sched.c 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <asm/tlb.h>
  68. #include <asm/irq_regs.h>
  69. /*
  70. * Scheduler clock - returns current time in nanosec units.
  71. * This is default implementation.
  72. * Architectures and sub-architectures can override this.
  73. */
  74. unsigned long long __attribute__((weak)) sched_clock(void)
  75. {
  76. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  77. }
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. /*
  156. * shares assigned to a task group governs how much of cpu bandwidth
  157. * is allocated to the group. The more shares a group has, the more is
  158. * the cpu bandwidth allocated to it.
  159. *
  160. * For ex, lets say that there are three task groups, A, B and C which
  161. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  162. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  163. * should be:
  164. *
  165. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  166. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  167. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  168. *
  169. * The weight assigned to a task group's schedulable entities on every
  170. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  171. * group's shares. For ex: lets say that task group A has been
  172. * assigned shares of 1000 and there are two CPUs in a system. Then,
  173. *
  174. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  175. *
  176. * Note: It's not necessary that each of a task's group schedulable
  177. * entity have the same weight on all CPUs. If the group
  178. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  179. * better distribution of weight could be:
  180. *
  181. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  182. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  183. *
  184. * rebalance_shares() is responsible for distributing the shares of a
  185. * task groups like this among the group's schedulable entities across
  186. * cpus.
  187. *
  188. */
  189. unsigned long shares;
  190. struct rcu_head rcu;
  191. };
  192. /* Default task group's sched entity on each cpu */
  193. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  194. /* Default task group's cfs_rq on each cpu */
  195. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  196. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  197. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  198. /* task_group_mutex serializes add/remove of task groups and also changes to
  199. * a task group's cpu shares.
  200. */
  201. static DEFINE_MUTEX(task_group_mutex);
  202. /* doms_cur_mutex serializes access to doms_cur[] array */
  203. static DEFINE_MUTEX(doms_cur_mutex);
  204. #ifdef CONFIG_SMP
  205. /* kernel thread that runs rebalance_shares() periodically */
  206. static struct task_struct *lb_monitor_task;
  207. static int load_balance_monitor(void *unused);
  208. #endif
  209. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  210. /* Default task group.
  211. * Every task in system belong to this group at bootup.
  212. */
  213. struct task_group init_task_group = {
  214. .se = init_sched_entity_p,
  215. .cfs_rq = init_cfs_rq_p,
  216. };
  217. #ifdef CONFIG_FAIR_USER_SCHED
  218. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  219. #else
  220. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  221. #endif
  222. #define MIN_GROUP_SHARES 2
  223. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  224. /* return group to which a task belongs */
  225. static inline struct task_group *task_group(struct task_struct *p)
  226. {
  227. struct task_group *tg;
  228. #ifdef CONFIG_FAIR_USER_SCHED
  229. tg = p->user->tg;
  230. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  231. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  232. struct task_group, css);
  233. #else
  234. tg = &init_task_group;
  235. #endif
  236. return tg;
  237. }
  238. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  239. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  240. {
  241. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  242. p->se.parent = task_group(p)->se[cpu];
  243. }
  244. static inline void lock_task_group_list(void)
  245. {
  246. mutex_lock(&task_group_mutex);
  247. }
  248. static inline void unlock_task_group_list(void)
  249. {
  250. mutex_unlock(&task_group_mutex);
  251. }
  252. static inline void lock_doms_cur(void)
  253. {
  254. mutex_lock(&doms_cur_mutex);
  255. }
  256. static inline void unlock_doms_cur(void)
  257. {
  258. mutex_unlock(&doms_cur_mutex);
  259. }
  260. #else
  261. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  262. static inline void lock_task_group_list(void) { }
  263. static inline void unlock_task_group_list(void) { }
  264. static inline void lock_doms_cur(void) { }
  265. static inline void unlock_doms_cur(void) { }
  266. #endif /* CONFIG_FAIR_GROUP_SCHED */
  267. /* CFS-related fields in a runqueue */
  268. struct cfs_rq {
  269. struct load_weight load;
  270. unsigned long nr_running;
  271. u64 exec_clock;
  272. u64 min_vruntime;
  273. struct rb_root tasks_timeline;
  274. struct rb_node *rb_leftmost;
  275. struct rb_node *rb_load_balance_curr;
  276. /* 'curr' points to currently running entity on this cfs_rq.
  277. * It is set to NULL otherwise (i.e when none are currently running).
  278. */
  279. struct sched_entity *curr;
  280. unsigned long nr_spread_over;
  281. #ifdef CONFIG_FAIR_GROUP_SCHED
  282. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  283. /*
  284. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  285. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  286. * (like users, containers etc.)
  287. *
  288. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  289. * list is used during load balance.
  290. */
  291. struct list_head leaf_cfs_rq_list;
  292. struct task_group *tg; /* group that "owns" this runqueue */
  293. #endif
  294. };
  295. /* Real-Time classes' related field in a runqueue: */
  296. struct rt_rq {
  297. struct rt_prio_array active;
  298. int rt_load_balance_idx;
  299. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  300. unsigned long rt_nr_running;
  301. unsigned long rt_nr_migratory;
  302. /* highest queued rt task prio */
  303. int highest_prio;
  304. int overloaded;
  305. };
  306. #ifdef CONFIG_SMP
  307. /*
  308. * We add the notion of a root-domain which will be used to define per-domain
  309. * variables. Each exclusive cpuset essentially defines an island domain by
  310. * fully partitioning the member cpus from any other cpuset. Whenever a new
  311. * exclusive cpuset is created, we also create and attach a new root-domain
  312. * object.
  313. *
  314. */
  315. struct root_domain {
  316. atomic_t refcount;
  317. cpumask_t span;
  318. cpumask_t online;
  319. /*
  320. * The "RT overload" flag: it gets set if a CPU has more than
  321. * one runnable RT task.
  322. */
  323. cpumask_t rto_mask;
  324. atomic_t rto_count;
  325. };
  326. /*
  327. * By default the system creates a single root-domain with all cpus as
  328. * members (mimicking the global state we have today).
  329. */
  330. static struct root_domain def_root_domain;
  331. #endif
  332. /*
  333. * This is the main, per-CPU runqueue data structure.
  334. *
  335. * Locking rule: those places that want to lock multiple runqueues
  336. * (such as the load balancing or the thread migration code), lock
  337. * acquire operations must be ordered by ascending &runqueue.
  338. */
  339. struct rq {
  340. /* runqueue lock: */
  341. spinlock_t lock;
  342. /*
  343. * nr_running and cpu_load should be in the same cacheline because
  344. * remote CPUs use both these fields when doing load calculation.
  345. */
  346. unsigned long nr_running;
  347. #define CPU_LOAD_IDX_MAX 5
  348. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  349. unsigned char idle_at_tick;
  350. #ifdef CONFIG_NO_HZ
  351. unsigned char in_nohz_recently;
  352. #endif
  353. /* capture load from *all* tasks on this cpu: */
  354. struct load_weight load;
  355. unsigned long nr_load_updates;
  356. u64 nr_switches;
  357. struct cfs_rq cfs;
  358. #ifdef CONFIG_FAIR_GROUP_SCHED
  359. /* list of leaf cfs_rq on this cpu: */
  360. struct list_head leaf_cfs_rq_list;
  361. #endif
  362. struct rt_rq rt;
  363. /*
  364. * This is part of a global counter where only the total sum
  365. * over all CPUs matters. A task can increase this counter on
  366. * one CPU and if it got migrated afterwards it may decrease
  367. * it on another CPU. Always updated under the runqueue lock:
  368. */
  369. unsigned long nr_uninterruptible;
  370. struct task_struct *curr, *idle;
  371. unsigned long next_balance;
  372. struct mm_struct *prev_mm;
  373. u64 clock, prev_clock_raw;
  374. s64 clock_max_delta;
  375. unsigned int clock_warps, clock_overflows;
  376. u64 idle_clock;
  377. unsigned int clock_deep_idle_events;
  378. u64 tick_timestamp;
  379. atomic_t nr_iowait;
  380. #ifdef CONFIG_SMP
  381. struct root_domain *rd;
  382. struct sched_domain *sd;
  383. /* For active balancing */
  384. int active_balance;
  385. int push_cpu;
  386. /* cpu of this runqueue: */
  387. int cpu;
  388. struct task_struct *migration_thread;
  389. struct list_head migration_queue;
  390. #endif
  391. #ifdef CONFIG_SCHEDSTATS
  392. /* latency stats */
  393. struct sched_info rq_sched_info;
  394. /* sys_sched_yield() stats */
  395. unsigned int yld_exp_empty;
  396. unsigned int yld_act_empty;
  397. unsigned int yld_both_empty;
  398. unsigned int yld_count;
  399. /* schedule() stats */
  400. unsigned int sched_switch;
  401. unsigned int sched_count;
  402. unsigned int sched_goidle;
  403. /* try_to_wake_up() stats */
  404. unsigned int ttwu_count;
  405. unsigned int ttwu_local;
  406. /* BKL stats */
  407. unsigned int bkl_count;
  408. #endif
  409. struct lock_class_key rq_lock_key;
  410. };
  411. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  412. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  413. {
  414. rq->curr->sched_class->check_preempt_curr(rq, p);
  415. }
  416. static inline int cpu_of(struct rq *rq)
  417. {
  418. #ifdef CONFIG_SMP
  419. return rq->cpu;
  420. #else
  421. return 0;
  422. #endif
  423. }
  424. /*
  425. * Update the per-runqueue clock, as finegrained as the platform can give
  426. * us, but without assuming monotonicity, etc.:
  427. */
  428. static void __update_rq_clock(struct rq *rq)
  429. {
  430. u64 prev_raw = rq->prev_clock_raw;
  431. u64 now = sched_clock();
  432. s64 delta = now - prev_raw;
  433. u64 clock = rq->clock;
  434. #ifdef CONFIG_SCHED_DEBUG
  435. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  436. #endif
  437. /*
  438. * Protect against sched_clock() occasionally going backwards:
  439. */
  440. if (unlikely(delta < 0)) {
  441. clock++;
  442. rq->clock_warps++;
  443. } else {
  444. /*
  445. * Catch too large forward jumps too:
  446. */
  447. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  448. if (clock < rq->tick_timestamp + TICK_NSEC)
  449. clock = rq->tick_timestamp + TICK_NSEC;
  450. else
  451. clock++;
  452. rq->clock_overflows++;
  453. } else {
  454. if (unlikely(delta > rq->clock_max_delta))
  455. rq->clock_max_delta = delta;
  456. clock += delta;
  457. }
  458. }
  459. rq->prev_clock_raw = now;
  460. rq->clock = clock;
  461. }
  462. static void update_rq_clock(struct rq *rq)
  463. {
  464. if (likely(smp_processor_id() == cpu_of(rq)))
  465. __update_rq_clock(rq);
  466. }
  467. /*
  468. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  469. * See detach_destroy_domains: synchronize_sched for details.
  470. *
  471. * The domain tree of any CPU may only be accessed from within
  472. * preempt-disabled sections.
  473. */
  474. #define for_each_domain(cpu, __sd) \
  475. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  476. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  477. #define this_rq() (&__get_cpu_var(runqueues))
  478. #define task_rq(p) cpu_rq(task_cpu(p))
  479. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  480. /*
  481. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  482. */
  483. #ifdef CONFIG_SCHED_DEBUG
  484. # define const_debug __read_mostly
  485. #else
  486. # define const_debug static const
  487. #endif
  488. /*
  489. * Debugging: various feature bits
  490. */
  491. enum {
  492. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  493. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  494. SCHED_FEAT_START_DEBIT = 4,
  495. SCHED_FEAT_TREE_AVG = 8,
  496. SCHED_FEAT_APPROX_AVG = 16,
  497. };
  498. const_debug unsigned int sysctl_sched_features =
  499. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  500. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  501. SCHED_FEAT_START_DEBIT * 1 |
  502. SCHED_FEAT_TREE_AVG * 0 |
  503. SCHED_FEAT_APPROX_AVG * 0;
  504. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  505. /*
  506. * Number of tasks to iterate in a single balance run.
  507. * Limited because this is done with IRQs disabled.
  508. */
  509. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  510. /*
  511. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  512. * clock constructed from sched_clock():
  513. */
  514. unsigned long long cpu_clock(int cpu)
  515. {
  516. unsigned long long now;
  517. unsigned long flags;
  518. struct rq *rq;
  519. local_irq_save(flags);
  520. rq = cpu_rq(cpu);
  521. /*
  522. * Only call sched_clock() if the scheduler has already been
  523. * initialized (some code might call cpu_clock() very early):
  524. */
  525. if (rq->idle)
  526. update_rq_clock(rq);
  527. now = rq->clock;
  528. local_irq_restore(flags);
  529. return now;
  530. }
  531. EXPORT_SYMBOL_GPL(cpu_clock);
  532. #ifndef prepare_arch_switch
  533. # define prepare_arch_switch(next) do { } while (0)
  534. #endif
  535. #ifndef finish_arch_switch
  536. # define finish_arch_switch(prev) do { } while (0)
  537. #endif
  538. static inline int task_current(struct rq *rq, struct task_struct *p)
  539. {
  540. return rq->curr == p;
  541. }
  542. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  543. static inline int task_running(struct rq *rq, struct task_struct *p)
  544. {
  545. return task_current(rq, p);
  546. }
  547. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  548. {
  549. }
  550. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  551. {
  552. #ifdef CONFIG_DEBUG_SPINLOCK
  553. /* this is a valid case when another task releases the spinlock */
  554. rq->lock.owner = current;
  555. #endif
  556. /*
  557. * If we are tracking spinlock dependencies then we have to
  558. * fix up the runqueue lock - which gets 'carried over' from
  559. * prev into current:
  560. */
  561. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  562. spin_unlock_irq(&rq->lock);
  563. }
  564. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  565. static inline int task_running(struct rq *rq, struct task_struct *p)
  566. {
  567. #ifdef CONFIG_SMP
  568. return p->oncpu;
  569. #else
  570. return task_current(rq, p);
  571. #endif
  572. }
  573. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  574. {
  575. #ifdef CONFIG_SMP
  576. /*
  577. * We can optimise this out completely for !SMP, because the
  578. * SMP rebalancing from interrupt is the only thing that cares
  579. * here.
  580. */
  581. next->oncpu = 1;
  582. #endif
  583. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  584. spin_unlock_irq(&rq->lock);
  585. #else
  586. spin_unlock(&rq->lock);
  587. #endif
  588. }
  589. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  590. {
  591. #ifdef CONFIG_SMP
  592. /*
  593. * After ->oncpu is cleared, the task can be moved to a different CPU.
  594. * We must ensure this doesn't happen until the switch is completely
  595. * finished.
  596. */
  597. smp_wmb();
  598. prev->oncpu = 0;
  599. #endif
  600. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  601. local_irq_enable();
  602. #endif
  603. }
  604. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  605. /*
  606. * __task_rq_lock - lock the runqueue a given task resides on.
  607. * Must be called interrupts disabled.
  608. */
  609. static inline struct rq *__task_rq_lock(struct task_struct *p)
  610. __acquires(rq->lock)
  611. {
  612. for (;;) {
  613. struct rq *rq = task_rq(p);
  614. spin_lock(&rq->lock);
  615. if (likely(rq == task_rq(p)))
  616. return rq;
  617. spin_unlock(&rq->lock);
  618. }
  619. }
  620. /*
  621. * task_rq_lock - lock the runqueue a given task resides on and disable
  622. * interrupts. Note the ordering: we can safely lookup the task_rq without
  623. * explicitly disabling preemption.
  624. */
  625. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  626. __acquires(rq->lock)
  627. {
  628. struct rq *rq;
  629. for (;;) {
  630. local_irq_save(*flags);
  631. rq = task_rq(p);
  632. spin_lock(&rq->lock);
  633. if (likely(rq == task_rq(p)))
  634. return rq;
  635. spin_unlock_irqrestore(&rq->lock, *flags);
  636. }
  637. }
  638. static void __task_rq_unlock(struct rq *rq)
  639. __releases(rq->lock)
  640. {
  641. spin_unlock(&rq->lock);
  642. }
  643. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  644. __releases(rq->lock)
  645. {
  646. spin_unlock_irqrestore(&rq->lock, *flags);
  647. }
  648. /*
  649. * this_rq_lock - lock this runqueue and disable interrupts.
  650. */
  651. static struct rq *this_rq_lock(void)
  652. __acquires(rq->lock)
  653. {
  654. struct rq *rq;
  655. local_irq_disable();
  656. rq = this_rq();
  657. spin_lock(&rq->lock);
  658. return rq;
  659. }
  660. /*
  661. * We are going deep-idle (irqs are disabled):
  662. */
  663. void sched_clock_idle_sleep_event(void)
  664. {
  665. struct rq *rq = cpu_rq(smp_processor_id());
  666. spin_lock(&rq->lock);
  667. __update_rq_clock(rq);
  668. spin_unlock(&rq->lock);
  669. rq->clock_deep_idle_events++;
  670. }
  671. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  672. /*
  673. * We just idled delta nanoseconds (called with irqs disabled):
  674. */
  675. void sched_clock_idle_wakeup_event(u64 delta_ns)
  676. {
  677. struct rq *rq = cpu_rq(smp_processor_id());
  678. u64 now = sched_clock();
  679. touch_softlockup_watchdog();
  680. rq->idle_clock += delta_ns;
  681. /*
  682. * Override the previous timestamp and ignore all
  683. * sched_clock() deltas that occured while we idled,
  684. * and use the PM-provided delta_ns to advance the
  685. * rq clock:
  686. */
  687. spin_lock(&rq->lock);
  688. rq->prev_clock_raw = now;
  689. rq->clock += delta_ns;
  690. spin_unlock(&rq->lock);
  691. }
  692. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  693. /*
  694. * resched_task - mark a task 'to be rescheduled now'.
  695. *
  696. * On UP this means the setting of the need_resched flag, on SMP it
  697. * might also involve a cross-CPU call to trigger the scheduler on
  698. * the target CPU.
  699. */
  700. #ifdef CONFIG_SMP
  701. #ifndef tsk_is_polling
  702. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  703. #endif
  704. static void resched_task(struct task_struct *p)
  705. {
  706. int cpu;
  707. assert_spin_locked(&task_rq(p)->lock);
  708. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  709. return;
  710. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  711. cpu = task_cpu(p);
  712. if (cpu == smp_processor_id())
  713. return;
  714. /* NEED_RESCHED must be visible before we test polling */
  715. smp_mb();
  716. if (!tsk_is_polling(p))
  717. smp_send_reschedule(cpu);
  718. }
  719. static void resched_cpu(int cpu)
  720. {
  721. struct rq *rq = cpu_rq(cpu);
  722. unsigned long flags;
  723. if (!spin_trylock_irqsave(&rq->lock, flags))
  724. return;
  725. resched_task(cpu_curr(cpu));
  726. spin_unlock_irqrestore(&rq->lock, flags);
  727. }
  728. #else
  729. static inline void resched_task(struct task_struct *p)
  730. {
  731. assert_spin_locked(&task_rq(p)->lock);
  732. set_tsk_need_resched(p);
  733. }
  734. #endif
  735. #if BITS_PER_LONG == 32
  736. # define WMULT_CONST (~0UL)
  737. #else
  738. # define WMULT_CONST (1UL << 32)
  739. #endif
  740. #define WMULT_SHIFT 32
  741. /*
  742. * Shift right and round:
  743. */
  744. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  745. static unsigned long
  746. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  747. struct load_weight *lw)
  748. {
  749. u64 tmp;
  750. if (unlikely(!lw->inv_weight))
  751. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  752. tmp = (u64)delta_exec * weight;
  753. /*
  754. * Check whether we'd overflow the 64-bit multiplication:
  755. */
  756. if (unlikely(tmp > WMULT_CONST))
  757. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  758. WMULT_SHIFT/2);
  759. else
  760. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  761. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  762. }
  763. static inline unsigned long
  764. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  765. {
  766. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  767. }
  768. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  769. {
  770. lw->weight += inc;
  771. }
  772. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  773. {
  774. lw->weight -= dec;
  775. }
  776. /*
  777. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  778. * of tasks with abnormal "nice" values across CPUs the contribution that
  779. * each task makes to its run queue's load is weighted according to its
  780. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  781. * scaled version of the new time slice allocation that they receive on time
  782. * slice expiry etc.
  783. */
  784. #define WEIGHT_IDLEPRIO 2
  785. #define WMULT_IDLEPRIO (1 << 31)
  786. /*
  787. * Nice levels are multiplicative, with a gentle 10% change for every
  788. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  789. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  790. * that remained on nice 0.
  791. *
  792. * The "10% effect" is relative and cumulative: from _any_ nice level,
  793. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  794. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  795. * If a task goes up by ~10% and another task goes down by ~10% then
  796. * the relative distance between them is ~25%.)
  797. */
  798. static const int prio_to_weight[40] = {
  799. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  800. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  801. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  802. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  803. /* 0 */ 1024, 820, 655, 526, 423,
  804. /* 5 */ 335, 272, 215, 172, 137,
  805. /* 10 */ 110, 87, 70, 56, 45,
  806. /* 15 */ 36, 29, 23, 18, 15,
  807. };
  808. /*
  809. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  810. *
  811. * In cases where the weight does not change often, we can use the
  812. * precalculated inverse to speed up arithmetics by turning divisions
  813. * into multiplications:
  814. */
  815. static const u32 prio_to_wmult[40] = {
  816. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  817. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  818. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  819. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  820. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  821. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  822. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  823. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  824. };
  825. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  826. /*
  827. * runqueue iterator, to support SMP load-balancing between different
  828. * scheduling classes, without having to expose their internal data
  829. * structures to the load-balancing proper:
  830. */
  831. struct rq_iterator {
  832. void *arg;
  833. struct task_struct *(*start)(void *);
  834. struct task_struct *(*next)(void *);
  835. };
  836. #ifdef CONFIG_SMP
  837. static unsigned long
  838. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  839. unsigned long max_load_move, struct sched_domain *sd,
  840. enum cpu_idle_type idle, int *all_pinned,
  841. int *this_best_prio, struct rq_iterator *iterator);
  842. static int
  843. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  844. struct sched_domain *sd, enum cpu_idle_type idle,
  845. struct rq_iterator *iterator);
  846. #endif
  847. #ifdef CONFIG_CGROUP_CPUACCT
  848. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  849. #else
  850. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  851. #endif
  852. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  853. {
  854. update_load_add(&rq->load, load);
  855. }
  856. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  857. {
  858. update_load_sub(&rq->load, load);
  859. }
  860. #ifdef CONFIG_SMP
  861. static unsigned long source_load(int cpu, int type);
  862. static unsigned long target_load(int cpu, int type);
  863. static unsigned long cpu_avg_load_per_task(int cpu);
  864. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  865. #endif /* CONFIG_SMP */
  866. #include "sched_stats.h"
  867. #include "sched_idletask.c"
  868. #include "sched_fair.c"
  869. #include "sched_rt.c"
  870. #ifdef CONFIG_SCHED_DEBUG
  871. # include "sched_debug.c"
  872. #endif
  873. #define sched_class_highest (&rt_sched_class)
  874. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  875. {
  876. rq->nr_running++;
  877. }
  878. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  879. {
  880. rq->nr_running--;
  881. }
  882. static void set_load_weight(struct task_struct *p)
  883. {
  884. if (task_has_rt_policy(p)) {
  885. p->se.load.weight = prio_to_weight[0] * 2;
  886. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  887. return;
  888. }
  889. /*
  890. * SCHED_IDLE tasks get minimal weight:
  891. */
  892. if (p->policy == SCHED_IDLE) {
  893. p->se.load.weight = WEIGHT_IDLEPRIO;
  894. p->se.load.inv_weight = WMULT_IDLEPRIO;
  895. return;
  896. }
  897. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  898. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  899. }
  900. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  901. {
  902. sched_info_queued(p);
  903. p->sched_class->enqueue_task(rq, p, wakeup);
  904. p->se.on_rq = 1;
  905. }
  906. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  907. {
  908. p->sched_class->dequeue_task(rq, p, sleep);
  909. p->se.on_rq = 0;
  910. }
  911. /*
  912. * __normal_prio - return the priority that is based on the static prio
  913. */
  914. static inline int __normal_prio(struct task_struct *p)
  915. {
  916. return p->static_prio;
  917. }
  918. /*
  919. * Calculate the expected normal priority: i.e. priority
  920. * without taking RT-inheritance into account. Might be
  921. * boosted by interactivity modifiers. Changes upon fork,
  922. * setprio syscalls, and whenever the interactivity
  923. * estimator recalculates.
  924. */
  925. static inline int normal_prio(struct task_struct *p)
  926. {
  927. int prio;
  928. if (task_has_rt_policy(p))
  929. prio = MAX_RT_PRIO-1 - p->rt_priority;
  930. else
  931. prio = __normal_prio(p);
  932. return prio;
  933. }
  934. /*
  935. * Calculate the current priority, i.e. the priority
  936. * taken into account by the scheduler. This value might
  937. * be boosted by RT tasks, or might be boosted by
  938. * interactivity modifiers. Will be RT if the task got
  939. * RT-boosted. If not then it returns p->normal_prio.
  940. */
  941. static int effective_prio(struct task_struct *p)
  942. {
  943. p->normal_prio = normal_prio(p);
  944. /*
  945. * If we are RT tasks or we were boosted to RT priority,
  946. * keep the priority unchanged. Otherwise, update priority
  947. * to the normal priority:
  948. */
  949. if (!rt_prio(p->prio))
  950. return p->normal_prio;
  951. return p->prio;
  952. }
  953. /*
  954. * activate_task - move a task to the runqueue.
  955. */
  956. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  957. {
  958. if (p->state == TASK_UNINTERRUPTIBLE)
  959. rq->nr_uninterruptible--;
  960. enqueue_task(rq, p, wakeup);
  961. inc_nr_running(p, rq);
  962. }
  963. /*
  964. * deactivate_task - remove a task from the runqueue.
  965. */
  966. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  967. {
  968. if (p->state == TASK_UNINTERRUPTIBLE)
  969. rq->nr_uninterruptible++;
  970. dequeue_task(rq, p, sleep);
  971. dec_nr_running(p, rq);
  972. }
  973. /**
  974. * task_curr - is this task currently executing on a CPU?
  975. * @p: the task in question.
  976. */
  977. inline int task_curr(const struct task_struct *p)
  978. {
  979. return cpu_curr(task_cpu(p)) == p;
  980. }
  981. /* Used instead of source_load when we know the type == 0 */
  982. unsigned long weighted_cpuload(const int cpu)
  983. {
  984. return cpu_rq(cpu)->load.weight;
  985. }
  986. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  987. {
  988. set_task_cfs_rq(p, cpu);
  989. #ifdef CONFIG_SMP
  990. /*
  991. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  992. * successfuly executed on another CPU. We must ensure that updates of
  993. * per-task data have been completed by this moment.
  994. */
  995. smp_wmb();
  996. task_thread_info(p)->cpu = cpu;
  997. #endif
  998. }
  999. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1000. const struct sched_class *prev_class,
  1001. int oldprio, int running)
  1002. {
  1003. if (prev_class != p->sched_class) {
  1004. if (prev_class->switched_from)
  1005. prev_class->switched_from(rq, p, running);
  1006. p->sched_class->switched_to(rq, p, running);
  1007. } else
  1008. p->sched_class->prio_changed(rq, p, oldprio, running);
  1009. }
  1010. #ifdef CONFIG_SMP
  1011. /*
  1012. * Is this task likely cache-hot:
  1013. */
  1014. static int
  1015. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1016. {
  1017. s64 delta;
  1018. if (p->sched_class != &fair_sched_class)
  1019. return 0;
  1020. if (sysctl_sched_migration_cost == -1)
  1021. return 1;
  1022. if (sysctl_sched_migration_cost == 0)
  1023. return 0;
  1024. delta = now - p->se.exec_start;
  1025. return delta < (s64)sysctl_sched_migration_cost;
  1026. }
  1027. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1028. {
  1029. int old_cpu = task_cpu(p);
  1030. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1031. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1032. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1033. u64 clock_offset;
  1034. clock_offset = old_rq->clock - new_rq->clock;
  1035. #ifdef CONFIG_SCHEDSTATS
  1036. if (p->se.wait_start)
  1037. p->se.wait_start -= clock_offset;
  1038. if (p->se.sleep_start)
  1039. p->se.sleep_start -= clock_offset;
  1040. if (p->se.block_start)
  1041. p->se.block_start -= clock_offset;
  1042. if (old_cpu != new_cpu) {
  1043. schedstat_inc(p, se.nr_migrations);
  1044. if (task_hot(p, old_rq->clock, NULL))
  1045. schedstat_inc(p, se.nr_forced2_migrations);
  1046. }
  1047. #endif
  1048. p->se.vruntime -= old_cfsrq->min_vruntime -
  1049. new_cfsrq->min_vruntime;
  1050. __set_task_cpu(p, new_cpu);
  1051. }
  1052. struct migration_req {
  1053. struct list_head list;
  1054. struct task_struct *task;
  1055. int dest_cpu;
  1056. struct completion done;
  1057. };
  1058. /*
  1059. * The task's runqueue lock must be held.
  1060. * Returns true if you have to wait for migration thread.
  1061. */
  1062. static int
  1063. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1064. {
  1065. struct rq *rq = task_rq(p);
  1066. /*
  1067. * If the task is not on a runqueue (and not running), then
  1068. * it is sufficient to simply update the task's cpu field.
  1069. */
  1070. if (!p->se.on_rq && !task_running(rq, p)) {
  1071. set_task_cpu(p, dest_cpu);
  1072. return 0;
  1073. }
  1074. init_completion(&req->done);
  1075. req->task = p;
  1076. req->dest_cpu = dest_cpu;
  1077. list_add(&req->list, &rq->migration_queue);
  1078. return 1;
  1079. }
  1080. /*
  1081. * wait_task_inactive - wait for a thread to unschedule.
  1082. *
  1083. * The caller must ensure that the task *will* unschedule sometime soon,
  1084. * else this function might spin for a *long* time. This function can't
  1085. * be called with interrupts off, or it may introduce deadlock with
  1086. * smp_call_function() if an IPI is sent by the same process we are
  1087. * waiting to become inactive.
  1088. */
  1089. void wait_task_inactive(struct task_struct *p)
  1090. {
  1091. unsigned long flags;
  1092. int running, on_rq;
  1093. struct rq *rq;
  1094. for (;;) {
  1095. /*
  1096. * We do the initial early heuristics without holding
  1097. * any task-queue locks at all. We'll only try to get
  1098. * the runqueue lock when things look like they will
  1099. * work out!
  1100. */
  1101. rq = task_rq(p);
  1102. /*
  1103. * If the task is actively running on another CPU
  1104. * still, just relax and busy-wait without holding
  1105. * any locks.
  1106. *
  1107. * NOTE! Since we don't hold any locks, it's not
  1108. * even sure that "rq" stays as the right runqueue!
  1109. * But we don't care, since "task_running()" will
  1110. * return false if the runqueue has changed and p
  1111. * is actually now running somewhere else!
  1112. */
  1113. while (task_running(rq, p))
  1114. cpu_relax();
  1115. /*
  1116. * Ok, time to look more closely! We need the rq
  1117. * lock now, to be *sure*. If we're wrong, we'll
  1118. * just go back and repeat.
  1119. */
  1120. rq = task_rq_lock(p, &flags);
  1121. running = task_running(rq, p);
  1122. on_rq = p->se.on_rq;
  1123. task_rq_unlock(rq, &flags);
  1124. /*
  1125. * Was it really running after all now that we
  1126. * checked with the proper locks actually held?
  1127. *
  1128. * Oops. Go back and try again..
  1129. */
  1130. if (unlikely(running)) {
  1131. cpu_relax();
  1132. continue;
  1133. }
  1134. /*
  1135. * It's not enough that it's not actively running,
  1136. * it must be off the runqueue _entirely_, and not
  1137. * preempted!
  1138. *
  1139. * So if it wa still runnable (but just not actively
  1140. * running right now), it's preempted, and we should
  1141. * yield - it could be a while.
  1142. */
  1143. if (unlikely(on_rq)) {
  1144. schedule_timeout_uninterruptible(1);
  1145. continue;
  1146. }
  1147. /*
  1148. * Ahh, all good. It wasn't running, and it wasn't
  1149. * runnable, which means that it will never become
  1150. * running in the future either. We're all done!
  1151. */
  1152. break;
  1153. }
  1154. }
  1155. /***
  1156. * kick_process - kick a running thread to enter/exit the kernel
  1157. * @p: the to-be-kicked thread
  1158. *
  1159. * Cause a process which is running on another CPU to enter
  1160. * kernel-mode, without any delay. (to get signals handled.)
  1161. *
  1162. * NOTE: this function doesnt have to take the runqueue lock,
  1163. * because all it wants to ensure is that the remote task enters
  1164. * the kernel. If the IPI races and the task has been migrated
  1165. * to another CPU then no harm is done and the purpose has been
  1166. * achieved as well.
  1167. */
  1168. void kick_process(struct task_struct *p)
  1169. {
  1170. int cpu;
  1171. preempt_disable();
  1172. cpu = task_cpu(p);
  1173. if ((cpu != smp_processor_id()) && task_curr(p))
  1174. smp_send_reschedule(cpu);
  1175. preempt_enable();
  1176. }
  1177. /*
  1178. * Return a low guess at the load of a migration-source cpu weighted
  1179. * according to the scheduling class and "nice" value.
  1180. *
  1181. * We want to under-estimate the load of migration sources, to
  1182. * balance conservatively.
  1183. */
  1184. static unsigned long source_load(int cpu, int type)
  1185. {
  1186. struct rq *rq = cpu_rq(cpu);
  1187. unsigned long total = weighted_cpuload(cpu);
  1188. if (type == 0)
  1189. return total;
  1190. return min(rq->cpu_load[type-1], total);
  1191. }
  1192. /*
  1193. * Return a high guess at the load of a migration-target cpu weighted
  1194. * according to the scheduling class and "nice" value.
  1195. */
  1196. static unsigned long target_load(int cpu, int type)
  1197. {
  1198. struct rq *rq = cpu_rq(cpu);
  1199. unsigned long total = weighted_cpuload(cpu);
  1200. if (type == 0)
  1201. return total;
  1202. return max(rq->cpu_load[type-1], total);
  1203. }
  1204. /*
  1205. * Return the average load per task on the cpu's run queue
  1206. */
  1207. static unsigned long cpu_avg_load_per_task(int cpu)
  1208. {
  1209. struct rq *rq = cpu_rq(cpu);
  1210. unsigned long total = weighted_cpuload(cpu);
  1211. unsigned long n = rq->nr_running;
  1212. return n ? total / n : SCHED_LOAD_SCALE;
  1213. }
  1214. /*
  1215. * find_idlest_group finds and returns the least busy CPU group within the
  1216. * domain.
  1217. */
  1218. static struct sched_group *
  1219. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1220. {
  1221. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1222. unsigned long min_load = ULONG_MAX, this_load = 0;
  1223. int load_idx = sd->forkexec_idx;
  1224. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1225. do {
  1226. unsigned long load, avg_load;
  1227. int local_group;
  1228. int i;
  1229. /* Skip over this group if it has no CPUs allowed */
  1230. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1231. continue;
  1232. local_group = cpu_isset(this_cpu, group->cpumask);
  1233. /* Tally up the load of all CPUs in the group */
  1234. avg_load = 0;
  1235. for_each_cpu_mask(i, group->cpumask) {
  1236. /* Bias balancing toward cpus of our domain */
  1237. if (local_group)
  1238. load = source_load(i, load_idx);
  1239. else
  1240. load = target_load(i, load_idx);
  1241. avg_load += load;
  1242. }
  1243. /* Adjust by relative CPU power of the group */
  1244. avg_load = sg_div_cpu_power(group,
  1245. avg_load * SCHED_LOAD_SCALE);
  1246. if (local_group) {
  1247. this_load = avg_load;
  1248. this = group;
  1249. } else if (avg_load < min_load) {
  1250. min_load = avg_load;
  1251. idlest = group;
  1252. }
  1253. } while (group = group->next, group != sd->groups);
  1254. if (!idlest || 100*this_load < imbalance*min_load)
  1255. return NULL;
  1256. return idlest;
  1257. }
  1258. /*
  1259. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1260. */
  1261. static int
  1262. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1263. {
  1264. cpumask_t tmp;
  1265. unsigned long load, min_load = ULONG_MAX;
  1266. int idlest = -1;
  1267. int i;
  1268. /* Traverse only the allowed CPUs */
  1269. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1270. for_each_cpu_mask(i, tmp) {
  1271. load = weighted_cpuload(i);
  1272. if (load < min_load || (load == min_load && i == this_cpu)) {
  1273. min_load = load;
  1274. idlest = i;
  1275. }
  1276. }
  1277. return idlest;
  1278. }
  1279. /*
  1280. * sched_balance_self: balance the current task (running on cpu) in domains
  1281. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1282. * SD_BALANCE_EXEC.
  1283. *
  1284. * Balance, ie. select the least loaded group.
  1285. *
  1286. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1287. *
  1288. * preempt must be disabled.
  1289. */
  1290. static int sched_balance_self(int cpu, int flag)
  1291. {
  1292. struct task_struct *t = current;
  1293. struct sched_domain *tmp, *sd = NULL;
  1294. for_each_domain(cpu, tmp) {
  1295. /*
  1296. * If power savings logic is enabled for a domain, stop there.
  1297. */
  1298. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1299. break;
  1300. if (tmp->flags & flag)
  1301. sd = tmp;
  1302. }
  1303. while (sd) {
  1304. cpumask_t span;
  1305. struct sched_group *group;
  1306. int new_cpu, weight;
  1307. if (!(sd->flags & flag)) {
  1308. sd = sd->child;
  1309. continue;
  1310. }
  1311. span = sd->span;
  1312. group = find_idlest_group(sd, t, cpu);
  1313. if (!group) {
  1314. sd = sd->child;
  1315. continue;
  1316. }
  1317. new_cpu = find_idlest_cpu(group, t, cpu);
  1318. if (new_cpu == -1 || new_cpu == cpu) {
  1319. /* Now try balancing at a lower domain level of cpu */
  1320. sd = sd->child;
  1321. continue;
  1322. }
  1323. /* Now try balancing at a lower domain level of new_cpu */
  1324. cpu = new_cpu;
  1325. sd = NULL;
  1326. weight = cpus_weight(span);
  1327. for_each_domain(cpu, tmp) {
  1328. if (weight <= cpus_weight(tmp->span))
  1329. break;
  1330. if (tmp->flags & flag)
  1331. sd = tmp;
  1332. }
  1333. /* while loop will break here if sd == NULL */
  1334. }
  1335. return cpu;
  1336. }
  1337. #endif /* CONFIG_SMP */
  1338. /***
  1339. * try_to_wake_up - wake up a thread
  1340. * @p: the to-be-woken-up thread
  1341. * @state: the mask of task states that can be woken
  1342. * @sync: do a synchronous wakeup?
  1343. *
  1344. * Put it on the run-queue if it's not already there. The "current"
  1345. * thread is always on the run-queue (except when the actual
  1346. * re-schedule is in progress), and as such you're allowed to do
  1347. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1348. * runnable without the overhead of this.
  1349. *
  1350. * returns failure only if the task is already active.
  1351. */
  1352. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1353. {
  1354. int cpu, orig_cpu, this_cpu, success = 0;
  1355. unsigned long flags;
  1356. long old_state;
  1357. struct rq *rq;
  1358. rq = task_rq_lock(p, &flags);
  1359. old_state = p->state;
  1360. if (!(old_state & state))
  1361. goto out;
  1362. if (p->se.on_rq)
  1363. goto out_running;
  1364. cpu = task_cpu(p);
  1365. orig_cpu = cpu;
  1366. this_cpu = smp_processor_id();
  1367. #ifdef CONFIG_SMP
  1368. if (unlikely(task_running(rq, p)))
  1369. goto out_activate;
  1370. cpu = p->sched_class->select_task_rq(p, sync);
  1371. if (cpu != orig_cpu) {
  1372. set_task_cpu(p, cpu);
  1373. task_rq_unlock(rq, &flags);
  1374. /* might preempt at this point */
  1375. rq = task_rq_lock(p, &flags);
  1376. old_state = p->state;
  1377. if (!(old_state & state))
  1378. goto out;
  1379. if (p->se.on_rq)
  1380. goto out_running;
  1381. this_cpu = smp_processor_id();
  1382. cpu = task_cpu(p);
  1383. }
  1384. #ifdef CONFIG_SCHEDSTATS
  1385. schedstat_inc(rq, ttwu_count);
  1386. if (cpu == this_cpu)
  1387. schedstat_inc(rq, ttwu_local);
  1388. else {
  1389. struct sched_domain *sd;
  1390. for_each_domain(this_cpu, sd) {
  1391. if (cpu_isset(cpu, sd->span)) {
  1392. schedstat_inc(sd, ttwu_wake_remote);
  1393. break;
  1394. }
  1395. }
  1396. }
  1397. #endif
  1398. out_activate:
  1399. #endif /* CONFIG_SMP */
  1400. schedstat_inc(p, se.nr_wakeups);
  1401. if (sync)
  1402. schedstat_inc(p, se.nr_wakeups_sync);
  1403. if (orig_cpu != cpu)
  1404. schedstat_inc(p, se.nr_wakeups_migrate);
  1405. if (cpu == this_cpu)
  1406. schedstat_inc(p, se.nr_wakeups_local);
  1407. else
  1408. schedstat_inc(p, se.nr_wakeups_remote);
  1409. update_rq_clock(rq);
  1410. activate_task(rq, p, 1);
  1411. check_preempt_curr(rq, p);
  1412. success = 1;
  1413. out_running:
  1414. p->state = TASK_RUNNING;
  1415. #ifdef CONFIG_SMP
  1416. if (p->sched_class->task_wake_up)
  1417. p->sched_class->task_wake_up(rq, p);
  1418. #endif
  1419. out:
  1420. task_rq_unlock(rq, &flags);
  1421. return success;
  1422. }
  1423. int fastcall wake_up_process(struct task_struct *p)
  1424. {
  1425. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1426. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1427. }
  1428. EXPORT_SYMBOL(wake_up_process);
  1429. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1430. {
  1431. return try_to_wake_up(p, state, 0);
  1432. }
  1433. /*
  1434. * Perform scheduler related setup for a newly forked process p.
  1435. * p is forked by current.
  1436. *
  1437. * __sched_fork() is basic setup used by init_idle() too:
  1438. */
  1439. static void __sched_fork(struct task_struct *p)
  1440. {
  1441. p->se.exec_start = 0;
  1442. p->se.sum_exec_runtime = 0;
  1443. p->se.prev_sum_exec_runtime = 0;
  1444. #ifdef CONFIG_SCHEDSTATS
  1445. p->se.wait_start = 0;
  1446. p->se.sum_sleep_runtime = 0;
  1447. p->se.sleep_start = 0;
  1448. p->se.block_start = 0;
  1449. p->se.sleep_max = 0;
  1450. p->se.block_max = 0;
  1451. p->se.exec_max = 0;
  1452. p->se.slice_max = 0;
  1453. p->se.wait_max = 0;
  1454. #endif
  1455. INIT_LIST_HEAD(&p->rt.run_list);
  1456. p->se.on_rq = 0;
  1457. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1458. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1459. #endif
  1460. /*
  1461. * We mark the process as running here, but have not actually
  1462. * inserted it onto the runqueue yet. This guarantees that
  1463. * nobody will actually run it, and a signal or other external
  1464. * event cannot wake it up and insert it on the runqueue either.
  1465. */
  1466. p->state = TASK_RUNNING;
  1467. }
  1468. /*
  1469. * fork()/clone()-time setup:
  1470. */
  1471. void sched_fork(struct task_struct *p, int clone_flags)
  1472. {
  1473. int cpu = get_cpu();
  1474. __sched_fork(p);
  1475. #ifdef CONFIG_SMP
  1476. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1477. #endif
  1478. set_task_cpu(p, cpu);
  1479. /*
  1480. * Make sure we do not leak PI boosting priority to the child:
  1481. */
  1482. p->prio = current->normal_prio;
  1483. if (!rt_prio(p->prio))
  1484. p->sched_class = &fair_sched_class;
  1485. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1486. if (likely(sched_info_on()))
  1487. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1488. #endif
  1489. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1490. p->oncpu = 0;
  1491. #endif
  1492. #ifdef CONFIG_PREEMPT
  1493. /* Want to start with kernel preemption disabled. */
  1494. task_thread_info(p)->preempt_count = 1;
  1495. #endif
  1496. put_cpu();
  1497. }
  1498. /*
  1499. * wake_up_new_task - wake up a newly created task for the first time.
  1500. *
  1501. * This function will do some initial scheduler statistics housekeeping
  1502. * that must be done for every newly created context, then puts the task
  1503. * on the runqueue and wakes it.
  1504. */
  1505. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1506. {
  1507. unsigned long flags;
  1508. struct rq *rq;
  1509. rq = task_rq_lock(p, &flags);
  1510. BUG_ON(p->state != TASK_RUNNING);
  1511. update_rq_clock(rq);
  1512. p->prio = effective_prio(p);
  1513. if (!p->sched_class->task_new || !current->se.on_rq) {
  1514. activate_task(rq, p, 0);
  1515. } else {
  1516. /*
  1517. * Let the scheduling class do new task startup
  1518. * management (if any):
  1519. */
  1520. p->sched_class->task_new(rq, p);
  1521. inc_nr_running(p, rq);
  1522. }
  1523. check_preempt_curr(rq, p);
  1524. #ifdef CONFIG_SMP
  1525. if (p->sched_class->task_wake_up)
  1526. p->sched_class->task_wake_up(rq, p);
  1527. #endif
  1528. task_rq_unlock(rq, &flags);
  1529. }
  1530. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1531. /**
  1532. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1533. * @notifier: notifier struct to register
  1534. */
  1535. void preempt_notifier_register(struct preempt_notifier *notifier)
  1536. {
  1537. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1538. }
  1539. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1540. /**
  1541. * preempt_notifier_unregister - no longer interested in preemption notifications
  1542. * @notifier: notifier struct to unregister
  1543. *
  1544. * This is safe to call from within a preemption notifier.
  1545. */
  1546. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1547. {
  1548. hlist_del(&notifier->link);
  1549. }
  1550. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1551. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1552. {
  1553. struct preempt_notifier *notifier;
  1554. struct hlist_node *node;
  1555. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1556. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1557. }
  1558. static void
  1559. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1560. struct task_struct *next)
  1561. {
  1562. struct preempt_notifier *notifier;
  1563. struct hlist_node *node;
  1564. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1565. notifier->ops->sched_out(notifier, next);
  1566. }
  1567. #else
  1568. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1569. {
  1570. }
  1571. static void
  1572. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1573. struct task_struct *next)
  1574. {
  1575. }
  1576. #endif
  1577. /**
  1578. * prepare_task_switch - prepare to switch tasks
  1579. * @rq: the runqueue preparing to switch
  1580. * @prev: the current task that is being switched out
  1581. * @next: the task we are going to switch to.
  1582. *
  1583. * This is called with the rq lock held and interrupts off. It must
  1584. * be paired with a subsequent finish_task_switch after the context
  1585. * switch.
  1586. *
  1587. * prepare_task_switch sets up locking and calls architecture specific
  1588. * hooks.
  1589. */
  1590. static inline void
  1591. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1592. struct task_struct *next)
  1593. {
  1594. fire_sched_out_preempt_notifiers(prev, next);
  1595. prepare_lock_switch(rq, next);
  1596. prepare_arch_switch(next);
  1597. }
  1598. /**
  1599. * finish_task_switch - clean up after a task-switch
  1600. * @rq: runqueue associated with task-switch
  1601. * @prev: the thread we just switched away from.
  1602. *
  1603. * finish_task_switch must be called after the context switch, paired
  1604. * with a prepare_task_switch call before the context switch.
  1605. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1606. * and do any other architecture-specific cleanup actions.
  1607. *
  1608. * Note that we may have delayed dropping an mm in context_switch(). If
  1609. * so, we finish that here outside of the runqueue lock. (Doing it
  1610. * with the lock held can cause deadlocks; see schedule() for
  1611. * details.)
  1612. */
  1613. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1614. __releases(rq->lock)
  1615. {
  1616. struct mm_struct *mm = rq->prev_mm;
  1617. long prev_state;
  1618. rq->prev_mm = NULL;
  1619. /*
  1620. * A task struct has one reference for the use as "current".
  1621. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1622. * schedule one last time. The schedule call will never return, and
  1623. * the scheduled task must drop that reference.
  1624. * The test for TASK_DEAD must occur while the runqueue locks are
  1625. * still held, otherwise prev could be scheduled on another cpu, die
  1626. * there before we look at prev->state, and then the reference would
  1627. * be dropped twice.
  1628. * Manfred Spraul <manfred@colorfullife.com>
  1629. */
  1630. prev_state = prev->state;
  1631. finish_arch_switch(prev);
  1632. finish_lock_switch(rq, prev);
  1633. #ifdef CONFIG_SMP
  1634. if (current->sched_class->post_schedule)
  1635. current->sched_class->post_schedule(rq);
  1636. #endif
  1637. fire_sched_in_preempt_notifiers(current);
  1638. if (mm)
  1639. mmdrop(mm);
  1640. if (unlikely(prev_state == TASK_DEAD)) {
  1641. /*
  1642. * Remove function-return probe instances associated with this
  1643. * task and put them back on the free list.
  1644. */
  1645. kprobe_flush_task(prev);
  1646. put_task_struct(prev);
  1647. }
  1648. }
  1649. /**
  1650. * schedule_tail - first thing a freshly forked thread must call.
  1651. * @prev: the thread we just switched away from.
  1652. */
  1653. asmlinkage void schedule_tail(struct task_struct *prev)
  1654. __releases(rq->lock)
  1655. {
  1656. struct rq *rq = this_rq();
  1657. finish_task_switch(rq, prev);
  1658. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1659. /* In this case, finish_task_switch does not reenable preemption */
  1660. preempt_enable();
  1661. #endif
  1662. if (current->set_child_tid)
  1663. put_user(task_pid_vnr(current), current->set_child_tid);
  1664. }
  1665. /*
  1666. * context_switch - switch to the new MM and the new
  1667. * thread's register state.
  1668. */
  1669. static inline void
  1670. context_switch(struct rq *rq, struct task_struct *prev,
  1671. struct task_struct *next)
  1672. {
  1673. struct mm_struct *mm, *oldmm;
  1674. prepare_task_switch(rq, prev, next);
  1675. mm = next->mm;
  1676. oldmm = prev->active_mm;
  1677. /*
  1678. * For paravirt, this is coupled with an exit in switch_to to
  1679. * combine the page table reload and the switch backend into
  1680. * one hypercall.
  1681. */
  1682. arch_enter_lazy_cpu_mode();
  1683. if (unlikely(!mm)) {
  1684. next->active_mm = oldmm;
  1685. atomic_inc(&oldmm->mm_count);
  1686. enter_lazy_tlb(oldmm, next);
  1687. } else
  1688. switch_mm(oldmm, mm, next);
  1689. if (unlikely(!prev->mm)) {
  1690. prev->active_mm = NULL;
  1691. rq->prev_mm = oldmm;
  1692. }
  1693. /*
  1694. * Since the runqueue lock will be released by the next
  1695. * task (which is an invalid locking op but in the case
  1696. * of the scheduler it's an obvious special-case), so we
  1697. * do an early lockdep release here:
  1698. */
  1699. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1700. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1701. #endif
  1702. /* Here we just switch the register state and the stack. */
  1703. switch_to(prev, next, prev);
  1704. barrier();
  1705. /*
  1706. * this_rq must be evaluated again because prev may have moved
  1707. * CPUs since it called schedule(), thus the 'rq' on its stack
  1708. * frame will be invalid.
  1709. */
  1710. finish_task_switch(this_rq(), prev);
  1711. }
  1712. /*
  1713. * nr_running, nr_uninterruptible and nr_context_switches:
  1714. *
  1715. * externally visible scheduler statistics: current number of runnable
  1716. * threads, current number of uninterruptible-sleeping threads, total
  1717. * number of context switches performed since bootup.
  1718. */
  1719. unsigned long nr_running(void)
  1720. {
  1721. unsigned long i, sum = 0;
  1722. for_each_online_cpu(i)
  1723. sum += cpu_rq(i)->nr_running;
  1724. return sum;
  1725. }
  1726. unsigned long nr_uninterruptible(void)
  1727. {
  1728. unsigned long i, sum = 0;
  1729. for_each_possible_cpu(i)
  1730. sum += cpu_rq(i)->nr_uninterruptible;
  1731. /*
  1732. * Since we read the counters lockless, it might be slightly
  1733. * inaccurate. Do not allow it to go below zero though:
  1734. */
  1735. if (unlikely((long)sum < 0))
  1736. sum = 0;
  1737. return sum;
  1738. }
  1739. unsigned long long nr_context_switches(void)
  1740. {
  1741. int i;
  1742. unsigned long long sum = 0;
  1743. for_each_possible_cpu(i)
  1744. sum += cpu_rq(i)->nr_switches;
  1745. return sum;
  1746. }
  1747. unsigned long nr_iowait(void)
  1748. {
  1749. unsigned long i, sum = 0;
  1750. for_each_possible_cpu(i)
  1751. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1752. return sum;
  1753. }
  1754. unsigned long nr_active(void)
  1755. {
  1756. unsigned long i, running = 0, uninterruptible = 0;
  1757. for_each_online_cpu(i) {
  1758. running += cpu_rq(i)->nr_running;
  1759. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1760. }
  1761. if (unlikely((long)uninterruptible < 0))
  1762. uninterruptible = 0;
  1763. return running + uninterruptible;
  1764. }
  1765. /*
  1766. * Update rq->cpu_load[] statistics. This function is usually called every
  1767. * scheduler tick (TICK_NSEC).
  1768. */
  1769. static void update_cpu_load(struct rq *this_rq)
  1770. {
  1771. unsigned long this_load = this_rq->load.weight;
  1772. int i, scale;
  1773. this_rq->nr_load_updates++;
  1774. /* Update our load: */
  1775. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1776. unsigned long old_load, new_load;
  1777. /* scale is effectively 1 << i now, and >> i divides by scale */
  1778. old_load = this_rq->cpu_load[i];
  1779. new_load = this_load;
  1780. /*
  1781. * Round up the averaging division if load is increasing. This
  1782. * prevents us from getting stuck on 9 if the load is 10, for
  1783. * example.
  1784. */
  1785. if (new_load > old_load)
  1786. new_load += scale-1;
  1787. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1788. }
  1789. }
  1790. #ifdef CONFIG_SMP
  1791. /*
  1792. * double_rq_lock - safely lock two runqueues
  1793. *
  1794. * Note this does not disable interrupts like task_rq_lock,
  1795. * you need to do so manually before calling.
  1796. */
  1797. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1798. __acquires(rq1->lock)
  1799. __acquires(rq2->lock)
  1800. {
  1801. BUG_ON(!irqs_disabled());
  1802. if (rq1 == rq2) {
  1803. spin_lock(&rq1->lock);
  1804. __acquire(rq2->lock); /* Fake it out ;) */
  1805. } else {
  1806. if (rq1 < rq2) {
  1807. spin_lock(&rq1->lock);
  1808. spin_lock(&rq2->lock);
  1809. } else {
  1810. spin_lock(&rq2->lock);
  1811. spin_lock(&rq1->lock);
  1812. }
  1813. }
  1814. update_rq_clock(rq1);
  1815. update_rq_clock(rq2);
  1816. }
  1817. /*
  1818. * double_rq_unlock - safely unlock two runqueues
  1819. *
  1820. * Note this does not restore interrupts like task_rq_unlock,
  1821. * you need to do so manually after calling.
  1822. */
  1823. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1824. __releases(rq1->lock)
  1825. __releases(rq2->lock)
  1826. {
  1827. spin_unlock(&rq1->lock);
  1828. if (rq1 != rq2)
  1829. spin_unlock(&rq2->lock);
  1830. else
  1831. __release(rq2->lock);
  1832. }
  1833. /*
  1834. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1835. */
  1836. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1837. __releases(this_rq->lock)
  1838. __acquires(busiest->lock)
  1839. __acquires(this_rq->lock)
  1840. {
  1841. int ret = 0;
  1842. if (unlikely(!irqs_disabled())) {
  1843. /* printk() doesn't work good under rq->lock */
  1844. spin_unlock(&this_rq->lock);
  1845. BUG_ON(1);
  1846. }
  1847. if (unlikely(!spin_trylock(&busiest->lock))) {
  1848. if (busiest < this_rq) {
  1849. spin_unlock(&this_rq->lock);
  1850. spin_lock(&busiest->lock);
  1851. spin_lock(&this_rq->lock);
  1852. ret = 1;
  1853. } else
  1854. spin_lock(&busiest->lock);
  1855. }
  1856. return ret;
  1857. }
  1858. /*
  1859. * If dest_cpu is allowed for this process, migrate the task to it.
  1860. * This is accomplished by forcing the cpu_allowed mask to only
  1861. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1862. * the cpu_allowed mask is restored.
  1863. */
  1864. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1865. {
  1866. struct migration_req req;
  1867. unsigned long flags;
  1868. struct rq *rq;
  1869. rq = task_rq_lock(p, &flags);
  1870. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1871. || unlikely(cpu_is_offline(dest_cpu)))
  1872. goto out;
  1873. /* force the process onto the specified CPU */
  1874. if (migrate_task(p, dest_cpu, &req)) {
  1875. /* Need to wait for migration thread (might exit: take ref). */
  1876. struct task_struct *mt = rq->migration_thread;
  1877. get_task_struct(mt);
  1878. task_rq_unlock(rq, &flags);
  1879. wake_up_process(mt);
  1880. put_task_struct(mt);
  1881. wait_for_completion(&req.done);
  1882. return;
  1883. }
  1884. out:
  1885. task_rq_unlock(rq, &flags);
  1886. }
  1887. /*
  1888. * sched_exec - execve() is a valuable balancing opportunity, because at
  1889. * this point the task has the smallest effective memory and cache footprint.
  1890. */
  1891. void sched_exec(void)
  1892. {
  1893. int new_cpu, this_cpu = get_cpu();
  1894. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1895. put_cpu();
  1896. if (new_cpu != this_cpu)
  1897. sched_migrate_task(current, new_cpu);
  1898. }
  1899. /*
  1900. * pull_task - move a task from a remote runqueue to the local runqueue.
  1901. * Both runqueues must be locked.
  1902. */
  1903. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1904. struct rq *this_rq, int this_cpu)
  1905. {
  1906. deactivate_task(src_rq, p, 0);
  1907. set_task_cpu(p, this_cpu);
  1908. activate_task(this_rq, p, 0);
  1909. /*
  1910. * Note that idle threads have a prio of MAX_PRIO, for this test
  1911. * to be always true for them.
  1912. */
  1913. check_preempt_curr(this_rq, p);
  1914. }
  1915. /*
  1916. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1917. */
  1918. static
  1919. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1920. struct sched_domain *sd, enum cpu_idle_type idle,
  1921. int *all_pinned)
  1922. {
  1923. /*
  1924. * We do not migrate tasks that are:
  1925. * 1) running (obviously), or
  1926. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1927. * 3) are cache-hot on their current CPU.
  1928. */
  1929. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1930. schedstat_inc(p, se.nr_failed_migrations_affine);
  1931. return 0;
  1932. }
  1933. *all_pinned = 0;
  1934. if (task_running(rq, p)) {
  1935. schedstat_inc(p, se.nr_failed_migrations_running);
  1936. return 0;
  1937. }
  1938. /*
  1939. * Aggressive migration if:
  1940. * 1) task is cache cold, or
  1941. * 2) too many balance attempts have failed.
  1942. */
  1943. if (!task_hot(p, rq->clock, sd) ||
  1944. sd->nr_balance_failed > sd->cache_nice_tries) {
  1945. #ifdef CONFIG_SCHEDSTATS
  1946. if (task_hot(p, rq->clock, sd)) {
  1947. schedstat_inc(sd, lb_hot_gained[idle]);
  1948. schedstat_inc(p, se.nr_forced_migrations);
  1949. }
  1950. #endif
  1951. return 1;
  1952. }
  1953. if (task_hot(p, rq->clock, sd)) {
  1954. schedstat_inc(p, se.nr_failed_migrations_hot);
  1955. return 0;
  1956. }
  1957. return 1;
  1958. }
  1959. static unsigned long
  1960. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1961. unsigned long max_load_move, struct sched_domain *sd,
  1962. enum cpu_idle_type idle, int *all_pinned,
  1963. int *this_best_prio, struct rq_iterator *iterator)
  1964. {
  1965. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1966. struct task_struct *p;
  1967. long rem_load_move = max_load_move;
  1968. if (max_load_move == 0)
  1969. goto out;
  1970. pinned = 1;
  1971. /*
  1972. * Start the load-balancing iterator:
  1973. */
  1974. p = iterator->start(iterator->arg);
  1975. next:
  1976. if (!p || loops++ > sysctl_sched_nr_migrate)
  1977. goto out;
  1978. /*
  1979. * To help distribute high priority tasks across CPUs we don't
  1980. * skip a task if it will be the highest priority task (i.e. smallest
  1981. * prio value) on its new queue regardless of its load weight
  1982. */
  1983. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1984. SCHED_LOAD_SCALE_FUZZ;
  1985. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1986. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1987. p = iterator->next(iterator->arg);
  1988. goto next;
  1989. }
  1990. pull_task(busiest, p, this_rq, this_cpu);
  1991. pulled++;
  1992. rem_load_move -= p->se.load.weight;
  1993. /*
  1994. * We only want to steal up to the prescribed amount of weighted load.
  1995. */
  1996. if (rem_load_move > 0) {
  1997. if (p->prio < *this_best_prio)
  1998. *this_best_prio = p->prio;
  1999. p = iterator->next(iterator->arg);
  2000. goto next;
  2001. }
  2002. out:
  2003. /*
  2004. * Right now, this is one of only two places pull_task() is called,
  2005. * so we can safely collect pull_task() stats here rather than
  2006. * inside pull_task().
  2007. */
  2008. schedstat_add(sd, lb_gained[idle], pulled);
  2009. if (all_pinned)
  2010. *all_pinned = pinned;
  2011. return max_load_move - rem_load_move;
  2012. }
  2013. /*
  2014. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2015. * this_rq, as part of a balancing operation within domain "sd".
  2016. * Returns 1 if successful and 0 otherwise.
  2017. *
  2018. * Called with both runqueues locked.
  2019. */
  2020. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2021. unsigned long max_load_move,
  2022. struct sched_domain *sd, enum cpu_idle_type idle,
  2023. int *all_pinned)
  2024. {
  2025. const struct sched_class *class = sched_class_highest;
  2026. unsigned long total_load_moved = 0;
  2027. int this_best_prio = this_rq->curr->prio;
  2028. do {
  2029. total_load_moved +=
  2030. class->load_balance(this_rq, this_cpu, busiest,
  2031. max_load_move - total_load_moved,
  2032. sd, idle, all_pinned, &this_best_prio);
  2033. class = class->next;
  2034. } while (class && max_load_move > total_load_moved);
  2035. return total_load_moved > 0;
  2036. }
  2037. static int
  2038. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2039. struct sched_domain *sd, enum cpu_idle_type idle,
  2040. struct rq_iterator *iterator)
  2041. {
  2042. struct task_struct *p = iterator->start(iterator->arg);
  2043. int pinned = 0;
  2044. while (p) {
  2045. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2046. pull_task(busiest, p, this_rq, this_cpu);
  2047. /*
  2048. * Right now, this is only the second place pull_task()
  2049. * is called, so we can safely collect pull_task()
  2050. * stats here rather than inside pull_task().
  2051. */
  2052. schedstat_inc(sd, lb_gained[idle]);
  2053. return 1;
  2054. }
  2055. p = iterator->next(iterator->arg);
  2056. }
  2057. return 0;
  2058. }
  2059. /*
  2060. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2061. * part of active balancing operations within "domain".
  2062. * Returns 1 if successful and 0 otherwise.
  2063. *
  2064. * Called with both runqueues locked.
  2065. */
  2066. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2067. struct sched_domain *sd, enum cpu_idle_type idle)
  2068. {
  2069. const struct sched_class *class;
  2070. for (class = sched_class_highest; class; class = class->next)
  2071. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2072. return 1;
  2073. return 0;
  2074. }
  2075. /*
  2076. * find_busiest_group finds and returns the busiest CPU group within the
  2077. * domain. It calculates and returns the amount of weighted load which
  2078. * should be moved to restore balance via the imbalance parameter.
  2079. */
  2080. static struct sched_group *
  2081. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2082. unsigned long *imbalance, enum cpu_idle_type idle,
  2083. int *sd_idle, cpumask_t *cpus, int *balance)
  2084. {
  2085. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2086. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2087. unsigned long max_pull;
  2088. unsigned long busiest_load_per_task, busiest_nr_running;
  2089. unsigned long this_load_per_task, this_nr_running;
  2090. int load_idx, group_imb = 0;
  2091. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2092. int power_savings_balance = 1;
  2093. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2094. unsigned long min_nr_running = ULONG_MAX;
  2095. struct sched_group *group_min = NULL, *group_leader = NULL;
  2096. #endif
  2097. max_load = this_load = total_load = total_pwr = 0;
  2098. busiest_load_per_task = busiest_nr_running = 0;
  2099. this_load_per_task = this_nr_running = 0;
  2100. if (idle == CPU_NOT_IDLE)
  2101. load_idx = sd->busy_idx;
  2102. else if (idle == CPU_NEWLY_IDLE)
  2103. load_idx = sd->newidle_idx;
  2104. else
  2105. load_idx = sd->idle_idx;
  2106. do {
  2107. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2108. int local_group;
  2109. int i;
  2110. int __group_imb = 0;
  2111. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2112. unsigned long sum_nr_running, sum_weighted_load;
  2113. local_group = cpu_isset(this_cpu, group->cpumask);
  2114. if (local_group)
  2115. balance_cpu = first_cpu(group->cpumask);
  2116. /* Tally up the load of all CPUs in the group */
  2117. sum_weighted_load = sum_nr_running = avg_load = 0;
  2118. max_cpu_load = 0;
  2119. min_cpu_load = ~0UL;
  2120. for_each_cpu_mask(i, group->cpumask) {
  2121. struct rq *rq;
  2122. if (!cpu_isset(i, *cpus))
  2123. continue;
  2124. rq = cpu_rq(i);
  2125. if (*sd_idle && rq->nr_running)
  2126. *sd_idle = 0;
  2127. /* Bias balancing toward cpus of our domain */
  2128. if (local_group) {
  2129. if (idle_cpu(i) && !first_idle_cpu) {
  2130. first_idle_cpu = 1;
  2131. balance_cpu = i;
  2132. }
  2133. load = target_load(i, load_idx);
  2134. } else {
  2135. load = source_load(i, load_idx);
  2136. if (load > max_cpu_load)
  2137. max_cpu_load = load;
  2138. if (min_cpu_load > load)
  2139. min_cpu_load = load;
  2140. }
  2141. avg_load += load;
  2142. sum_nr_running += rq->nr_running;
  2143. sum_weighted_load += weighted_cpuload(i);
  2144. }
  2145. /*
  2146. * First idle cpu or the first cpu(busiest) in this sched group
  2147. * is eligible for doing load balancing at this and above
  2148. * domains. In the newly idle case, we will allow all the cpu's
  2149. * to do the newly idle load balance.
  2150. */
  2151. if (idle != CPU_NEWLY_IDLE && local_group &&
  2152. balance_cpu != this_cpu && balance) {
  2153. *balance = 0;
  2154. goto ret;
  2155. }
  2156. total_load += avg_load;
  2157. total_pwr += group->__cpu_power;
  2158. /* Adjust by relative CPU power of the group */
  2159. avg_load = sg_div_cpu_power(group,
  2160. avg_load * SCHED_LOAD_SCALE);
  2161. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2162. __group_imb = 1;
  2163. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2164. if (local_group) {
  2165. this_load = avg_load;
  2166. this = group;
  2167. this_nr_running = sum_nr_running;
  2168. this_load_per_task = sum_weighted_load;
  2169. } else if (avg_load > max_load &&
  2170. (sum_nr_running > group_capacity || __group_imb)) {
  2171. max_load = avg_load;
  2172. busiest = group;
  2173. busiest_nr_running = sum_nr_running;
  2174. busiest_load_per_task = sum_weighted_load;
  2175. group_imb = __group_imb;
  2176. }
  2177. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2178. /*
  2179. * Busy processors will not participate in power savings
  2180. * balance.
  2181. */
  2182. if (idle == CPU_NOT_IDLE ||
  2183. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2184. goto group_next;
  2185. /*
  2186. * If the local group is idle or completely loaded
  2187. * no need to do power savings balance at this domain
  2188. */
  2189. if (local_group && (this_nr_running >= group_capacity ||
  2190. !this_nr_running))
  2191. power_savings_balance = 0;
  2192. /*
  2193. * If a group is already running at full capacity or idle,
  2194. * don't include that group in power savings calculations
  2195. */
  2196. if (!power_savings_balance || sum_nr_running >= group_capacity
  2197. || !sum_nr_running)
  2198. goto group_next;
  2199. /*
  2200. * Calculate the group which has the least non-idle load.
  2201. * This is the group from where we need to pick up the load
  2202. * for saving power
  2203. */
  2204. if ((sum_nr_running < min_nr_running) ||
  2205. (sum_nr_running == min_nr_running &&
  2206. first_cpu(group->cpumask) <
  2207. first_cpu(group_min->cpumask))) {
  2208. group_min = group;
  2209. min_nr_running = sum_nr_running;
  2210. min_load_per_task = sum_weighted_load /
  2211. sum_nr_running;
  2212. }
  2213. /*
  2214. * Calculate the group which is almost near its
  2215. * capacity but still has some space to pick up some load
  2216. * from other group and save more power
  2217. */
  2218. if (sum_nr_running <= group_capacity - 1) {
  2219. if (sum_nr_running > leader_nr_running ||
  2220. (sum_nr_running == leader_nr_running &&
  2221. first_cpu(group->cpumask) >
  2222. first_cpu(group_leader->cpumask))) {
  2223. group_leader = group;
  2224. leader_nr_running = sum_nr_running;
  2225. }
  2226. }
  2227. group_next:
  2228. #endif
  2229. group = group->next;
  2230. } while (group != sd->groups);
  2231. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2232. goto out_balanced;
  2233. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2234. if (this_load >= avg_load ||
  2235. 100*max_load <= sd->imbalance_pct*this_load)
  2236. goto out_balanced;
  2237. busiest_load_per_task /= busiest_nr_running;
  2238. if (group_imb)
  2239. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2240. /*
  2241. * We're trying to get all the cpus to the average_load, so we don't
  2242. * want to push ourselves above the average load, nor do we wish to
  2243. * reduce the max loaded cpu below the average load, as either of these
  2244. * actions would just result in more rebalancing later, and ping-pong
  2245. * tasks around. Thus we look for the minimum possible imbalance.
  2246. * Negative imbalances (*we* are more loaded than anyone else) will
  2247. * be counted as no imbalance for these purposes -- we can't fix that
  2248. * by pulling tasks to us. Be careful of negative numbers as they'll
  2249. * appear as very large values with unsigned longs.
  2250. */
  2251. if (max_load <= busiest_load_per_task)
  2252. goto out_balanced;
  2253. /*
  2254. * In the presence of smp nice balancing, certain scenarios can have
  2255. * max load less than avg load(as we skip the groups at or below
  2256. * its cpu_power, while calculating max_load..)
  2257. */
  2258. if (max_load < avg_load) {
  2259. *imbalance = 0;
  2260. goto small_imbalance;
  2261. }
  2262. /* Don't want to pull so many tasks that a group would go idle */
  2263. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2264. /* How much load to actually move to equalise the imbalance */
  2265. *imbalance = min(max_pull * busiest->__cpu_power,
  2266. (avg_load - this_load) * this->__cpu_power)
  2267. / SCHED_LOAD_SCALE;
  2268. /*
  2269. * if *imbalance is less than the average load per runnable task
  2270. * there is no gaurantee that any tasks will be moved so we'll have
  2271. * a think about bumping its value to force at least one task to be
  2272. * moved
  2273. */
  2274. if (*imbalance < busiest_load_per_task) {
  2275. unsigned long tmp, pwr_now, pwr_move;
  2276. unsigned int imbn;
  2277. small_imbalance:
  2278. pwr_move = pwr_now = 0;
  2279. imbn = 2;
  2280. if (this_nr_running) {
  2281. this_load_per_task /= this_nr_running;
  2282. if (busiest_load_per_task > this_load_per_task)
  2283. imbn = 1;
  2284. } else
  2285. this_load_per_task = SCHED_LOAD_SCALE;
  2286. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2287. busiest_load_per_task * imbn) {
  2288. *imbalance = busiest_load_per_task;
  2289. return busiest;
  2290. }
  2291. /*
  2292. * OK, we don't have enough imbalance to justify moving tasks,
  2293. * however we may be able to increase total CPU power used by
  2294. * moving them.
  2295. */
  2296. pwr_now += busiest->__cpu_power *
  2297. min(busiest_load_per_task, max_load);
  2298. pwr_now += this->__cpu_power *
  2299. min(this_load_per_task, this_load);
  2300. pwr_now /= SCHED_LOAD_SCALE;
  2301. /* Amount of load we'd subtract */
  2302. tmp = sg_div_cpu_power(busiest,
  2303. busiest_load_per_task * SCHED_LOAD_SCALE);
  2304. if (max_load > tmp)
  2305. pwr_move += busiest->__cpu_power *
  2306. min(busiest_load_per_task, max_load - tmp);
  2307. /* Amount of load we'd add */
  2308. if (max_load * busiest->__cpu_power <
  2309. busiest_load_per_task * SCHED_LOAD_SCALE)
  2310. tmp = sg_div_cpu_power(this,
  2311. max_load * busiest->__cpu_power);
  2312. else
  2313. tmp = sg_div_cpu_power(this,
  2314. busiest_load_per_task * SCHED_LOAD_SCALE);
  2315. pwr_move += this->__cpu_power *
  2316. min(this_load_per_task, this_load + tmp);
  2317. pwr_move /= SCHED_LOAD_SCALE;
  2318. /* Move if we gain throughput */
  2319. if (pwr_move > pwr_now)
  2320. *imbalance = busiest_load_per_task;
  2321. }
  2322. return busiest;
  2323. out_balanced:
  2324. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2325. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2326. goto ret;
  2327. if (this == group_leader && group_leader != group_min) {
  2328. *imbalance = min_load_per_task;
  2329. return group_min;
  2330. }
  2331. #endif
  2332. ret:
  2333. *imbalance = 0;
  2334. return NULL;
  2335. }
  2336. /*
  2337. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2338. */
  2339. static struct rq *
  2340. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2341. unsigned long imbalance, cpumask_t *cpus)
  2342. {
  2343. struct rq *busiest = NULL, *rq;
  2344. unsigned long max_load = 0;
  2345. int i;
  2346. for_each_cpu_mask(i, group->cpumask) {
  2347. unsigned long wl;
  2348. if (!cpu_isset(i, *cpus))
  2349. continue;
  2350. rq = cpu_rq(i);
  2351. wl = weighted_cpuload(i);
  2352. if (rq->nr_running == 1 && wl > imbalance)
  2353. continue;
  2354. if (wl > max_load) {
  2355. max_load = wl;
  2356. busiest = rq;
  2357. }
  2358. }
  2359. return busiest;
  2360. }
  2361. /*
  2362. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2363. * so long as it is large enough.
  2364. */
  2365. #define MAX_PINNED_INTERVAL 512
  2366. /*
  2367. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2368. * tasks if there is an imbalance.
  2369. */
  2370. static int load_balance(int this_cpu, struct rq *this_rq,
  2371. struct sched_domain *sd, enum cpu_idle_type idle,
  2372. int *balance)
  2373. {
  2374. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2375. struct sched_group *group;
  2376. unsigned long imbalance;
  2377. struct rq *busiest;
  2378. cpumask_t cpus = CPU_MASK_ALL;
  2379. unsigned long flags;
  2380. /*
  2381. * When power savings policy is enabled for the parent domain, idle
  2382. * sibling can pick up load irrespective of busy siblings. In this case,
  2383. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2384. * portraying it as CPU_NOT_IDLE.
  2385. */
  2386. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2387. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2388. sd_idle = 1;
  2389. schedstat_inc(sd, lb_count[idle]);
  2390. redo:
  2391. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2392. &cpus, balance);
  2393. if (*balance == 0)
  2394. goto out_balanced;
  2395. if (!group) {
  2396. schedstat_inc(sd, lb_nobusyg[idle]);
  2397. goto out_balanced;
  2398. }
  2399. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2400. if (!busiest) {
  2401. schedstat_inc(sd, lb_nobusyq[idle]);
  2402. goto out_balanced;
  2403. }
  2404. BUG_ON(busiest == this_rq);
  2405. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2406. ld_moved = 0;
  2407. if (busiest->nr_running > 1) {
  2408. /*
  2409. * Attempt to move tasks. If find_busiest_group has found
  2410. * an imbalance but busiest->nr_running <= 1, the group is
  2411. * still unbalanced. ld_moved simply stays zero, so it is
  2412. * correctly treated as an imbalance.
  2413. */
  2414. local_irq_save(flags);
  2415. double_rq_lock(this_rq, busiest);
  2416. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2417. imbalance, sd, idle, &all_pinned);
  2418. double_rq_unlock(this_rq, busiest);
  2419. local_irq_restore(flags);
  2420. /*
  2421. * some other cpu did the load balance for us.
  2422. */
  2423. if (ld_moved && this_cpu != smp_processor_id())
  2424. resched_cpu(this_cpu);
  2425. /* All tasks on this runqueue were pinned by CPU affinity */
  2426. if (unlikely(all_pinned)) {
  2427. cpu_clear(cpu_of(busiest), cpus);
  2428. if (!cpus_empty(cpus))
  2429. goto redo;
  2430. goto out_balanced;
  2431. }
  2432. }
  2433. if (!ld_moved) {
  2434. schedstat_inc(sd, lb_failed[idle]);
  2435. sd->nr_balance_failed++;
  2436. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2437. spin_lock_irqsave(&busiest->lock, flags);
  2438. /* don't kick the migration_thread, if the curr
  2439. * task on busiest cpu can't be moved to this_cpu
  2440. */
  2441. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2442. spin_unlock_irqrestore(&busiest->lock, flags);
  2443. all_pinned = 1;
  2444. goto out_one_pinned;
  2445. }
  2446. if (!busiest->active_balance) {
  2447. busiest->active_balance = 1;
  2448. busiest->push_cpu = this_cpu;
  2449. active_balance = 1;
  2450. }
  2451. spin_unlock_irqrestore(&busiest->lock, flags);
  2452. if (active_balance)
  2453. wake_up_process(busiest->migration_thread);
  2454. /*
  2455. * We've kicked active balancing, reset the failure
  2456. * counter.
  2457. */
  2458. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2459. }
  2460. } else
  2461. sd->nr_balance_failed = 0;
  2462. if (likely(!active_balance)) {
  2463. /* We were unbalanced, so reset the balancing interval */
  2464. sd->balance_interval = sd->min_interval;
  2465. } else {
  2466. /*
  2467. * If we've begun active balancing, start to back off. This
  2468. * case may not be covered by the all_pinned logic if there
  2469. * is only 1 task on the busy runqueue (because we don't call
  2470. * move_tasks).
  2471. */
  2472. if (sd->balance_interval < sd->max_interval)
  2473. sd->balance_interval *= 2;
  2474. }
  2475. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2476. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2477. return -1;
  2478. return ld_moved;
  2479. out_balanced:
  2480. schedstat_inc(sd, lb_balanced[idle]);
  2481. sd->nr_balance_failed = 0;
  2482. out_one_pinned:
  2483. /* tune up the balancing interval */
  2484. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2485. (sd->balance_interval < sd->max_interval))
  2486. sd->balance_interval *= 2;
  2487. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2488. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2489. return -1;
  2490. return 0;
  2491. }
  2492. /*
  2493. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2494. * tasks if there is an imbalance.
  2495. *
  2496. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2497. * this_rq is locked.
  2498. */
  2499. static int
  2500. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2501. {
  2502. struct sched_group *group;
  2503. struct rq *busiest = NULL;
  2504. unsigned long imbalance;
  2505. int ld_moved = 0;
  2506. int sd_idle = 0;
  2507. int all_pinned = 0;
  2508. cpumask_t cpus = CPU_MASK_ALL;
  2509. /*
  2510. * When power savings policy is enabled for the parent domain, idle
  2511. * sibling can pick up load irrespective of busy siblings. In this case,
  2512. * let the state of idle sibling percolate up as IDLE, instead of
  2513. * portraying it as CPU_NOT_IDLE.
  2514. */
  2515. if (sd->flags & SD_SHARE_CPUPOWER &&
  2516. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2517. sd_idle = 1;
  2518. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2519. redo:
  2520. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2521. &sd_idle, &cpus, NULL);
  2522. if (!group) {
  2523. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2524. goto out_balanced;
  2525. }
  2526. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2527. &cpus);
  2528. if (!busiest) {
  2529. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2530. goto out_balanced;
  2531. }
  2532. BUG_ON(busiest == this_rq);
  2533. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2534. ld_moved = 0;
  2535. if (busiest->nr_running > 1) {
  2536. /* Attempt to move tasks */
  2537. double_lock_balance(this_rq, busiest);
  2538. /* this_rq->clock is already updated */
  2539. update_rq_clock(busiest);
  2540. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2541. imbalance, sd, CPU_NEWLY_IDLE,
  2542. &all_pinned);
  2543. spin_unlock(&busiest->lock);
  2544. if (unlikely(all_pinned)) {
  2545. cpu_clear(cpu_of(busiest), cpus);
  2546. if (!cpus_empty(cpus))
  2547. goto redo;
  2548. }
  2549. }
  2550. if (!ld_moved) {
  2551. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2552. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2553. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2554. return -1;
  2555. } else
  2556. sd->nr_balance_failed = 0;
  2557. return ld_moved;
  2558. out_balanced:
  2559. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2560. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2561. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2562. return -1;
  2563. sd->nr_balance_failed = 0;
  2564. return 0;
  2565. }
  2566. /*
  2567. * idle_balance is called by schedule() if this_cpu is about to become
  2568. * idle. Attempts to pull tasks from other CPUs.
  2569. */
  2570. static void idle_balance(int this_cpu, struct rq *this_rq)
  2571. {
  2572. struct sched_domain *sd;
  2573. int pulled_task = -1;
  2574. unsigned long next_balance = jiffies + HZ;
  2575. for_each_domain(this_cpu, sd) {
  2576. unsigned long interval;
  2577. if (!(sd->flags & SD_LOAD_BALANCE))
  2578. continue;
  2579. if (sd->flags & SD_BALANCE_NEWIDLE)
  2580. /* If we've pulled tasks over stop searching: */
  2581. pulled_task = load_balance_newidle(this_cpu,
  2582. this_rq, sd);
  2583. interval = msecs_to_jiffies(sd->balance_interval);
  2584. if (time_after(next_balance, sd->last_balance + interval))
  2585. next_balance = sd->last_balance + interval;
  2586. if (pulled_task)
  2587. break;
  2588. }
  2589. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2590. /*
  2591. * We are going idle. next_balance may be set based on
  2592. * a busy processor. So reset next_balance.
  2593. */
  2594. this_rq->next_balance = next_balance;
  2595. }
  2596. }
  2597. /*
  2598. * active_load_balance is run by migration threads. It pushes running tasks
  2599. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2600. * running on each physical CPU where possible, and avoids physical /
  2601. * logical imbalances.
  2602. *
  2603. * Called with busiest_rq locked.
  2604. */
  2605. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2606. {
  2607. int target_cpu = busiest_rq->push_cpu;
  2608. struct sched_domain *sd;
  2609. struct rq *target_rq;
  2610. /* Is there any task to move? */
  2611. if (busiest_rq->nr_running <= 1)
  2612. return;
  2613. target_rq = cpu_rq(target_cpu);
  2614. /*
  2615. * This condition is "impossible", if it occurs
  2616. * we need to fix it. Originally reported by
  2617. * Bjorn Helgaas on a 128-cpu setup.
  2618. */
  2619. BUG_ON(busiest_rq == target_rq);
  2620. /* move a task from busiest_rq to target_rq */
  2621. double_lock_balance(busiest_rq, target_rq);
  2622. update_rq_clock(busiest_rq);
  2623. update_rq_clock(target_rq);
  2624. /* Search for an sd spanning us and the target CPU. */
  2625. for_each_domain(target_cpu, sd) {
  2626. if ((sd->flags & SD_LOAD_BALANCE) &&
  2627. cpu_isset(busiest_cpu, sd->span))
  2628. break;
  2629. }
  2630. if (likely(sd)) {
  2631. schedstat_inc(sd, alb_count);
  2632. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2633. sd, CPU_IDLE))
  2634. schedstat_inc(sd, alb_pushed);
  2635. else
  2636. schedstat_inc(sd, alb_failed);
  2637. }
  2638. spin_unlock(&target_rq->lock);
  2639. }
  2640. #ifdef CONFIG_NO_HZ
  2641. static struct {
  2642. atomic_t load_balancer;
  2643. cpumask_t cpu_mask;
  2644. } nohz ____cacheline_aligned = {
  2645. .load_balancer = ATOMIC_INIT(-1),
  2646. .cpu_mask = CPU_MASK_NONE,
  2647. };
  2648. /*
  2649. * This routine will try to nominate the ilb (idle load balancing)
  2650. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2651. * load balancing on behalf of all those cpus. If all the cpus in the system
  2652. * go into this tickless mode, then there will be no ilb owner (as there is
  2653. * no need for one) and all the cpus will sleep till the next wakeup event
  2654. * arrives...
  2655. *
  2656. * For the ilb owner, tick is not stopped. And this tick will be used
  2657. * for idle load balancing. ilb owner will still be part of
  2658. * nohz.cpu_mask..
  2659. *
  2660. * While stopping the tick, this cpu will become the ilb owner if there
  2661. * is no other owner. And will be the owner till that cpu becomes busy
  2662. * or if all cpus in the system stop their ticks at which point
  2663. * there is no need for ilb owner.
  2664. *
  2665. * When the ilb owner becomes busy, it nominates another owner, during the
  2666. * next busy scheduler_tick()
  2667. */
  2668. int select_nohz_load_balancer(int stop_tick)
  2669. {
  2670. int cpu = smp_processor_id();
  2671. if (stop_tick) {
  2672. cpu_set(cpu, nohz.cpu_mask);
  2673. cpu_rq(cpu)->in_nohz_recently = 1;
  2674. /*
  2675. * If we are going offline and still the leader, give up!
  2676. */
  2677. if (cpu_is_offline(cpu) &&
  2678. atomic_read(&nohz.load_balancer) == cpu) {
  2679. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2680. BUG();
  2681. return 0;
  2682. }
  2683. /* time for ilb owner also to sleep */
  2684. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2685. if (atomic_read(&nohz.load_balancer) == cpu)
  2686. atomic_set(&nohz.load_balancer, -1);
  2687. return 0;
  2688. }
  2689. if (atomic_read(&nohz.load_balancer) == -1) {
  2690. /* make me the ilb owner */
  2691. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2692. return 1;
  2693. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2694. return 1;
  2695. } else {
  2696. if (!cpu_isset(cpu, nohz.cpu_mask))
  2697. return 0;
  2698. cpu_clear(cpu, nohz.cpu_mask);
  2699. if (atomic_read(&nohz.load_balancer) == cpu)
  2700. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2701. BUG();
  2702. }
  2703. return 0;
  2704. }
  2705. #endif
  2706. static DEFINE_SPINLOCK(balancing);
  2707. /*
  2708. * It checks each scheduling domain to see if it is due to be balanced,
  2709. * and initiates a balancing operation if so.
  2710. *
  2711. * Balancing parameters are set up in arch_init_sched_domains.
  2712. */
  2713. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2714. {
  2715. int balance = 1;
  2716. struct rq *rq = cpu_rq(cpu);
  2717. unsigned long interval;
  2718. struct sched_domain *sd;
  2719. /* Earliest time when we have to do rebalance again */
  2720. unsigned long next_balance = jiffies + 60*HZ;
  2721. int update_next_balance = 0;
  2722. for_each_domain(cpu, sd) {
  2723. if (!(sd->flags & SD_LOAD_BALANCE))
  2724. continue;
  2725. interval = sd->balance_interval;
  2726. if (idle != CPU_IDLE)
  2727. interval *= sd->busy_factor;
  2728. /* scale ms to jiffies */
  2729. interval = msecs_to_jiffies(interval);
  2730. if (unlikely(!interval))
  2731. interval = 1;
  2732. if (interval > HZ*NR_CPUS/10)
  2733. interval = HZ*NR_CPUS/10;
  2734. if (sd->flags & SD_SERIALIZE) {
  2735. if (!spin_trylock(&balancing))
  2736. goto out;
  2737. }
  2738. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2739. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2740. /*
  2741. * We've pulled tasks over so either we're no
  2742. * longer idle, or one of our SMT siblings is
  2743. * not idle.
  2744. */
  2745. idle = CPU_NOT_IDLE;
  2746. }
  2747. sd->last_balance = jiffies;
  2748. }
  2749. if (sd->flags & SD_SERIALIZE)
  2750. spin_unlock(&balancing);
  2751. out:
  2752. if (time_after(next_balance, sd->last_balance + interval)) {
  2753. next_balance = sd->last_balance + interval;
  2754. update_next_balance = 1;
  2755. }
  2756. /*
  2757. * Stop the load balance at this level. There is another
  2758. * CPU in our sched group which is doing load balancing more
  2759. * actively.
  2760. */
  2761. if (!balance)
  2762. break;
  2763. }
  2764. /*
  2765. * next_balance will be updated only when there is a need.
  2766. * When the cpu is attached to null domain for ex, it will not be
  2767. * updated.
  2768. */
  2769. if (likely(update_next_balance))
  2770. rq->next_balance = next_balance;
  2771. }
  2772. /*
  2773. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2774. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2775. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2776. */
  2777. static void run_rebalance_domains(struct softirq_action *h)
  2778. {
  2779. int this_cpu = smp_processor_id();
  2780. struct rq *this_rq = cpu_rq(this_cpu);
  2781. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2782. CPU_IDLE : CPU_NOT_IDLE;
  2783. rebalance_domains(this_cpu, idle);
  2784. #ifdef CONFIG_NO_HZ
  2785. /*
  2786. * If this cpu is the owner for idle load balancing, then do the
  2787. * balancing on behalf of the other idle cpus whose ticks are
  2788. * stopped.
  2789. */
  2790. if (this_rq->idle_at_tick &&
  2791. atomic_read(&nohz.load_balancer) == this_cpu) {
  2792. cpumask_t cpus = nohz.cpu_mask;
  2793. struct rq *rq;
  2794. int balance_cpu;
  2795. cpu_clear(this_cpu, cpus);
  2796. for_each_cpu_mask(balance_cpu, cpus) {
  2797. /*
  2798. * If this cpu gets work to do, stop the load balancing
  2799. * work being done for other cpus. Next load
  2800. * balancing owner will pick it up.
  2801. */
  2802. if (need_resched())
  2803. break;
  2804. rebalance_domains(balance_cpu, CPU_IDLE);
  2805. rq = cpu_rq(balance_cpu);
  2806. if (time_after(this_rq->next_balance, rq->next_balance))
  2807. this_rq->next_balance = rq->next_balance;
  2808. }
  2809. }
  2810. #endif
  2811. }
  2812. /*
  2813. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2814. *
  2815. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2816. * idle load balancing owner or decide to stop the periodic load balancing,
  2817. * if the whole system is idle.
  2818. */
  2819. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2820. {
  2821. #ifdef CONFIG_NO_HZ
  2822. /*
  2823. * If we were in the nohz mode recently and busy at the current
  2824. * scheduler tick, then check if we need to nominate new idle
  2825. * load balancer.
  2826. */
  2827. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2828. rq->in_nohz_recently = 0;
  2829. if (atomic_read(&nohz.load_balancer) == cpu) {
  2830. cpu_clear(cpu, nohz.cpu_mask);
  2831. atomic_set(&nohz.load_balancer, -1);
  2832. }
  2833. if (atomic_read(&nohz.load_balancer) == -1) {
  2834. /*
  2835. * simple selection for now: Nominate the
  2836. * first cpu in the nohz list to be the next
  2837. * ilb owner.
  2838. *
  2839. * TBD: Traverse the sched domains and nominate
  2840. * the nearest cpu in the nohz.cpu_mask.
  2841. */
  2842. int ilb = first_cpu(nohz.cpu_mask);
  2843. if (ilb != NR_CPUS)
  2844. resched_cpu(ilb);
  2845. }
  2846. }
  2847. /*
  2848. * If this cpu is idle and doing idle load balancing for all the
  2849. * cpus with ticks stopped, is it time for that to stop?
  2850. */
  2851. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2852. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2853. resched_cpu(cpu);
  2854. return;
  2855. }
  2856. /*
  2857. * If this cpu is idle and the idle load balancing is done by
  2858. * someone else, then no need raise the SCHED_SOFTIRQ
  2859. */
  2860. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2861. cpu_isset(cpu, nohz.cpu_mask))
  2862. return;
  2863. #endif
  2864. if (time_after_eq(jiffies, rq->next_balance))
  2865. raise_softirq(SCHED_SOFTIRQ);
  2866. }
  2867. #else /* CONFIG_SMP */
  2868. /*
  2869. * on UP we do not need to balance between CPUs:
  2870. */
  2871. static inline void idle_balance(int cpu, struct rq *rq)
  2872. {
  2873. }
  2874. #endif
  2875. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2876. EXPORT_PER_CPU_SYMBOL(kstat);
  2877. /*
  2878. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2879. * that have not yet been banked in case the task is currently running.
  2880. */
  2881. unsigned long long task_sched_runtime(struct task_struct *p)
  2882. {
  2883. unsigned long flags;
  2884. u64 ns, delta_exec;
  2885. struct rq *rq;
  2886. rq = task_rq_lock(p, &flags);
  2887. ns = p->se.sum_exec_runtime;
  2888. if (task_current(rq, p)) {
  2889. update_rq_clock(rq);
  2890. delta_exec = rq->clock - p->se.exec_start;
  2891. if ((s64)delta_exec > 0)
  2892. ns += delta_exec;
  2893. }
  2894. task_rq_unlock(rq, &flags);
  2895. return ns;
  2896. }
  2897. /*
  2898. * Account user cpu time to a process.
  2899. * @p: the process that the cpu time gets accounted to
  2900. * @cputime: the cpu time spent in user space since the last update
  2901. */
  2902. void account_user_time(struct task_struct *p, cputime_t cputime)
  2903. {
  2904. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2905. cputime64_t tmp;
  2906. p->utime = cputime_add(p->utime, cputime);
  2907. /* Add user time to cpustat. */
  2908. tmp = cputime_to_cputime64(cputime);
  2909. if (TASK_NICE(p) > 0)
  2910. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2911. else
  2912. cpustat->user = cputime64_add(cpustat->user, tmp);
  2913. }
  2914. /*
  2915. * Account guest cpu time to a process.
  2916. * @p: the process that the cpu time gets accounted to
  2917. * @cputime: the cpu time spent in virtual machine since the last update
  2918. */
  2919. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2920. {
  2921. cputime64_t tmp;
  2922. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2923. tmp = cputime_to_cputime64(cputime);
  2924. p->utime = cputime_add(p->utime, cputime);
  2925. p->gtime = cputime_add(p->gtime, cputime);
  2926. cpustat->user = cputime64_add(cpustat->user, tmp);
  2927. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2928. }
  2929. /*
  2930. * Account scaled user cpu time to a process.
  2931. * @p: the process that the cpu time gets accounted to
  2932. * @cputime: the cpu time spent in user space since the last update
  2933. */
  2934. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2935. {
  2936. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2937. }
  2938. /*
  2939. * Account system cpu time to a process.
  2940. * @p: the process that the cpu time gets accounted to
  2941. * @hardirq_offset: the offset to subtract from hardirq_count()
  2942. * @cputime: the cpu time spent in kernel space since the last update
  2943. */
  2944. void account_system_time(struct task_struct *p, int hardirq_offset,
  2945. cputime_t cputime)
  2946. {
  2947. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2948. struct rq *rq = this_rq();
  2949. cputime64_t tmp;
  2950. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2951. return account_guest_time(p, cputime);
  2952. p->stime = cputime_add(p->stime, cputime);
  2953. /* Add system time to cpustat. */
  2954. tmp = cputime_to_cputime64(cputime);
  2955. if (hardirq_count() - hardirq_offset)
  2956. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2957. else if (softirq_count())
  2958. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2959. else if (p != rq->idle)
  2960. cpustat->system = cputime64_add(cpustat->system, tmp);
  2961. else if (atomic_read(&rq->nr_iowait) > 0)
  2962. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2963. else
  2964. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2965. /* Account for system time used */
  2966. acct_update_integrals(p);
  2967. }
  2968. /*
  2969. * Account scaled system cpu time to a process.
  2970. * @p: the process that the cpu time gets accounted to
  2971. * @hardirq_offset: the offset to subtract from hardirq_count()
  2972. * @cputime: the cpu time spent in kernel space since the last update
  2973. */
  2974. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2975. {
  2976. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2977. }
  2978. /*
  2979. * Account for involuntary wait time.
  2980. * @p: the process from which the cpu time has been stolen
  2981. * @steal: the cpu time spent in involuntary wait
  2982. */
  2983. void account_steal_time(struct task_struct *p, cputime_t steal)
  2984. {
  2985. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2986. cputime64_t tmp = cputime_to_cputime64(steal);
  2987. struct rq *rq = this_rq();
  2988. if (p == rq->idle) {
  2989. p->stime = cputime_add(p->stime, steal);
  2990. if (atomic_read(&rq->nr_iowait) > 0)
  2991. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2992. else
  2993. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2994. } else
  2995. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2996. }
  2997. /*
  2998. * This function gets called by the timer code, with HZ frequency.
  2999. * We call it with interrupts disabled.
  3000. *
  3001. * It also gets called by the fork code, when changing the parent's
  3002. * timeslices.
  3003. */
  3004. void scheduler_tick(void)
  3005. {
  3006. int cpu = smp_processor_id();
  3007. struct rq *rq = cpu_rq(cpu);
  3008. struct task_struct *curr = rq->curr;
  3009. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3010. spin_lock(&rq->lock);
  3011. __update_rq_clock(rq);
  3012. /*
  3013. * Let rq->clock advance by at least TICK_NSEC:
  3014. */
  3015. if (unlikely(rq->clock < next_tick))
  3016. rq->clock = next_tick;
  3017. rq->tick_timestamp = rq->clock;
  3018. update_cpu_load(rq);
  3019. if (curr != rq->idle) /* FIXME: needed? */
  3020. curr->sched_class->task_tick(rq, curr);
  3021. spin_unlock(&rq->lock);
  3022. #ifdef CONFIG_SMP
  3023. rq->idle_at_tick = idle_cpu(cpu);
  3024. trigger_load_balance(rq, cpu);
  3025. #endif
  3026. }
  3027. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3028. void fastcall add_preempt_count(int val)
  3029. {
  3030. /*
  3031. * Underflow?
  3032. */
  3033. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3034. return;
  3035. preempt_count() += val;
  3036. /*
  3037. * Spinlock count overflowing soon?
  3038. */
  3039. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3040. PREEMPT_MASK - 10);
  3041. }
  3042. EXPORT_SYMBOL(add_preempt_count);
  3043. void fastcall sub_preempt_count(int val)
  3044. {
  3045. /*
  3046. * Underflow?
  3047. */
  3048. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3049. return;
  3050. /*
  3051. * Is the spinlock portion underflowing?
  3052. */
  3053. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3054. !(preempt_count() & PREEMPT_MASK)))
  3055. return;
  3056. preempt_count() -= val;
  3057. }
  3058. EXPORT_SYMBOL(sub_preempt_count);
  3059. #endif
  3060. /*
  3061. * Print scheduling while atomic bug:
  3062. */
  3063. static noinline void __schedule_bug(struct task_struct *prev)
  3064. {
  3065. struct pt_regs *regs = get_irq_regs();
  3066. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3067. prev->comm, prev->pid, preempt_count());
  3068. debug_show_held_locks(prev);
  3069. if (irqs_disabled())
  3070. print_irqtrace_events(prev);
  3071. if (regs)
  3072. show_regs(regs);
  3073. else
  3074. dump_stack();
  3075. }
  3076. /*
  3077. * Various schedule()-time debugging checks and statistics:
  3078. */
  3079. static inline void schedule_debug(struct task_struct *prev)
  3080. {
  3081. /*
  3082. * Test if we are atomic. Since do_exit() needs to call into
  3083. * schedule() atomically, we ignore that path for now.
  3084. * Otherwise, whine if we are scheduling when we should not be.
  3085. */
  3086. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3087. __schedule_bug(prev);
  3088. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3089. schedstat_inc(this_rq(), sched_count);
  3090. #ifdef CONFIG_SCHEDSTATS
  3091. if (unlikely(prev->lock_depth >= 0)) {
  3092. schedstat_inc(this_rq(), bkl_count);
  3093. schedstat_inc(prev, sched_info.bkl_count);
  3094. }
  3095. #endif
  3096. }
  3097. /*
  3098. * Pick up the highest-prio task:
  3099. */
  3100. static inline struct task_struct *
  3101. pick_next_task(struct rq *rq, struct task_struct *prev)
  3102. {
  3103. const struct sched_class *class;
  3104. struct task_struct *p;
  3105. /*
  3106. * Optimization: we know that if all tasks are in
  3107. * the fair class we can call that function directly:
  3108. */
  3109. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3110. p = fair_sched_class.pick_next_task(rq);
  3111. if (likely(p))
  3112. return p;
  3113. }
  3114. class = sched_class_highest;
  3115. for ( ; ; ) {
  3116. p = class->pick_next_task(rq);
  3117. if (p)
  3118. return p;
  3119. /*
  3120. * Will never be NULL as the idle class always
  3121. * returns a non-NULL p:
  3122. */
  3123. class = class->next;
  3124. }
  3125. }
  3126. /*
  3127. * schedule() is the main scheduler function.
  3128. */
  3129. asmlinkage void __sched schedule(void)
  3130. {
  3131. struct task_struct *prev, *next;
  3132. long *switch_count;
  3133. struct rq *rq;
  3134. int cpu;
  3135. need_resched:
  3136. preempt_disable();
  3137. cpu = smp_processor_id();
  3138. rq = cpu_rq(cpu);
  3139. rcu_qsctr_inc(cpu);
  3140. prev = rq->curr;
  3141. switch_count = &prev->nivcsw;
  3142. release_kernel_lock(prev);
  3143. need_resched_nonpreemptible:
  3144. schedule_debug(prev);
  3145. /*
  3146. * Do the rq-clock update outside the rq lock:
  3147. */
  3148. local_irq_disable();
  3149. __update_rq_clock(rq);
  3150. spin_lock(&rq->lock);
  3151. clear_tsk_need_resched(prev);
  3152. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3153. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3154. unlikely(signal_pending(prev)))) {
  3155. prev->state = TASK_RUNNING;
  3156. } else {
  3157. deactivate_task(rq, prev, 1);
  3158. }
  3159. switch_count = &prev->nvcsw;
  3160. }
  3161. #ifdef CONFIG_SMP
  3162. if (prev->sched_class->pre_schedule)
  3163. prev->sched_class->pre_schedule(rq, prev);
  3164. #endif
  3165. if (unlikely(!rq->nr_running))
  3166. idle_balance(cpu, rq);
  3167. prev->sched_class->put_prev_task(rq, prev);
  3168. next = pick_next_task(rq, prev);
  3169. sched_info_switch(prev, next);
  3170. if (likely(prev != next)) {
  3171. rq->nr_switches++;
  3172. rq->curr = next;
  3173. ++*switch_count;
  3174. context_switch(rq, prev, next); /* unlocks the rq */
  3175. } else
  3176. spin_unlock_irq(&rq->lock);
  3177. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3178. cpu = smp_processor_id();
  3179. rq = cpu_rq(cpu);
  3180. goto need_resched_nonpreemptible;
  3181. }
  3182. preempt_enable_no_resched();
  3183. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3184. goto need_resched;
  3185. }
  3186. EXPORT_SYMBOL(schedule);
  3187. #ifdef CONFIG_PREEMPT
  3188. /*
  3189. * this is the entry point to schedule() from in-kernel preemption
  3190. * off of preempt_enable. Kernel preemptions off return from interrupt
  3191. * occur there and call schedule directly.
  3192. */
  3193. asmlinkage void __sched preempt_schedule(void)
  3194. {
  3195. struct thread_info *ti = current_thread_info();
  3196. #ifdef CONFIG_PREEMPT_BKL
  3197. struct task_struct *task = current;
  3198. int saved_lock_depth;
  3199. #endif
  3200. /*
  3201. * If there is a non-zero preempt_count or interrupts are disabled,
  3202. * we do not want to preempt the current task. Just return..
  3203. */
  3204. if (likely(ti->preempt_count || irqs_disabled()))
  3205. return;
  3206. do {
  3207. add_preempt_count(PREEMPT_ACTIVE);
  3208. /*
  3209. * We keep the big kernel semaphore locked, but we
  3210. * clear ->lock_depth so that schedule() doesnt
  3211. * auto-release the semaphore:
  3212. */
  3213. #ifdef CONFIG_PREEMPT_BKL
  3214. saved_lock_depth = task->lock_depth;
  3215. task->lock_depth = -1;
  3216. #endif
  3217. schedule();
  3218. #ifdef CONFIG_PREEMPT_BKL
  3219. task->lock_depth = saved_lock_depth;
  3220. #endif
  3221. sub_preempt_count(PREEMPT_ACTIVE);
  3222. /*
  3223. * Check again in case we missed a preemption opportunity
  3224. * between schedule and now.
  3225. */
  3226. barrier();
  3227. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3228. }
  3229. EXPORT_SYMBOL(preempt_schedule);
  3230. /*
  3231. * this is the entry point to schedule() from kernel preemption
  3232. * off of irq context.
  3233. * Note, that this is called and return with irqs disabled. This will
  3234. * protect us against recursive calling from irq.
  3235. */
  3236. asmlinkage void __sched preempt_schedule_irq(void)
  3237. {
  3238. struct thread_info *ti = current_thread_info();
  3239. #ifdef CONFIG_PREEMPT_BKL
  3240. struct task_struct *task = current;
  3241. int saved_lock_depth;
  3242. #endif
  3243. /* Catch callers which need to be fixed */
  3244. BUG_ON(ti->preempt_count || !irqs_disabled());
  3245. do {
  3246. add_preempt_count(PREEMPT_ACTIVE);
  3247. /*
  3248. * We keep the big kernel semaphore locked, but we
  3249. * clear ->lock_depth so that schedule() doesnt
  3250. * auto-release the semaphore:
  3251. */
  3252. #ifdef CONFIG_PREEMPT_BKL
  3253. saved_lock_depth = task->lock_depth;
  3254. task->lock_depth = -1;
  3255. #endif
  3256. local_irq_enable();
  3257. schedule();
  3258. local_irq_disable();
  3259. #ifdef CONFIG_PREEMPT_BKL
  3260. task->lock_depth = saved_lock_depth;
  3261. #endif
  3262. sub_preempt_count(PREEMPT_ACTIVE);
  3263. /*
  3264. * Check again in case we missed a preemption opportunity
  3265. * between schedule and now.
  3266. */
  3267. barrier();
  3268. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3269. }
  3270. #endif /* CONFIG_PREEMPT */
  3271. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3272. void *key)
  3273. {
  3274. return try_to_wake_up(curr->private, mode, sync);
  3275. }
  3276. EXPORT_SYMBOL(default_wake_function);
  3277. /*
  3278. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3279. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3280. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3281. *
  3282. * There are circumstances in which we can try to wake a task which has already
  3283. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3284. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3285. */
  3286. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3287. int nr_exclusive, int sync, void *key)
  3288. {
  3289. wait_queue_t *curr, *next;
  3290. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3291. unsigned flags = curr->flags;
  3292. if (curr->func(curr, mode, sync, key) &&
  3293. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3294. break;
  3295. }
  3296. }
  3297. /**
  3298. * __wake_up - wake up threads blocked on a waitqueue.
  3299. * @q: the waitqueue
  3300. * @mode: which threads
  3301. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3302. * @key: is directly passed to the wakeup function
  3303. */
  3304. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3305. int nr_exclusive, void *key)
  3306. {
  3307. unsigned long flags;
  3308. spin_lock_irqsave(&q->lock, flags);
  3309. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3310. spin_unlock_irqrestore(&q->lock, flags);
  3311. }
  3312. EXPORT_SYMBOL(__wake_up);
  3313. /*
  3314. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3315. */
  3316. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3317. {
  3318. __wake_up_common(q, mode, 1, 0, NULL);
  3319. }
  3320. /**
  3321. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3322. * @q: the waitqueue
  3323. * @mode: which threads
  3324. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3325. *
  3326. * The sync wakeup differs that the waker knows that it will schedule
  3327. * away soon, so while the target thread will be woken up, it will not
  3328. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3329. * with each other. This can prevent needless bouncing between CPUs.
  3330. *
  3331. * On UP it can prevent extra preemption.
  3332. */
  3333. void fastcall
  3334. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3335. {
  3336. unsigned long flags;
  3337. int sync = 1;
  3338. if (unlikely(!q))
  3339. return;
  3340. if (unlikely(!nr_exclusive))
  3341. sync = 0;
  3342. spin_lock_irqsave(&q->lock, flags);
  3343. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3344. spin_unlock_irqrestore(&q->lock, flags);
  3345. }
  3346. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3347. void complete(struct completion *x)
  3348. {
  3349. unsigned long flags;
  3350. spin_lock_irqsave(&x->wait.lock, flags);
  3351. x->done++;
  3352. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3353. 1, 0, NULL);
  3354. spin_unlock_irqrestore(&x->wait.lock, flags);
  3355. }
  3356. EXPORT_SYMBOL(complete);
  3357. void complete_all(struct completion *x)
  3358. {
  3359. unsigned long flags;
  3360. spin_lock_irqsave(&x->wait.lock, flags);
  3361. x->done += UINT_MAX/2;
  3362. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3363. 0, 0, NULL);
  3364. spin_unlock_irqrestore(&x->wait.lock, flags);
  3365. }
  3366. EXPORT_SYMBOL(complete_all);
  3367. static inline long __sched
  3368. do_wait_for_common(struct completion *x, long timeout, int state)
  3369. {
  3370. if (!x->done) {
  3371. DECLARE_WAITQUEUE(wait, current);
  3372. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3373. __add_wait_queue_tail(&x->wait, &wait);
  3374. do {
  3375. if (state == TASK_INTERRUPTIBLE &&
  3376. signal_pending(current)) {
  3377. __remove_wait_queue(&x->wait, &wait);
  3378. return -ERESTARTSYS;
  3379. }
  3380. __set_current_state(state);
  3381. spin_unlock_irq(&x->wait.lock);
  3382. timeout = schedule_timeout(timeout);
  3383. spin_lock_irq(&x->wait.lock);
  3384. if (!timeout) {
  3385. __remove_wait_queue(&x->wait, &wait);
  3386. return timeout;
  3387. }
  3388. } while (!x->done);
  3389. __remove_wait_queue(&x->wait, &wait);
  3390. }
  3391. x->done--;
  3392. return timeout;
  3393. }
  3394. static long __sched
  3395. wait_for_common(struct completion *x, long timeout, int state)
  3396. {
  3397. might_sleep();
  3398. spin_lock_irq(&x->wait.lock);
  3399. timeout = do_wait_for_common(x, timeout, state);
  3400. spin_unlock_irq(&x->wait.lock);
  3401. return timeout;
  3402. }
  3403. void __sched wait_for_completion(struct completion *x)
  3404. {
  3405. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3406. }
  3407. EXPORT_SYMBOL(wait_for_completion);
  3408. unsigned long __sched
  3409. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3410. {
  3411. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3412. }
  3413. EXPORT_SYMBOL(wait_for_completion_timeout);
  3414. int __sched wait_for_completion_interruptible(struct completion *x)
  3415. {
  3416. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3417. if (t == -ERESTARTSYS)
  3418. return t;
  3419. return 0;
  3420. }
  3421. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3422. unsigned long __sched
  3423. wait_for_completion_interruptible_timeout(struct completion *x,
  3424. unsigned long timeout)
  3425. {
  3426. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3427. }
  3428. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3429. static long __sched
  3430. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3431. {
  3432. unsigned long flags;
  3433. wait_queue_t wait;
  3434. init_waitqueue_entry(&wait, current);
  3435. __set_current_state(state);
  3436. spin_lock_irqsave(&q->lock, flags);
  3437. __add_wait_queue(q, &wait);
  3438. spin_unlock(&q->lock);
  3439. timeout = schedule_timeout(timeout);
  3440. spin_lock_irq(&q->lock);
  3441. __remove_wait_queue(q, &wait);
  3442. spin_unlock_irqrestore(&q->lock, flags);
  3443. return timeout;
  3444. }
  3445. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3446. {
  3447. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3448. }
  3449. EXPORT_SYMBOL(interruptible_sleep_on);
  3450. long __sched
  3451. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3452. {
  3453. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3454. }
  3455. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3456. void __sched sleep_on(wait_queue_head_t *q)
  3457. {
  3458. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3459. }
  3460. EXPORT_SYMBOL(sleep_on);
  3461. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3462. {
  3463. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3464. }
  3465. EXPORT_SYMBOL(sleep_on_timeout);
  3466. #ifdef CONFIG_RT_MUTEXES
  3467. /*
  3468. * rt_mutex_setprio - set the current priority of a task
  3469. * @p: task
  3470. * @prio: prio value (kernel-internal form)
  3471. *
  3472. * This function changes the 'effective' priority of a task. It does
  3473. * not touch ->normal_prio like __setscheduler().
  3474. *
  3475. * Used by the rt_mutex code to implement priority inheritance logic.
  3476. */
  3477. void rt_mutex_setprio(struct task_struct *p, int prio)
  3478. {
  3479. unsigned long flags;
  3480. int oldprio, on_rq, running;
  3481. struct rq *rq;
  3482. const struct sched_class *prev_class = p->sched_class;
  3483. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3484. rq = task_rq_lock(p, &flags);
  3485. update_rq_clock(rq);
  3486. oldprio = p->prio;
  3487. on_rq = p->se.on_rq;
  3488. running = task_current(rq, p);
  3489. if (on_rq) {
  3490. dequeue_task(rq, p, 0);
  3491. if (running)
  3492. p->sched_class->put_prev_task(rq, p);
  3493. }
  3494. if (rt_prio(prio))
  3495. p->sched_class = &rt_sched_class;
  3496. else
  3497. p->sched_class = &fair_sched_class;
  3498. p->prio = prio;
  3499. if (on_rq) {
  3500. if (running)
  3501. p->sched_class->set_curr_task(rq);
  3502. enqueue_task(rq, p, 0);
  3503. check_class_changed(rq, p, prev_class, oldprio, running);
  3504. }
  3505. task_rq_unlock(rq, &flags);
  3506. }
  3507. #endif
  3508. void set_user_nice(struct task_struct *p, long nice)
  3509. {
  3510. int old_prio, delta, on_rq;
  3511. unsigned long flags;
  3512. struct rq *rq;
  3513. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3514. return;
  3515. /*
  3516. * We have to be careful, if called from sys_setpriority(),
  3517. * the task might be in the middle of scheduling on another CPU.
  3518. */
  3519. rq = task_rq_lock(p, &flags);
  3520. update_rq_clock(rq);
  3521. /*
  3522. * The RT priorities are set via sched_setscheduler(), but we still
  3523. * allow the 'normal' nice value to be set - but as expected
  3524. * it wont have any effect on scheduling until the task is
  3525. * SCHED_FIFO/SCHED_RR:
  3526. */
  3527. if (task_has_rt_policy(p)) {
  3528. p->static_prio = NICE_TO_PRIO(nice);
  3529. goto out_unlock;
  3530. }
  3531. on_rq = p->se.on_rq;
  3532. if (on_rq)
  3533. dequeue_task(rq, p, 0);
  3534. p->static_prio = NICE_TO_PRIO(nice);
  3535. set_load_weight(p);
  3536. old_prio = p->prio;
  3537. p->prio = effective_prio(p);
  3538. delta = p->prio - old_prio;
  3539. if (on_rq) {
  3540. enqueue_task(rq, p, 0);
  3541. /*
  3542. * If the task increased its priority or is running and
  3543. * lowered its priority, then reschedule its CPU:
  3544. */
  3545. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3546. resched_task(rq->curr);
  3547. }
  3548. out_unlock:
  3549. task_rq_unlock(rq, &flags);
  3550. }
  3551. EXPORT_SYMBOL(set_user_nice);
  3552. /*
  3553. * can_nice - check if a task can reduce its nice value
  3554. * @p: task
  3555. * @nice: nice value
  3556. */
  3557. int can_nice(const struct task_struct *p, const int nice)
  3558. {
  3559. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3560. int nice_rlim = 20 - nice;
  3561. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3562. capable(CAP_SYS_NICE));
  3563. }
  3564. #ifdef __ARCH_WANT_SYS_NICE
  3565. /*
  3566. * sys_nice - change the priority of the current process.
  3567. * @increment: priority increment
  3568. *
  3569. * sys_setpriority is a more generic, but much slower function that
  3570. * does similar things.
  3571. */
  3572. asmlinkage long sys_nice(int increment)
  3573. {
  3574. long nice, retval;
  3575. /*
  3576. * Setpriority might change our priority at the same moment.
  3577. * We don't have to worry. Conceptually one call occurs first
  3578. * and we have a single winner.
  3579. */
  3580. if (increment < -40)
  3581. increment = -40;
  3582. if (increment > 40)
  3583. increment = 40;
  3584. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3585. if (nice < -20)
  3586. nice = -20;
  3587. if (nice > 19)
  3588. nice = 19;
  3589. if (increment < 0 && !can_nice(current, nice))
  3590. return -EPERM;
  3591. retval = security_task_setnice(current, nice);
  3592. if (retval)
  3593. return retval;
  3594. set_user_nice(current, nice);
  3595. return 0;
  3596. }
  3597. #endif
  3598. /**
  3599. * task_prio - return the priority value of a given task.
  3600. * @p: the task in question.
  3601. *
  3602. * This is the priority value as seen by users in /proc.
  3603. * RT tasks are offset by -200. Normal tasks are centered
  3604. * around 0, value goes from -16 to +15.
  3605. */
  3606. int task_prio(const struct task_struct *p)
  3607. {
  3608. return p->prio - MAX_RT_PRIO;
  3609. }
  3610. /**
  3611. * task_nice - return the nice value of a given task.
  3612. * @p: the task in question.
  3613. */
  3614. int task_nice(const struct task_struct *p)
  3615. {
  3616. return TASK_NICE(p);
  3617. }
  3618. EXPORT_SYMBOL_GPL(task_nice);
  3619. /**
  3620. * idle_cpu - is a given cpu idle currently?
  3621. * @cpu: the processor in question.
  3622. */
  3623. int idle_cpu(int cpu)
  3624. {
  3625. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3626. }
  3627. /**
  3628. * idle_task - return the idle task for a given cpu.
  3629. * @cpu: the processor in question.
  3630. */
  3631. struct task_struct *idle_task(int cpu)
  3632. {
  3633. return cpu_rq(cpu)->idle;
  3634. }
  3635. /**
  3636. * find_process_by_pid - find a process with a matching PID value.
  3637. * @pid: the pid in question.
  3638. */
  3639. static struct task_struct *find_process_by_pid(pid_t pid)
  3640. {
  3641. return pid ? find_task_by_vpid(pid) : current;
  3642. }
  3643. /* Actually do priority change: must hold rq lock. */
  3644. static void
  3645. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3646. {
  3647. BUG_ON(p->se.on_rq);
  3648. p->policy = policy;
  3649. switch (p->policy) {
  3650. case SCHED_NORMAL:
  3651. case SCHED_BATCH:
  3652. case SCHED_IDLE:
  3653. p->sched_class = &fair_sched_class;
  3654. break;
  3655. case SCHED_FIFO:
  3656. case SCHED_RR:
  3657. p->sched_class = &rt_sched_class;
  3658. break;
  3659. }
  3660. p->rt_priority = prio;
  3661. p->normal_prio = normal_prio(p);
  3662. /* we are holding p->pi_lock already */
  3663. p->prio = rt_mutex_getprio(p);
  3664. set_load_weight(p);
  3665. }
  3666. /**
  3667. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3668. * @p: the task in question.
  3669. * @policy: new policy.
  3670. * @param: structure containing the new RT priority.
  3671. *
  3672. * NOTE that the task may be already dead.
  3673. */
  3674. int sched_setscheduler(struct task_struct *p, int policy,
  3675. struct sched_param *param)
  3676. {
  3677. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3678. unsigned long flags;
  3679. const struct sched_class *prev_class = p->sched_class;
  3680. struct rq *rq;
  3681. /* may grab non-irq protected spin_locks */
  3682. BUG_ON(in_interrupt());
  3683. recheck:
  3684. /* double check policy once rq lock held */
  3685. if (policy < 0)
  3686. policy = oldpolicy = p->policy;
  3687. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3688. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3689. policy != SCHED_IDLE)
  3690. return -EINVAL;
  3691. /*
  3692. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3693. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3694. * SCHED_BATCH and SCHED_IDLE is 0.
  3695. */
  3696. if (param->sched_priority < 0 ||
  3697. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3698. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3699. return -EINVAL;
  3700. if (rt_policy(policy) != (param->sched_priority != 0))
  3701. return -EINVAL;
  3702. /*
  3703. * Allow unprivileged RT tasks to decrease priority:
  3704. */
  3705. if (!capable(CAP_SYS_NICE)) {
  3706. if (rt_policy(policy)) {
  3707. unsigned long rlim_rtprio;
  3708. if (!lock_task_sighand(p, &flags))
  3709. return -ESRCH;
  3710. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3711. unlock_task_sighand(p, &flags);
  3712. /* can't set/change the rt policy */
  3713. if (policy != p->policy && !rlim_rtprio)
  3714. return -EPERM;
  3715. /* can't increase priority */
  3716. if (param->sched_priority > p->rt_priority &&
  3717. param->sched_priority > rlim_rtprio)
  3718. return -EPERM;
  3719. }
  3720. /*
  3721. * Like positive nice levels, dont allow tasks to
  3722. * move out of SCHED_IDLE either:
  3723. */
  3724. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3725. return -EPERM;
  3726. /* can't change other user's priorities */
  3727. if ((current->euid != p->euid) &&
  3728. (current->euid != p->uid))
  3729. return -EPERM;
  3730. }
  3731. retval = security_task_setscheduler(p, policy, param);
  3732. if (retval)
  3733. return retval;
  3734. /*
  3735. * make sure no PI-waiters arrive (or leave) while we are
  3736. * changing the priority of the task:
  3737. */
  3738. spin_lock_irqsave(&p->pi_lock, flags);
  3739. /*
  3740. * To be able to change p->policy safely, the apropriate
  3741. * runqueue lock must be held.
  3742. */
  3743. rq = __task_rq_lock(p);
  3744. /* recheck policy now with rq lock held */
  3745. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3746. policy = oldpolicy = -1;
  3747. __task_rq_unlock(rq);
  3748. spin_unlock_irqrestore(&p->pi_lock, flags);
  3749. goto recheck;
  3750. }
  3751. update_rq_clock(rq);
  3752. on_rq = p->se.on_rq;
  3753. running = task_current(rq, p);
  3754. if (on_rq) {
  3755. deactivate_task(rq, p, 0);
  3756. if (running)
  3757. p->sched_class->put_prev_task(rq, p);
  3758. }
  3759. oldprio = p->prio;
  3760. __setscheduler(rq, p, policy, param->sched_priority);
  3761. if (on_rq) {
  3762. if (running)
  3763. p->sched_class->set_curr_task(rq);
  3764. activate_task(rq, p, 0);
  3765. check_class_changed(rq, p, prev_class, oldprio, running);
  3766. }
  3767. __task_rq_unlock(rq);
  3768. spin_unlock_irqrestore(&p->pi_lock, flags);
  3769. rt_mutex_adjust_pi(p);
  3770. return 0;
  3771. }
  3772. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3773. static int
  3774. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3775. {
  3776. struct sched_param lparam;
  3777. struct task_struct *p;
  3778. int retval;
  3779. if (!param || pid < 0)
  3780. return -EINVAL;
  3781. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3782. return -EFAULT;
  3783. rcu_read_lock();
  3784. retval = -ESRCH;
  3785. p = find_process_by_pid(pid);
  3786. if (p != NULL)
  3787. retval = sched_setscheduler(p, policy, &lparam);
  3788. rcu_read_unlock();
  3789. return retval;
  3790. }
  3791. /**
  3792. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3793. * @pid: the pid in question.
  3794. * @policy: new policy.
  3795. * @param: structure containing the new RT priority.
  3796. */
  3797. asmlinkage long
  3798. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3799. {
  3800. /* negative values for policy are not valid */
  3801. if (policy < 0)
  3802. return -EINVAL;
  3803. return do_sched_setscheduler(pid, policy, param);
  3804. }
  3805. /**
  3806. * sys_sched_setparam - set/change the RT priority of a thread
  3807. * @pid: the pid in question.
  3808. * @param: structure containing the new RT priority.
  3809. */
  3810. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3811. {
  3812. return do_sched_setscheduler(pid, -1, param);
  3813. }
  3814. /**
  3815. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3816. * @pid: the pid in question.
  3817. */
  3818. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3819. {
  3820. struct task_struct *p;
  3821. int retval;
  3822. if (pid < 0)
  3823. return -EINVAL;
  3824. retval = -ESRCH;
  3825. read_lock(&tasklist_lock);
  3826. p = find_process_by_pid(pid);
  3827. if (p) {
  3828. retval = security_task_getscheduler(p);
  3829. if (!retval)
  3830. retval = p->policy;
  3831. }
  3832. read_unlock(&tasklist_lock);
  3833. return retval;
  3834. }
  3835. /**
  3836. * sys_sched_getscheduler - get the RT priority of a thread
  3837. * @pid: the pid in question.
  3838. * @param: structure containing the RT priority.
  3839. */
  3840. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3841. {
  3842. struct sched_param lp;
  3843. struct task_struct *p;
  3844. int retval;
  3845. if (!param || pid < 0)
  3846. return -EINVAL;
  3847. read_lock(&tasklist_lock);
  3848. p = find_process_by_pid(pid);
  3849. retval = -ESRCH;
  3850. if (!p)
  3851. goto out_unlock;
  3852. retval = security_task_getscheduler(p);
  3853. if (retval)
  3854. goto out_unlock;
  3855. lp.sched_priority = p->rt_priority;
  3856. read_unlock(&tasklist_lock);
  3857. /*
  3858. * This one might sleep, we cannot do it with a spinlock held ...
  3859. */
  3860. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3861. return retval;
  3862. out_unlock:
  3863. read_unlock(&tasklist_lock);
  3864. return retval;
  3865. }
  3866. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3867. {
  3868. cpumask_t cpus_allowed;
  3869. struct task_struct *p;
  3870. int retval;
  3871. get_online_cpus();
  3872. read_lock(&tasklist_lock);
  3873. p = find_process_by_pid(pid);
  3874. if (!p) {
  3875. read_unlock(&tasklist_lock);
  3876. put_online_cpus();
  3877. return -ESRCH;
  3878. }
  3879. /*
  3880. * It is not safe to call set_cpus_allowed with the
  3881. * tasklist_lock held. We will bump the task_struct's
  3882. * usage count and then drop tasklist_lock.
  3883. */
  3884. get_task_struct(p);
  3885. read_unlock(&tasklist_lock);
  3886. retval = -EPERM;
  3887. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3888. !capable(CAP_SYS_NICE))
  3889. goto out_unlock;
  3890. retval = security_task_setscheduler(p, 0, NULL);
  3891. if (retval)
  3892. goto out_unlock;
  3893. cpus_allowed = cpuset_cpus_allowed(p);
  3894. cpus_and(new_mask, new_mask, cpus_allowed);
  3895. again:
  3896. retval = set_cpus_allowed(p, new_mask);
  3897. if (!retval) {
  3898. cpus_allowed = cpuset_cpus_allowed(p);
  3899. if (!cpus_subset(new_mask, cpus_allowed)) {
  3900. /*
  3901. * We must have raced with a concurrent cpuset
  3902. * update. Just reset the cpus_allowed to the
  3903. * cpuset's cpus_allowed
  3904. */
  3905. new_mask = cpus_allowed;
  3906. goto again;
  3907. }
  3908. }
  3909. out_unlock:
  3910. put_task_struct(p);
  3911. put_online_cpus();
  3912. return retval;
  3913. }
  3914. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3915. cpumask_t *new_mask)
  3916. {
  3917. if (len < sizeof(cpumask_t)) {
  3918. memset(new_mask, 0, sizeof(cpumask_t));
  3919. } else if (len > sizeof(cpumask_t)) {
  3920. len = sizeof(cpumask_t);
  3921. }
  3922. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3923. }
  3924. /**
  3925. * sys_sched_setaffinity - set the cpu affinity of a process
  3926. * @pid: pid of the process
  3927. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3928. * @user_mask_ptr: user-space pointer to the new cpu mask
  3929. */
  3930. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3931. unsigned long __user *user_mask_ptr)
  3932. {
  3933. cpumask_t new_mask;
  3934. int retval;
  3935. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3936. if (retval)
  3937. return retval;
  3938. return sched_setaffinity(pid, new_mask);
  3939. }
  3940. /*
  3941. * Represents all cpu's present in the system
  3942. * In systems capable of hotplug, this map could dynamically grow
  3943. * as new cpu's are detected in the system via any platform specific
  3944. * method, such as ACPI for e.g.
  3945. */
  3946. cpumask_t cpu_present_map __read_mostly;
  3947. EXPORT_SYMBOL(cpu_present_map);
  3948. #ifndef CONFIG_SMP
  3949. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3950. EXPORT_SYMBOL(cpu_online_map);
  3951. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3952. EXPORT_SYMBOL(cpu_possible_map);
  3953. #endif
  3954. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3955. {
  3956. struct task_struct *p;
  3957. int retval;
  3958. get_online_cpus();
  3959. read_lock(&tasklist_lock);
  3960. retval = -ESRCH;
  3961. p = find_process_by_pid(pid);
  3962. if (!p)
  3963. goto out_unlock;
  3964. retval = security_task_getscheduler(p);
  3965. if (retval)
  3966. goto out_unlock;
  3967. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3968. out_unlock:
  3969. read_unlock(&tasklist_lock);
  3970. put_online_cpus();
  3971. return retval;
  3972. }
  3973. /**
  3974. * sys_sched_getaffinity - get the cpu affinity of a process
  3975. * @pid: pid of the process
  3976. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3977. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3978. */
  3979. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3980. unsigned long __user *user_mask_ptr)
  3981. {
  3982. int ret;
  3983. cpumask_t mask;
  3984. if (len < sizeof(cpumask_t))
  3985. return -EINVAL;
  3986. ret = sched_getaffinity(pid, &mask);
  3987. if (ret < 0)
  3988. return ret;
  3989. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3990. return -EFAULT;
  3991. return sizeof(cpumask_t);
  3992. }
  3993. /**
  3994. * sys_sched_yield - yield the current processor to other threads.
  3995. *
  3996. * This function yields the current CPU to other tasks. If there are no
  3997. * other threads running on this CPU then this function will return.
  3998. */
  3999. asmlinkage long sys_sched_yield(void)
  4000. {
  4001. struct rq *rq = this_rq_lock();
  4002. schedstat_inc(rq, yld_count);
  4003. current->sched_class->yield_task(rq);
  4004. /*
  4005. * Since we are going to call schedule() anyway, there's
  4006. * no need to preempt or enable interrupts:
  4007. */
  4008. __release(rq->lock);
  4009. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4010. _raw_spin_unlock(&rq->lock);
  4011. preempt_enable_no_resched();
  4012. schedule();
  4013. return 0;
  4014. }
  4015. static void __cond_resched(void)
  4016. {
  4017. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4018. __might_sleep(__FILE__, __LINE__);
  4019. #endif
  4020. /*
  4021. * The BKS might be reacquired before we have dropped
  4022. * PREEMPT_ACTIVE, which could trigger a second
  4023. * cond_resched() call.
  4024. */
  4025. do {
  4026. add_preempt_count(PREEMPT_ACTIVE);
  4027. schedule();
  4028. sub_preempt_count(PREEMPT_ACTIVE);
  4029. } while (need_resched());
  4030. }
  4031. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4032. int __sched _cond_resched(void)
  4033. {
  4034. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4035. system_state == SYSTEM_RUNNING) {
  4036. __cond_resched();
  4037. return 1;
  4038. }
  4039. return 0;
  4040. }
  4041. EXPORT_SYMBOL(_cond_resched);
  4042. #endif
  4043. /*
  4044. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4045. * call schedule, and on return reacquire the lock.
  4046. *
  4047. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4048. * operations here to prevent schedule() from being called twice (once via
  4049. * spin_unlock(), once by hand).
  4050. */
  4051. int cond_resched_lock(spinlock_t *lock)
  4052. {
  4053. int ret = 0;
  4054. if (need_lockbreak(lock)) {
  4055. spin_unlock(lock);
  4056. cpu_relax();
  4057. ret = 1;
  4058. spin_lock(lock);
  4059. }
  4060. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4061. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4062. _raw_spin_unlock(lock);
  4063. preempt_enable_no_resched();
  4064. __cond_resched();
  4065. ret = 1;
  4066. spin_lock(lock);
  4067. }
  4068. return ret;
  4069. }
  4070. EXPORT_SYMBOL(cond_resched_lock);
  4071. int __sched cond_resched_softirq(void)
  4072. {
  4073. BUG_ON(!in_softirq());
  4074. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4075. local_bh_enable();
  4076. __cond_resched();
  4077. local_bh_disable();
  4078. return 1;
  4079. }
  4080. return 0;
  4081. }
  4082. EXPORT_SYMBOL(cond_resched_softirq);
  4083. /**
  4084. * yield - yield the current processor to other threads.
  4085. *
  4086. * This is a shortcut for kernel-space yielding - it marks the
  4087. * thread runnable and calls sys_sched_yield().
  4088. */
  4089. void __sched yield(void)
  4090. {
  4091. set_current_state(TASK_RUNNING);
  4092. sys_sched_yield();
  4093. }
  4094. EXPORT_SYMBOL(yield);
  4095. /*
  4096. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4097. * that process accounting knows that this is a task in IO wait state.
  4098. *
  4099. * But don't do that if it is a deliberate, throttling IO wait (this task
  4100. * has set its backing_dev_info: the queue against which it should throttle)
  4101. */
  4102. void __sched io_schedule(void)
  4103. {
  4104. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4105. delayacct_blkio_start();
  4106. atomic_inc(&rq->nr_iowait);
  4107. schedule();
  4108. atomic_dec(&rq->nr_iowait);
  4109. delayacct_blkio_end();
  4110. }
  4111. EXPORT_SYMBOL(io_schedule);
  4112. long __sched io_schedule_timeout(long timeout)
  4113. {
  4114. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4115. long ret;
  4116. delayacct_blkio_start();
  4117. atomic_inc(&rq->nr_iowait);
  4118. ret = schedule_timeout(timeout);
  4119. atomic_dec(&rq->nr_iowait);
  4120. delayacct_blkio_end();
  4121. return ret;
  4122. }
  4123. /**
  4124. * sys_sched_get_priority_max - return maximum RT priority.
  4125. * @policy: scheduling class.
  4126. *
  4127. * this syscall returns the maximum rt_priority that can be used
  4128. * by a given scheduling class.
  4129. */
  4130. asmlinkage long sys_sched_get_priority_max(int policy)
  4131. {
  4132. int ret = -EINVAL;
  4133. switch (policy) {
  4134. case SCHED_FIFO:
  4135. case SCHED_RR:
  4136. ret = MAX_USER_RT_PRIO-1;
  4137. break;
  4138. case SCHED_NORMAL:
  4139. case SCHED_BATCH:
  4140. case SCHED_IDLE:
  4141. ret = 0;
  4142. break;
  4143. }
  4144. return ret;
  4145. }
  4146. /**
  4147. * sys_sched_get_priority_min - return minimum RT priority.
  4148. * @policy: scheduling class.
  4149. *
  4150. * this syscall returns the minimum rt_priority that can be used
  4151. * by a given scheduling class.
  4152. */
  4153. asmlinkage long sys_sched_get_priority_min(int policy)
  4154. {
  4155. int ret = -EINVAL;
  4156. switch (policy) {
  4157. case SCHED_FIFO:
  4158. case SCHED_RR:
  4159. ret = 1;
  4160. break;
  4161. case SCHED_NORMAL:
  4162. case SCHED_BATCH:
  4163. case SCHED_IDLE:
  4164. ret = 0;
  4165. }
  4166. return ret;
  4167. }
  4168. /**
  4169. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4170. * @pid: pid of the process.
  4171. * @interval: userspace pointer to the timeslice value.
  4172. *
  4173. * this syscall writes the default timeslice value of a given process
  4174. * into the user-space timespec buffer. A value of '0' means infinity.
  4175. */
  4176. asmlinkage
  4177. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4178. {
  4179. struct task_struct *p;
  4180. unsigned int time_slice;
  4181. int retval;
  4182. struct timespec t;
  4183. if (pid < 0)
  4184. return -EINVAL;
  4185. retval = -ESRCH;
  4186. read_lock(&tasklist_lock);
  4187. p = find_process_by_pid(pid);
  4188. if (!p)
  4189. goto out_unlock;
  4190. retval = security_task_getscheduler(p);
  4191. if (retval)
  4192. goto out_unlock;
  4193. /*
  4194. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4195. * tasks that are on an otherwise idle runqueue:
  4196. */
  4197. time_slice = 0;
  4198. if (p->policy == SCHED_RR) {
  4199. time_slice = DEF_TIMESLICE;
  4200. } else {
  4201. struct sched_entity *se = &p->se;
  4202. unsigned long flags;
  4203. struct rq *rq;
  4204. rq = task_rq_lock(p, &flags);
  4205. if (rq->cfs.load.weight)
  4206. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4207. task_rq_unlock(rq, &flags);
  4208. }
  4209. read_unlock(&tasklist_lock);
  4210. jiffies_to_timespec(time_slice, &t);
  4211. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4212. return retval;
  4213. out_unlock:
  4214. read_unlock(&tasklist_lock);
  4215. return retval;
  4216. }
  4217. static const char stat_nam[] = "RSDTtZX";
  4218. void sched_show_task(struct task_struct *p)
  4219. {
  4220. unsigned long free = 0;
  4221. unsigned state;
  4222. state = p->state ? __ffs(p->state) + 1 : 0;
  4223. printk(KERN_INFO "%-13.13s %c", p->comm,
  4224. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4225. #if BITS_PER_LONG == 32
  4226. if (state == TASK_RUNNING)
  4227. printk(KERN_CONT " running ");
  4228. else
  4229. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4230. #else
  4231. if (state == TASK_RUNNING)
  4232. printk(KERN_CONT " running task ");
  4233. else
  4234. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4235. #endif
  4236. #ifdef CONFIG_DEBUG_STACK_USAGE
  4237. {
  4238. unsigned long *n = end_of_stack(p);
  4239. while (!*n)
  4240. n++;
  4241. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4242. }
  4243. #endif
  4244. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4245. task_pid_nr(p), task_pid_nr(p->real_parent));
  4246. if (state != TASK_RUNNING)
  4247. show_stack(p, NULL);
  4248. }
  4249. void show_state_filter(unsigned long state_filter)
  4250. {
  4251. struct task_struct *g, *p;
  4252. #if BITS_PER_LONG == 32
  4253. printk(KERN_INFO
  4254. " task PC stack pid father\n");
  4255. #else
  4256. printk(KERN_INFO
  4257. " task PC stack pid father\n");
  4258. #endif
  4259. read_lock(&tasklist_lock);
  4260. do_each_thread(g, p) {
  4261. /*
  4262. * reset the NMI-timeout, listing all files on a slow
  4263. * console might take alot of time:
  4264. */
  4265. touch_nmi_watchdog();
  4266. if (!state_filter || (p->state & state_filter))
  4267. sched_show_task(p);
  4268. } while_each_thread(g, p);
  4269. touch_all_softlockup_watchdogs();
  4270. #ifdef CONFIG_SCHED_DEBUG
  4271. sysrq_sched_debug_show();
  4272. #endif
  4273. read_unlock(&tasklist_lock);
  4274. /*
  4275. * Only show locks if all tasks are dumped:
  4276. */
  4277. if (state_filter == -1)
  4278. debug_show_all_locks();
  4279. }
  4280. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4281. {
  4282. idle->sched_class = &idle_sched_class;
  4283. }
  4284. /**
  4285. * init_idle - set up an idle thread for a given CPU
  4286. * @idle: task in question
  4287. * @cpu: cpu the idle task belongs to
  4288. *
  4289. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4290. * flag, to make booting more robust.
  4291. */
  4292. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4293. {
  4294. struct rq *rq = cpu_rq(cpu);
  4295. unsigned long flags;
  4296. __sched_fork(idle);
  4297. idle->se.exec_start = sched_clock();
  4298. idle->prio = idle->normal_prio = MAX_PRIO;
  4299. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4300. __set_task_cpu(idle, cpu);
  4301. spin_lock_irqsave(&rq->lock, flags);
  4302. rq->curr = rq->idle = idle;
  4303. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4304. idle->oncpu = 1;
  4305. #endif
  4306. spin_unlock_irqrestore(&rq->lock, flags);
  4307. /* Set the preempt count _outside_ the spinlocks! */
  4308. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4309. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4310. #else
  4311. task_thread_info(idle)->preempt_count = 0;
  4312. #endif
  4313. /*
  4314. * The idle tasks have their own, simple scheduling class:
  4315. */
  4316. idle->sched_class = &idle_sched_class;
  4317. }
  4318. /*
  4319. * In a system that switches off the HZ timer nohz_cpu_mask
  4320. * indicates which cpus entered this state. This is used
  4321. * in the rcu update to wait only for active cpus. For system
  4322. * which do not switch off the HZ timer nohz_cpu_mask should
  4323. * always be CPU_MASK_NONE.
  4324. */
  4325. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4326. /*
  4327. * Increase the granularity value when there are more CPUs,
  4328. * because with more CPUs the 'effective latency' as visible
  4329. * to users decreases. But the relationship is not linear,
  4330. * so pick a second-best guess by going with the log2 of the
  4331. * number of CPUs.
  4332. *
  4333. * This idea comes from the SD scheduler of Con Kolivas:
  4334. */
  4335. static inline void sched_init_granularity(void)
  4336. {
  4337. unsigned int factor = 1 + ilog2(num_online_cpus());
  4338. const unsigned long limit = 200000000;
  4339. sysctl_sched_min_granularity *= factor;
  4340. if (sysctl_sched_min_granularity > limit)
  4341. sysctl_sched_min_granularity = limit;
  4342. sysctl_sched_latency *= factor;
  4343. if (sysctl_sched_latency > limit)
  4344. sysctl_sched_latency = limit;
  4345. sysctl_sched_wakeup_granularity *= factor;
  4346. sysctl_sched_batch_wakeup_granularity *= factor;
  4347. }
  4348. #ifdef CONFIG_SMP
  4349. /*
  4350. * This is how migration works:
  4351. *
  4352. * 1) we queue a struct migration_req structure in the source CPU's
  4353. * runqueue and wake up that CPU's migration thread.
  4354. * 2) we down() the locked semaphore => thread blocks.
  4355. * 3) migration thread wakes up (implicitly it forces the migrated
  4356. * thread off the CPU)
  4357. * 4) it gets the migration request and checks whether the migrated
  4358. * task is still in the wrong runqueue.
  4359. * 5) if it's in the wrong runqueue then the migration thread removes
  4360. * it and puts it into the right queue.
  4361. * 6) migration thread up()s the semaphore.
  4362. * 7) we wake up and the migration is done.
  4363. */
  4364. /*
  4365. * Change a given task's CPU affinity. Migrate the thread to a
  4366. * proper CPU and schedule it away if the CPU it's executing on
  4367. * is removed from the allowed bitmask.
  4368. *
  4369. * NOTE: the caller must have a valid reference to the task, the
  4370. * task must not exit() & deallocate itself prematurely. The
  4371. * call is not atomic; no spinlocks may be held.
  4372. */
  4373. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4374. {
  4375. struct migration_req req;
  4376. unsigned long flags;
  4377. struct rq *rq;
  4378. int ret = 0;
  4379. rq = task_rq_lock(p, &flags);
  4380. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4381. ret = -EINVAL;
  4382. goto out;
  4383. }
  4384. if (p->sched_class->set_cpus_allowed)
  4385. p->sched_class->set_cpus_allowed(p, &new_mask);
  4386. else {
  4387. p->cpus_allowed = new_mask;
  4388. p->nr_cpus_allowed = cpus_weight(new_mask);
  4389. }
  4390. /* Can the task run on the task's current CPU? If so, we're done */
  4391. if (cpu_isset(task_cpu(p), new_mask))
  4392. goto out;
  4393. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4394. /* Need help from migration thread: drop lock and wait. */
  4395. task_rq_unlock(rq, &flags);
  4396. wake_up_process(rq->migration_thread);
  4397. wait_for_completion(&req.done);
  4398. tlb_migrate_finish(p->mm);
  4399. return 0;
  4400. }
  4401. out:
  4402. task_rq_unlock(rq, &flags);
  4403. return ret;
  4404. }
  4405. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4406. /*
  4407. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4408. * this because either it can't run here any more (set_cpus_allowed()
  4409. * away from this CPU, or CPU going down), or because we're
  4410. * attempting to rebalance this task on exec (sched_exec).
  4411. *
  4412. * So we race with normal scheduler movements, but that's OK, as long
  4413. * as the task is no longer on this CPU.
  4414. *
  4415. * Returns non-zero if task was successfully migrated.
  4416. */
  4417. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4418. {
  4419. struct rq *rq_dest, *rq_src;
  4420. int ret = 0, on_rq;
  4421. if (unlikely(cpu_is_offline(dest_cpu)))
  4422. return ret;
  4423. rq_src = cpu_rq(src_cpu);
  4424. rq_dest = cpu_rq(dest_cpu);
  4425. double_rq_lock(rq_src, rq_dest);
  4426. /* Already moved. */
  4427. if (task_cpu(p) != src_cpu)
  4428. goto out;
  4429. /* Affinity changed (again). */
  4430. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4431. goto out;
  4432. on_rq = p->se.on_rq;
  4433. if (on_rq)
  4434. deactivate_task(rq_src, p, 0);
  4435. set_task_cpu(p, dest_cpu);
  4436. if (on_rq) {
  4437. activate_task(rq_dest, p, 0);
  4438. check_preempt_curr(rq_dest, p);
  4439. }
  4440. ret = 1;
  4441. out:
  4442. double_rq_unlock(rq_src, rq_dest);
  4443. return ret;
  4444. }
  4445. /*
  4446. * migration_thread - this is a highprio system thread that performs
  4447. * thread migration by bumping thread off CPU then 'pushing' onto
  4448. * another runqueue.
  4449. */
  4450. static int migration_thread(void *data)
  4451. {
  4452. int cpu = (long)data;
  4453. struct rq *rq;
  4454. rq = cpu_rq(cpu);
  4455. BUG_ON(rq->migration_thread != current);
  4456. set_current_state(TASK_INTERRUPTIBLE);
  4457. while (!kthread_should_stop()) {
  4458. struct migration_req *req;
  4459. struct list_head *head;
  4460. spin_lock_irq(&rq->lock);
  4461. if (cpu_is_offline(cpu)) {
  4462. spin_unlock_irq(&rq->lock);
  4463. goto wait_to_die;
  4464. }
  4465. if (rq->active_balance) {
  4466. active_load_balance(rq, cpu);
  4467. rq->active_balance = 0;
  4468. }
  4469. head = &rq->migration_queue;
  4470. if (list_empty(head)) {
  4471. spin_unlock_irq(&rq->lock);
  4472. schedule();
  4473. set_current_state(TASK_INTERRUPTIBLE);
  4474. continue;
  4475. }
  4476. req = list_entry(head->next, struct migration_req, list);
  4477. list_del_init(head->next);
  4478. spin_unlock(&rq->lock);
  4479. __migrate_task(req->task, cpu, req->dest_cpu);
  4480. local_irq_enable();
  4481. complete(&req->done);
  4482. }
  4483. __set_current_state(TASK_RUNNING);
  4484. return 0;
  4485. wait_to_die:
  4486. /* Wait for kthread_stop */
  4487. set_current_state(TASK_INTERRUPTIBLE);
  4488. while (!kthread_should_stop()) {
  4489. schedule();
  4490. set_current_state(TASK_INTERRUPTIBLE);
  4491. }
  4492. __set_current_state(TASK_RUNNING);
  4493. return 0;
  4494. }
  4495. #ifdef CONFIG_HOTPLUG_CPU
  4496. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4497. {
  4498. int ret;
  4499. local_irq_disable();
  4500. ret = __migrate_task(p, src_cpu, dest_cpu);
  4501. local_irq_enable();
  4502. return ret;
  4503. }
  4504. /*
  4505. * Figure out where task on dead CPU should go, use force if necessary.
  4506. * NOTE: interrupts should be disabled by the caller
  4507. */
  4508. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4509. {
  4510. unsigned long flags;
  4511. cpumask_t mask;
  4512. struct rq *rq;
  4513. int dest_cpu;
  4514. do {
  4515. /* On same node? */
  4516. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4517. cpus_and(mask, mask, p->cpus_allowed);
  4518. dest_cpu = any_online_cpu(mask);
  4519. /* On any allowed CPU? */
  4520. if (dest_cpu == NR_CPUS)
  4521. dest_cpu = any_online_cpu(p->cpus_allowed);
  4522. /* No more Mr. Nice Guy. */
  4523. if (dest_cpu == NR_CPUS) {
  4524. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4525. /*
  4526. * Try to stay on the same cpuset, where the
  4527. * current cpuset may be a subset of all cpus.
  4528. * The cpuset_cpus_allowed_locked() variant of
  4529. * cpuset_cpus_allowed() will not block. It must be
  4530. * called within calls to cpuset_lock/cpuset_unlock.
  4531. */
  4532. rq = task_rq_lock(p, &flags);
  4533. p->cpus_allowed = cpus_allowed;
  4534. dest_cpu = any_online_cpu(p->cpus_allowed);
  4535. task_rq_unlock(rq, &flags);
  4536. /*
  4537. * Don't tell them about moving exiting tasks or
  4538. * kernel threads (both mm NULL), since they never
  4539. * leave kernel.
  4540. */
  4541. if (p->mm && printk_ratelimit()) {
  4542. printk(KERN_INFO "process %d (%s) no "
  4543. "longer affine to cpu%d\n",
  4544. task_pid_nr(p), p->comm, dead_cpu);
  4545. }
  4546. }
  4547. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4548. }
  4549. /*
  4550. * While a dead CPU has no uninterruptible tasks queued at this point,
  4551. * it might still have a nonzero ->nr_uninterruptible counter, because
  4552. * for performance reasons the counter is not stricly tracking tasks to
  4553. * their home CPUs. So we just add the counter to another CPU's counter,
  4554. * to keep the global sum constant after CPU-down:
  4555. */
  4556. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4557. {
  4558. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4559. unsigned long flags;
  4560. local_irq_save(flags);
  4561. double_rq_lock(rq_src, rq_dest);
  4562. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4563. rq_src->nr_uninterruptible = 0;
  4564. double_rq_unlock(rq_src, rq_dest);
  4565. local_irq_restore(flags);
  4566. }
  4567. /* Run through task list and migrate tasks from the dead cpu. */
  4568. static void migrate_live_tasks(int src_cpu)
  4569. {
  4570. struct task_struct *p, *t;
  4571. read_lock(&tasklist_lock);
  4572. do_each_thread(t, p) {
  4573. if (p == current)
  4574. continue;
  4575. if (task_cpu(p) == src_cpu)
  4576. move_task_off_dead_cpu(src_cpu, p);
  4577. } while_each_thread(t, p);
  4578. read_unlock(&tasklist_lock);
  4579. }
  4580. /*
  4581. * Schedules idle task to be the next runnable task on current CPU.
  4582. * It does so by boosting its priority to highest possible.
  4583. * Used by CPU offline code.
  4584. */
  4585. void sched_idle_next(void)
  4586. {
  4587. int this_cpu = smp_processor_id();
  4588. struct rq *rq = cpu_rq(this_cpu);
  4589. struct task_struct *p = rq->idle;
  4590. unsigned long flags;
  4591. /* cpu has to be offline */
  4592. BUG_ON(cpu_online(this_cpu));
  4593. /*
  4594. * Strictly not necessary since rest of the CPUs are stopped by now
  4595. * and interrupts disabled on the current cpu.
  4596. */
  4597. spin_lock_irqsave(&rq->lock, flags);
  4598. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4599. update_rq_clock(rq);
  4600. activate_task(rq, p, 0);
  4601. spin_unlock_irqrestore(&rq->lock, flags);
  4602. }
  4603. /*
  4604. * Ensures that the idle task is using init_mm right before its cpu goes
  4605. * offline.
  4606. */
  4607. void idle_task_exit(void)
  4608. {
  4609. struct mm_struct *mm = current->active_mm;
  4610. BUG_ON(cpu_online(smp_processor_id()));
  4611. if (mm != &init_mm)
  4612. switch_mm(mm, &init_mm, current);
  4613. mmdrop(mm);
  4614. }
  4615. /* called under rq->lock with disabled interrupts */
  4616. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4617. {
  4618. struct rq *rq = cpu_rq(dead_cpu);
  4619. /* Must be exiting, otherwise would be on tasklist. */
  4620. BUG_ON(!p->exit_state);
  4621. /* Cannot have done final schedule yet: would have vanished. */
  4622. BUG_ON(p->state == TASK_DEAD);
  4623. get_task_struct(p);
  4624. /*
  4625. * Drop lock around migration; if someone else moves it,
  4626. * that's OK. No task can be added to this CPU, so iteration is
  4627. * fine.
  4628. */
  4629. spin_unlock_irq(&rq->lock);
  4630. move_task_off_dead_cpu(dead_cpu, p);
  4631. spin_lock_irq(&rq->lock);
  4632. put_task_struct(p);
  4633. }
  4634. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4635. static void migrate_dead_tasks(unsigned int dead_cpu)
  4636. {
  4637. struct rq *rq = cpu_rq(dead_cpu);
  4638. struct task_struct *next;
  4639. for ( ; ; ) {
  4640. if (!rq->nr_running)
  4641. break;
  4642. update_rq_clock(rq);
  4643. next = pick_next_task(rq, rq->curr);
  4644. if (!next)
  4645. break;
  4646. migrate_dead(dead_cpu, next);
  4647. }
  4648. }
  4649. #endif /* CONFIG_HOTPLUG_CPU */
  4650. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4651. static struct ctl_table sd_ctl_dir[] = {
  4652. {
  4653. .procname = "sched_domain",
  4654. .mode = 0555,
  4655. },
  4656. {0, },
  4657. };
  4658. static struct ctl_table sd_ctl_root[] = {
  4659. {
  4660. .ctl_name = CTL_KERN,
  4661. .procname = "kernel",
  4662. .mode = 0555,
  4663. .child = sd_ctl_dir,
  4664. },
  4665. {0, },
  4666. };
  4667. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4668. {
  4669. struct ctl_table *entry =
  4670. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4671. return entry;
  4672. }
  4673. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4674. {
  4675. struct ctl_table *entry;
  4676. /*
  4677. * In the intermediate directories, both the child directory and
  4678. * procname are dynamically allocated and could fail but the mode
  4679. * will always be set. In the lowest directory the names are
  4680. * static strings and all have proc handlers.
  4681. */
  4682. for (entry = *tablep; entry->mode; entry++) {
  4683. if (entry->child)
  4684. sd_free_ctl_entry(&entry->child);
  4685. if (entry->proc_handler == NULL)
  4686. kfree(entry->procname);
  4687. }
  4688. kfree(*tablep);
  4689. *tablep = NULL;
  4690. }
  4691. static void
  4692. set_table_entry(struct ctl_table *entry,
  4693. const char *procname, void *data, int maxlen,
  4694. mode_t mode, proc_handler *proc_handler)
  4695. {
  4696. entry->procname = procname;
  4697. entry->data = data;
  4698. entry->maxlen = maxlen;
  4699. entry->mode = mode;
  4700. entry->proc_handler = proc_handler;
  4701. }
  4702. static struct ctl_table *
  4703. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4704. {
  4705. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4706. if (table == NULL)
  4707. return NULL;
  4708. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4709. sizeof(long), 0644, proc_doulongvec_minmax);
  4710. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4711. sizeof(long), 0644, proc_doulongvec_minmax);
  4712. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4713. sizeof(int), 0644, proc_dointvec_minmax);
  4714. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4725. sizeof(int), 0644, proc_dointvec_minmax);
  4726. set_table_entry(&table[9], "cache_nice_tries",
  4727. &sd->cache_nice_tries,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. set_table_entry(&table[10], "flags", &sd->flags,
  4730. sizeof(int), 0644, proc_dointvec_minmax);
  4731. /* &table[11] is terminator */
  4732. return table;
  4733. }
  4734. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4735. {
  4736. struct ctl_table *entry, *table;
  4737. struct sched_domain *sd;
  4738. int domain_num = 0, i;
  4739. char buf[32];
  4740. for_each_domain(cpu, sd)
  4741. domain_num++;
  4742. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4743. if (table == NULL)
  4744. return NULL;
  4745. i = 0;
  4746. for_each_domain(cpu, sd) {
  4747. snprintf(buf, 32, "domain%d", i);
  4748. entry->procname = kstrdup(buf, GFP_KERNEL);
  4749. entry->mode = 0555;
  4750. entry->child = sd_alloc_ctl_domain_table(sd);
  4751. entry++;
  4752. i++;
  4753. }
  4754. return table;
  4755. }
  4756. static struct ctl_table_header *sd_sysctl_header;
  4757. static void register_sched_domain_sysctl(void)
  4758. {
  4759. int i, cpu_num = num_online_cpus();
  4760. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4761. char buf[32];
  4762. WARN_ON(sd_ctl_dir[0].child);
  4763. sd_ctl_dir[0].child = entry;
  4764. if (entry == NULL)
  4765. return;
  4766. for_each_online_cpu(i) {
  4767. snprintf(buf, 32, "cpu%d", i);
  4768. entry->procname = kstrdup(buf, GFP_KERNEL);
  4769. entry->mode = 0555;
  4770. entry->child = sd_alloc_ctl_cpu_table(i);
  4771. entry++;
  4772. }
  4773. WARN_ON(sd_sysctl_header);
  4774. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4775. }
  4776. /* may be called multiple times per register */
  4777. static void unregister_sched_domain_sysctl(void)
  4778. {
  4779. if (sd_sysctl_header)
  4780. unregister_sysctl_table(sd_sysctl_header);
  4781. sd_sysctl_header = NULL;
  4782. if (sd_ctl_dir[0].child)
  4783. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4784. }
  4785. #else
  4786. static void register_sched_domain_sysctl(void)
  4787. {
  4788. }
  4789. static void unregister_sched_domain_sysctl(void)
  4790. {
  4791. }
  4792. #endif
  4793. /*
  4794. * migration_call - callback that gets triggered when a CPU is added.
  4795. * Here we can start up the necessary migration thread for the new CPU.
  4796. */
  4797. static int __cpuinit
  4798. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4799. {
  4800. struct task_struct *p;
  4801. int cpu = (long)hcpu;
  4802. unsigned long flags;
  4803. struct rq *rq;
  4804. switch (action) {
  4805. case CPU_UP_PREPARE:
  4806. case CPU_UP_PREPARE_FROZEN:
  4807. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4808. if (IS_ERR(p))
  4809. return NOTIFY_BAD;
  4810. kthread_bind(p, cpu);
  4811. /* Must be high prio: stop_machine expects to yield to it. */
  4812. rq = task_rq_lock(p, &flags);
  4813. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4814. task_rq_unlock(rq, &flags);
  4815. cpu_rq(cpu)->migration_thread = p;
  4816. break;
  4817. case CPU_ONLINE:
  4818. case CPU_ONLINE_FROZEN:
  4819. /* Strictly unnecessary, as first user will wake it. */
  4820. wake_up_process(cpu_rq(cpu)->migration_thread);
  4821. /* Update our root-domain */
  4822. rq = cpu_rq(cpu);
  4823. spin_lock_irqsave(&rq->lock, flags);
  4824. if (rq->rd) {
  4825. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4826. cpu_set(cpu, rq->rd->online);
  4827. }
  4828. spin_unlock_irqrestore(&rq->lock, flags);
  4829. break;
  4830. #ifdef CONFIG_HOTPLUG_CPU
  4831. case CPU_UP_CANCELED:
  4832. case CPU_UP_CANCELED_FROZEN:
  4833. if (!cpu_rq(cpu)->migration_thread)
  4834. break;
  4835. /* Unbind it from offline cpu so it can run. Fall thru. */
  4836. kthread_bind(cpu_rq(cpu)->migration_thread,
  4837. any_online_cpu(cpu_online_map));
  4838. kthread_stop(cpu_rq(cpu)->migration_thread);
  4839. cpu_rq(cpu)->migration_thread = NULL;
  4840. break;
  4841. case CPU_DEAD:
  4842. case CPU_DEAD_FROZEN:
  4843. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4844. migrate_live_tasks(cpu);
  4845. rq = cpu_rq(cpu);
  4846. kthread_stop(rq->migration_thread);
  4847. rq->migration_thread = NULL;
  4848. /* Idle task back to normal (off runqueue, low prio) */
  4849. spin_lock_irq(&rq->lock);
  4850. update_rq_clock(rq);
  4851. deactivate_task(rq, rq->idle, 0);
  4852. rq->idle->static_prio = MAX_PRIO;
  4853. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4854. rq->idle->sched_class = &idle_sched_class;
  4855. migrate_dead_tasks(cpu);
  4856. spin_unlock_irq(&rq->lock);
  4857. cpuset_unlock();
  4858. migrate_nr_uninterruptible(rq);
  4859. BUG_ON(rq->nr_running != 0);
  4860. /*
  4861. * No need to migrate the tasks: it was best-effort if
  4862. * they didn't take sched_hotcpu_mutex. Just wake up
  4863. * the requestors.
  4864. */
  4865. spin_lock_irq(&rq->lock);
  4866. while (!list_empty(&rq->migration_queue)) {
  4867. struct migration_req *req;
  4868. req = list_entry(rq->migration_queue.next,
  4869. struct migration_req, list);
  4870. list_del_init(&req->list);
  4871. complete(&req->done);
  4872. }
  4873. spin_unlock_irq(&rq->lock);
  4874. break;
  4875. case CPU_DOWN_PREPARE:
  4876. /* Update our root-domain */
  4877. rq = cpu_rq(cpu);
  4878. spin_lock_irqsave(&rq->lock, flags);
  4879. if (rq->rd) {
  4880. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4881. cpu_clear(cpu, rq->rd->online);
  4882. }
  4883. spin_unlock_irqrestore(&rq->lock, flags);
  4884. break;
  4885. #endif
  4886. }
  4887. return NOTIFY_OK;
  4888. }
  4889. /* Register at highest priority so that task migration (migrate_all_tasks)
  4890. * happens before everything else.
  4891. */
  4892. static struct notifier_block __cpuinitdata migration_notifier = {
  4893. .notifier_call = migration_call,
  4894. .priority = 10
  4895. };
  4896. void __init migration_init(void)
  4897. {
  4898. void *cpu = (void *)(long)smp_processor_id();
  4899. int err;
  4900. /* Start one for the boot CPU: */
  4901. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4902. BUG_ON(err == NOTIFY_BAD);
  4903. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4904. register_cpu_notifier(&migration_notifier);
  4905. }
  4906. #endif
  4907. #ifdef CONFIG_SMP
  4908. /* Number of possible processor ids */
  4909. int nr_cpu_ids __read_mostly = NR_CPUS;
  4910. EXPORT_SYMBOL(nr_cpu_ids);
  4911. #ifdef CONFIG_SCHED_DEBUG
  4912. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4913. {
  4914. struct sched_group *group = sd->groups;
  4915. cpumask_t groupmask;
  4916. char str[NR_CPUS];
  4917. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4918. cpus_clear(groupmask);
  4919. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4920. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4921. printk("does not load-balance\n");
  4922. if (sd->parent)
  4923. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4924. " has parent");
  4925. return -1;
  4926. }
  4927. printk(KERN_CONT "span %s\n", str);
  4928. if (!cpu_isset(cpu, sd->span)) {
  4929. printk(KERN_ERR "ERROR: domain->span does not contain "
  4930. "CPU%d\n", cpu);
  4931. }
  4932. if (!cpu_isset(cpu, group->cpumask)) {
  4933. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4934. " CPU%d\n", cpu);
  4935. }
  4936. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4937. do {
  4938. if (!group) {
  4939. printk("\n");
  4940. printk(KERN_ERR "ERROR: group is NULL\n");
  4941. break;
  4942. }
  4943. if (!group->__cpu_power) {
  4944. printk(KERN_CONT "\n");
  4945. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4946. "set\n");
  4947. break;
  4948. }
  4949. if (!cpus_weight(group->cpumask)) {
  4950. printk(KERN_CONT "\n");
  4951. printk(KERN_ERR "ERROR: empty group\n");
  4952. break;
  4953. }
  4954. if (cpus_intersects(groupmask, group->cpumask)) {
  4955. printk(KERN_CONT "\n");
  4956. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4957. break;
  4958. }
  4959. cpus_or(groupmask, groupmask, group->cpumask);
  4960. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4961. printk(KERN_CONT " %s", str);
  4962. group = group->next;
  4963. } while (group != sd->groups);
  4964. printk(KERN_CONT "\n");
  4965. if (!cpus_equal(sd->span, groupmask))
  4966. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4967. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4968. printk(KERN_ERR "ERROR: parent span is not a superset "
  4969. "of domain->span\n");
  4970. return 0;
  4971. }
  4972. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4973. {
  4974. int level = 0;
  4975. if (!sd) {
  4976. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4977. return;
  4978. }
  4979. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4980. for (;;) {
  4981. if (sched_domain_debug_one(sd, cpu, level))
  4982. break;
  4983. level++;
  4984. sd = sd->parent;
  4985. if (!sd)
  4986. break;
  4987. }
  4988. }
  4989. #else
  4990. # define sched_domain_debug(sd, cpu) do { } while (0)
  4991. #endif
  4992. static int sd_degenerate(struct sched_domain *sd)
  4993. {
  4994. if (cpus_weight(sd->span) == 1)
  4995. return 1;
  4996. /* Following flags need at least 2 groups */
  4997. if (sd->flags & (SD_LOAD_BALANCE |
  4998. SD_BALANCE_NEWIDLE |
  4999. SD_BALANCE_FORK |
  5000. SD_BALANCE_EXEC |
  5001. SD_SHARE_CPUPOWER |
  5002. SD_SHARE_PKG_RESOURCES)) {
  5003. if (sd->groups != sd->groups->next)
  5004. return 0;
  5005. }
  5006. /* Following flags don't use groups */
  5007. if (sd->flags & (SD_WAKE_IDLE |
  5008. SD_WAKE_AFFINE |
  5009. SD_WAKE_BALANCE))
  5010. return 0;
  5011. return 1;
  5012. }
  5013. static int
  5014. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5015. {
  5016. unsigned long cflags = sd->flags, pflags = parent->flags;
  5017. if (sd_degenerate(parent))
  5018. return 1;
  5019. if (!cpus_equal(sd->span, parent->span))
  5020. return 0;
  5021. /* Does parent contain flags not in child? */
  5022. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5023. if (cflags & SD_WAKE_AFFINE)
  5024. pflags &= ~SD_WAKE_BALANCE;
  5025. /* Flags needing groups don't count if only 1 group in parent */
  5026. if (parent->groups == parent->groups->next) {
  5027. pflags &= ~(SD_LOAD_BALANCE |
  5028. SD_BALANCE_NEWIDLE |
  5029. SD_BALANCE_FORK |
  5030. SD_BALANCE_EXEC |
  5031. SD_SHARE_CPUPOWER |
  5032. SD_SHARE_PKG_RESOURCES);
  5033. }
  5034. if (~cflags & pflags)
  5035. return 0;
  5036. return 1;
  5037. }
  5038. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5039. {
  5040. unsigned long flags;
  5041. const struct sched_class *class;
  5042. spin_lock_irqsave(&rq->lock, flags);
  5043. if (rq->rd) {
  5044. struct root_domain *old_rd = rq->rd;
  5045. for (class = sched_class_highest; class; class = class->next) {
  5046. if (class->leave_domain)
  5047. class->leave_domain(rq);
  5048. }
  5049. cpu_clear(rq->cpu, old_rd->span);
  5050. cpu_clear(rq->cpu, old_rd->online);
  5051. if (atomic_dec_and_test(&old_rd->refcount))
  5052. kfree(old_rd);
  5053. }
  5054. atomic_inc(&rd->refcount);
  5055. rq->rd = rd;
  5056. cpu_set(rq->cpu, rd->span);
  5057. if (cpu_isset(rq->cpu, cpu_online_map))
  5058. cpu_set(rq->cpu, rd->online);
  5059. for (class = sched_class_highest; class; class = class->next) {
  5060. if (class->join_domain)
  5061. class->join_domain(rq);
  5062. }
  5063. spin_unlock_irqrestore(&rq->lock, flags);
  5064. }
  5065. static void init_rootdomain(struct root_domain *rd)
  5066. {
  5067. memset(rd, 0, sizeof(*rd));
  5068. cpus_clear(rd->span);
  5069. cpus_clear(rd->online);
  5070. }
  5071. static void init_defrootdomain(void)
  5072. {
  5073. init_rootdomain(&def_root_domain);
  5074. atomic_set(&def_root_domain.refcount, 1);
  5075. }
  5076. static struct root_domain *alloc_rootdomain(void)
  5077. {
  5078. struct root_domain *rd;
  5079. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5080. if (!rd)
  5081. return NULL;
  5082. init_rootdomain(rd);
  5083. return rd;
  5084. }
  5085. /*
  5086. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5087. * hold the hotplug lock.
  5088. */
  5089. static void
  5090. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5091. {
  5092. struct rq *rq = cpu_rq(cpu);
  5093. struct sched_domain *tmp;
  5094. /* Remove the sched domains which do not contribute to scheduling. */
  5095. for (tmp = sd; tmp; tmp = tmp->parent) {
  5096. struct sched_domain *parent = tmp->parent;
  5097. if (!parent)
  5098. break;
  5099. if (sd_parent_degenerate(tmp, parent)) {
  5100. tmp->parent = parent->parent;
  5101. if (parent->parent)
  5102. parent->parent->child = tmp;
  5103. }
  5104. }
  5105. if (sd && sd_degenerate(sd)) {
  5106. sd = sd->parent;
  5107. if (sd)
  5108. sd->child = NULL;
  5109. }
  5110. sched_domain_debug(sd, cpu);
  5111. rq_attach_root(rq, rd);
  5112. rcu_assign_pointer(rq->sd, sd);
  5113. }
  5114. /* cpus with isolated domains */
  5115. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5116. /* Setup the mask of cpus configured for isolated domains */
  5117. static int __init isolated_cpu_setup(char *str)
  5118. {
  5119. int ints[NR_CPUS], i;
  5120. str = get_options(str, ARRAY_SIZE(ints), ints);
  5121. cpus_clear(cpu_isolated_map);
  5122. for (i = 1; i <= ints[0]; i++)
  5123. if (ints[i] < NR_CPUS)
  5124. cpu_set(ints[i], cpu_isolated_map);
  5125. return 1;
  5126. }
  5127. __setup("isolcpus=", isolated_cpu_setup);
  5128. /*
  5129. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5130. * to a function which identifies what group(along with sched group) a CPU
  5131. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5132. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5133. *
  5134. * init_sched_build_groups will build a circular linked list of the groups
  5135. * covered by the given span, and will set each group's ->cpumask correctly,
  5136. * and ->cpu_power to 0.
  5137. */
  5138. static void
  5139. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5140. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5141. struct sched_group **sg))
  5142. {
  5143. struct sched_group *first = NULL, *last = NULL;
  5144. cpumask_t covered = CPU_MASK_NONE;
  5145. int i;
  5146. for_each_cpu_mask(i, span) {
  5147. struct sched_group *sg;
  5148. int group = group_fn(i, cpu_map, &sg);
  5149. int j;
  5150. if (cpu_isset(i, covered))
  5151. continue;
  5152. sg->cpumask = CPU_MASK_NONE;
  5153. sg->__cpu_power = 0;
  5154. for_each_cpu_mask(j, span) {
  5155. if (group_fn(j, cpu_map, NULL) != group)
  5156. continue;
  5157. cpu_set(j, covered);
  5158. cpu_set(j, sg->cpumask);
  5159. }
  5160. if (!first)
  5161. first = sg;
  5162. if (last)
  5163. last->next = sg;
  5164. last = sg;
  5165. }
  5166. last->next = first;
  5167. }
  5168. #define SD_NODES_PER_DOMAIN 16
  5169. #ifdef CONFIG_NUMA
  5170. /**
  5171. * find_next_best_node - find the next node to include in a sched_domain
  5172. * @node: node whose sched_domain we're building
  5173. * @used_nodes: nodes already in the sched_domain
  5174. *
  5175. * Find the next node to include in a given scheduling domain. Simply
  5176. * finds the closest node not already in the @used_nodes map.
  5177. *
  5178. * Should use nodemask_t.
  5179. */
  5180. static int find_next_best_node(int node, unsigned long *used_nodes)
  5181. {
  5182. int i, n, val, min_val, best_node = 0;
  5183. min_val = INT_MAX;
  5184. for (i = 0; i < MAX_NUMNODES; i++) {
  5185. /* Start at @node */
  5186. n = (node + i) % MAX_NUMNODES;
  5187. if (!nr_cpus_node(n))
  5188. continue;
  5189. /* Skip already used nodes */
  5190. if (test_bit(n, used_nodes))
  5191. continue;
  5192. /* Simple min distance search */
  5193. val = node_distance(node, n);
  5194. if (val < min_val) {
  5195. min_val = val;
  5196. best_node = n;
  5197. }
  5198. }
  5199. set_bit(best_node, used_nodes);
  5200. return best_node;
  5201. }
  5202. /**
  5203. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5204. * @node: node whose cpumask we're constructing
  5205. * @size: number of nodes to include in this span
  5206. *
  5207. * Given a node, construct a good cpumask for its sched_domain to span. It
  5208. * should be one that prevents unnecessary balancing, but also spreads tasks
  5209. * out optimally.
  5210. */
  5211. static cpumask_t sched_domain_node_span(int node)
  5212. {
  5213. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5214. cpumask_t span, nodemask;
  5215. int i;
  5216. cpus_clear(span);
  5217. bitmap_zero(used_nodes, MAX_NUMNODES);
  5218. nodemask = node_to_cpumask(node);
  5219. cpus_or(span, span, nodemask);
  5220. set_bit(node, used_nodes);
  5221. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5222. int next_node = find_next_best_node(node, used_nodes);
  5223. nodemask = node_to_cpumask(next_node);
  5224. cpus_or(span, span, nodemask);
  5225. }
  5226. return span;
  5227. }
  5228. #endif
  5229. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5230. /*
  5231. * SMT sched-domains:
  5232. */
  5233. #ifdef CONFIG_SCHED_SMT
  5234. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5235. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5236. static int
  5237. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5238. {
  5239. if (sg)
  5240. *sg = &per_cpu(sched_group_cpus, cpu);
  5241. return cpu;
  5242. }
  5243. #endif
  5244. /*
  5245. * multi-core sched-domains:
  5246. */
  5247. #ifdef CONFIG_SCHED_MC
  5248. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5249. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5250. #endif
  5251. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5252. static int
  5253. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5254. {
  5255. int group;
  5256. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5257. cpus_and(mask, mask, *cpu_map);
  5258. group = first_cpu(mask);
  5259. if (sg)
  5260. *sg = &per_cpu(sched_group_core, group);
  5261. return group;
  5262. }
  5263. #elif defined(CONFIG_SCHED_MC)
  5264. static int
  5265. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5266. {
  5267. if (sg)
  5268. *sg = &per_cpu(sched_group_core, cpu);
  5269. return cpu;
  5270. }
  5271. #endif
  5272. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5273. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5274. static int
  5275. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5276. {
  5277. int group;
  5278. #ifdef CONFIG_SCHED_MC
  5279. cpumask_t mask = cpu_coregroup_map(cpu);
  5280. cpus_and(mask, mask, *cpu_map);
  5281. group = first_cpu(mask);
  5282. #elif defined(CONFIG_SCHED_SMT)
  5283. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5284. cpus_and(mask, mask, *cpu_map);
  5285. group = first_cpu(mask);
  5286. #else
  5287. group = cpu;
  5288. #endif
  5289. if (sg)
  5290. *sg = &per_cpu(sched_group_phys, group);
  5291. return group;
  5292. }
  5293. #ifdef CONFIG_NUMA
  5294. /*
  5295. * The init_sched_build_groups can't handle what we want to do with node
  5296. * groups, so roll our own. Now each node has its own list of groups which
  5297. * gets dynamically allocated.
  5298. */
  5299. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5300. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5301. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5302. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5303. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5304. struct sched_group **sg)
  5305. {
  5306. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5307. int group;
  5308. cpus_and(nodemask, nodemask, *cpu_map);
  5309. group = first_cpu(nodemask);
  5310. if (sg)
  5311. *sg = &per_cpu(sched_group_allnodes, group);
  5312. return group;
  5313. }
  5314. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5315. {
  5316. struct sched_group *sg = group_head;
  5317. int j;
  5318. if (!sg)
  5319. return;
  5320. do {
  5321. for_each_cpu_mask(j, sg->cpumask) {
  5322. struct sched_domain *sd;
  5323. sd = &per_cpu(phys_domains, j);
  5324. if (j != first_cpu(sd->groups->cpumask)) {
  5325. /*
  5326. * Only add "power" once for each
  5327. * physical package.
  5328. */
  5329. continue;
  5330. }
  5331. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5332. }
  5333. sg = sg->next;
  5334. } while (sg != group_head);
  5335. }
  5336. #endif
  5337. #ifdef CONFIG_NUMA
  5338. /* Free memory allocated for various sched_group structures */
  5339. static void free_sched_groups(const cpumask_t *cpu_map)
  5340. {
  5341. int cpu, i;
  5342. for_each_cpu_mask(cpu, *cpu_map) {
  5343. struct sched_group **sched_group_nodes
  5344. = sched_group_nodes_bycpu[cpu];
  5345. if (!sched_group_nodes)
  5346. continue;
  5347. for (i = 0; i < MAX_NUMNODES; i++) {
  5348. cpumask_t nodemask = node_to_cpumask(i);
  5349. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5350. cpus_and(nodemask, nodemask, *cpu_map);
  5351. if (cpus_empty(nodemask))
  5352. continue;
  5353. if (sg == NULL)
  5354. continue;
  5355. sg = sg->next;
  5356. next_sg:
  5357. oldsg = sg;
  5358. sg = sg->next;
  5359. kfree(oldsg);
  5360. if (oldsg != sched_group_nodes[i])
  5361. goto next_sg;
  5362. }
  5363. kfree(sched_group_nodes);
  5364. sched_group_nodes_bycpu[cpu] = NULL;
  5365. }
  5366. }
  5367. #else
  5368. static void free_sched_groups(const cpumask_t *cpu_map)
  5369. {
  5370. }
  5371. #endif
  5372. /*
  5373. * Initialize sched groups cpu_power.
  5374. *
  5375. * cpu_power indicates the capacity of sched group, which is used while
  5376. * distributing the load between different sched groups in a sched domain.
  5377. * Typically cpu_power for all the groups in a sched domain will be same unless
  5378. * there are asymmetries in the topology. If there are asymmetries, group
  5379. * having more cpu_power will pickup more load compared to the group having
  5380. * less cpu_power.
  5381. *
  5382. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5383. * the maximum number of tasks a group can handle in the presence of other idle
  5384. * or lightly loaded groups in the same sched domain.
  5385. */
  5386. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5387. {
  5388. struct sched_domain *child;
  5389. struct sched_group *group;
  5390. WARN_ON(!sd || !sd->groups);
  5391. if (cpu != first_cpu(sd->groups->cpumask))
  5392. return;
  5393. child = sd->child;
  5394. sd->groups->__cpu_power = 0;
  5395. /*
  5396. * For perf policy, if the groups in child domain share resources
  5397. * (for example cores sharing some portions of the cache hierarchy
  5398. * or SMT), then set this domain groups cpu_power such that each group
  5399. * can handle only one task, when there are other idle groups in the
  5400. * same sched domain.
  5401. */
  5402. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5403. (child->flags &
  5404. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5405. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5406. return;
  5407. }
  5408. /*
  5409. * add cpu_power of each child group to this groups cpu_power
  5410. */
  5411. group = child->groups;
  5412. do {
  5413. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5414. group = group->next;
  5415. } while (group != child->groups);
  5416. }
  5417. /*
  5418. * Build sched domains for a given set of cpus and attach the sched domains
  5419. * to the individual cpus
  5420. */
  5421. static int build_sched_domains(const cpumask_t *cpu_map)
  5422. {
  5423. int i;
  5424. struct root_domain *rd;
  5425. #ifdef CONFIG_NUMA
  5426. struct sched_group **sched_group_nodes = NULL;
  5427. int sd_allnodes = 0;
  5428. /*
  5429. * Allocate the per-node list of sched groups
  5430. */
  5431. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5432. GFP_KERNEL);
  5433. if (!sched_group_nodes) {
  5434. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5435. return -ENOMEM;
  5436. }
  5437. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5438. #endif
  5439. rd = alloc_rootdomain();
  5440. if (!rd) {
  5441. printk(KERN_WARNING "Cannot alloc root domain\n");
  5442. return -ENOMEM;
  5443. }
  5444. /*
  5445. * Set up domains for cpus specified by the cpu_map.
  5446. */
  5447. for_each_cpu_mask(i, *cpu_map) {
  5448. struct sched_domain *sd = NULL, *p;
  5449. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5450. cpus_and(nodemask, nodemask, *cpu_map);
  5451. #ifdef CONFIG_NUMA
  5452. if (cpus_weight(*cpu_map) >
  5453. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5454. sd = &per_cpu(allnodes_domains, i);
  5455. *sd = SD_ALLNODES_INIT;
  5456. sd->span = *cpu_map;
  5457. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5458. p = sd;
  5459. sd_allnodes = 1;
  5460. } else
  5461. p = NULL;
  5462. sd = &per_cpu(node_domains, i);
  5463. *sd = SD_NODE_INIT;
  5464. sd->span = sched_domain_node_span(cpu_to_node(i));
  5465. sd->parent = p;
  5466. if (p)
  5467. p->child = sd;
  5468. cpus_and(sd->span, sd->span, *cpu_map);
  5469. #endif
  5470. p = sd;
  5471. sd = &per_cpu(phys_domains, i);
  5472. *sd = SD_CPU_INIT;
  5473. sd->span = nodemask;
  5474. sd->parent = p;
  5475. if (p)
  5476. p->child = sd;
  5477. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5478. #ifdef CONFIG_SCHED_MC
  5479. p = sd;
  5480. sd = &per_cpu(core_domains, i);
  5481. *sd = SD_MC_INIT;
  5482. sd->span = cpu_coregroup_map(i);
  5483. cpus_and(sd->span, sd->span, *cpu_map);
  5484. sd->parent = p;
  5485. p->child = sd;
  5486. cpu_to_core_group(i, cpu_map, &sd->groups);
  5487. #endif
  5488. #ifdef CONFIG_SCHED_SMT
  5489. p = sd;
  5490. sd = &per_cpu(cpu_domains, i);
  5491. *sd = SD_SIBLING_INIT;
  5492. sd->span = per_cpu(cpu_sibling_map, i);
  5493. cpus_and(sd->span, sd->span, *cpu_map);
  5494. sd->parent = p;
  5495. p->child = sd;
  5496. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5497. #endif
  5498. }
  5499. #ifdef CONFIG_SCHED_SMT
  5500. /* Set up CPU (sibling) groups */
  5501. for_each_cpu_mask(i, *cpu_map) {
  5502. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5503. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5504. if (i != first_cpu(this_sibling_map))
  5505. continue;
  5506. init_sched_build_groups(this_sibling_map, cpu_map,
  5507. &cpu_to_cpu_group);
  5508. }
  5509. #endif
  5510. #ifdef CONFIG_SCHED_MC
  5511. /* Set up multi-core groups */
  5512. for_each_cpu_mask(i, *cpu_map) {
  5513. cpumask_t this_core_map = cpu_coregroup_map(i);
  5514. cpus_and(this_core_map, this_core_map, *cpu_map);
  5515. if (i != first_cpu(this_core_map))
  5516. continue;
  5517. init_sched_build_groups(this_core_map, cpu_map,
  5518. &cpu_to_core_group);
  5519. }
  5520. #endif
  5521. /* Set up physical groups */
  5522. for (i = 0; i < MAX_NUMNODES; i++) {
  5523. cpumask_t nodemask = node_to_cpumask(i);
  5524. cpus_and(nodemask, nodemask, *cpu_map);
  5525. if (cpus_empty(nodemask))
  5526. continue;
  5527. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5528. }
  5529. #ifdef CONFIG_NUMA
  5530. /* Set up node groups */
  5531. if (sd_allnodes)
  5532. init_sched_build_groups(*cpu_map, cpu_map,
  5533. &cpu_to_allnodes_group);
  5534. for (i = 0; i < MAX_NUMNODES; i++) {
  5535. /* Set up node groups */
  5536. struct sched_group *sg, *prev;
  5537. cpumask_t nodemask = node_to_cpumask(i);
  5538. cpumask_t domainspan;
  5539. cpumask_t covered = CPU_MASK_NONE;
  5540. int j;
  5541. cpus_and(nodemask, nodemask, *cpu_map);
  5542. if (cpus_empty(nodemask)) {
  5543. sched_group_nodes[i] = NULL;
  5544. continue;
  5545. }
  5546. domainspan = sched_domain_node_span(i);
  5547. cpus_and(domainspan, domainspan, *cpu_map);
  5548. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5549. if (!sg) {
  5550. printk(KERN_WARNING "Can not alloc domain group for "
  5551. "node %d\n", i);
  5552. goto error;
  5553. }
  5554. sched_group_nodes[i] = sg;
  5555. for_each_cpu_mask(j, nodemask) {
  5556. struct sched_domain *sd;
  5557. sd = &per_cpu(node_domains, j);
  5558. sd->groups = sg;
  5559. }
  5560. sg->__cpu_power = 0;
  5561. sg->cpumask = nodemask;
  5562. sg->next = sg;
  5563. cpus_or(covered, covered, nodemask);
  5564. prev = sg;
  5565. for (j = 0; j < MAX_NUMNODES; j++) {
  5566. cpumask_t tmp, notcovered;
  5567. int n = (i + j) % MAX_NUMNODES;
  5568. cpus_complement(notcovered, covered);
  5569. cpus_and(tmp, notcovered, *cpu_map);
  5570. cpus_and(tmp, tmp, domainspan);
  5571. if (cpus_empty(tmp))
  5572. break;
  5573. nodemask = node_to_cpumask(n);
  5574. cpus_and(tmp, tmp, nodemask);
  5575. if (cpus_empty(tmp))
  5576. continue;
  5577. sg = kmalloc_node(sizeof(struct sched_group),
  5578. GFP_KERNEL, i);
  5579. if (!sg) {
  5580. printk(KERN_WARNING
  5581. "Can not alloc domain group for node %d\n", j);
  5582. goto error;
  5583. }
  5584. sg->__cpu_power = 0;
  5585. sg->cpumask = tmp;
  5586. sg->next = prev->next;
  5587. cpus_or(covered, covered, tmp);
  5588. prev->next = sg;
  5589. prev = sg;
  5590. }
  5591. }
  5592. #endif
  5593. /* Calculate CPU power for physical packages and nodes */
  5594. #ifdef CONFIG_SCHED_SMT
  5595. for_each_cpu_mask(i, *cpu_map) {
  5596. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5597. init_sched_groups_power(i, sd);
  5598. }
  5599. #endif
  5600. #ifdef CONFIG_SCHED_MC
  5601. for_each_cpu_mask(i, *cpu_map) {
  5602. struct sched_domain *sd = &per_cpu(core_domains, i);
  5603. init_sched_groups_power(i, sd);
  5604. }
  5605. #endif
  5606. for_each_cpu_mask(i, *cpu_map) {
  5607. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5608. init_sched_groups_power(i, sd);
  5609. }
  5610. #ifdef CONFIG_NUMA
  5611. for (i = 0; i < MAX_NUMNODES; i++)
  5612. init_numa_sched_groups_power(sched_group_nodes[i]);
  5613. if (sd_allnodes) {
  5614. struct sched_group *sg;
  5615. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5616. init_numa_sched_groups_power(sg);
  5617. }
  5618. #endif
  5619. /* Attach the domains */
  5620. for_each_cpu_mask(i, *cpu_map) {
  5621. struct sched_domain *sd;
  5622. #ifdef CONFIG_SCHED_SMT
  5623. sd = &per_cpu(cpu_domains, i);
  5624. #elif defined(CONFIG_SCHED_MC)
  5625. sd = &per_cpu(core_domains, i);
  5626. #else
  5627. sd = &per_cpu(phys_domains, i);
  5628. #endif
  5629. cpu_attach_domain(sd, rd, i);
  5630. }
  5631. return 0;
  5632. #ifdef CONFIG_NUMA
  5633. error:
  5634. free_sched_groups(cpu_map);
  5635. return -ENOMEM;
  5636. #endif
  5637. }
  5638. static cpumask_t *doms_cur; /* current sched domains */
  5639. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5640. /*
  5641. * Special case: If a kmalloc of a doms_cur partition (array of
  5642. * cpumask_t) fails, then fallback to a single sched domain,
  5643. * as determined by the single cpumask_t fallback_doms.
  5644. */
  5645. static cpumask_t fallback_doms;
  5646. /*
  5647. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5648. * For now this just excludes isolated cpus, but could be used to
  5649. * exclude other special cases in the future.
  5650. */
  5651. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5652. {
  5653. int err;
  5654. ndoms_cur = 1;
  5655. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5656. if (!doms_cur)
  5657. doms_cur = &fallback_doms;
  5658. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5659. err = build_sched_domains(doms_cur);
  5660. register_sched_domain_sysctl();
  5661. return err;
  5662. }
  5663. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5664. {
  5665. free_sched_groups(cpu_map);
  5666. }
  5667. /*
  5668. * Detach sched domains from a group of cpus specified in cpu_map
  5669. * These cpus will now be attached to the NULL domain
  5670. */
  5671. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5672. {
  5673. int i;
  5674. unregister_sched_domain_sysctl();
  5675. for_each_cpu_mask(i, *cpu_map)
  5676. cpu_attach_domain(NULL, &def_root_domain, i);
  5677. synchronize_sched();
  5678. arch_destroy_sched_domains(cpu_map);
  5679. }
  5680. /*
  5681. * Partition sched domains as specified by the 'ndoms_new'
  5682. * cpumasks in the array doms_new[] of cpumasks. This compares
  5683. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5684. * It destroys each deleted domain and builds each new domain.
  5685. *
  5686. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5687. * The masks don't intersect (don't overlap.) We should setup one
  5688. * sched domain for each mask. CPUs not in any of the cpumasks will
  5689. * not be load balanced. If the same cpumask appears both in the
  5690. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5691. * it as it is.
  5692. *
  5693. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5694. * ownership of it and will kfree it when done with it. If the caller
  5695. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5696. * and partition_sched_domains() will fallback to the single partition
  5697. * 'fallback_doms'.
  5698. *
  5699. * Call with hotplug lock held
  5700. */
  5701. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5702. {
  5703. int i, j;
  5704. lock_doms_cur();
  5705. /* always unregister in case we don't destroy any domains */
  5706. unregister_sched_domain_sysctl();
  5707. if (doms_new == NULL) {
  5708. ndoms_new = 1;
  5709. doms_new = &fallback_doms;
  5710. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5711. }
  5712. /* Destroy deleted domains */
  5713. for (i = 0; i < ndoms_cur; i++) {
  5714. for (j = 0; j < ndoms_new; j++) {
  5715. if (cpus_equal(doms_cur[i], doms_new[j]))
  5716. goto match1;
  5717. }
  5718. /* no match - a current sched domain not in new doms_new[] */
  5719. detach_destroy_domains(doms_cur + i);
  5720. match1:
  5721. ;
  5722. }
  5723. /* Build new domains */
  5724. for (i = 0; i < ndoms_new; i++) {
  5725. for (j = 0; j < ndoms_cur; j++) {
  5726. if (cpus_equal(doms_new[i], doms_cur[j]))
  5727. goto match2;
  5728. }
  5729. /* no match - add a new doms_new */
  5730. build_sched_domains(doms_new + i);
  5731. match2:
  5732. ;
  5733. }
  5734. /* Remember the new sched domains */
  5735. if (doms_cur != &fallback_doms)
  5736. kfree(doms_cur);
  5737. doms_cur = doms_new;
  5738. ndoms_cur = ndoms_new;
  5739. register_sched_domain_sysctl();
  5740. unlock_doms_cur();
  5741. }
  5742. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5743. static int arch_reinit_sched_domains(void)
  5744. {
  5745. int err;
  5746. get_online_cpus();
  5747. detach_destroy_domains(&cpu_online_map);
  5748. err = arch_init_sched_domains(&cpu_online_map);
  5749. put_online_cpus();
  5750. return err;
  5751. }
  5752. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5753. {
  5754. int ret;
  5755. if (buf[0] != '0' && buf[0] != '1')
  5756. return -EINVAL;
  5757. if (smt)
  5758. sched_smt_power_savings = (buf[0] == '1');
  5759. else
  5760. sched_mc_power_savings = (buf[0] == '1');
  5761. ret = arch_reinit_sched_domains();
  5762. return ret ? ret : count;
  5763. }
  5764. #ifdef CONFIG_SCHED_MC
  5765. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5766. {
  5767. return sprintf(page, "%u\n", sched_mc_power_savings);
  5768. }
  5769. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5770. const char *buf, size_t count)
  5771. {
  5772. return sched_power_savings_store(buf, count, 0);
  5773. }
  5774. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5775. sched_mc_power_savings_store);
  5776. #endif
  5777. #ifdef CONFIG_SCHED_SMT
  5778. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5779. {
  5780. return sprintf(page, "%u\n", sched_smt_power_savings);
  5781. }
  5782. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5783. const char *buf, size_t count)
  5784. {
  5785. return sched_power_savings_store(buf, count, 1);
  5786. }
  5787. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5788. sched_smt_power_savings_store);
  5789. #endif
  5790. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5791. {
  5792. int err = 0;
  5793. #ifdef CONFIG_SCHED_SMT
  5794. if (smt_capable())
  5795. err = sysfs_create_file(&cls->kset.kobj,
  5796. &attr_sched_smt_power_savings.attr);
  5797. #endif
  5798. #ifdef CONFIG_SCHED_MC
  5799. if (!err && mc_capable())
  5800. err = sysfs_create_file(&cls->kset.kobj,
  5801. &attr_sched_mc_power_savings.attr);
  5802. #endif
  5803. return err;
  5804. }
  5805. #endif
  5806. /*
  5807. * Force a reinitialization of the sched domains hierarchy. The domains
  5808. * and groups cannot be updated in place without racing with the balancing
  5809. * code, so we temporarily attach all running cpus to the NULL domain
  5810. * which will prevent rebalancing while the sched domains are recalculated.
  5811. */
  5812. static int update_sched_domains(struct notifier_block *nfb,
  5813. unsigned long action, void *hcpu)
  5814. {
  5815. switch (action) {
  5816. case CPU_UP_PREPARE:
  5817. case CPU_UP_PREPARE_FROZEN:
  5818. case CPU_DOWN_PREPARE:
  5819. case CPU_DOWN_PREPARE_FROZEN:
  5820. detach_destroy_domains(&cpu_online_map);
  5821. return NOTIFY_OK;
  5822. case CPU_UP_CANCELED:
  5823. case CPU_UP_CANCELED_FROZEN:
  5824. case CPU_DOWN_FAILED:
  5825. case CPU_DOWN_FAILED_FROZEN:
  5826. case CPU_ONLINE:
  5827. case CPU_ONLINE_FROZEN:
  5828. case CPU_DEAD:
  5829. case CPU_DEAD_FROZEN:
  5830. /*
  5831. * Fall through and re-initialise the domains.
  5832. */
  5833. break;
  5834. default:
  5835. return NOTIFY_DONE;
  5836. }
  5837. /* The hotplug lock is already held by cpu_up/cpu_down */
  5838. arch_init_sched_domains(&cpu_online_map);
  5839. return NOTIFY_OK;
  5840. }
  5841. void __init sched_init_smp(void)
  5842. {
  5843. cpumask_t non_isolated_cpus;
  5844. get_online_cpus();
  5845. arch_init_sched_domains(&cpu_online_map);
  5846. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5847. if (cpus_empty(non_isolated_cpus))
  5848. cpu_set(smp_processor_id(), non_isolated_cpus);
  5849. put_online_cpus();
  5850. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5851. hotcpu_notifier(update_sched_domains, 0);
  5852. /* Move init over to a non-isolated CPU */
  5853. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5854. BUG();
  5855. sched_init_granularity();
  5856. #ifdef CONFIG_FAIR_GROUP_SCHED
  5857. if (nr_cpu_ids == 1)
  5858. return;
  5859. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5860. "group_balance");
  5861. if (!IS_ERR(lb_monitor_task)) {
  5862. lb_monitor_task->flags |= PF_NOFREEZE;
  5863. wake_up_process(lb_monitor_task);
  5864. } else {
  5865. printk(KERN_ERR "Could not create load balance monitor thread"
  5866. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5867. }
  5868. #endif
  5869. }
  5870. #else
  5871. void __init sched_init_smp(void)
  5872. {
  5873. sched_init_granularity();
  5874. }
  5875. #endif /* CONFIG_SMP */
  5876. int in_sched_functions(unsigned long addr)
  5877. {
  5878. return in_lock_functions(addr) ||
  5879. (addr >= (unsigned long)__sched_text_start
  5880. && addr < (unsigned long)__sched_text_end);
  5881. }
  5882. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5883. {
  5884. cfs_rq->tasks_timeline = RB_ROOT;
  5885. #ifdef CONFIG_FAIR_GROUP_SCHED
  5886. cfs_rq->rq = rq;
  5887. #endif
  5888. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5889. }
  5890. void __init sched_init(void)
  5891. {
  5892. int highest_cpu = 0;
  5893. int i, j;
  5894. #ifdef CONFIG_SMP
  5895. init_defrootdomain();
  5896. #endif
  5897. for_each_possible_cpu(i) {
  5898. struct rt_prio_array *array;
  5899. struct rq *rq;
  5900. rq = cpu_rq(i);
  5901. spin_lock_init(&rq->lock);
  5902. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5903. rq->nr_running = 0;
  5904. rq->clock = 1;
  5905. init_cfs_rq(&rq->cfs, rq);
  5906. #ifdef CONFIG_FAIR_GROUP_SCHED
  5907. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5908. {
  5909. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5910. struct sched_entity *se =
  5911. &per_cpu(init_sched_entity, i);
  5912. init_cfs_rq_p[i] = cfs_rq;
  5913. init_cfs_rq(cfs_rq, rq);
  5914. cfs_rq->tg = &init_task_group;
  5915. list_add(&cfs_rq->leaf_cfs_rq_list,
  5916. &rq->leaf_cfs_rq_list);
  5917. init_sched_entity_p[i] = se;
  5918. se->cfs_rq = &rq->cfs;
  5919. se->my_q = cfs_rq;
  5920. se->load.weight = init_task_group_load;
  5921. se->load.inv_weight =
  5922. div64_64(1ULL<<32, init_task_group_load);
  5923. se->parent = NULL;
  5924. }
  5925. init_task_group.shares = init_task_group_load;
  5926. #endif
  5927. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5928. rq->cpu_load[j] = 0;
  5929. #ifdef CONFIG_SMP
  5930. rq->sd = NULL;
  5931. rq->rd = NULL;
  5932. rq->active_balance = 0;
  5933. rq->next_balance = jiffies;
  5934. rq->push_cpu = 0;
  5935. rq->cpu = i;
  5936. rq->migration_thread = NULL;
  5937. INIT_LIST_HEAD(&rq->migration_queue);
  5938. rq->rt.highest_prio = MAX_RT_PRIO;
  5939. rq->rt.overloaded = 0;
  5940. rq_attach_root(rq, &def_root_domain);
  5941. #endif
  5942. atomic_set(&rq->nr_iowait, 0);
  5943. array = &rq->rt.active;
  5944. for (j = 0; j < MAX_RT_PRIO; j++) {
  5945. INIT_LIST_HEAD(array->queue + j);
  5946. __clear_bit(j, array->bitmap);
  5947. }
  5948. highest_cpu = i;
  5949. /* delimiter for bitsearch: */
  5950. __set_bit(MAX_RT_PRIO, array->bitmap);
  5951. }
  5952. set_load_weight(&init_task);
  5953. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5954. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5955. #endif
  5956. #ifdef CONFIG_SMP
  5957. nr_cpu_ids = highest_cpu + 1;
  5958. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5959. #endif
  5960. #ifdef CONFIG_RT_MUTEXES
  5961. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5962. #endif
  5963. /*
  5964. * The boot idle thread does lazy MMU switching as well:
  5965. */
  5966. atomic_inc(&init_mm.mm_count);
  5967. enter_lazy_tlb(&init_mm, current);
  5968. /*
  5969. * Make us the idle thread. Technically, schedule() should not be
  5970. * called from this thread, however somewhere below it might be,
  5971. * but because we are the idle thread, we just pick up running again
  5972. * when this runqueue becomes "idle".
  5973. */
  5974. init_idle(current, smp_processor_id());
  5975. /*
  5976. * During early bootup we pretend to be a normal task:
  5977. */
  5978. current->sched_class = &fair_sched_class;
  5979. }
  5980. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5981. void __might_sleep(char *file, int line)
  5982. {
  5983. #ifdef in_atomic
  5984. static unsigned long prev_jiffy; /* ratelimiting */
  5985. if ((in_atomic() || irqs_disabled()) &&
  5986. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5987. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5988. return;
  5989. prev_jiffy = jiffies;
  5990. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5991. " context at %s:%d\n", file, line);
  5992. printk("in_atomic():%d, irqs_disabled():%d\n",
  5993. in_atomic(), irqs_disabled());
  5994. debug_show_held_locks(current);
  5995. if (irqs_disabled())
  5996. print_irqtrace_events(current);
  5997. dump_stack();
  5998. }
  5999. #endif
  6000. }
  6001. EXPORT_SYMBOL(__might_sleep);
  6002. #endif
  6003. #ifdef CONFIG_MAGIC_SYSRQ
  6004. static void normalize_task(struct rq *rq, struct task_struct *p)
  6005. {
  6006. int on_rq;
  6007. update_rq_clock(rq);
  6008. on_rq = p->se.on_rq;
  6009. if (on_rq)
  6010. deactivate_task(rq, p, 0);
  6011. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6012. if (on_rq) {
  6013. activate_task(rq, p, 0);
  6014. resched_task(rq->curr);
  6015. }
  6016. }
  6017. void normalize_rt_tasks(void)
  6018. {
  6019. struct task_struct *g, *p;
  6020. unsigned long flags;
  6021. struct rq *rq;
  6022. read_lock_irq(&tasklist_lock);
  6023. do_each_thread(g, p) {
  6024. /*
  6025. * Only normalize user tasks:
  6026. */
  6027. if (!p->mm)
  6028. continue;
  6029. p->se.exec_start = 0;
  6030. #ifdef CONFIG_SCHEDSTATS
  6031. p->se.wait_start = 0;
  6032. p->se.sleep_start = 0;
  6033. p->se.block_start = 0;
  6034. #endif
  6035. task_rq(p)->clock = 0;
  6036. if (!rt_task(p)) {
  6037. /*
  6038. * Renice negative nice level userspace
  6039. * tasks back to 0:
  6040. */
  6041. if (TASK_NICE(p) < 0 && p->mm)
  6042. set_user_nice(p, 0);
  6043. continue;
  6044. }
  6045. spin_lock_irqsave(&p->pi_lock, flags);
  6046. rq = __task_rq_lock(p);
  6047. normalize_task(rq, p);
  6048. __task_rq_unlock(rq);
  6049. spin_unlock_irqrestore(&p->pi_lock, flags);
  6050. } while_each_thread(g, p);
  6051. read_unlock_irq(&tasklist_lock);
  6052. }
  6053. #endif /* CONFIG_MAGIC_SYSRQ */
  6054. #ifdef CONFIG_IA64
  6055. /*
  6056. * These functions are only useful for the IA64 MCA handling.
  6057. *
  6058. * They can only be called when the whole system has been
  6059. * stopped - every CPU needs to be quiescent, and no scheduling
  6060. * activity can take place. Using them for anything else would
  6061. * be a serious bug, and as a result, they aren't even visible
  6062. * under any other configuration.
  6063. */
  6064. /**
  6065. * curr_task - return the current task for a given cpu.
  6066. * @cpu: the processor in question.
  6067. *
  6068. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6069. */
  6070. struct task_struct *curr_task(int cpu)
  6071. {
  6072. return cpu_curr(cpu);
  6073. }
  6074. /**
  6075. * set_curr_task - set the current task for a given cpu.
  6076. * @cpu: the processor in question.
  6077. * @p: the task pointer to set.
  6078. *
  6079. * Description: This function must only be used when non-maskable interrupts
  6080. * are serviced on a separate stack. It allows the architecture to switch the
  6081. * notion of the current task on a cpu in a non-blocking manner. This function
  6082. * must be called with all CPU's synchronized, and interrupts disabled, the
  6083. * and caller must save the original value of the current task (see
  6084. * curr_task() above) and restore that value before reenabling interrupts and
  6085. * re-starting the system.
  6086. *
  6087. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6088. */
  6089. void set_curr_task(int cpu, struct task_struct *p)
  6090. {
  6091. cpu_curr(cpu) = p;
  6092. }
  6093. #endif
  6094. #ifdef CONFIG_FAIR_GROUP_SCHED
  6095. #ifdef CONFIG_SMP
  6096. /*
  6097. * distribute shares of all task groups among their schedulable entities,
  6098. * to reflect load distrbution across cpus.
  6099. */
  6100. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6101. {
  6102. struct cfs_rq *cfs_rq;
  6103. struct rq *rq = cpu_rq(this_cpu);
  6104. cpumask_t sdspan = sd->span;
  6105. int balanced = 1;
  6106. /* Walk thr' all the task groups that we have */
  6107. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6108. int i;
  6109. unsigned long total_load = 0, total_shares;
  6110. struct task_group *tg = cfs_rq->tg;
  6111. /* Gather total task load of this group across cpus */
  6112. for_each_cpu_mask(i, sdspan)
  6113. total_load += tg->cfs_rq[i]->load.weight;
  6114. /* Nothing to do if this group has no load */
  6115. if (!total_load)
  6116. continue;
  6117. /*
  6118. * tg->shares represents the number of cpu shares the task group
  6119. * is eligible to hold on a single cpu. On N cpus, it is
  6120. * eligible to hold (N * tg->shares) number of cpu shares.
  6121. */
  6122. total_shares = tg->shares * cpus_weight(sdspan);
  6123. /*
  6124. * redistribute total_shares across cpus as per the task load
  6125. * distribution.
  6126. */
  6127. for_each_cpu_mask(i, sdspan) {
  6128. unsigned long local_load, local_shares;
  6129. local_load = tg->cfs_rq[i]->load.weight;
  6130. local_shares = (local_load * total_shares) / total_load;
  6131. if (!local_shares)
  6132. local_shares = MIN_GROUP_SHARES;
  6133. if (local_shares == tg->se[i]->load.weight)
  6134. continue;
  6135. spin_lock_irq(&cpu_rq(i)->lock);
  6136. set_se_shares(tg->se[i], local_shares);
  6137. spin_unlock_irq(&cpu_rq(i)->lock);
  6138. balanced = 0;
  6139. }
  6140. }
  6141. return balanced;
  6142. }
  6143. /*
  6144. * How frequently should we rebalance_shares() across cpus?
  6145. *
  6146. * The more frequently we rebalance shares, the more accurate is the fairness
  6147. * of cpu bandwidth distribution between task groups. However higher frequency
  6148. * also implies increased scheduling overhead.
  6149. *
  6150. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6151. * consecutive calls to rebalance_shares() in the same sched domain.
  6152. *
  6153. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6154. * consecutive calls to rebalance_shares() in the same sched domain.
  6155. *
  6156. * These settings allows for the appropriate tradeoff between accuracy of
  6157. * fairness and the associated overhead.
  6158. *
  6159. */
  6160. /* default: 8ms, units: milliseconds */
  6161. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6162. /* default: 128ms, units: milliseconds */
  6163. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6164. /* kernel thread that runs rebalance_shares() periodically */
  6165. static int load_balance_monitor(void *unused)
  6166. {
  6167. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6168. struct sched_param schedparm;
  6169. int ret;
  6170. /*
  6171. * We don't want this thread's execution to be limited by the shares
  6172. * assigned to default group (init_task_group). Hence make it run
  6173. * as a SCHED_RR RT task at the lowest priority.
  6174. */
  6175. schedparm.sched_priority = 1;
  6176. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6177. if (ret)
  6178. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6179. " monitor thread (error = %d) \n", ret);
  6180. while (!kthread_should_stop()) {
  6181. int i, cpu, balanced = 1;
  6182. /* Prevent cpus going down or coming up */
  6183. get_online_cpus();
  6184. /* lockout changes to doms_cur[] array */
  6185. lock_doms_cur();
  6186. /*
  6187. * Enter a rcu read-side critical section to safely walk rq->sd
  6188. * chain on various cpus and to walk task group list
  6189. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6190. */
  6191. rcu_read_lock();
  6192. for (i = 0; i < ndoms_cur; i++) {
  6193. cpumask_t cpumap = doms_cur[i];
  6194. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6195. cpu = first_cpu(cpumap);
  6196. /* Find the highest domain at which to balance shares */
  6197. for_each_domain(cpu, sd) {
  6198. if (!(sd->flags & SD_LOAD_BALANCE))
  6199. continue;
  6200. sd_prev = sd;
  6201. }
  6202. sd = sd_prev;
  6203. /* sd == NULL? No load balance reqd in this domain */
  6204. if (!sd)
  6205. continue;
  6206. balanced &= rebalance_shares(sd, cpu);
  6207. }
  6208. rcu_read_unlock();
  6209. unlock_doms_cur();
  6210. put_online_cpus();
  6211. if (!balanced)
  6212. timeout = sysctl_sched_min_bal_int_shares;
  6213. else if (timeout < sysctl_sched_max_bal_int_shares)
  6214. timeout *= 2;
  6215. msleep_interruptible(timeout);
  6216. }
  6217. return 0;
  6218. }
  6219. #endif /* CONFIG_SMP */
  6220. /* allocate runqueue etc for a new task group */
  6221. struct task_group *sched_create_group(void)
  6222. {
  6223. struct task_group *tg;
  6224. struct cfs_rq *cfs_rq;
  6225. struct sched_entity *se;
  6226. struct rq *rq;
  6227. int i;
  6228. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6229. if (!tg)
  6230. return ERR_PTR(-ENOMEM);
  6231. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6232. if (!tg->cfs_rq)
  6233. goto err;
  6234. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6235. if (!tg->se)
  6236. goto err;
  6237. for_each_possible_cpu(i) {
  6238. rq = cpu_rq(i);
  6239. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6240. cpu_to_node(i));
  6241. if (!cfs_rq)
  6242. goto err;
  6243. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6244. cpu_to_node(i));
  6245. if (!se)
  6246. goto err;
  6247. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6248. memset(se, 0, sizeof(struct sched_entity));
  6249. tg->cfs_rq[i] = cfs_rq;
  6250. init_cfs_rq(cfs_rq, rq);
  6251. cfs_rq->tg = tg;
  6252. tg->se[i] = se;
  6253. se->cfs_rq = &rq->cfs;
  6254. se->my_q = cfs_rq;
  6255. se->load.weight = NICE_0_LOAD;
  6256. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6257. se->parent = NULL;
  6258. }
  6259. tg->shares = NICE_0_LOAD;
  6260. lock_task_group_list();
  6261. for_each_possible_cpu(i) {
  6262. rq = cpu_rq(i);
  6263. cfs_rq = tg->cfs_rq[i];
  6264. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6265. }
  6266. unlock_task_group_list();
  6267. return tg;
  6268. err:
  6269. for_each_possible_cpu(i) {
  6270. if (tg->cfs_rq)
  6271. kfree(tg->cfs_rq[i]);
  6272. if (tg->se)
  6273. kfree(tg->se[i]);
  6274. }
  6275. kfree(tg->cfs_rq);
  6276. kfree(tg->se);
  6277. kfree(tg);
  6278. return ERR_PTR(-ENOMEM);
  6279. }
  6280. /* rcu callback to free various structures associated with a task group */
  6281. static void free_sched_group(struct rcu_head *rhp)
  6282. {
  6283. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6284. struct cfs_rq *cfs_rq;
  6285. struct sched_entity *se;
  6286. int i;
  6287. /* now it should be safe to free those cfs_rqs */
  6288. for_each_possible_cpu(i) {
  6289. cfs_rq = tg->cfs_rq[i];
  6290. kfree(cfs_rq);
  6291. se = tg->se[i];
  6292. kfree(se);
  6293. }
  6294. kfree(tg->cfs_rq);
  6295. kfree(tg->se);
  6296. kfree(tg);
  6297. }
  6298. /* Destroy runqueue etc associated with a task group */
  6299. void sched_destroy_group(struct task_group *tg)
  6300. {
  6301. struct cfs_rq *cfs_rq = NULL;
  6302. int i;
  6303. lock_task_group_list();
  6304. for_each_possible_cpu(i) {
  6305. cfs_rq = tg->cfs_rq[i];
  6306. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6307. }
  6308. unlock_task_group_list();
  6309. BUG_ON(!cfs_rq);
  6310. /* wait for possible concurrent references to cfs_rqs complete */
  6311. call_rcu(&tg->rcu, free_sched_group);
  6312. }
  6313. /* change task's runqueue when it moves between groups.
  6314. * The caller of this function should have put the task in its new group
  6315. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6316. * reflect its new group.
  6317. */
  6318. void sched_move_task(struct task_struct *tsk)
  6319. {
  6320. int on_rq, running;
  6321. unsigned long flags;
  6322. struct rq *rq;
  6323. rq = task_rq_lock(tsk, &flags);
  6324. if (tsk->sched_class != &fair_sched_class) {
  6325. set_task_cfs_rq(tsk, task_cpu(tsk));
  6326. goto done;
  6327. }
  6328. update_rq_clock(rq);
  6329. running = task_current(rq, tsk);
  6330. on_rq = tsk->se.on_rq;
  6331. if (on_rq) {
  6332. dequeue_task(rq, tsk, 0);
  6333. if (unlikely(running))
  6334. tsk->sched_class->put_prev_task(rq, tsk);
  6335. }
  6336. set_task_cfs_rq(tsk, task_cpu(tsk));
  6337. if (on_rq) {
  6338. if (unlikely(running))
  6339. tsk->sched_class->set_curr_task(rq);
  6340. enqueue_task(rq, tsk, 0);
  6341. }
  6342. done:
  6343. task_rq_unlock(rq, &flags);
  6344. }
  6345. /* rq->lock to be locked by caller */
  6346. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6347. {
  6348. struct cfs_rq *cfs_rq = se->cfs_rq;
  6349. struct rq *rq = cfs_rq->rq;
  6350. int on_rq;
  6351. if (!shares)
  6352. shares = MIN_GROUP_SHARES;
  6353. on_rq = se->on_rq;
  6354. if (on_rq) {
  6355. dequeue_entity(cfs_rq, se, 0);
  6356. dec_cpu_load(rq, se->load.weight);
  6357. }
  6358. se->load.weight = shares;
  6359. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6360. if (on_rq) {
  6361. enqueue_entity(cfs_rq, se, 0);
  6362. inc_cpu_load(rq, se->load.weight);
  6363. }
  6364. }
  6365. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6366. {
  6367. int i;
  6368. struct cfs_rq *cfs_rq;
  6369. struct rq *rq;
  6370. lock_task_group_list();
  6371. if (tg->shares == shares)
  6372. goto done;
  6373. if (shares < MIN_GROUP_SHARES)
  6374. shares = MIN_GROUP_SHARES;
  6375. /*
  6376. * Prevent any load balance activity (rebalance_shares,
  6377. * load_balance_fair) from referring to this group first,
  6378. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6379. */
  6380. for_each_possible_cpu(i) {
  6381. cfs_rq = tg->cfs_rq[i];
  6382. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6383. }
  6384. /* wait for any ongoing reference to this group to finish */
  6385. synchronize_sched();
  6386. /*
  6387. * Now we are free to modify the group's share on each cpu
  6388. * w/o tripping rebalance_share or load_balance_fair.
  6389. */
  6390. tg->shares = shares;
  6391. for_each_possible_cpu(i) {
  6392. spin_lock_irq(&cpu_rq(i)->lock);
  6393. set_se_shares(tg->se[i], shares);
  6394. spin_unlock_irq(&cpu_rq(i)->lock);
  6395. }
  6396. /*
  6397. * Enable load balance activity on this group, by inserting it back on
  6398. * each cpu's rq->leaf_cfs_rq_list.
  6399. */
  6400. for_each_possible_cpu(i) {
  6401. rq = cpu_rq(i);
  6402. cfs_rq = tg->cfs_rq[i];
  6403. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6404. }
  6405. done:
  6406. unlock_task_group_list();
  6407. return 0;
  6408. }
  6409. unsigned long sched_group_shares(struct task_group *tg)
  6410. {
  6411. return tg->shares;
  6412. }
  6413. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6414. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6415. /* return corresponding task_group object of a cgroup */
  6416. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6417. {
  6418. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6419. struct task_group, css);
  6420. }
  6421. static struct cgroup_subsys_state *
  6422. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6423. {
  6424. struct task_group *tg;
  6425. if (!cgrp->parent) {
  6426. /* This is early initialization for the top cgroup */
  6427. init_task_group.css.cgroup = cgrp;
  6428. return &init_task_group.css;
  6429. }
  6430. /* we support only 1-level deep hierarchical scheduler atm */
  6431. if (cgrp->parent->parent)
  6432. return ERR_PTR(-EINVAL);
  6433. tg = sched_create_group();
  6434. if (IS_ERR(tg))
  6435. return ERR_PTR(-ENOMEM);
  6436. /* Bind the cgroup to task_group object we just created */
  6437. tg->css.cgroup = cgrp;
  6438. return &tg->css;
  6439. }
  6440. static void
  6441. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6442. {
  6443. struct task_group *tg = cgroup_tg(cgrp);
  6444. sched_destroy_group(tg);
  6445. }
  6446. static int
  6447. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6448. struct task_struct *tsk)
  6449. {
  6450. /* We don't support RT-tasks being in separate groups */
  6451. if (tsk->sched_class != &fair_sched_class)
  6452. return -EINVAL;
  6453. return 0;
  6454. }
  6455. static void
  6456. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6457. struct cgroup *old_cont, struct task_struct *tsk)
  6458. {
  6459. sched_move_task(tsk);
  6460. }
  6461. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6462. u64 shareval)
  6463. {
  6464. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6465. }
  6466. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6467. {
  6468. struct task_group *tg = cgroup_tg(cgrp);
  6469. return (u64) tg->shares;
  6470. }
  6471. static struct cftype cpu_files[] = {
  6472. {
  6473. .name = "shares",
  6474. .read_uint = cpu_shares_read_uint,
  6475. .write_uint = cpu_shares_write_uint,
  6476. },
  6477. };
  6478. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6479. {
  6480. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6481. }
  6482. struct cgroup_subsys cpu_cgroup_subsys = {
  6483. .name = "cpu",
  6484. .create = cpu_cgroup_create,
  6485. .destroy = cpu_cgroup_destroy,
  6486. .can_attach = cpu_cgroup_can_attach,
  6487. .attach = cpu_cgroup_attach,
  6488. .populate = cpu_cgroup_populate,
  6489. .subsys_id = cpu_cgroup_subsys_id,
  6490. .early_init = 1,
  6491. };
  6492. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6493. #ifdef CONFIG_CGROUP_CPUACCT
  6494. /*
  6495. * CPU accounting code for task groups.
  6496. *
  6497. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6498. * (balbir@in.ibm.com).
  6499. */
  6500. /* track cpu usage of a group of tasks */
  6501. struct cpuacct {
  6502. struct cgroup_subsys_state css;
  6503. /* cpuusage holds pointer to a u64-type object on every cpu */
  6504. u64 *cpuusage;
  6505. };
  6506. struct cgroup_subsys cpuacct_subsys;
  6507. /* return cpu accounting group corresponding to this container */
  6508. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6509. {
  6510. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6511. struct cpuacct, css);
  6512. }
  6513. /* return cpu accounting group to which this task belongs */
  6514. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6515. {
  6516. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6517. struct cpuacct, css);
  6518. }
  6519. /* create a new cpu accounting group */
  6520. static struct cgroup_subsys_state *cpuacct_create(
  6521. struct cgroup_subsys *ss, struct cgroup *cont)
  6522. {
  6523. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6524. if (!ca)
  6525. return ERR_PTR(-ENOMEM);
  6526. ca->cpuusage = alloc_percpu(u64);
  6527. if (!ca->cpuusage) {
  6528. kfree(ca);
  6529. return ERR_PTR(-ENOMEM);
  6530. }
  6531. return &ca->css;
  6532. }
  6533. /* destroy an existing cpu accounting group */
  6534. static void
  6535. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6536. {
  6537. struct cpuacct *ca = cgroup_ca(cont);
  6538. free_percpu(ca->cpuusage);
  6539. kfree(ca);
  6540. }
  6541. /* return total cpu usage (in nanoseconds) of a group */
  6542. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6543. {
  6544. struct cpuacct *ca = cgroup_ca(cont);
  6545. u64 totalcpuusage = 0;
  6546. int i;
  6547. for_each_possible_cpu(i) {
  6548. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6549. /*
  6550. * Take rq->lock to make 64-bit addition safe on 32-bit
  6551. * platforms.
  6552. */
  6553. spin_lock_irq(&cpu_rq(i)->lock);
  6554. totalcpuusage += *cpuusage;
  6555. spin_unlock_irq(&cpu_rq(i)->lock);
  6556. }
  6557. return totalcpuusage;
  6558. }
  6559. static struct cftype files[] = {
  6560. {
  6561. .name = "usage",
  6562. .read_uint = cpuusage_read,
  6563. },
  6564. };
  6565. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6566. {
  6567. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6568. }
  6569. /*
  6570. * charge this task's execution time to its accounting group.
  6571. *
  6572. * called with rq->lock held.
  6573. */
  6574. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6575. {
  6576. struct cpuacct *ca;
  6577. if (!cpuacct_subsys.active)
  6578. return;
  6579. ca = task_ca(tsk);
  6580. if (ca) {
  6581. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6582. *cpuusage += cputime;
  6583. }
  6584. }
  6585. struct cgroup_subsys cpuacct_subsys = {
  6586. .name = "cpuacct",
  6587. .create = cpuacct_create,
  6588. .destroy = cpuacct_destroy,
  6589. .populate = cpuacct_populate,
  6590. .subsys_id = cpuacct_subsys_id,
  6591. };
  6592. #endif /* CONFIG_CGROUP_CPUACCT */