phy.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. void
  18. ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex,
  19. int regWrites)
  20. {
  21. REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
  22. }
  23. bool
  24. ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
  25. {
  26. struct ath_common *common = ath9k_hw_common(ah);
  27. u32 channelSel = 0;
  28. u32 bModeSynth = 0;
  29. u32 aModeRefSel = 0;
  30. u32 reg32 = 0;
  31. u16 freq;
  32. struct chan_centers centers;
  33. ath9k_hw_get_channel_centers(ah, chan, &centers);
  34. freq = centers.synth_center;
  35. if (freq < 4800) {
  36. u32 txctl;
  37. if (((freq - 2192) % 5) == 0) {
  38. channelSel = ((freq - 672) * 2 - 3040) / 10;
  39. bModeSynth = 0;
  40. } else if (((freq - 2224) % 5) == 0) {
  41. channelSel = ((freq - 704) * 2 - 3040) / 10;
  42. bModeSynth = 1;
  43. } else {
  44. ath_print(common, ATH_DBG_FATAL,
  45. "Invalid channel %u MHz\n", freq);
  46. return false;
  47. }
  48. channelSel = (channelSel << 2) & 0xff;
  49. channelSel = ath9k_hw_reverse_bits(channelSel, 8);
  50. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  51. if (freq == 2484) {
  52. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  53. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  54. } else {
  55. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  56. txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
  57. }
  58. } else if ((freq % 20) == 0 && freq >= 5120) {
  59. channelSel =
  60. ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
  61. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  62. } else if ((freq % 10) == 0) {
  63. channelSel =
  64. ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
  65. if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
  66. aModeRefSel = ath9k_hw_reverse_bits(2, 2);
  67. else
  68. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  69. } else if ((freq % 5) == 0) {
  70. channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
  71. aModeRefSel = ath9k_hw_reverse_bits(1, 2);
  72. } else {
  73. ath_print(common, ATH_DBG_FATAL,
  74. "Invalid channel %u MHz\n", freq);
  75. return false;
  76. }
  77. reg32 =
  78. (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
  79. (1 << 5) | 0x1;
  80. REG_WRITE(ah, AR_PHY(0x37), reg32);
  81. ah->curchan = chan;
  82. ah->curchan_rad_index = -1;
  83. return true;
  84. }
  85. void ath9k_hw_ar9280_set_channel(struct ath_hw *ah,
  86. struct ath9k_channel *chan)
  87. {
  88. u16 bMode, fracMode, aModeRefSel = 0;
  89. u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
  90. struct chan_centers centers;
  91. u32 refDivA = 24;
  92. ath9k_hw_get_channel_centers(ah, chan, &centers);
  93. freq = centers.synth_center;
  94. reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
  95. reg32 &= 0xc0000000;
  96. if (freq < 4800) {
  97. u32 txctl;
  98. int regWrites = 0;
  99. bMode = 1;
  100. fracMode = 1;
  101. aModeRefSel = 0;
  102. channelSel = (freq * 0x10000) / 15;
  103. if (AR_SREV_9287_11_OR_LATER(ah)) {
  104. if (freq == 2484) {
  105. REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
  106. 1, regWrites);
  107. } else {
  108. REG_WRITE_ARRAY(&ah->iniCckfirNormal,
  109. 1, regWrites);
  110. }
  111. } else {
  112. txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
  113. if (freq == 2484) {
  114. /* Enable channel spreading for channel 14 */
  115. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  116. txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
  117. } else {
  118. REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
  119. txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
  120. }
  121. }
  122. } else {
  123. bMode = 0;
  124. fracMode = 0;
  125. switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
  126. case 0:
  127. if ((freq % 20) == 0) {
  128. aModeRefSel = 3;
  129. } else if ((freq % 10) == 0) {
  130. aModeRefSel = 2;
  131. }
  132. if (aModeRefSel)
  133. break;
  134. case 1:
  135. default:
  136. aModeRefSel = 0;
  137. fracMode = 1;
  138. refDivA = 1;
  139. channelSel = (freq * 0x8000) / 15;
  140. REG_RMW_FIELD(ah, AR_AN_SYNTH9,
  141. AR_AN_SYNTH9_REFDIVA, refDivA);
  142. }
  143. if (!fracMode) {
  144. ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
  145. channelSel = ndiv & 0x1ff;
  146. channelFrac = (ndiv & 0xfffffe00) * 2;
  147. channelSel = (channelSel << 17) | channelFrac;
  148. }
  149. }
  150. reg32 = reg32 |
  151. (bMode << 29) |
  152. (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
  153. REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
  154. ah->curchan = chan;
  155. ah->curchan_rad_index = -1;
  156. }
  157. static void
  158. ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
  159. u32 numBits, u32 firstBit,
  160. u32 column)
  161. {
  162. u32 tmp32, mask, arrayEntry, lastBit;
  163. int32_t bitPosition, bitsLeft;
  164. tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
  165. arrayEntry = (firstBit - 1) / 8;
  166. bitPosition = (firstBit - 1) % 8;
  167. bitsLeft = numBits;
  168. while (bitsLeft > 0) {
  169. lastBit = (bitPosition + bitsLeft > 8) ?
  170. 8 : bitPosition + bitsLeft;
  171. mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
  172. (column * 8);
  173. rfBuf[arrayEntry] &= ~mask;
  174. rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
  175. (column * 8)) & mask;
  176. bitsLeft -= 8 - bitPosition;
  177. tmp32 = tmp32 >> (8 - bitPosition);
  178. bitPosition = 0;
  179. arrayEntry++;
  180. }
  181. }
  182. bool
  183. ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
  184. u16 modesIndex)
  185. {
  186. u32 eepMinorRev;
  187. u32 ob5GHz = 0, db5GHz = 0;
  188. u32 ob2GHz = 0, db2GHz = 0;
  189. int regWrites = 0;
  190. if (AR_SREV_9280_10_OR_LATER(ah))
  191. return true;
  192. eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
  193. RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
  194. RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
  195. RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
  196. RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
  197. modesIndex);
  198. {
  199. int i;
  200. for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
  201. ah->analogBank6Data[i] =
  202. INI_RA(&ah->iniBank6TPC, i, modesIndex);
  203. }
  204. }
  205. if (eepMinorRev >= 2) {
  206. if (IS_CHAN_2GHZ(chan)) {
  207. ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
  208. db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
  209. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  210. ob2GHz, 3, 197, 0);
  211. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  212. db2GHz, 3, 194, 0);
  213. } else {
  214. ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
  215. db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
  216. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  217. ob5GHz, 3, 203, 0);
  218. ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
  219. db5GHz, 3, 200, 0);
  220. }
  221. }
  222. RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
  223. REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
  224. regWrites);
  225. REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
  226. regWrites);
  227. REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
  228. regWrites);
  229. REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
  230. regWrites);
  231. REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
  232. regWrites);
  233. REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
  234. regWrites);
  235. return true;
  236. }
  237. void
  238. ath9k_hw_rf_free(struct ath_hw *ah)
  239. {
  240. #define ATH_FREE_BANK(bank) do { \
  241. kfree(bank); \
  242. bank = NULL; \
  243. } while (0);
  244. ATH_FREE_BANK(ah->analogBank0Data);
  245. ATH_FREE_BANK(ah->analogBank1Data);
  246. ATH_FREE_BANK(ah->analogBank2Data);
  247. ATH_FREE_BANK(ah->analogBank3Data);
  248. ATH_FREE_BANK(ah->analogBank6Data);
  249. ATH_FREE_BANK(ah->analogBank6TPCData);
  250. ATH_FREE_BANK(ah->analogBank7Data);
  251. ATH_FREE_BANK(ah->addac5416_21);
  252. ATH_FREE_BANK(ah->bank6Temp);
  253. #undef ATH_FREE_BANK
  254. }
  255. bool ath9k_hw_init_rf(struct ath_hw *ah, int *status)
  256. {
  257. struct ath_common *common = ath9k_hw_common(ah);
  258. if (!AR_SREV_9280_10_OR_LATER(ah)) {
  259. ah->analogBank0Data =
  260. kzalloc((sizeof(u32) *
  261. ah->iniBank0.ia_rows), GFP_KERNEL);
  262. ah->analogBank1Data =
  263. kzalloc((sizeof(u32) *
  264. ah->iniBank1.ia_rows), GFP_KERNEL);
  265. ah->analogBank2Data =
  266. kzalloc((sizeof(u32) *
  267. ah->iniBank2.ia_rows), GFP_KERNEL);
  268. ah->analogBank3Data =
  269. kzalloc((sizeof(u32) *
  270. ah->iniBank3.ia_rows), GFP_KERNEL);
  271. ah->analogBank6Data =
  272. kzalloc((sizeof(u32) *
  273. ah->iniBank6.ia_rows), GFP_KERNEL);
  274. ah->analogBank6TPCData =
  275. kzalloc((sizeof(u32) *
  276. ah->iniBank6TPC.ia_rows), GFP_KERNEL);
  277. ah->analogBank7Data =
  278. kzalloc((sizeof(u32) *
  279. ah->iniBank7.ia_rows), GFP_KERNEL);
  280. if (ah->analogBank0Data == NULL
  281. || ah->analogBank1Data == NULL
  282. || ah->analogBank2Data == NULL
  283. || ah->analogBank3Data == NULL
  284. || ah->analogBank6Data == NULL
  285. || ah->analogBank6TPCData == NULL
  286. || ah->analogBank7Data == NULL) {
  287. ath_print(common, ATH_DBG_FATAL,
  288. "Cannot allocate RF banks\n");
  289. *status = -ENOMEM;
  290. return false;
  291. }
  292. ah->addac5416_21 =
  293. kzalloc((sizeof(u32) *
  294. ah->iniAddac.ia_rows *
  295. ah->iniAddac.ia_columns), GFP_KERNEL);
  296. if (ah->addac5416_21 == NULL) {
  297. ath_print(common, ATH_DBG_FATAL,
  298. "Cannot allocate addac5416_21\n");
  299. *status = -ENOMEM;
  300. return false;
  301. }
  302. ah->bank6Temp =
  303. kzalloc((sizeof(u32) *
  304. ah->iniBank6.ia_rows), GFP_KERNEL);
  305. if (ah->bank6Temp == NULL) {
  306. ath_print(common, ATH_DBG_FATAL,
  307. "Cannot allocate bank6Temp\n");
  308. *status = -ENOMEM;
  309. return false;
  310. }
  311. }
  312. return true;
  313. }
  314. void
  315. ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan)
  316. {
  317. int i, regWrites = 0;
  318. u32 bank6SelMask;
  319. u32 *bank6Temp = ah->bank6Temp;
  320. switch (ah->config.diversity_control) {
  321. case ATH9K_ANT_FIXED_A:
  322. bank6SelMask =
  323. (ah->config.antenna_switch_swap & ANTSWAP_AB) ?
  324. REDUCE_CHAIN_0 : REDUCE_CHAIN_1;
  325. break;
  326. case ATH9K_ANT_FIXED_B:
  327. bank6SelMask =
  328. (ah->config.antenna_switch_swap & ANTSWAP_AB) ?
  329. REDUCE_CHAIN_1 : REDUCE_CHAIN_0;
  330. break;
  331. case ATH9K_ANT_VARIABLE:
  332. return;
  333. break;
  334. default:
  335. return;
  336. break;
  337. }
  338. for (i = 0; i < ah->iniBank6.ia_rows; i++)
  339. bank6Temp[i] = ah->analogBank6Data[i];
  340. REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
  341. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
  342. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
  343. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
  344. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
  345. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
  346. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
  347. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
  348. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
  349. ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
  350. REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
  351. REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
  352. #ifdef ALTER_SWITCH
  353. REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
  354. (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
  355. | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
  356. #endif
  357. }