smp.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. #include <linux/types.h>
  2. #include <asm/delay.h>
  3. #include <irq.h>
  4. #include <hwregs/intr_vect.h>
  5. #include <hwregs/intr_vect_defs.h>
  6. #include <asm/tlbflush.h>
  7. #include <asm/mmu_context.h>
  8. #include <hwregs/asm/mmu_defs_asm.h>
  9. #include <hwregs/supp_reg.h>
  10. #include <asm/atomic.h>
  11. #include <linux/err.h>
  12. #include <linux/init.h>
  13. #include <linux/timex.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/cpumask.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #define IPI_SCHEDULE 1
  20. #define IPI_CALL 2
  21. #define IPI_FLUSH_TLB 4
  22. #define IPI_BOOT 8
  23. #define FLUSH_ALL (void*)0xffffffff
  24. /* Vector of locks used for various atomic operations */
  25. spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED};
  26. /* CPU masks */
  27. cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  28. EXPORT_SYMBOL(phys_cpu_present_map);
  29. /* Variables used during SMP boot */
  30. volatile int cpu_now_booting = 0;
  31. volatile struct thread_info *smp_init_current_idle_thread;
  32. /* Variables used during IPI */
  33. static DEFINE_SPINLOCK(call_lock);
  34. static DEFINE_SPINLOCK(tlbstate_lock);
  35. struct call_data_struct {
  36. void (*func) (void *info);
  37. void *info;
  38. int wait;
  39. };
  40. static struct call_data_struct * call_data;
  41. static struct mm_struct* flush_mm;
  42. static struct vm_area_struct* flush_vma;
  43. static unsigned long flush_addr;
  44. /* Mode registers */
  45. static unsigned long irq_regs[NR_CPUS] = {
  46. regi_irq,
  47. regi_irq2
  48. };
  49. static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
  50. static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
  51. static struct irqaction irq_ipi = {
  52. .handler = crisv32_ipi_interrupt,
  53. .flags = IRQF_DISABLED,
  54. .name = "ipi",
  55. };
  56. extern void cris_mmu_init(void);
  57. extern void cris_timer_init(void);
  58. /* SMP initialization */
  59. void __init smp_prepare_cpus(unsigned int max_cpus)
  60. {
  61. int i;
  62. /* From now on we can expect IPIs so set them up */
  63. setup_irq(IPI_INTR_VECT, &irq_ipi);
  64. /* Mark all possible CPUs as present */
  65. for (i = 0; i < max_cpus; i++)
  66. cpu_set(i, phys_cpu_present_map);
  67. }
  68. void __devinit smp_prepare_boot_cpu(void)
  69. {
  70. /* PGD pointer has moved after per_cpu initialization so
  71. * update the MMU.
  72. */
  73. pgd_t **pgd;
  74. pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
  75. SUPP_BANK_SEL(1);
  76. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  77. SUPP_BANK_SEL(2);
  78. SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  79. set_cpu_online(0, true);
  80. cpu_set(0, phys_cpu_present_map);
  81. set_cpu_possible(0, true);
  82. }
  83. void __init smp_cpus_done(unsigned int max_cpus)
  84. {
  85. }
  86. /* Bring one cpu online.*/
  87. static int __init
  88. smp_boot_one_cpu(int cpuid)
  89. {
  90. unsigned timeout;
  91. struct task_struct *idle;
  92. cpumask_t cpu_mask = CPU_MASK_NONE;
  93. idle = fork_idle(cpuid);
  94. if (IS_ERR(idle))
  95. panic("SMP: fork failed for CPU:%d", cpuid);
  96. task_thread_info(idle)->cpu = cpuid;
  97. /* Information to the CPU that is about to boot */
  98. smp_init_current_idle_thread = task_thread_info(idle);
  99. cpu_now_booting = cpuid;
  100. /* Kick it */
  101. cpu_set(cpuid, cpu_online_map);
  102. cpu_set(cpuid, cpu_mask);
  103. send_ipi(IPI_BOOT, 0, cpu_mask);
  104. cpu_clear(cpuid, cpu_online_map);
  105. /* Wait for CPU to come online */
  106. for (timeout = 0; timeout < 10000; timeout++) {
  107. if(cpu_online(cpuid)) {
  108. cpu_now_booting = 0;
  109. smp_init_current_idle_thread = NULL;
  110. return 0; /* CPU online */
  111. }
  112. udelay(100);
  113. barrier();
  114. }
  115. put_task_struct(idle);
  116. idle = NULL;
  117. printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
  118. return -1;
  119. }
  120. /* Secondary CPUs starts using C here. Here we need to setup CPU
  121. * specific stuff such as the local timer and the MMU. */
  122. void __init smp_callin(void)
  123. {
  124. extern void cpu_idle(void);
  125. int cpu = cpu_now_booting;
  126. reg_intr_vect_rw_mask vect_mask = {0};
  127. /* Initialise the idle task for this CPU */
  128. atomic_inc(&init_mm.mm_count);
  129. current->active_mm = &init_mm;
  130. /* Set up MMU */
  131. cris_mmu_init();
  132. __flush_tlb_all();
  133. /* Setup local timer. */
  134. cris_timer_init();
  135. /* Enable IRQ and idle */
  136. REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
  137. unmask_irq(IPI_INTR_VECT);
  138. unmask_irq(TIMER0_INTR_VECT);
  139. preempt_disable();
  140. notify_cpu_starting(cpu);
  141. local_irq_enable();
  142. cpu_set(cpu, cpu_online_map);
  143. cpu_idle();
  144. }
  145. /* Stop execution on this CPU.*/
  146. void stop_this_cpu(void* dummy)
  147. {
  148. local_irq_disable();
  149. asm volatile("halt");
  150. }
  151. /* Other calls */
  152. void smp_send_stop(void)
  153. {
  154. smp_call_function(stop_this_cpu, NULL, 0);
  155. }
  156. int setup_profiling_timer(unsigned int multiplier)
  157. {
  158. return -EINVAL;
  159. }
  160. /* cache_decay_ticks is used by the scheduler to decide if a process
  161. * is "hot" on one CPU. A higher value means a higher penalty to move
  162. * a process to another CPU. Our cache is rather small so we report
  163. * 1 tick.
  164. */
  165. unsigned long cache_decay_ticks = 1;
  166. int __cpuinit __cpu_up(unsigned int cpu)
  167. {
  168. smp_boot_one_cpu(cpu);
  169. return cpu_online(cpu) ? 0 : -ENOSYS;
  170. }
  171. void smp_send_reschedule(int cpu)
  172. {
  173. cpumask_t cpu_mask = CPU_MASK_NONE;
  174. cpu_set(cpu, cpu_mask);
  175. send_ipi(IPI_SCHEDULE, 0, cpu_mask);
  176. }
  177. /* TLB flushing
  178. *
  179. * Flush needs to be done on the local CPU and on any other CPU that
  180. * may have the same mapping. The mm->cpu_vm_mask is used to keep track
  181. * of which CPUs that a specific process has been executed on.
  182. */
  183. void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
  184. {
  185. unsigned long flags;
  186. cpumask_t cpu_mask;
  187. spin_lock_irqsave(&tlbstate_lock, flags);
  188. cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
  189. cpu_clear(smp_processor_id(), cpu_mask);
  190. flush_mm = mm;
  191. flush_vma = vma;
  192. flush_addr = addr;
  193. send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
  194. spin_unlock_irqrestore(&tlbstate_lock, flags);
  195. }
  196. void flush_tlb_all(void)
  197. {
  198. __flush_tlb_all();
  199. flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
  200. }
  201. void flush_tlb_mm(struct mm_struct *mm)
  202. {
  203. __flush_tlb_mm(mm);
  204. flush_tlb_common(mm, FLUSH_ALL, 0);
  205. /* No more mappings in other CPUs */
  206. cpumask_clear(mm_cpumask(mm));
  207. cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
  208. }
  209. void flush_tlb_page(struct vm_area_struct *vma,
  210. unsigned long addr)
  211. {
  212. __flush_tlb_page(vma, addr);
  213. flush_tlb_common(vma->vm_mm, vma, addr);
  214. }
  215. /* Inter processor interrupts
  216. *
  217. * The IPIs are used for:
  218. * * Force a schedule on a CPU
  219. * * FLush TLB on other CPUs
  220. * * Call a function on other CPUs
  221. */
  222. int send_ipi(int vector, int wait, cpumask_t cpu_mask)
  223. {
  224. int i = 0;
  225. reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  226. int ret = 0;
  227. /* Calculate CPUs to send to. */
  228. cpus_and(cpu_mask, cpu_mask, cpu_online_map);
  229. /* Send the IPI. */
  230. for_each_cpu_mask(i, cpu_mask)
  231. {
  232. ipi.vector |= vector;
  233. REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
  234. }
  235. /* Wait for IPI to finish on other CPUS */
  236. if (wait) {
  237. for_each_cpu_mask(i, cpu_mask) {
  238. int j;
  239. for (j = 0 ; j < 1000; j++) {
  240. ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
  241. if (!ipi.vector)
  242. break;
  243. udelay(100);
  244. }
  245. /* Timeout? */
  246. if (ipi.vector) {
  247. printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
  248. ret = -ETIMEDOUT;
  249. dump_stack();
  250. }
  251. }
  252. }
  253. return ret;
  254. }
  255. /*
  256. * You must not call this function with disabled interrupts or from a
  257. * hardware interrupt handler or from a bottom half handler.
  258. */
  259. int smp_call_function(void (*func)(void *info), void *info, int wait)
  260. {
  261. cpumask_t cpu_mask = CPU_MASK_ALL;
  262. struct call_data_struct data;
  263. int ret;
  264. cpu_clear(smp_processor_id(), cpu_mask);
  265. WARN_ON(irqs_disabled());
  266. data.func = func;
  267. data.info = info;
  268. data.wait = wait;
  269. spin_lock(&call_lock);
  270. call_data = &data;
  271. ret = send_ipi(IPI_CALL, wait, cpu_mask);
  272. spin_unlock(&call_lock);
  273. return ret;
  274. }
  275. irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
  276. {
  277. void (*func) (void *info) = call_data->func;
  278. void *info = call_data->info;
  279. reg_intr_vect_rw_ipi ipi;
  280. ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
  281. if (ipi.vector & IPI_CALL) {
  282. func(info);
  283. }
  284. if (ipi.vector & IPI_FLUSH_TLB) {
  285. if (flush_mm == FLUSH_ALL)
  286. __flush_tlb_all();
  287. else if (flush_vma == FLUSH_ALL)
  288. __flush_tlb_mm(flush_mm);
  289. else
  290. __flush_tlb_page(flush_vma, flush_addr);
  291. }
  292. ipi.vector = 0;
  293. REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
  294. return IRQ_HANDLED;
  295. }