrl.bits.mask_monitoring = 0;
  4148. rst_ctrl.bits.reset_ovfl_pmds = 1;
  4149. }
  4150. if (ret == 0) {
  4151. if (rst_ctrl.bits.reset_ovfl_pmds) {
  4152. pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
  4153. }
  4154. if (rst_ctrl.bits.mask_monitoring == 0) {
  4155. DPRINT(("resuming monitoring\n"));
  4156. if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
  4157. } else {
  4158. DPRINT(("stopping monitoring\n"));
  4159. //pfm_stop_monitoring(current, regs);
  4160. }
  4161. ctx->ctx_state = PFM_CTX_LOADED;
  4162. }
  4163. }
  4164. /*
  4165. * context MUST BE LOCKED when calling
  4166. * can only be called for current
  4167. */
  4168. static void
  4169. pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
  4170. {
  4171. int ret;
  4172. DPRINT(("entering for [%d]\n", task_pid_nr(current)));
  4173. ret = pfm_context_unload(ctx, NULL, 0, regs);
  4174. if (ret) {
  4175. printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
  4176. }
  4177. /*
  4178. * and wakeup controlling task, indicating we are now disconnected
  4179. */
  4180. wake_up_interruptible(&ctx->ctx_zombieq);
  4181. /*
  4182. * given that context is still locked, the controlling
  4183. * task will only get access when we return from
  4184. * pfm_handle_work().
  4185. */
  4186. }
  4187. static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
  4188. /*
  4189. * pfm_handle_work() can be called with interrupts enabled
  4190. * (TIF_NEED_RESCHED) or disabled. The down_interruptible
  4191. * call may sleep, therefore we must re-enable interrupts
  4192. * to avoid deadlocks. It is safe to do so because this function
  4193. * is called ONLY when returning to user level (pUStk=1), in which case
  4194. * there is no risk of kernel stack overflow due to deep
  4195. * interrupt nesting.
  4196. */
  4197. void
  4198. pfm_handle_work(void)
  4199. {
  4200. pfm_context_t *ctx;
  4201. struct pt_regs *regs;
  4202. unsigned long flags, dummy_flags;
  4203. unsigned long ovfl_regs;
  4204. unsigned int reason;
  4205. int ret;
  4206. ctx = PFM_GET_CTX(current);
  4207. if (ctx == NULL) {
  4208. printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
  4209. task_pid_nr(current));
  4210. return;
  4211. }
  4212. PROTECT_CTX(ctx, flags);
  4213. PFM_SET_WORK_PENDING(current, 0);
  4214. regs = task_pt_regs(current);
  4215. /*
  4216. * extract reason for being here and clear
  4217. */
  4218. reason = ctx->ctx_fl_trap_reason;
  4219. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  4220. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4221. DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
  4222. /*
  4223. * must be done before we check for simple-reset mode
  4224. */
  4225. if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
  4226. goto do_zombie;
  4227. //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
  4228. if (reason == PFM_TRAP_REASON_RESET)
  4229. goto skip_blocking;
  4230. /*
  4231. * restore interrupt mask to what it was on entry.
  4232. * Could be enabled/diasbled.
  4233. */
  4234. UNPROTECT_CTX(ctx, flags);
  4235. /*
  4236. * force interrupt enable because of down_interruptible()
  4237. */
  4238. local_irq_enable();
  4239. DPRINT(("before block sleeping\n"));
  4240. /*
  4241. * may go through without blocking on SMP systems
  4242. * if restart has been received already by the time we call down()
  4243. */
  4244. ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
  4245. DPRINT(("after block sleeping ret=%d\n", ret));
  4246. /*
  4247. * lock context and mask interrupts again
  4248. * We save flags into a dummy because we may have
  4249. * altered interrupts mask compared to entry in this
  4250. * function.
  4251. */
  4252. PROTECT_CTX(ctx, dummy_flags);
  4253. /*
  4254. * we need to read the ovfl_regs only after wake-up
  4255. * because we may have had pfm_write_pmds() in between
  4256. * and that can changed PMD values and therefore
  4257. * ovfl_regs is reset for these new PMD values.
  4258. */
  4259. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4260. if (ctx->ctx_fl_going_zombie) {
  4261. do_zombie:
  4262. DPRINT(("context is zombie, bailing out\n"));
  4263. pfm_context_force_terminate(ctx, regs);
  4264. goto nothing_to_do;
  4265. }
  4266. /*
  4267. * in case of interruption of down() we don't restart anything
  4268. */
  4269. if (ret < 0)
  4270. goto nothing_to_do;
  4271. skip_blocking:
  4272. pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
  4273. ctx->ctx_ovfl_regs[0] = 0UL;
  4274. nothing_to_do:
  4275. /*
  4276. * restore flags as they were upon entry
  4277. */
  4278. UNPROTECT_CTX(ctx, flags);
  4279. }
  4280. static int
  4281. pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
  4282. {
  4283. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4284. DPRINT(("ignoring overflow notification, owner is zombie\n"));
  4285. return 0;
  4286. }
  4287. DPRINT(("waking up somebody\n"));
  4288. if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
  4289. /*
  4290. * safe, we are not in intr handler, nor in ctxsw when
  4291. * we come here
  4292. */
  4293. kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
  4294. return 0;
  4295. }
  4296. static int
  4297. pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
  4298. {
  4299. pfm_msg_t *msg = NULL;
  4300. if (ctx->ctx_fl_no_msg == 0) {
  4301. msg = pfm_get_new_msg(ctx);
  4302. if (msg == NULL) {
  4303. printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
  4304. return -1;
  4305. }
  4306. msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
  4307. msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
  4308. msg->pfm_ovfl_msg.msg_active_set = 0;
  4309. msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
  4310. msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
  4311. msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
  4312. msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
  4313. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4314. }
  4315. DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
  4316. msg,
  4317. ctx->ctx_fl_no_msg,
  4318. ctx->ctx_fd,
  4319. ovfl_pmds));
  4320. return pfm_notify_user(ctx, msg);
  4321. }
  4322. static int
  4323. pfm_end_notify_user(pfm_context_t *ctx)
  4324. {
  4325. pfm_msg_t *msg;
  4326. msg = pfm_get_new_msg(ctx);
  4327. if (msg == NULL) {
  4328. printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
  4329. return -1;
  4330. }
  4331. /* no leak */
  4332. memset(msg, 0, sizeof(*msg));
  4333. msg->pfm_end_msg.msg_type = PFM_MSG_END;
  4334. msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
  4335. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4336. DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
  4337. msg,
  4338. ctx->ctx_fl_no_msg,
  4339. ctx->ctx_fd));
  4340. return pfm_notify_user(ctx, msg);
  4341. }
  4342. /*
  4343. * main overflow processing routine.
  4344. * it can be called from the interrupt path or explicitly during the context switch code
  4345. */
  4346. static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
  4347. unsigned long pmc0, struct pt_regs *regs)
  4348. {
  4349. pfm_ovfl_arg_t *ovfl_arg;
  4350. unsigned long mask;
  4351. unsigned long old_val, ovfl_val, new_val;
  4352. unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
  4353. unsigned long tstamp;
  4354. pfm_ovfl_ctrl_t ovfl_ctrl;
  4355. unsigned int i, has_smpl;
  4356. int must_notify = 0;
  4357. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
  4358. /*
  4359. * sanity test. Should never happen
  4360. */
  4361. if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
  4362. tstamp = ia64_get_itc();
  4363. mask = pmc0 >> PMU_FIRST_COUNTER;
  4364. ovfl_val = pmu_conf->ovfl_val;
  4365. has_smpl = CTX_HAS_SMPL(ctx);
  4366. DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
  4367. "used_pmds=0x%lx\n",
  4368. pmc0,
  4369. task ? task_pid_nr(task): -1,
  4370. (regs ? regs->cr_iip : 0),
  4371. CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
  4372. ctx->ctx_used_pmds[0]));
  4373. /*
  4374. * first we update the virtual counters
  4375. * assume there was a prior ia64_srlz_d() issued
  4376. */
  4377. for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
  4378. /* skip pmd which did not overflow */
  4379. if ((mask & 0x1) == 0) continue;
  4380. /*
  4381. * Note that the pmd is not necessarily 0 at this point as qualified events
  4382. * may have happened before the PMU was frozen. The residual count is not
  4383. * taken into consideration here but will be with any read of the pmd via
  4384. * pfm_read_pmds().
  4385. */
  4386. old_val = new_val = ctx->ctx_pmds[i].val;
  4387. new_val += 1 + ovfl_val;
  4388. ctx->ctx_pmds[i].val = new_val;
  4389. /*
  4390. * check for overflow condition
  4391. */
  4392. if (likely(old_val > new_val)) {
  4393. ovfl_pmds |= 1UL << i;
  4394. if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
  4395. }
  4396. DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
  4397. i,
  4398. new_val,
  4399. old_val,
  4400. ia64_get_pmd(i) & ovfl_val,
  4401. ovfl_pmds,
  4402. ovfl_notify));
  4403. }
  4404. /*
  4405. * there was no 64-bit overflow, nothing else to do
  4406. */
  4407. if (ovfl_pmds == 0UL) return;
  4408. /*
  4409. * reset all control bits
  4410. */
  4411. ovfl_ctrl.val = 0;
  4412. reset_pmds = 0UL;
  4413. /*
  4414. * if a sampling format module exists, then we "cache" the overflow by
  4415. * calling the module's handler() routine.
  4416. */
  4417. if (has_smpl) {
  4418. unsigned long start_cycles, end_cycles;
  4419. unsigned long pmd_mask;
  4420. int j, k, ret = 0;
  4421. int this_cpu = smp_processor_id();
  4422. pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
  4423. ovfl_arg = &ctx->ctx_ovfl_arg;
  4424. prefetch(ctx->ctx_smpl_hdr);
  4425. for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
  4426. mask = 1UL << i;
  4427. if ((pmd_mask & 0x1) == 0) continue;
  4428. ovfl_arg->ovfl_pmd = (unsigned char )i;
  4429. ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
  4430. ovfl_arg->active_set = 0;
  4431. ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
  4432. ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
  4433. ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
  4434. ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
  4435. ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
  4436. /*
  4437. * copy values of pmds of interest. Sampling format may copy them
  4438. * into sampling buffer.
  4439. */
  4440. if (smpl_pmds) {
  4441. for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
  4442. if ((smpl_pmds & 0x1) == 0) continue;
  4443. ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
  4444. DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
  4445. }
  4446. }
  4447. pfm_stats[this_cpu].pfm_smpl_handler_calls++;
  4448. start_cycles = ia64_get_itc();
  4449. /*
  4450. * call custom buffer format record (handler) routine
  4451. */
  4452. ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
  4453. end_cycles = ia64_get_itc();
  4454. /*
  4455. * For those controls, we take the union because they have
  4456. * an all or nothing behavior.
  4457. */
  4458. ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
  4459. ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
  4460. ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
  4461. /*
  4462. * build the bitmask of pmds to reset now
  4463. */
  4464. if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
  4465. pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
  4466. }
  4467. /*
  4468. * when the module cannot handle the rest of the overflows, we abort right here
  4469. */
  4470. if (ret && pmd_mask) {
  4471. DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
  4472. pmd_mask<<PMU_FIRST_COUNTER));
  4473. }
  4474. /*
  4475. * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
  4476. */
  4477. ovfl_pmds &= ~reset_pmds;
  4478. } else {
  4479. /*
  4480. * when no sampling module is used, then the default
  4481. * is to notify on overflow if requested by user
  4482. */
  4483. ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
  4484. ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
  4485. ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
  4486. ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
  4487. /*
  4488. * if needed, we reset all overflowed pmds
  4489. */
  4490. if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
  4491. }
  4492. DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
  4493. /*
  4494. * reset the requested PMD registers using the short reset values
  4495. */
  4496. if (reset_pmds) {
  4497. unsigned long bm = reset_pmds;
  4498. pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
  4499. }
  4500. if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
  4501. /*
  4502. * keep track of what to reset when unblocking
  4503. */
  4504. ctx->ctx_ovfl_regs[0] = ovfl_pmds;
  4505. /*
  4506. * check for blocking context
  4507. */
  4508. if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
  4509. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
  4510. /*
  4511. * set the perfmon specific checking pending work for the task
  4512. */
  4513. PFM_SET_WORK_PENDING(task, 1);
  4514. /*
  4515. * when coming from ctxsw, current still points to the
  4516. * previous task, therefore we must work with task and not current.
  4517. */
  4518. set_notify_resume(task);
  4519. }
  4520. /*
  4521. * defer until state is changed (shorten spin window). the context is locked
  4522. * anyway, so the signal receiver would come spin for nothing.
  4523. */
  4524. must_notify = 1;
  4525. }
  4526. DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
  4527. GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
  4528. PFM_GET_WORK_PENDING(task),
  4529. ctx->ctx_fl_trap_reason,
  4530. ovfl_pmds,
  4531. ovfl_notify,
  4532. ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
  4533. /*
  4534. * in case monitoring must be stopped, we toggle the psr bits
  4535. */
  4536. if (ovfl_ctrl.bits.mask_monitoring) {
  4537. pfm_mask_monitoring(task);
  4538. ctx->ctx_state = PFM_CTX_MASKED;
  4539. ctx->ctx_fl_can_restart = 1;
  4540. }
  4541. /*
  4542. * send notification now
  4543. */
  4544. if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
  4545. return;
  4546. sanity_check:
  4547. printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
  4548. smp_processor_id(),
  4549. task ? task_pid_nr(task) : -1,
  4550. pmc0);
  4551. return;
  4552. stop_monitoring:
  4553. /*
  4554. * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
  4555. * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
  4556. * come here as zombie only if the task is the current task. In which case, we
  4557. * can access the PMU hardware directly.
  4558. *
  4559. * Note that zombies do have PM_VALID set. So here we do the minimal.
  4560. *
  4561. * In case the context was zombified it could not be reclaimed at the time
  4562. * the monitoring program exited. At this point, the PMU reservation has been
  4563. * returned, the sampiing buffer has been freed. We must convert this call
  4564. * into a spurious interrupt. However, we must also avoid infinite overflows
  4565. * by stopping monitoring for this task. We can only come here for a per-task
  4566. * context. All we need to do is to stop monitoring using the psr bits which
  4567. * are always task private. By re-enabling secure montioring, we ensure that
  4568. * the monitored task will not be able to re-activate monitoring.
  4569. * The task will eventually be context switched out, at which point the context
  4570. * will be reclaimed (that includes releasing ownership of the PMU).
  4571. *
  4572. * So there might be a window of time where the number of per-task session is zero
  4573. * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
  4574. * context. This is safe because if a per-task session comes in, it will push this one
  4575. * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
  4576. * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
  4577. * also push our zombie context out.
  4578. *
  4579. * Overall pretty hairy stuff....
  4580. */
  4581. DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
  4582. pfm_clear_psr_up();
  4583. ia64_psr(regs)->up = 0;
  4584. ia64_psr(regs)->sp = 1;
  4585. return;
  4586. }
  4587. static int
  4588. pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
  4589. {
  4590. struct task_struct *task;
  4591. pfm_context_t *ctx;
  4592. unsigned long flags;
  4593. u64 pmc0;
  4594. int this_cpu = smp_processor_id();
  4595. int retval = 0;
  4596. pfm_stats[this_cpu].pfm_ovfl_intr_count++;
  4597. /*
  4598. * srlz.d done before arriving here
  4599. */
  4600. pmc0 = ia64_get_pmc(0);
  4601. task = GET_PMU_OWNER();
  4602. ctx = GET_PMU_CTX();
  4603. /*
  4604. * if we have some pending bits set
  4605. * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
  4606. */
  4607. if (PMC0_HAS_OVFL(pmc0) && task) {
  4608. /*
  4609. * we assume that pmc0.fr is always set here
  4610. */
  4611. /* sanity check */
  4612. if (!ctx) goto report_spurious1;
  4613. if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
  4614. goto report_spurious2;
  4615. PROTECT_CTX_NOPRINT(ctx, flags);
  4616. pfm_overflow_handler(task, ctx, pmc0, regs);
  4617. UNPROTECT_CTX_NOPRINT(ctx, flags);
  4618. } else {
  4619. pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
  4620. retval = -1;
  4621. }
  4622. /*
  4623. * keep it unfrozen at all times
  4624. */
  4625. pfm_unfreeze_pmu();
  4626. return retval;
  4627. report_spurious1:
  4628. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
  4629. this_cpu, task_pid_nr(task));
  4630. pfm_unfreeze_pmu();
  4631. return -1;
  4632. report_spurious2:
  4633. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
  4634. this_cpu,
  4635. task_pid_nr(task));
  4636. pfm_unfreeze_pmu();
  4637. return -1;
  4638. }
  4639. static irqreturn_t
  4640. pfm_interrupt_handler(int irq, void *arg)
  4641. {
  4642. unsigned long start_cycles, total_cycles;
  4643. unsigned long min, max;
  4644. int this_cpu;
  4645. int ret;
  4646. struct pt_regs *regs = get_irq_regs();
  4647. this_cpu = get_cpu();
  4648. if (likely(!pfm_alt_intr_handler)) {
  4649. min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
  4650. max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
  4651. start_cycles = ia64_get_itc();
  4652. ret = pfm_do_interrupt_handler(arg, regs);
  4653. total_cycles = ia64_get_itc();
  4654. /*
  4655. * don't measure spurious interrupts
  4656. */
  4657. if (likely(ret == 0)) {
  4658. total_cycles -= start_cycles;
  4659. if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
  4660. if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
  4661. pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
  4662. }
  4663. }
  4664. else {
  4665. (*pfm_alt_intr_handler->handler)(irq, arg, regs);
  4666. }
  4667. put_cpu();
  4668. return IRQ_HANDLED;
  4669. }
  4670. /*
  4671. * /proc/perfmon interface, for debug only
  4672. */
  4673. #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
  4674. static void *
  4675. pfm_proc_start(struct seq_file *m, loff_t *pos)
  4676. {
  4677. if (*pos == 0) {
  4678. return PFM_PROC_SHOW_HEADER;
  4679. }
  4680. while (*pos <= nr_cpu_ids) {
  4681. if (cpu_online(*pos - 1)) {
  4682. return (void *)*pos;
  4683. }
  4684. ++*pos;
  4685. }
  4686. return NULL;
  4687. }
  4688. static void *
  4689. pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
  4690. {
  4691. ++*pos;
  4692. return pfm_proc_start(m, pos);
  4693. }
  4694. static void
  4695. pfm_proc_stop(struct seq_file *m, void *v)
  4696. {
  4697. }
  4698. static void
  4699. pfm_proc_show_header(struct seq_file *m)
  4700. {
  4701. struct list_head * pos;
  4702. pfm_buffer_fmt_t * entry;
  4703. unsigned long flags;
  4704. seq_printf(m,
  4705. "perfmon version : %u.%u\n"
  4706. "model : %s\n"
  4707. "fastctxsw : %s\n"
  4708. "expert mode : %s\n"
  4709. "ovfl_mask : 0x%lx\n"
  4710. "PMU flags : 0x%x\n",
  4711. PFM_VERSION_MAJ, PFM_VERSION_MIN,
  4712. pmu_conf->pmu_name,
  4713. pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
  4714. pfm_sysctl.expert_mode > 0 ? "Yes": "No",
  4715. pmu_conf->ovfl_val,
  4716. pmu_conf->flags);
  4717. LOCK_PFS(flags);
  4718. seq_printf(m,
  4719. "proc_sessions : %u\n"
  4720. "sys_sessions : %u\n"
  4721. "sys_use_dbregs : %u\n"
  4722. "ptrace_use_dbregs : %u\n",
  4723. pfm_sessions.pfs_task_sessions,
  4724. pfm_sessions.pfs_sys_sessions,
  4725. pfm_sessions.pfs_sys_use_dbregs,
  4726. pfm_sessions.pfs_ptrace_use_dbregs);
  4727. UNLOCK_PFS(flags);
  4728. spin_lock(&pfm_buffer_fmt_lock);
  4729. list_for_each(pos, &pfm_buffer_fmt_list) {
  4730. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  4731. seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
  4732. entry->fmt_uuid[0],
  4733. entry->fmt_uuid[1],
  4734. entry->fmt_uuid[2],
  4735. entry->fmt_uuid[3],
  4736. entry->fmt_uuid[4],
  4737. entry->fmt_uuid[5],
  4738. entry->fmt_uuid[6],
  4739. entry->fmt_uuid[7],
  4740. entry->fmt_uuid[8],
  4741. entry->fmt_uuid[9],
  4742. entry->fmt_uuid[10],
  4743. entry->fmt_uuid[11],
  4744. entry->fmt_uuid[12],
  4745. entry->fmt_uuid[13],
  4746. entry->fmt_uuid[14],
  4747. entry->fmt_uuid[15],
  4748. entry->fmt_name);
  4749. }
  4750. spin_unlock(&pfm_buffer_fmt_lock);
  4751. }
  4752. static int
  4753. pfm_proc_show(struct seq_file *m, void *v)
  4754. {
  4755. unsigned long psr;
  4756. unsigned int i;
  4757. int cpu;
  4758. if (v == PFM_PROC_SHOW_HEADER) {
  4759. pfm_proc_show_header(m);
  4760. return 0;
  4761. }
  4762. /* show info for CPU (v - 1) */
  4763. cpu = (long)v - 1;
  4764. seq_printf(m,
  4765. "CPU%-2d overflow intrs : %lu\n"
  4766. "CPU%-2d overflow cycles : %lu\n"
  4767. "CPU%-2d overflow min : %lu\n"
  4768. "CPU%-2d overflow max : %lu\n"
  4769. "CPU%-2d smpl handler calls : %lu\n"
  4770. "CPU%-2d smpl handler cycles : %lu\n"
  4771. "CPU%-2d spurious intrs : %lu\n"
  4772. "CPU%-2d replay intrs : %lu\n"
  4773. "CPU%-2d syst_wide : %d\n"
  4774. "CPU%-2d dcr_pp : %d\n"
  4775. "CPU%-2d exclude idle : %d\n"
  4776. "CPU%-2d owner : %d\n"
  4777. "CPU%-2d context : %p\n"
  4778. "CPU%-2d activations : %lu\n",
  4779. cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
  4780. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
  4781. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
  4782. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
  4783. cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
  4784. cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
  4785. cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
  4786. cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
  4787. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
  4788. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
  4789. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
  4790. cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
  4791. cpu, pfm_get_cpu_data(pmu_ctx, cpu),
  4792. cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
  4793. if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
  4794. psr = pfm_get_psr();
  4795. ia64_srlz_d();
  4796. seq_printf(m,
  4797. "CPU%-2d psr : 0x%lx\n"
  4798. "CPU%-2d pmc0 : 0x%lx\n",
  4799. cpu, psr,
  4800. cpu, ia64_get_pmc(0));
  4801. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  4802. if (PMC_IS_COUNTING(i) == 0) continue;
  4803. seq_printf(m,
  4804. "CPU%-2d pmc%u : 0x%lx\n"
  4805. "CPU%-2d pmd%u : 0x%lx\n",
  4806. cpu, i, ia64_get_pmc(i),
  4807. cpu, i, ia64_get_pmd(i));
  4808. }
  4809. }
  4810. return 0;
  4811. }
  4812. const struct seq_operations pfm_seq_ops = {
  4813. .start = pfm_proc_start,
  4814. .next = pfm_proc_next,
  4815. .stop = pfm_proc_stop,
  4816. .show = pfm_proc_show
  4817. };
  4818. static int
  4819. pfm_proc_open(struct inode *inode, struct file *file)
  4820. {
  4821. return seq_open(file, &pfm_seq_ops);
  4822. }
  4823. /*
  4824. * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
  4825. * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
  4826. * is active or inactive based on mode. We must rely on the value in
  4827. * local_cpu_data->pfm_syst_info
  4828. */
  4829. void
  4830. pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
  4831. {
  4832. struct pt_regs *regs;
  4833. unsigned long dcr;
  4834. unsigned long dcr_pp;
  4835. dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
  4836. /*
  4837. * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
  4838. * on every CPU, so we can rely on the pid to identify the idle task.
  4839. */
  4840. if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
  4841. regs = task_pt_regs(task);
  4842. ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
  4843. return;
  4844. }
  4845. /*
  4846. * if monitoring has started
  4847. */
  4848. if (dcr_pp) {
  4849. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  4850. /*
  4851. * context switching in?
  4852. */
  4853. if (is_ctxswin) {
  4854. /* mask monitoring for the idle task */
  4855. ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
  4856. pfm_clear_psr_pp();
  4857. ia64_srlz_i();
  4858. return;
  4859. }
  4860. /*
  4861. * context switching out
  4862. * restore monitoring for next task
  4863. *
  4864. * Due to inlining this odd if-then-else construction generates
  4865. * better code.
  4866. */
  4867. ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
  4868. pfm_set_psr_pp();
  4869. ia64_srlz_i();
  4870. }
  4871. }
  4872. #ifdef CONFIG_SMP
  4873. static void
  4874. pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
  4875. {
  4876. struct task_struct *task = ctx->ctx_task;
  4877. ia64_psr(regs)->up = 0;
  4878. ia64_psr(regs)->sp = 1;
  4879. if (GET_PMU_OWNER() == task) {
  4880. DPRINT(("cleared ownership for [%d]\n",
  4881. task_pid_nr(ctx->ctx_task)));
  4882. SET_PMU_OWNER(NULL, NULL);
  4883. }
  4884. /*
  4885. * disconnect the task from the context and vice-versa
  4886. */
  4887. PFM_SET_WORK_PENDING(task, 0);
  4888. task->thread.pfm_context = NULL;
  4889. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  4890. DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
  4891. }
  4892. /*
  4893. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  4894. */
  4895. void
  4896. pfm_save_regs(struct task_struct *task)
  4897. {
  4898. pfm_context_t *ctx;
  4899. unsigned long flags;
  4900. u64 psr;
  4901. ctx = PFM_GET_CTX(task);
  4902. if (ctx == NULL) return;
  4903. /*
  4904. * we always come here with interrupts ALREADY disabled by
  4905. * the scheduler. So we simply need to protect against concurrent
  4906. * access, not CPU concurrency.
  4907. */
  4908. flags = pfm_protect_ctx_ctxsw(ctx);
  4909. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4910. struct pt_regs *regs = task_pt_regs(task);
  4911. pfm_clear_psr_up();
  4912. pfm_force_cleanup(ctx, regs);
  4913. BUG_ON(ctx->ctx_smpl_hdr);
  4914. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4915. pfm_context_free(ctx);
  4916. return;
  4917. }
  4918. /*
  4919. * save current PSR: needed because we modify it
  4920. */
  4921. ia64_srlz_d();
  4922. psr = pfm_get_psr();
  4923. BUG_ON(psr & (IA64_PSR_I));
  4924. /*
  4925. * stop monitoring:
  4926. * This is the last instruction which may generate an overflow
  4927. *
  4928. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4929. * It will be restored from ipsr when going back to user level
  4930. */
  4931. pfm_clear_psr_up();
  4932. /*
  4933. * keep a copy of psr.up (for reload)
  4934. */
  4935. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4936. /*
  4937. * release ownership of this PMU.
  4938. * PM interrupts are masked, so nothing
  4939. * can happen.
  4940. */
  4941. SET_PMU_OWNER(NULL, NULL);
  4942. /*
  4943. * we systematically save the PMD as we have no
  4944. * guarantee we will be schedule at that same
  4945. * CPU again.
  4946. */
  4947. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  4948. /*
  4949. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  4950. * we will need it on the restore path to check
  4951. * for pending overflow.
  4952. */
  4953. ctx->th_pmcs[0] = ia64_get_pmc(0);
  4954. /*
  4955. * unfreeze PMU if had pending overflows
  4956. */
  4957. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  4958. /*
  4959. * finally, allow context access.
  4960. * interrupts will still be masked after this call.
  4961. */
  4962. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4963. }
  4964. #else /* !CONFIG_SMP */
  4965. void
  4966. pfm_save_regs(struct task_struct *task)
  4967. {
  4968. pfm_context_t *ctx;
  4969. u64 psr;
  4970. ctx = PFM_GET_CTX(task);
  4971. if (ctx == NULL) return;
  4972. /*
  4973. * save current PSR: needed because we modify it
  4974. */
  4975. psr = pfm_get_psr();
  4976. BUG_ON(psr & (IA64_PSR_I));
  4977. /*
  4978. * stop monitoring:
  4979. * This is the last instruction which may generate an overflow
  4980. *
  4981. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4982. * It will be restored from ipsr when going back to user level
  4983. */
  4984. pfm_clear_psr_up();
  4985. /*
  4986. * keep a copy of psr.up (for reload)
  4987. */
  4988. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4989. }
  4990. static void
  4991. pfm_lazy_save_regs (struct task_struct *task)
  4992. {
  4993. pfm_context_t *ctx;
  4994. unsigned long flags;
  4995. { u64 psr = pfm_get_psr();
  4996. BUG_ON(psr & IA64_PSR_UP);
  4997. }
  4998. ctx = PFM_GET_CTX(task);
  4999. /*
  5000. * we need to mask PMU overflow here to
  5001. * make sure that we maintain pmc0 until
  5002. * we save it. overflow interrupts are
  5003. * treated as spurious if there is no
  5004. * owner.
  5005. *
  5006. * XXX: I don't think this is necessary
  5007. */
  5008. PROTECT_CTX(ctx,flags);
  5009. /*
  5010. * release ownership of this PMU.
  5011. * must be done before we save the registers.
  5012. *
  5013. * after this call any PMU interrupt is treated
  5014. * as spurious.
  5015. */
  5016. SET_PMU_OWNER(NULL, NULL);
  5017. /*
  5018. * save all the pmds we use
  5019. */
  5020. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  5021. /*
  5022. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  5023. * it is needed to check for pended overflow
  5024. * on the restore path
  5025. */
  5026. ctx->th_pmcs[0] = ia64_get_pmc(0);
  5027. /*
  5028. * unfreeze PMU if had pending overflows
  5029. */
  5030. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  5031. /*
  5032. * now get can unmask PMU interrupts, they will
  5033. * be treated as purely spurious and we will not
  5034. * lose any information
  5035. */
  5036. UNPROTECT_CTX(ctx,flags);
  5037. }
  5038. #endif /* CONFIG_SMP */
  5039. #ifdef CONFIG_SMP
  5040. /*
  5041. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  5042. */
  5043. void
  5044. pfm_load_regs (struct task_struct *task)
  5045. {
  5046. pfm_context_t *ctx;
  5047. unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
  5048. unsigned long flags;
  5049. u64 psr, psr_up;
  5050. int need_irq_resend;
  5051. ctx = PFM_GET_CTX(task);
  5052. if (unlikely(ctx == NULL)) return;
  5053. BUG_ON(GET_PMU_OWNER());
  5054. /*
  5055. * possible on unload
  5056. */
  5057. if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
  5058. /*
  5059. * we always come here with interrupts ALREADY disabled by
  5060. * the scheduler. So we simply need to protect against concurrent
  5061. * access, not CPU concurrency.
  5062. */
  5063. flags = pfm_protect_ctx_ctxsw(ctx);
  5064. psr = pfm_get_psr();
  5065. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5066. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5067. BUG_ON(psr & IA64_PSR_I);
  5068. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
  5069. struct pt_regs *regs = task_pt_regs(task);
  5070. BUG_ON(ctx->ctx_smpl_hdr);
  5071. pfm_force_cleanup(ctx, regs);
  5072. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5073. /*
  5074. * this one (kmalloc'ed) is fine with interrupts disabled
  5075. */
  5076. pfm_context_free(ctx);
  5077. return;
  5078. }
  5079. /*
  5080. * we restore ALL the debug registers to avoid picking up
  5081. * stale state.
  5082. */
  5083. if (ctx->ctx_fl_using_dbreg) {
  5084. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5085. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5086. }
  5087. /*
  5088. * retrieve saved psr.up
  5089. */
  5090. psr_up = ctx->ctx_saved_psr_up;
  5091. /*
  5092. * if we were the last user of the PMU on that CPU,
  5093. * then nothing to do except restore psr
  5094. */
  5095. if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
  5096. /*
  5097. * retrieve partial reload masks (due to user modifications)
  5098. */
  5099. pmc_mask = ctx->ctx_reload_pmcs[0];
  5100. pmd_mask = ctx->ctx_reload_pmds[0];
  5101. } else {
  5102. /*
  5103. * To avoid leaking information to the user level when psr.sp=0,
  5104. * we must reload ALL implemented pmds (even the ones we don't use).
  5105. * In the kernel we only allow PFM_READ_PMDS on registers which
  5106. * we initialized or requested (sampling) so there is no risk there.
  5107. */
  5108. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5109. /*
  5110. * ALL accessible PMCs are systematically reloaded, unused registers
  5111. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5112. * up stale configuration.
  5113. *
  5114. * PMC0 is never in the mask. It is always restored separately.
  5115. */
  5116. pmc_mask = ctx->ctx_all_pmcs[0];
  5117. }
  5118. /*
  5119. * when context is MASKED, we will restore PMC with plm=0
  5120. * and PMD with stale information, but that's ok, nothing
  5121. * will be captured.
  5122. *
  5123. * XXX: optimize here
  5124. */
  5125. if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5126. if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5127. /*
  5128. * check for pending overflow at the time the state
  5129. * was saved.
  5130. */
  5131. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5132. /*
  5133. * reload pmc0 with the overflow information
  5134. * On McKinley PMU, this will trigger a PMU interrupt
  5135. */
  5136. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5137. ia64_srlz_d();
  5138. ctx->th_pmcs[0] = 0UL;
  5139. /*
  5140. * will replay the PMU interrupt
  5141. */
  5142. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5143. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5144. }
  5145. /*
  5146. * we just did a reload, so we reset the partial reload fields
  5147. */
  5148. ctx->ctx_reload_pmcs[0] = 0UL;
  5149. ctx->ctx_reload_pmds[0] = 0UL;
  5150. SET_LAST_CPU(ctx, smp_processor_id());
  5151. /*
  5152. * dump activation value for this PMU
  5153. */
  5154. INC_ACTIVATION();
  5155. /*
  5156. * record current activation for this context
  5157. */
  5158. SET_ACTIVATION(ctx);
  5159. /*
  5160. * establish new ownership.
  5161. */
  5162. SET_PMU_OWNER(task, ctx);
  5163. /*
  5164. * restore the psr.up bit. measurement
  5165. * is active again.
  5166. * no PMU interrupt can happen at this point
  5167. * because we still have interrupts disabled.
  5168. */
  5169. if (likely(psr_up)) pfm_set_psr_up();
  5170. /*
  5171. * allow concurrent access to context
  5172. */
  5173. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5174. }
  5175. #else /* !CONFIG_SMP */
  5176. /*
  5177. * reload PMU state for UP kernels
  5178. * in 2.5 we come here with interrupts disabled
  5179. */
  5180. void
  5181. pfm_load_regs (struct task_struct *task)
  5182. {
  5183. pfm_context_t *ctx;
  5184. struct task_struct *owner;
  5185. unsigned long pmd_mask, pmc_mask;
  5186. u64 psr, psr_up;
  5187. int need_irq_resend;
  5188. owner = GET_PMU_OWNER();
  5189. ctx = PFM_GET_CTX(task);
  5190. psr = pfm_get_psr();
  5191. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5192. BUG_ON(psr & IA64_PSR_I);
  5193. /*
  5194. * we restore ALL the debug registers to avoid picking up
  5195. * stale state.
  5196. *
  5197. * This must be done even when the task is still the owner
  5198. * as the registers may have been modified via ptrace()
  5199. * (not perfmon) by the previous task.
  5200. */
  5201. if (ctx->ctx_fl_using_dbreg) {
  5202. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5203. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5204. }
  5205. /*
  5206. * retrieved saved psr.up
  5207. */
  5208. psr_up = ctx->ctx_saved_psr_up;
  5209. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5210. /*
  5211. * short path, our state is still there, just
  5212. * need to restore psr and we go
  5213. *
  5214. * we do not touch either PMC nor PMD. the psr is not touched
  5215. * by the overflow_handler. So we are safe w.r.t. to interrupt
  5216. * concurrency even without interrupt masking.
  5217. */
  5218. if (likely(owner == task)) {
  5219. if (likely(psr_up)) pfm_set_psr_up();
  5220. return;
  5221. }
  5222. /*
  5223. * someone else is still using the PMU, first push it out and
  5224. * then we'll be able to install our stuff !
  5225. *
  5226. * Upon return, there will be no owner for the current PMU
  5227. */
  5228. if (owner) pfm_lazy_save_regs(owner);
  5229. /*
  5230. * To avoid leaking information to the user level when psr.sp=0,
  5231. * we must reload ALL implemented pmds (even the ones we don't use).
  5232. * In the kernel we only allow PFM_READ_PMDS on registers which
  5233. * we initialized or requested (sampling) so there is no risk there.
  5234. */
  5235. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5236. /*
  5237. * ALL accessible PMCs are systematically reloaded, unused registers
  5238. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5239. * up stale configuration.
  5240. *
  5241. * PMC0 is never in the mask. It is always restored separately
  5242. */
  5243. pmc_mask = ctx->ctx_all_pmcs[0];
  5244. pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5245. pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5246. /*
  5247. * check for pending overflow at the time the state
  5248. * was saved.
  5249. */
  5250. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5251. /*
  5252. * reload pmc0 with the overflow information
  5253. * On McKinley PMU, this will trigger a PMU interrupt
  5254. */
  5255. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5256. ia64_srlz_d();
  5257. ctx->th_pmcs[0] = 0UL;
  5258. /*
  5259. * will replay the PMU interrupt
  5260. */
  5261. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5262. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5263. }
  5264. /*
  5265. * establish new ownership.
  5266. */
  5267. SET_PMU_OWNER(task, ctx);
  5268. /*
  5269. * restore the psr.up bit. measurement
  5270. * is active again.
  5271. * no PMU interrupt can happen at this point
  5272. * because we still have interrupts disabled.
  5273. */
  5274. if (likely(psr_up)) pfm_set_psr_up();
  5275. }
  5276. #endif /* CONFIG_SMP */
  5277. /*
  5278. * this function assumes monitoring is stopped
  5279. */
  5280. static void
  5281. pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
  5282. {
  5283. u64 pmc0;
  5284. unsigned long mask2, val, pmd_val, ovfl_val;
  5285. int i, can_access_pmu = 0;
  5286. int is_self;
  5287. /*
  5288. * is the caller the task being monitored (or which initiated the
  5289. * session for system wide measurements)
  5290. */
  5291. is_self = ctx->ctx_task == task ? 1 : 0;
  5292. /*
  5293. * can access PMU is task is the owner of the PMU state on the current CPU
  5294. * or if we are running on the CPU bound to the context in system-wide mode
  5295. * (that is not necessarily the task the context is attached to in this mode).
  5296. * In system-wide we always have can_access_pmu true because a task running on an
  5297. * invalid processor is flagged earlier in the call stack (see pfm_stop).
  5298. */
  5299. can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
  5300. if (can_access_pmu) {
  5301. /*
  5302. * Mark the PMU as not owned
  5303. * This will cause the interrupt handler to do nothing in case an overflow
  5304. * interrupt was in-flight
  5305. * This also guarantees that pmc0 will contain the final state
  5306. * It virtually gives us full control on overflow processing from that point
  5307. * on.
  5308. */
  5309. SET_PMU_OWNER(NULL, NULL);
  5310. DPRINT(("releasing ownership\n"));
  5311. /*
  5312. * read current overflow status:
  5313. *
  5314. * we are guaranteed to read the final stable state
  5315. */
  5316. ia64_srlz_d();
  5317. pmc0 = ia64_get_pmc(0); /* slow */
  5318. /*
  5319. * reset freeze bit, overflow status information destroyed
  5320. */
  5321. pfm_unfreeze_pmu();
  5322. } else {
  5323. pmc0 = ctx->th_pmcs[0];
  5324. /*
  5325. * clear whatever overflow status bits there were
  5326. */
  5327. ctx->th_pmcs[0] = 0;
  5328. }
  5329. ovfl_val = pmu_conf->ovfl_val;
  5330. /*
  5331. * we save all the used pmds
  5332. * we take care of overflows for counting PMDs
  5333. *
  5334. * XXX: sampling situation is not taken into account here
  5335. */
  5336. mask2 = ctx->ctx_used_pmds[0];
  5337. DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
  5338. for (i = 0; mask2; i++, mask2>>=1) {
  5339. /* skip non used pmds */
  5340. if ((mask2 & 0x1) == 0) continue;
  5341. /*
  5342. * can access PMU always true in system wide mode
  5343. */
  5344. val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
  5345. if (PMD_IS_COUNTING(i)) {
  5346. DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
  5347. task_pid_nr(task),
  5348. i,
  5349. ctx->ctx_pmds[i].val,
  5350. val & ovfl_val));
  5351. /*
  5352. * we rebuild the full 64 bit value of the counter
  5353. */
  5354. val = ctx->ctx_pmds[i].val + (val & ovfl_val);
  5355. /*
  5356. * now everything is in ctx_pmds[] and we need
  5357. * to clear the saved context from save_regs() such that
  5358. * pfm_read_pmds() gets the correct value
  5359. */
  5360. pmd_val = 0UL;
  5361. /*
  5362. * take care of overflow inline
  5363. */
  5364. if (pmc0 & (1UL << i)) {
  5365. val += 1 + ovfl_val;
  5366. DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
  5367. }
  5368. }
  5369. DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
  5370. if (is_self) ctx->th_pmds[i] = pmd_val;
  5371. ctx->ctx_pmds[i].val = val;
  5372. }
  5373. }
  5374. static struct irqaction perfmon_irqaction = {
  5375. .handler = pfm_interrupt_handler,
  5376. .flags = IRQF_DISABLED,
  5377. .name = "perfmon"
  5378. };
  5379. static void
  5380. pfm_alt_save_pmu_state(void *data)
  5381. {
  5382. struct pt_regs *regs;
  5383. regs = task_pt_regs(current);
  5384. DPRINT(("called\n"));
  5385. /*
  5386. * should not be necessary but
  5387. * let's take not risk
  5388. */
  5389. pfm_clear_psr_up();
  5390. pfm_clear_psr_pp();
  5391. ia64_psr(regs)->pp = 0;
  5392. /*
  5393. * This call is required
  5394. * May cause a spurious interrupt on some processors
  5395. */
  5396. pfm_freeze_pmu();
  5397. ia64_srlz_d();
  5398. }
  5399. void
  5400. pfm_alt_restore_pmu_state(void *data)
  5401. {
  5402. struct pt_regs *regs;
  5403. regs = task_pt_regs(current);
  5404. DPRINT(("called\n"));
  5405. /*
  5406. * put PMU back in state expected
  5407. * by perfmon
  5408. */
  5409. pfm_clear_psr_up();
  5410. pfm_clear_psr_pp();
  5411. ia64_psr(regs)->pp = 0;
  5412. /*
  5413. * perfmon runs with PMU unfrozen at all times
  5414. */
  5415. pfm_unfreeze_pmu();
  5416. ia64_srlz_d();
  5417. }
  5418. int
  5419. pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5420. {
  5421. int ret, i;
  5422. int reserve_cpu;
  5423. /* some sanity checks */
  5424. if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
  5425. /* do the easy test first */
  5426. if (pfm_alt_intr_handler) return -EBUSY;
  5427. /* one at a time in the install or remove, just fail the others */
  5428. if (!spin_trylock(&pfm_alt_install_check)) {
  5429. return -EBUSY;
  5430. }
  5431. /* reserve our session */
  5432. for_each_online_cpu(reserve_cpu) {
  5433. ret = pfm_reserve_session(NULL, 1, reserve_cpu);
  5434. if (ret) goto cleanup_reserve;
  5435. }
  5436. /* save the current system wide pmu states */
  5437. ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
  5438. if (ret) {
  5439. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5440. goto cleanup_reserve;
  5441. }
  5442. /* officially change to the alternate interrupt handler */
  5443. pfm_alt_intr_handler = hdl;
  5444. spin_unlock(&pfm_alt_install_check);
  5445. return 0;
  5446. cleanup_reserve:
  5447. for_each_online_cpu(i) {
  5448. /* don't unreserve more than we reserved */
  5449. if (i >= reserve_cpu) break;
  5450. pfm_unreserve_session(NULL, 1, i);
  5451. }
  5452. spin_unlock(&pfm_alt_install_check);
  5453. return ret;
  5454. }
  5455. EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
  5456. int
  5457. pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5458. {
  5459. int i;
  5460. int ret;
  5461. if (hdl == NULL) return -EINVAL;
  5462. /* cannot remove someone else's handler! */
  5463. if (pfm_alt_intr_handler != hdl) return -EINVAL;
  5464. /* one at a time in the install or remove, just fail the others */
  5465. if (!spin_trylock(&pfm_alt_install_check)) {
  5466. return -EBUSY;
  5467. }
  5468. pfm_alt_intr_handler = NULL;
  5469. ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
  5470. if (ret) {
  5471. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5472. }
  5473. for_each_online_cpu(i) {
  5474. pfm_unreserve_session(NULL, 1, i);
  5475. }
  5476. spin_unlock(&pfm_alt_install_check);
  5477. return 0;
  5478. }
  5479. EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
  5480. /*
  5481. * perfmon initialization routine, called from the initcall() table
  5482. */
  5483. static int init_pfm_fs(void);
  5484. static int __init
  5485. pfm_probe_pmu(void)
  5486. {
  5487. pmu_config_t **p;
  5488. int family;
  5489. family = local_cpu_data->family;
  5490. p = pmu_confs;
  5491. while(*p) {
  5492. if ((*p)->probe) {
  5493. if ((*p)->probe() == 0) goto found;
  5494. } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
  5495. goto found;
  5496. }
  5497. p++;
  5498. }
  5499. return -1;
  5500. found:
  5501. pmu_conf = *p;
  5502. return 0;
  5503. }
  5504. static const struct file_operations pfm_proc_fops = {
  5505. .open = pfm_proc_open,
  5506. .read = seq_read,
  5507. .llseek = seq_lseek,
  5508. .release = seq_release,
  5509. };
  5510. int __init
  5511. pfm_init(void)
  5512. {
  5513. unsigned int n, n_counters, i;
  5514. printk("perfmon: version %u.%u IRQ %u\n",
  5515. PFM_VERSION_MAJ,
  5516. PFM_VERSION_MIN,
  5517. IA64_PERFMON_VECTOR);
  5518. if (pfm_probe_pmu()) {
  5519. printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
  5520. local_cpu_data->family);
  5521. return -ENODEV;
  5522. }
  5523. /*
  5524. * compute the number of implemented PMD/PMC from the
  5525. * description tables
  5526. */
  5527. n = 0;
  5528. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  5529. if (PMC_IS_IMPL(i) == 0) continue;
  5530. pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
  5531. n++;
  5532. }
  5533. pmu_conf->num_pmcs = n;
  5534. n = 0; n_counters = 0;
  5535. for (i=0; PMD_IS_LAST(i) == 0; i++) {
  5536. if (PMD_IS_IMPL(i) == 0) continue;
  5537. pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
  5538. n++;
  5539. if (PMD_IS_COUNTING(i)) n_counters++;
  5540. }
  5541. pmu_conf->num_pmds = n;
  5542. pmu_conf->num_counters = n_counters;
  5543. /*
  5544. * sanity checks on the number of debug registers
  5545. */
  5546. if (pmu_conf->use_rr_dbregs) {
  5547. if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
  5548. printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
  5549. pmu_conf = NULL;
  5550. return -1;
  5551. }
  5552. if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
  5553. printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
  5554. pmu_conf = NULL;
  5555. return -1;
  5556. }
  5557. }
  5558. printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
  5559. pmu_conf->pmu_name,
  5560. pmu_conf->num_pmcs,
  5561. pmu_conf->num_pmds,
  5562. pmu_conf->num_counters,
  5563. ffz(pmu_conf->ovfl_val));
  5564. /* sanity check */
  5565. if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
  5566. printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
  5567. pmu_conf = NULL;
  5568. return -1;
  5569. }
  5570. /*
  5571. * create /proc/perfmon (mostly for debugging purposes)
  5572. */
  5573. perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
  5574. if (perfmon_dir == NULL) {
  5575. printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
  5576. pmu_conf = NULL;
  5577. return -1;
  5578. }
  5579. /*
  5580. * create /proc/sys/kernel/perfmon (for debugging purposes)
  5581. */
  5582. pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
  5583. /*
  5584. * initialize all our spinlocks
  5585. */
  5586. spin_lock_init(&pfm_sessions.pfs_lock);
  5587. spin_lock_init(&pfm_buffer_fmt_lock);
  5588. init_pfm_fs();
  5589. for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
  5590. return 0;
  5591. }
  5592. __initcall(pfm_init);
  5593. /*
  5594. * this function is called before pfm_init()
  5595. */
  5596. void
  5597. pfm_init_percpu (void)
  5598. {
  5599. static int first_time=1;
  5600. /*
  5601. * make sure no measurement is active
  5602. * (may inherit programmed PMCs from EFI).
  5603. */
  5604. pfm_clear_psr_pp();
  5605. pfm_clear_psr_up();
  5606. /*
  5607. * we run with the PMU not frozen at all times
  5608. */
  5609. pfm_unfreeze_pmu();
  5610. if (first_time) {
  5611. register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
  5612. first_time=0;
  5613. }
  5614. ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
  5615. ia64_srlz_d();
  5616. }
  5617. /*
  5618. * used for debug purposes only
  5619. */
  5620. void
  5621. dump_pmu_state(const char *from)
  5622. {
  5623. struct task_struct *task;
  5624. struct pt_regs *regs;
  5625. pfm_context_t *ctx;
  5626. unsigned long psr, dcr, info, flags;
  5627. int i, this_cpu;
  5628. local_irq_save(flags);
  5629. this_cpu = smp_processor_id();
  5630. regs = task_pt_regs(current);
  5631. info = PFM_CPUINFO_GET();
  5632. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  5633. if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
  5634. local_irq_restore(flags);
  5635. return;
  5636. }
  5637. printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
  5638. this_cpu,
  5639. from,
  5640. task_pid_nr(current),
  5641. regs->cr_iip,
  5642. current->comm);
  5643. task = GET_PMU_OWNER();
  5644. ctx = GET_PMU_CTX();
  5645. printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
  5646. psr = pfm_get_psr();
  5647. printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
  5648. this_cpu,
  5649. ia64_get_pmc(0),
  5650. psr & IA64_PSR_PP ? 1 : 0,
  5651. psr & IA64_PSR_UP ? 1 : 0,
  5652. dcr & IA64_DCR_PP ? 1 : 0,
  5653. info,
  5654. ia64_psr(regs)->up,
  5655. ia64_psr(regs)->pp);
  5656. ia64_psr(regs)->up = 0;
  5657. ia64_psr(regs)->pp = 0;
  5658. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  5659. if (PMC_IS_IMPL(i) == 0) continue;
  5660. printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
  5661. }
  5662. for (i=1; PMD_IS_LAST(i) == 0; i++) {
  5663. if (PMD_IS_IMPL(i) == 0) continue;
  5664. printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
  5665. }
  5666. if (ctx) {
  5667. printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
  5668. this_cpu,
  5669. ctx->ctx_state,
  5670. ctx->ctx_smpl_vaddr,
  5671. ctx->ctx_smpl_hdr,
  5672. ctx->ctx_msgq_head,
  5673. ctx->ctx_msgq_tail,
  5674. ctx->ctx_saved_psr_up);
  5675. }
  5676. local_irq_restore(flags);
  5677. }
  5678. /*
  5679. * called from process.c:copy_thread(). task is new child.
  5680. */
  5681. void
  5682. pfm_inherit(struct task_struct *task, struct pt_regs *regs)
  5683. {
  5684. struct thread_struct *thread;
  5685. DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
  5686. thread = &task->thread;
  5687. /*
  5688. * cut links inherited from parent (current)
  5689. */
  5690. thread->pfm_context = NULL;
  5691. PFM_SET_WORK_PENDING(task, 0);
  5692. /*
  5693. * the psr bits are already set properly in copy_threads()
  5694. */
  5695. }
  5696. #else /* !CONFIG_PERFMON */
  5697. asmlinkage long
  5698. sys_perfmonctl (int fd, int cmd, void *arg, int count)
  5699. {
  5700. return -ENOSYS;
  5701. }
  5702. #endif /* CONFIG_PERFMON */