time-ts.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. /* Accelerators for sched_clock()
  23. * convert from cycles(64bits) => nanoseconds (64bits)
  24. * basic equation:
  25. * ns = cycles / (freq / ns_per_sec)
  26. * ns = cycles * (ns_per_sec / freq)
  27. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  28. * ns = cycles * (10^6 / cpu_khz)
  29. *
  30. * Then we use scaling math (suggested by george@mvista.com) to get:
  31. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  32. * ns = cycles * cyc2ns_scale / SC
  33. *
  34. * And since SC is a constant power of two, we can convert the div
  35. * into a shift.
  36. *
  37. * We can use khz divisor instead of mhz to keep a better precision, since
  38. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  39. * (mathieu.desnoyers@polymtl.ca)
  40. *
  41. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  42. */
  43. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  44. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  45. static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
  46. {
  47. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  48. }
  49. static struct clocksource bfin_cs_cycles = {
  50. .name = "bfin_cs_cycles",
  51. .rating = 400,
  52. .read = bfin_read_cycles,
  53. .mask = CLOCKSOURCE_MASK(64),
  54. .shift = CYC2NS_SCALE_FACTOR,
  55. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  56. };
  57. static inline unsigned long long bfin_cs_cycles_sched_clock(void)
  58. {
  59. return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
  60. bfin_cs_cycles.mult, bfin_cs_cycles.shift);
  61. }
  62. static int __init bfin_cs_cycles_init(void)
  63. {
  64. bfin_cs_cycles.mult = \
  65. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  66. if (clocksource_register(&bfin_cs_cycles))
  67. panic("failed to register clocksource");
  68. return 0;
  69. }
  70. #else
  71. # define bfin_cs_cycles_init()
  72. #endif
  73. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  74. void __init setup_gptimer0(void)
  75. {
  76. disable_gptimers(TIMER0bit);
  77. set_gptimer_config(TIMER0_id, \
  78. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  79. set_gptimer_period(TIMER0_id, -1);
  80. set_gptimer_pwidth(TIMER0_id, -2);
  81. SSYNC();
  82. enable_gptimers(TIMER0bit);
  83. }
  84. static cycle_t bfin_read_gptimer0(struct clocksource *cs)
  85. {
  86. return bfin_read_TIMER0_COUNTER();
  87. }
  88. static struct clocksource bfin_cs_gptimer0 = {
  89. .name = "bfin_cs_gptimer0",
  90. .rating = 350,
  91. .read = bfin_read_gptimer0,
  92. .mask = CLOCKSOURCE_MASK(32),
  93. .shift = CYC2NS_SCALE_FACTOR,
  94. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  95. };
  96. static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
  97. {
  98. return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
  99. bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
  100. }
  101. static int __init bfin_cs_gptimer0_init(void)
  102. {
  103. setup_gptimer0();
  104. bfin_cs_gptimer0.mult = \
  105. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  106. if (clocksource_register(&bfin_cs_gptimer0))
  107. panic("failed to register clocksource");
  108. return 0;
  109. }
  110. #else
  111. # define bfin_cs_gptimer0_init()
  112. #endif
  113. #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
  114. /* prefer to use cycles since it has higher rating */
  115. notrace unsigned long long sched_clock(void)
  116. {
  117. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  118. return bfin_cs_cycles_sched_clock();
  119. #else
  120. return bfin_cs_gptimer0_sched_clock();
  121. #endif
  122. }
  123. #endif
  124. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  125. __attribute__((l1_text))
  126. #endif
  127. irqreturn_t timer_interrupt(int irq, void *dev_id);
  128. static int bfin_timer_set_next_event(unsigned long, \
  129. struct clock_event_device *);
  130. static void bfin_timer_set_mode(enum clock_event_mode, \
  131. struct clock_event_device *);
  132. static struct clock_event_device clockevent_bfin = {
  133. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  134. .name = "bfin_gptimer0",
  135. .rating = 300,
  136. .irq = IRQ_TIMER0,
  137. #else
  138. .name = "bfin_core_timer",
  139. .rating = 350,
  140. .irq = IRQ_CORETMR,
  141. #endif
  142. .shift = 32,
  143. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  144. .set_next_event = bfin_timer_set_next_event,
  145. .set_mode = bfin_timer_set_mode,
  146. };
  147. static struct irqaction bfin_timer_irq = {
  148. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  149. .name = "Blackfin GPTimer0",
  150. #else
  151. .name = "Blackfin CoreTimer",
  152. #endif
  153. .flags = IRQF_DISABLED | IRQF_TIMER | \
  154. IRQF_IRQPOLL | IRQF_PERCPU,
  155. .handler = timer_interrupt,
  156. .dev_id = &clockevent_bfin,
  157. };
  158. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  159. static int bfin_timer_set_next_event(unsigned long cycles,
  160. struct clock_event_device *evt)
  161. {
  162. disable_gptimers(TIMER0bit);
  163. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  164. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  165. enable_gptimers(TIMER0bit);
  166. return 0;
  167. }
  168. static void bfin_timer_set_mode(enum clock_event_mode mode,
  169. struct clock_event_device *evt)
  170. {
  171. switch (mode) {
  172. case CLOCK_EVT_MODE_PERIODIC: {
  173. set_gptimer_config(TIMER0_id, \
  174. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  175. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  176. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  177. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  178. enable_gptimers(TIMER0bit);
  179. break;
  180. }
  181. case CLOCK_EVT_MODE_ONESHOT:
  182. disable_gptimers(TIMER0bit);
  183. set_gptimer_config(TIMER0_id, \
  184. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  185. set_gptimer_period(TIMER0_id, 0);
  186. break;
  187. case CLOCK_EVT_MODE_UNUSED:
  188. case CLOCK_EVT_MODE_SHUTDOWN:
  189. disable_gptimers(TIMER0bit);
  190. break;
  191. case CLOCK_EVT_MODE_RESUME:
  192. break;
  193. }
  194. }
  195. static void bfin_timer_ack(void)
  196. {
  197. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  198. }
  199. static void __init bfin_timer_init(void)
  200. {
  201. disable_gptimers(TIMER0bit);
  202. }
  203. static unsigned long __init bfin_clockevent_check(void)
  204. {
  205. setup_irq(IRQ_TIMER0, &bfin_timer_irq);
  206. return get_sclk();
  207. }
  208. #else /* CONFIG_TICKSOURCE_CORETMR */
  209. static int bfin_timer_set_next_event(unsigned long cycles,
  210. struct clock_event_device *evt)
  211. {
  212. bfin_write_TCNTL(TMPWR);
  213. CSYNC();
  214. bfin_write_TCOUNT(cycles);
  215. CSYNC();
  216. bfin_write_TCNTL(TMPWR | TMREN);
  217. return 0;
  218. }
  219. static void bfin_timer_set_mode(enum clock_event_mode mode,
  220. struct clock_event_device *evt)
  221. {
  222. switch (mode) {
  223. case CLOCK_EVT_MODE_PERIODIC: {
  224. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  225. bfin_write_TCNTL(TMPWR);
  226. CSYNC();
  227. bfin_write_TSCALE(TIME_SCALE - 1);
  228. bfin_write_TPERIOD(tcount);
  229. bfin_write_TCOUNT(tcount);
  230. CSYNC();
  231. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  232. break;
  233. }
  234. case CLOCK_EVT_MODE_ONESHOT:
  235. bfin_write_TCNTL(TMPWR);
  236. CSYNC();
  237. bfin_write_TSCALE(TIME_SCALE - 1);
  238. bfin_write_TPERIOD(0);
  239. bfin_write_TCOUNT(0);
  240. break;
  241. case CLOCK_EVT_MODE_UNUSED:
  242. case CLOCK_EVT_MODE_SHUTDOWN:
  243. bfin_write_TCNTL(0);
  244. CSYNC();
  245. break;
  246. case CLOCK_EVT_MODE_RESUME:
  247. break;
  248. }
  249. }
  250. static void bfin_timer_ack(void)
  251. {
  252. }
  253. static void __init bfin_timer_init(void)
  254. {
  255. /* power up the timer, but don't enable it just yet */
  256. bfin_write_TCNTL(TMPWR);
  257. CSYNC();
  258. /*
  259. * the TSCALE prescaler counter.
  260. */
  261. bfin_write_TSCALE(TIME_SCALE - 1);
  262. bfin_write_TPERIOD(0);
  263. bfin_write_TCOUNT(0);
  264. CSYNC();
  265. }
  266. static unsigned long __init bfin_clockevent_check(void)
  267. {
  268. setup_irq(IRQ_CORETMR, &bfin_timer_irq);
  269. return get_cclk() / TIME_SCALE;
  270. }
  271. void __init setup_core_timer(void)
  272. {
  273. bfin_timer_init();
  274. bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL);
  275. }
  276. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  277. /*
  278. * timer_interrupt() needs to keep up the real-time clock,
  279. * as well as call the "do_timer()" routine every clocktick
  280. */
  281. irqreturn_t timer_interrupt(int irq, void *dev_id)
  282. {
  283. struct clock_event_device *evt = dev_id;
  284. smp_mb();
  285. evt->event_handler(evt);
  286. bfin_timer_ack();
  287. return IRQ_HANDLED;
  288. }
  289. static int __init bfin_clockevent_init(void)
  290. {
  291. unsigned long timer_clk;
  292. timer_clk = bfin_clockevent_check();
  293. bfin_timer_init();
  294. clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift);
  295. clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin);
  296. clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin);
  297. clockevent_bfin.cpumask = cpumask_of(0);
  298. clockevents_register_device(&clockevent_bfin);
  299. return 0;
  300. }
  301. void __init time_init(void)
  302. {
  303. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  304. #ifdef CONFIG_RTC_DRV_BFIN
  305. /* [#2663] hack to filter junk RTC values that would cause
  306. * userspace to have to deal with time values greater than
  307. * 2^31 seconds (which uClibc cannot cope with yet)
  308. */
  309. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  310. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  311. bfin_write_RTC_STAT(0);
  312. }
  313. #endif
  314. /* Initialize xtime. From now on, xtime is updated with timer interrupts */
  315. xtime.tv_sec = secs_since_1970;
  316. xtime.tv_nsec = 0;
  317. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  318. bfin_cs_cycles_init();
  319. bfin_cs_gptimer0_init();
  320. bfin_clockevent_init();
  321. }