kvm_main.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. #define CREATE_TRACE_POINTS
  57. #include <trace/events/kvm.h>
  58. MODULE_AUTHOR("Qumranet");
  59. MODULE_LICENSE("GPL");
  60. /*
  61. * Ordering of locks:
  62. *
  63. * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
  64. */
  65. DEFINE_SPINLOCK(kvm_lock);
  66. LIST_HEAD(vm_list);
  67. static cpumask_var_t cpus_hardware_enabled;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static bool kvm_rebooting;
  75. static bool largepages_enabled = true;
  76. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  77. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  78. int assigned_dev_id)
  79. {
  80. struct list_head *ptr;
  81. struct kvm_assigned_dev_kernel *match;
  82. list_for_each(ptr, head) {
  83. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  84. if (match->assigned_dev_id == assigned_dev_id)
  85. return match;
  86. }
  87. return NULL;
  88. }
  89. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  90. *assigned_dev, int irq)
  91. {
  92. int i, index;
  93. struct msix_entry *host_msix_entries;
  94. host_msix_entries = assigned_dev->host_msix_entries;
  95. index = -1;
  96. for (i = 0; i < assigned_dev->entries_nr; i++)
  97. if (irq == host_msix_entries[i].vector) {
  98. index = i;
  99. break;
  100. }
  101. if (index < 0) {
  102. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  103. return 0;
  104. }
  105. return index;
  106. }
  107. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  108. {
  109. struct kvm_assigned_dev_kernel *assigned_dev;
  110. struct kvm *kvm;
  111. int i;
  112. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  113. interrupt_work);
  114. kvm = assigned_dev->kvm;
  115. mutex_lock(&kvm->irq_lock);
  116. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  117. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  118. struct kvm_guest_msix_entry *guest_entries =
  119. assigned_dev->guest_msix_entries;
  120. for (i = 0; i < assigned_dev->entries_nr; i++) {
  121. if (!(guest_entries[i].flags &
  122. KVM_ASSIGNED_MSIX_PENDING))
  123. continue;
  124. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  125. kvm_set_irq(assigned_dev->kvm,
  126. assigned_dev->irq_source_id,
  127. guest_entries[i].vector, 1);
  128. }
  129. } else
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  133. mutex_unlock(&assigned_dev->kvm->irq_lock);
  134. }
  135. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  136. {
  137. unsigned long flags;
  138. struct kvm_assigned_dev_kernel *assigned_dev =
  139. (struct kvm_assigned_dev_kernel *) dev_id;
  140. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  141. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  142. int index = find_index_from_host_irq(assigned_dev, irq);
  143. if (index < 0)
  144. goto out;
  145. assigned_dev->guest_msix_entries[index].flags |=
  146. KVM_ASSIGNED_MSIX_PENDING;
  147. }
  148. schedule_work(&assigned_dev->interrupt_work);
  149. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  150. disable_irq_nosync(irq);
  151. assigned_dev->host_irq_disabled = true;
  152. }
  153. out:
  154. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  155. return IRQ_HANDLED;
  156. }
  157. /* Ack the irq line for an assigned device */
  158. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  159. {
  160. struct kvm_assigned_dev_kernel *dev;
  161. unsigned long flags;
  162. if (kian->gsi == -1)
  163. return;
  164. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  165. ack_notifier);
  166. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  167. /* The guest irq may be shared so this ack may be
  168. * from another device.
  169. */
  170. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  171. if (dev->host_irq_disabled) {
  172. enable_irq(dev->host_irq);
  173. dev->host_irq_disabled = false;
  174. }
  175. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  176. }
  177. static void deassign_guest_irq(struct kvm *kvm,
  178. struct kvm_assigned_dev_kernel *assigned_dev)
  179. {
  180. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  181. assigned_dev->ack_notifier.gsi = -1;
  182. if (assigned_dev->irq_source_id != -1)
  183. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  184. assigned_dev->irq_source_id = -1;
  185. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  186. }
  187. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  188. static void deassign_host_irq(struct kvm *kvm,
  189. struct kvm_assigned_dev_kernel *assigned_dev)
  190. {
  191. /*
  192. * In kvm_free_device_irq, cancel_work_sync return true if:
  193. * 1. work is scheduled, and then cancelled.
  194. * 2. work callback is executed.
  195. *
  196. * The first one ensured that the irq is disabled and no more events
  197. * would happen. But for the second one, the irq may be enabled (e.g.
  198. * for MSI). So we disable irq here to prevent further events.
  199. *
  200. * Notice this maybe result in nested disable if the interrupt type is
  201. * INTx, but it's OK for we are going to free it.
  202. *
  203. * If this function is a part of VM destroy, please ensure that till
  204. * now, the kvm state is still legal for probably we also have to wait
  205. * interrupt_work done.
  206. */
  207. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  208. int i;
  209. for (i = 0; i < assigned_dev->entries_nr; i++)
  210. disable_irq_nosync(assigned_dev->
  211. host_msix_entries[i].vector);
  212. cancel_work_sync(&assigned_dev->interrupt_work);
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. free_irq(assigned_dev->host_msix_entries[i].vector,
  215. (void *)assigned_dev);
  216. assigned_dev->entries_nr = 0;
  217. kfree(assigned_dev->host_msix_entries);
  218. kfree(assigned_dev->guest_msix_entries);
  219. pci_disable_msix(assigned_dev->dev);
  220. } else {
  221. /* Deal with MSI and INTx */
  222. disable_irq_nosync(assigned_dev->host_irq);
  223. cancel_work_sync(&assigned_dev->interrupt_work);
  224. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  225. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  226. pci_disable_msi(assigned_dev->dev);
  227. }
  228. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  229. }
  230. static int kvm_deassign_irq(struct kvm *kvm,
  231. struct kvm_assigned_dev_kernel *assigned_dev,
  232. unsigned long irq_requested_type)
  233. {
  234. unsigned long guest_irq_type, host_irq_type;
  235. if (!irqchip_in_kernel(kvm))
  236. return -EINVAL;
  237. /* no irq assignment to deassign */
  238. if (!assigned_dev->irq_requested_type)
  239. return -ENXIO;
  240. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  241. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  242. if (host_irq_type)
  243. deassign_host_irq(kvm, assigned_dev);
  244. if (guest_irq_type)
  245. deassign_guest_irq(kvm, assigned_dev);
  246. return 0;
  247. }
  248. static void kvm_free_assigned_irq(struct kvm *kvm,
  249. struct kvm_assigned_dev_kernel *assigned_dev)
  250. {
  251. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  252. }
  253. static void kvm_free_assigned_device(struct kvm *kvm,
  254. struct kvm_assigned_dev_kernel
  255. *assigned_dev)
  256. {
  257. kvm_free_assigned_irq(kvm, assigned_dev);
  258. pci_reset_function(assigned_dev->dev);
  259. pci_release_regions(assigned_dev->dev);
  260. pci_disable_device(assigned_dev->dev);
  261. pci_dev_put(assigned_dev->dev);
  262. list_del(&assigned_dev->list);
  263. kfree(assigned_dev);
  264. }
  265. void kvm_free_all_assigned_devices(struct kvm *kvm)
  266. {
  267. struct list_head *ptr, *ptr2;
  268. struct kvm_assigned_dev_kernel *assigned_dev;
  269. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  270. assigned_dev = list_entry(ptr,
  271. struct kvm_assigned_dev_kernel,
  272. list);
  273. kvm_free_assigned_device(kvm, assigned_dev);
  274. }
  275. }
  276. static int assigned_device_enable_host_intx(struct kvm *kvm,
  277. struct kvm_assigned_dev_kernel *dev)
  278. {
  279. dev->host_irq = dev->dev->irq;
  280. /* Even though this is PCI, we don't want to use shared
  281. * interrupts. Sharing host devices with guest-assigned devices
  282. * on the same interrupt line is not a happy situation: there
  283. * are going to be long delays in accepting, acking, etc.
  284. */
  285. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  286. 0, "kvm_assigned_intx_device", (void *)dev))
  287. return -EIO;
  288. return 0;
  289. }
  290. #ifdef __KVM_HAVE_MSI
  291. static int assigned_device_enable_host_msi(struct kvm *kvm,
  292. struct kvm_assigned_dev_kernel *dev)
  293. {
  294. int r;
  295. if (!dev->dev->msi_enabled) {
  296. r = pci_enable_msi(dev->dev);
  297. if (r)
  298. return r;
  299. }
  300. dev->host_irq = dev->dev->irq;
  301. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  302. "kvm_assigned_msi_device", (void *)dev)) {
  303. pci_disable_msi(dev->dev);
  304. return -EIO;
  305. }
  306. return 0;
  307. }
  308. #endif
  309. #ifdef __KVM_HAVE_MSIX
  310. static int assigned_device_enable_host_msix(struct kvm *kvm,
  311. struct kvm_assigned_dev_kernel *dev)
  312. {
  313. int i, r = -EINVAL;
  314. /* host_msix_entries and guest_msix_entries should have been
  315. * initialized */
  316. if (dev->entries_nr == 0)
  317. return r;
  318. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  319. if (r)
  320. return r;
  321. for (i = 0; i < dev->entries_nr; i++) {
  322. r = request_irq(dev->host_msix_entries[i].vector,
  323. kvm_assigned_dev_intr, 0,
  324. "kvm_assigned_msix_device",
  325. (void *)dev);
  326. /* FIXME: free requested_irq's on failure */
  327. if (r)
  328. return r;
  329. }
  330. return 0;
  331. }
  332. #endif
  333. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  334. struct kvm_assigned_dev_kernel *dev,
  335. struct kvm_assigned_irq *irq)
  336. {
  337. dev->guest_irq = irq->guest_irq;
  338. dev->ack_notifier.gsi = irq->guest_irq;
  339. return 0;
  340. }
  341. #ifdef __KVM_HAVE_MSI
  342. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  343. struct kvm_assigned_dev_kernel *dev,
  344. struct kvm_assigned_irq *irq)
  345. {
  346. dev->guest_irq = irq->guest_irq;
  347. dev->ack_notifier.gsi = -1;
  348. dev->host_irq_disabled = false;
  349. return 0;
  350. }
  351. #endif
  352. #ifdef __KVM_HAVE_MSIX
  353. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  354. struct kvm_assigned_dev_kernel *dev,
  355. struct kvm_assigned_irq *irq)
  356. {
  357. dev->guest_irq = irq->guest_irq;
  358. dev->ack_notifier.gsi = -1;
  359. dev->host_irq_disabled = false;
  360. return 0;
  361. }
  362. #endif
  363. static int assign_host_irq(struct kvm *kvm,
  364. struct kvm_assigned_dev_kernel *dev,
  365. __u32 host_irq_type)
  366. {
  367. int r = -EEXIST;
  368. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  369. return r;
  370. switch (host_irq_type) {
  371. case KVM_DEV_IRQ_HOST_INTX:
  372. r = assigned_device_enable_host_intx(kvm, dev);
  373. break;
  374. #ifdef __KVM_HAVE_MSI
  375. case KVM_DEV_IRQ_HOST_MSI:
  376. r = assigned_device_enable_host_msi(kvm, dev);
  377. break;
  378. #endif
  379. #ifdef __KVM_HAVE_MSIX
  380. case KVM_DEV_IRQ_HOST_MSIX:
  381. r = assigned_device_enable_host_msix(kvm, dev);
  382. break;
  383. #endif
  384. default:
  385. r = -EINVAL;
  386. }
  387. if (!r)
  388. dev->irq_requested_type |= host_irq_type;
  389. return r;
  390. }
  391. static int assign_guest_irq(struct kvm *kvm,
  392. struct kvm_assigned_dev_kernel *dev,
  393. struct kvm_assigned_irq *irq,
  394. unsigned long guest_irq_type)
  395. {
  396. int id;
  397. int r = -EEXIST;
  398. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  399. return r;
  400. id = kvm_request_irq_source_id(kvm);
  401. if (id < 0)
  402. return id;
  403. dev->irq_source_id = id;
  404. switch (guest_irq_type) {
  405. case KVM_DEV_IRQ_GUEST_INTX:
  406. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  407. break;
  408. #ifdef __KVM_HAVE_MSI
  409. case KVM_DEV_IRQ_GUEST_MSI:
  410. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  411. break;
  412. #endif
  413. #ifdef __KVM_HAVE_MSIX
  414. case KVM_DEV_IRQ_GUEST_MSIX:
  415. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  416. break;
  417. #endif
  418. default:
  419. r = -EINVAL;
  420. }
  421. if (!r) {
  422. dev->irq_requested_type |= guest_irq_type;
  423. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  424. } else
  425. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  426. return r;
  427. }
  428. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  429. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  430. struct kvm_assigned_irq *assigned_irq)
  431. {
  432. int r = -EINVAL;
  433. struct kvm_assigned_dev_kernel *match;
  434. unsigned long host_irq_type, guest_irq_type;
  435. if (!capable(CAP_SYS_RAWIO))
  436. return -EPERM;
  437. if (!irqchip_in_kernel(kvm))
  438. return r;
  439. mutex_lock(&kvm->lock);
  440. r = -ENODEV;
  441. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  442. assigned_irq->assigned_dev_id);
  443. if (!match)
  444. goto out;
  445. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  446. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  447. r = -EINVAL;
  448. /* can only assign one type at a time */
  449. if (hweight_long(host_irq_type) > 1)
  450. goto out;
  451. if (hweight_long(guest_irq_type) > 1)
  452. goto out;
  453. if (host_irq_type == 0 && guest_irq_type == 0)
  454. goto out;
  455. r = 0;
  456. if (host_irq_type)
  457. r = assign_host_irq(kvm, match, host_irq_type);
  458. if (r)
  459. goto out;
  460. if (guest_irq_type)
  461. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  462. out:
  463. mutex_unlock(&kvm->lock);
  464. return r;
  465. }
  466. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  467. struct kvm_assigned_irq
  468. *assigned_irq)
  469. {
  470. int r = -ENODEV;
  471. struct kvm_assigned_dev_kernel *match;
  472. mutex_lock(&kvm->lock);
  473. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  474. assigned_irq->assigned_dev_id);
  475. if (!match)
  476. goto out;
  477. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  478. out:
  479. mutex_unlock(&kvm->lock);
  480. return r;
  481. }
  482. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  483. struct kvm_assigned_pci_dev *assigned_dev)
  484. {
  485. int r = 0;
  486. struct kvm_assigned_dev_kernel *match;
  487. struct pci_dev *dev;
  488. down_read(&kvm->slots_lock);
  489. mutex_lock(&kvm->lock);
  490. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  491. assigned_dev->assigned_dev_id);
  492. if (match) {
  493. /* device already assigned */
  494. r = -EEXIST;
  495. goto out;
  496. }
  497. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  498. if (match == NULL) {
  499. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  500. __func__);
  501. r = -ENOMEM;
  502. goto out;
  503. }
  504. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  505. assigned_dev->devfn);
  506. if (!dev) {
  507. printk(KERN_INFO "%s: host device not found\n", __func__);
  508. r = -EINVAL;
  509. goto out_free;
  510. }
  511. if (pci_enable_device(dev)) {
  512. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  513. r = -EBUSY;
  514. goto out_put;
  515. }
  516. r = pci_request_regions(dev, "kvm_assigned_device");
  517. if (r) {
  518. printk(KERN_INFO "%s: Could not get access to device regions\n",
  519. __func__);
  520. goto out_disable;
  521. }
  522. pci_reset_function(dev);
  523. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  524. match->host_busnr = assigned_dev->busnr;
  525. match->host_devfn = assigned_dev->devfn;
  526. match->flags = assigned_dev->flags;
  527. match->dev = dev;
  528. spin_lock_init(&match->assigned_dev_lock);
  529. match->irq_source_id = -1;
  530. match->kvm = kvm;
  531. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  532. INIT_WORK(&match->interrupt_work,
  533. kvm_assigned_dev_interrupt_work_handler);
  534. list_add(&match->list, &kvm->arch.assigned_dev_head);
  535. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  536. if (!kvm->arch.iommu_domain) {
  537. r = kvm_iommu_map_guest(kvm);
  538. if (r)
  539. goto out_list_del;
  540. }
  541. r = kvm_assign_device(kvm, match);
  542. if (r)
  543. goto out_list_del;
  544. }
  545. out:
  546. mutex_unlock(&kvm->lock);
  547. up_read(&kvm->slots_lock);
  548. return r;
  549. out_list_del:
  550. list_del(&match->list);
  551. pci_release_regions(dev);
  552. out_disable:
  553. pci_disable_device(dev);
  554. out_put:
  555. pci_dev_put(dev);
  556. out_free:
  557. kfree(match);
  558. mutex_unlock(&kvm->lock);
  559. up_read(&kvm->slots_lock);
  560. return r;
  561. }
  562. #endif
  563. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  564. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  565. struct kvm_assigned_pci_dev *assigned_dev)
  566. {
  567. int r = 0;
  568. struct kvm_assigned_dev_kernel *match;
  569. mutex_lock(&kvm->lock);
  570. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  571. assigned_dev->assigned_dev_id);
  572. if (!match) {
  573. printk(KERN_INFO "%s: device hasn't been assigned before, "
  574. "so cannot be deassigned\n", __func__);
  575. r = -EINVAL;
  576. goto out;
  577. }
  578. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  579. kvm_deassign_device(kvm, match);
  580. kvm_free_assigned_device(kvm, match);
  581. out:
  582. mutex_unlock(&kvm->lock);
  583. return r;
  584. }
  585. #endif
  586. inline int kvm_is_mmio_pfn(pfn_t pfn)
  587. {
  588. if (pfn_valid(pfn)) {
  589. struct page *page = compound_head(pfn_to_page(pfn));
  590. return PageReserved(page);
  591. }
  592. return true;
  593. }
  594. /*
  595. * Switches to specified vcpu, until a matching vcpu_put()
  596. */
  597. void vcpu_load(struct kvm_vcpu *vcpu)
  598. {
  599. int cpu;
  600. mutex_lock(&vcpu->mutex);
  601. cpu = get_cpu();
  602. preempt_notifier_register(&vcpu->preempt_notifier);
  603. kvm_arch_vcpu_load(vcpu, cpu);
  604. put_cpu();
  605. }
  606. void vcpu_put(struct kvm_vcpu *vcpu)
  607. {
  608. preempt_disable();
  609. kvm_arch_vcpu_put(vcpu);
  610. preempt_notifier_unregister(&vcpu->preempt_notifier);
  611. preempt_enable();
  612. mutex_unlock(&vcpu->mutex);
  613. }
  614. static void ack_flush(void *_completed)
  615. {
  616. }
  617. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  618. {
  619. int i, cpu, me;
  620. cpumask_var_t cpus;
  621. bool called = true;
  622. struct kvm_vcpu *vcpu;
  623. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  624. cpumask_clear(cpus);
  625. spin_lock(&kvm->requests_lock);
  626. me = smp_processor_id();
  627. kvm_for_each_vcpu(i, vcpu, kvm) {
  628. if (test_and_set_bit(req, &vcpu->requests))
  629. continue;
  630. cpu = vcpu->cpu;
  631. if (cpus != NULL && cpu != -1 && cpu != me)
  632. cpumask_set_cpu(cpu, cpus);
  633. }
  634. if (unlikely(cpus == NULL))
  635. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  636. else if (!cpumask_empty(cpus))
  637. smp_call_function_many(cpus, ack_flush, NULL, 1);
  638. else
  639. called = false;
  640. spin_unlock(&kvm->requests_lock);
  641. free_cpumask_var(cpus);
  642. return called;
  643. }
  644. void kvm_flush_remote_tlbs(struct kvm *kvm)
  645. {
  646. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  647. ++kvm->stat.remote_tlb_flush;
  648. }
  649. void kvm_reload_remote_mmus(struct kvm *kvm)
  650. {
  651. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  652. }
  653. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  654. {
  655. struct page *page;
  656. int r;
  657. mutex_init(&vcpu->mutex);
  658. vcpu->cpu = -1;
  659. vcpu->kvm = kvm;
  660. vcpu->vcpu_id = id;
  661. init_waitqueue_head(&vcpu->wq);
  662. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  663. if (!page) {
  664. r = -ENOMEM;
  665. goto fail;
  666. }
  667. vcpu->run = page_address(page);
  668. r = kvm_arch_vcpu_init(vcpu);
  669. if (r < 0)
  670. goto fail_free_run;
  671. return 0;
  672. fail_free_run:
  673. free_page((unsigned long)vcpu->run);
  674. fail:
  675. return r;
  676. }
  677. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  678. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  679. {
  680. kvm_arch_vcpu_uninit(vcpu);
  681. free_page((unsigned long)vcpu->run);
  682. }
  683. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  684. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  685. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  686. {
  687. return container_of(mn, struct kvm, mmu_notifier);
  688. }
  689. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  690. struct mm_struct *mm,
  691. unsigned long address)
  692. {
  693. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  694. int need_tlb_flush;
  695. /*
  696. * When ->invalidate_page runs, the linux pte has been zapped
  697. * already but the page is still allocated until
  698. * ->invalidate_page returns. So if we increase the sequence
  699. * here the kvm page fault will notice if the spte can't be
  700. * established because the page is going to be freed. If
  701. * instead the kvm page fault establishes the spte before
  702. * ->invalidate_page runs, kvm_unmap_hva will release it
  703. * before returning.
  704. *
  705. * The sequence increase only need to be seen at spin_unlock
  706. * time, and not at spin_lock time.
  707. *
  708. * Increasing the sequence after the spin_unlock would be
  709. * unsafe because the kvm page fault could then establish the
  710. * pte after kvm_unmap_hva returned, without noticing the page
  711. * is going to be freed.
  712. */
  713. spin_lock(&kvm->mmu_lock);
  714. kvm->mmu_notifier_seq++;
  715. need_tlb_flush = kvm_unmap_hva(kvm, address);
  716. spin_unlock(&kvm->mmu_lock);
  717. /* we've to flush the tlb before the pages can be freed */
  718. if (need_tlb_flush)
  719. kvm_flush_remote_tlbs(kvm);
  720. }
  721. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  722. struct mm_struct *mm,
  723. unsigned long start,
  724. unsigned long end)
  725. {
  726. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  727. int need_tlb_flush = 0;
  728. spin_lock(&kvm->mmu_lock);
  729. /*
  730. * The count increase must become visible at unlock time as no
  731. * spte can be established without taking the mmu_lock and
  732. * count is also read inside the mmu_lock critical section.
  733. */
  734. kvm->mmu_notifier_count++;
  735. for (; start < end; start += PAGE_SIZE)
  736. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  737. spin_unlock(&kvm->mmu_lock);
  738. /* we've to flush the tlb before the pages can be freed */
  739. if (need_tlb_flush)
  740. kvm_flush_remote_tlbs(kvm);
  741. }
  742. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  743. struct mm_struct *mm,
  744. unsigned long start,
  745. unsigned long end)
  746. {
  747. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  748. spin_lock(&kvm->mmu_lock);
  749. /*
  750. * This sequence increase will notify the kvm page fault that
  751. * the page that is going to be mapped in the spte could have
  752. * been freed.
  753. */
  754. kvm->mmu_notifier_seq++;
  755. /*
  756. * The above sequence increase must be visible before the
  757. * below count decrease but both values are read by the kvm
  758. * page fault under mmu_lock spinlock so we don't need to add
  759. * a smb_wmb() here in between the two.
  760. */
  761. kvm->mmu_notifier_count--;
  762. spin_unlock(&kvm->mmu_lock);
  763. BUG_ON(kvm->mmu_notifier_count < 0);
  764. }
  765. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  766. struct mm_struct *mm,
  767. unsigned long address)
  768. {
  769. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  770. int young;
  771. spin_lock(&kvm->mmu_lock);
  772. young = kvm_age_hva(kvm, address);
  773. spin_unlock(&kvm->mmu_lock);
  774. if (young)
  775. kvm_flush_remote_tlbs(kvm);
  776. return young;
  777. }
  778. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  779. struct mm_struct *mm)
  780. {
  781. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  782. kvm_arch_flush_shadow(kvm);
  783. }
  784. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  785. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  786. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  787. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  788. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  789. .release = kvm_mmu_notifier_release,
  790. };
  791. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  792. static struct kvm *kvm_create_vm(void)
  793. {
  794. struct kvm *kvm = kvm_arch_create_vm();
  795. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  796. struct page *page;
  797. #endif
  798. if (IS_ERR(kvm))
  799. goto out;
  800. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  801. INIT_LIST_HEAD(&kvm->irq_routing);
  802. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  803. #endif
  804. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  805. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  806. if (!page) {
  807. kfree(kvm);
  808. return ERR_PTR(-ENOMEM);
  809. }
  810. kvm->coalesced_mmio_ring =
  811. (struct kvm_coalesced_mmio_ring *)page_address(page);
  812. #endif
  813. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  814. {
  815. int err;
  816. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  817. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  818. if (err) {
  819. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  820. put_page(page);
  821. #endif
  822. kfree(kvm);
  823. return ERR_PTR(err);
  824. }
  825. }
  826. #endif
  827. kvm->mm = current->mm;
  828. atomic_inc(&kvm->mm->mm_count);
  829. spin_lock_init(&kvm->mmu_lock);
  830. spin_lock_init(&kvm->requests_lock);
  831. kvm_io_bus_init(&kvm->pio_bus);
  832. kvm_eventfd_init(kvm);
  833. mutex_init(&kvm->lock);
  834. mutex_init(&kvm->irq_lock);
  835. kvm_io_bus_init(&kvm->mmio_bus);
  836. init_rwsem(&kvm->slots_lock);
  837. atomic_set(&kvm->users_count, 1);
  838. spin_lock(&kvm_lock);
  839. list_add(&kvm->vm_list, &vm_list);
  840. spin_unlock(&kvm_lock);
  841. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  842. kvm_coalesced_mmio_init(kvm);
  843. #endif
  844. out:
  845. return kvm;
  846. }
  847. /*
  848. * Free any memory in @free but not in @dont.
  849. */
  850. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  851. struct kvm_memory_slot *dont)
  852. {
  853. int i;
  854. if (!dont || free->rmap != dont->rmap)
  855. vfree(free->rmap);
  856. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  857. vfree(free->dirty_bitmap);
  858. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  859. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  860. vfree(free->lpage_info[i]);
  861. free->lpage_info[i] = NULL;
  862. }
  863. }
  864. free->npages = 0;
  865. free->dirty_bitmap = NULL;
  866. free->rmap = NULL;
  867. }
  868. void kvm_free_physmem(struct kvm *kvm)
  869. {
  870. int i;
  871. for (i = 0; i < kvm->nmemslots; ++i)
  872. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  873. }
  874. static void kvm_destroy_vm(struct kvm *kvm)
  875. {
  876. struct mm_struct *mm = kvm->mm;
  877. kvm_arch_sync_events(kvm);
  878. spin_lock(&kvm_lock);
  879. list_del(&kvm->vm_list);
  880. spin_unlock(&kvm_lock);
  881. kvm_free_irq_routing(kvm);
  882. kvm_io_bus_destroy(&kvm->pio_bus);
  883. kvm_io_bus_destroy(&kvm->mmio_bus);
  884. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  885. if (kvm->coalesced_mmio_ring != NULL)
  886. free_page((unsigned long)kvm->coalesced_mmio_ring);
  887. #endif
  888. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  889. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  890. #else
  891. kvm_arch_flush_shadow(kvm);
  892. #endif
  893. kvm_arch_destroy_vm(kvm);
  894. mmdrop(mm);
  895. }
  896. void kvm_get_kvm(struct kvm *kvm)
  897. {
  898. atomic_inc(&kvm->users_count);
  899. }
  900. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  901. void kvm_put_kvm(struct kvm *kvm)
  902. {
  903. if (atomic_dec_and_test(&kvm->users_count))
  904. kvm_destroy_vm(kvm);
  905. }
  906. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  907. static int kvm_vm_release(struct inode *inode, struct file *filp)
  908. {
  909. struct kvm *kvm = filp->private_data;
  910. kvm_irqfd_release(kvm);
  911. kvm_put_kvm(kvm);
  912. return 0;
  913. }
  914. /*
  915. * Allocate some memory and give it an address in the guest physical address
  916. * space.
  917. *
  918. * Discontiguous memory is allowed, mostly for framebuffers.
  919. *
  920. * Must be called holding mmap_sem for write.
  921. */
  922. int __kvm_set_memory_region(struct kvm *kvm,
  923. struct kvm_userspace_memory_region *mem,
  924. int user_alloc)
  925. {
  926. int r;
  927. gfn_t base_gfn;
  928. unsigned long npages;
  929. unsigned long i;
  930. struct kvm_memory_slot *memslot;
  931. struct kvm_memory_slot old, new;
  932. r = -EINVAL;
  933. /* General sanity checks */
  934. if (mem->memory_size & (PAGE_SIZE - 1))
  935. goto out;
  936. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  937. goto out;
  938. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  939. goto out;
  940. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  941. goto out;
  942. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  943. goto out;
  944. memslot = &kvm->memslots[mem->slot];
  945. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  946. npages = mem->memory_size >> PAGE_SHIFT;
  947. if (!npages)
  948. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  949. new = old = *memslot;
  950. new.base_gfn = base_gfn;
  951. new.npages = npages;
  952. new.flags = mem->flags;
  953. /* Disallow changing a memory slot's size. */
  954. r = -EINVAL;
  955. if (npages && old.npages && npages != old.npages)
  956. goto out_free;
  957. /* Check for overlaps */
  958. r = -EEXIST;
  959. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  960. struct kvm_memory_slot *s = &kvm->memslots[i];
  961. if (s == memslot || !s->npages)
  962. continue;
  963. if (!((base_gfn + npages <= s->base_gfn) ||
  964. (base_gfn >= s->base_gfn + s->npages)))
  965. goto out_free;
  966. }
  967. /* Free page dirty bitmap if unneeded */
  968. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  969. new.dirty_bitmap = NULL;
  970. r = -ENOMEM;
  971. /* Allocate if a slot is being created */
  972. #ifndef CONFIG_S390
  973. if (npages && !new.rmap) {
  974. new.rmap = vmalloc(npages * sizeof(struct page *));
  975. if (!new.rmap)
  976. goto out_free;
  977. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  978. new.user_alloc = user_alloc;
  979. /*
  980. * hva_to_rmmap() serialzies with the mmu_lock and to be
  981. * safe it has to ignore memslots with !user_alloc &&
  982. * !userspace_addr.
  983. */
  984. if (user_alloc)
  985. new.userspace_addr = mem->userspace_addr;
  986. else
  987. new.userspace_addr = 0;
  988. }
  989. if (!npages)
  990. goto skip_lpage;
  991. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  992. unsigned long ugfn;
  993. unsigned long j;
  994. int lpages;
  995. int level = i + 2;
  996. /* Avoid unused variable warning if no large pages */
  997. (void)level;
  998. if (new.lpage_info[i])
  999. continue;
  1000. lpages = 1 + (base_gfn + npages - 1) /
  1001. KVM_PAGES_PER_HPAGE(level);
  1002. lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
  1003. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  1004. if (!new.lpage_info[i])
  1005. goto out_free;
  1006. memset(new.lpage_info[i], 0,
  1007. lpages * sizeof(*new.lpage_info[i]));
  1008. if (base_gfn % KVM_PAGES_PER_HPAGE(level))
  1009. new.lpage_info[i][0].write_count = 1;
  1010. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
  1011. new.lpage_info[i][lpages - 1].write_count = 1;
  1012. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1013. /*
  1014. * If the gfn and userspace address are not aligned wrt each
  1015. * other, or if explicitly asked to, disable large page
  1016. * support for this slot
  1017. */
  1018. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  1019. !largepages_enabled)
  1020. for (j = 0; j < lpages; ++j)
  1021. new.lpage_info[i][j].write_count = 1;
  1022. }
  1023. skip_lpage:
  1024. /* Allocate page dirty bitmap if needed */
  1025. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1026. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1027. new.dirty_bitmap = vmalloc(dirty_bytes);
  1028. if (!new.dirty_bitmap)
  1029. goto out_free;
  1030. memset(new.dirty_bitmap, 0, dirty_bytes);
  1031. if (old.npages)
  1032. kvm_arch_flush_shadow(kvm);
  1033. }
  1034. #else /* not defined CONFIG_S390 */
  1035. new.user_alloc = user_alloc;
  1036. if (user_alloc)
  1037. new.userspace_addr = mem->userspace_addr;
  1038. #endif /* not defined CONFIG_S390 */
  1039. if (!npages)
  1040. kvm_arch_flush_shadow(kvm);
  1041. spin_lock(&kvm->mmu_lock);
  1042. if (mem->slot >= kvm->nmemslots)
  1043. kvm->nmemslots = mem->slot + 1;
  1044. *memslot = new;
  1045. spin_unlock(&kvm->mmu_lock);
  1046. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1047. if (r) {
  1048. spin_lock(&kvm->mmu_lock);
  1049. *memslot = old;
  1050. spin_unlock(&kvm->mmu_lock);
  1051. goto out_free;
  1052. }
  1053. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1054. /* Slot deletion case: we have to update the current slot */
  1055. spin_lock(&kvm->mmu_lock);
  1056. if (!npages)
  1057. *memslot = old;
  1058. spin_unlock(&kvm->mmu_lock);
  1059. #ifdef CONFIG_DMAR
  1060. /* map the pages in iommu page table */
  1061. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1062. if (r)
  1063. goto out;
  1064. #endif
  1065. return 0;
  1066. out_free:
  1067. kvm_free_physmem_slot(&new, &old);
  1068. out:
  1069. return r;
  1070. }
  1071. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1072. int kvm_set_memory_region(struct kvm *kvm,
  1073. struct kvm_userspace_memory_region *mem,
  1074. int user_alloc)
  1075. {
  1076. int r;
  1077. down_write(&kvm->slots_lock);
  1078. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1079. up_write(&kvm->slots_lock);
  1080. return r;
  1081. }
  1082. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1083. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1084. struct
  1085. kvm_userspace_memory_region *mem,
  1086. int user_alloc)
  1087. {
  1088. if (mem->slot >= KVM_MEMORY_SLOTS)
  1089. return -EINVAL;
  1090. return kvm_set_memory_region(kvm, mem, user_alloc);
  1091. }
  1092. int kvm_get_dirty_log(struct kvm *kvm,
  1093. struct kvm_dirty_log *log, int *is_dirty)
  1094. {
  1095. struct kvm_memory_slot *memslot;
  1096. int r, i;
  1097. int n;
  1098. unsigned long any = 0;
  1099. r = -EINVAL;
  1100. if (log->slot >= KVM_MEMORY_SLOTS)
  1101. goto out;
  1102. memslot = &kvm->memslots[log->slot];
  1103. r = -ENOENT;
  1104. if (!memslot->dirty_bitmap)
  1105. goto out;
  1106. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1107. for (i = 0; !any && i < n/sizeof(long); ++i)
  1108. any = memslot->dirty_bitmap[i];
  1109. r = -EFAULT;
  1110. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1111. goto out;
  1112. if (any)
  1113. *is_dirty = 1;
  1114. r = 0;
  1115. out:
  1116. return r;
  1117. }
  1118. void kvm_disable_largepages(void)
  1119. {
  1120. largepages_enabled = false;
  1121. }
  1122. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  1123. int is_error_page(struct page *page)
  1124. {
  1125. return page == bad_page;
  1126. }
  1127. EXPORT_SYMBOL_GPL(is_error_page);
  1128. int is_error_pfn(pfn_t pfn)
  1129. {
  1130. return pfn == bad_pfn;
  1131. }
  1132. EXPORT_SYMBOL_GPL(is_error_pfn);
  1133. static inline unsigned long bad_hva(void)
  1134. {
  1135. return PAGE_OFFSET;
  1136. }
  1137. int kvm_is_error_hva(unsigned long addr)
  1138. {
  1139. return addr == bad_hva();
  1140. }
  1141. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1142. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1143. {
  1144. int i;
  1145. for (i = 0; i < kvm->nmemslots; ++i) {
  1146. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1147. if (gfn >= memslot->base_gfn
  1148. && gfn < memslot->base_gfn + memslot->npages)
  1149. return memslot;
  1150. }
  1151. return NULL;
  1152. }
  1153. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1154. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1155. {
  1156. gfn = unalias_gfn(kvm, gfn);
  1157. return gfn_to_memslot_unaliased(kvm, gfn);
  1158. }
  1159. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1160. {
  1161. int i;
  1162. gfn = unalias_gfn(kvm, gfn);
  1163. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1164. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1165. if (gfn >= memslot->base_gfn
  1166. && gfn < memslot->base_gfn + memslot->npages)
  1167. return 1;
  1168. }
  1169. return 0;
  1170. }
  1171. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1172. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1173. {
  1174. struct kvm_memory_slot *slot;
  1175. gfn = unalias_gfn(kvm, gfn);
  1176. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1177. if (!slot)
  1178. return bad_hva();
  1179. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1180. }
  1181. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1182. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1183. {
  1184. struct page *page[1];
  1185. unsigned long addr;
  1186. int npages;
  1187. pfn_t pfn;
  1188. might_sleep();
  1189. addr = gfn_to_hva(kvm, gfn);
  1190. if (kvm_is_error_hva(addr)) {
  1191. get_page(bad_page);
  1192. return page_to_pfn(bad_page);
  1193. }
  1194. npages = get_user_pages_fast(addr, 1, 1, page);
  1195. if (unlikely(npages != 1)) {
  1196. struct vm_area_struct *vma;
  1197. down_read(&current->mm->mmap_sem);
  1198. vma = find_vma(current->mm, addr);
  1199. if (vma == NULL || addr < vma->vm_start ||
  1200. !(vma->vm_flags & VM_PFNMAP)) {
  1201. up_read(&current->mm->mmap_sem);
  1202. get_page(bad_page);
  1203. return page_to_pfn(bad_page);
  1204. }
  1205. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1206. up_read(&current->mm->mmap_sem);
  1207. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1208. } else
  1209. pfn = page_to_pfn(page[0]);
  1210. return pfn;
  1211. }
  1212. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1213. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1214. {
  1215. pfn_t pfn;
  1216. pfn = gfn_to_pfn(kvm, gfn);
  1217. if (!kvm_is_mmio_pfn(pfn))
  1218. return pfn_to_page(pfn);
  1219. WARN_ON(kvm_is_mmio_pfn(pfn));
  1220. get_page(bad_page);
  1221. return bad_page;
  1222. }
  1223. EXPORT_SYMBOL_GPL(gfn_to_page);
  1224. void kvm_release_page_clean(struct page *page)
  1225. {
  1226. kvm_release_pfn_clean(page_to_pfn(page));
  1227. }
  1228. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1229. void kvm_release_pfn_clean(pfn_t pfn)
  1230. {
  1231. if (!kvm_is_mmio_pfn(pfn))
  1232. put_page(pfn_to_page(pfn));
  1233. }
  1234. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1235. void kvm_release_page_dirty(struct page *page)
  1236. {
  1237. kvm_release_pfn_dirty(page_to_pfn(page));
  1238. }
  1239. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1240. void kvm_release_pfn_dirty(pfn_t pfn)
  1241. {
  1242. kvm_set_pfn_dirty(pfn);
  1243. kvm_release_pfn_clean(pfn);
  1244. }
  1245. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1246. void kvm_set_page_dirty(struct page *page)
  1247. {
  1248. kvm_set_pfn_dirty(page_to_pfn(page));
  1249. }
  1250. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1251. void kvm_set_pfn_dirty(pfn_t pfn)
  1252. {
  1253. if (!kvm_is_mmio_pfn(pfn)) {
  1254. struct page *page = pfn_to_page(pfn);
  1255. if (!PageReserved(page))
  1256. SetPageDirty(page);
  1257. }
  1258. }
  1259. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1260. void kvm_set_pfn_accessed(pfn_t pfn)
  1261. {
  1262. if (!kvm_is_mmio_pfn(pfn))
  1263. mark_page_accessed(pfn_to_page(pfn));
  1264. }
  1265. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1266. void kvm_get_pfn(pfn_t pfn)
  1267. {
  1268. if (!kvm_is_mmio_pfn(pfn))
  1269. get_page(pfn_to_page(pfn));
  1270. }
  1271. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1272. static int next_segment(unsigned long len, int offset)
  1273. {
  1274. if (len > PAGE_SIZE - offset)
  1275. return PAGE_SIZE - offset;
  1276. else
  1277. return len;
  1278. }
  1279. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1280. int len)
  1281. {
  1282. int r;
  1283. unsigned long addr;
  1284. addr = gfn_to_hva(kvm, gfn);
  1285. if (kvm_is_error_hva(addr))
  1286. return -EFAULT;
  1287. r = copy_from_user(data, (void __user *)addr + offset, len);
  1288. if (r)
  1289. return -EFAULT;
  1290. return 0;
  1291. }
  1292. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1293. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1294. {
  1295. gfn_t gfn = gpa >> PAGE_SHIFT;
  1296. int seg;
  1297. int offset = offset_in_page(gpa);
  1298. int ret;
  1299. while ((seg = next_segment(len, offset)) != 0) {
  1300. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1301. if (ret < 0)
  1302. return ret;
  1303. offset = 0;
  1304. len -= seg;
  1305. data += seg;
  1306. ++gfn;
  1307. }
  1308. return 0;
  1309. }
  1310. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1311. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1312. unsigned long len)
  1313. {
  1314. int r;
  1315. unsigned long addr;
  1316. gfn_t gfn = gpa >> PAGE_SHIFT;
  1317. int offset = offset_in_page(gpa);
  1318. addr = gfn_to_hva(kvm, gfn);
  1319. if (kvm_is_error_hva(addr))
  1320. return -EFAULT;
  1321. pagefault_disable();
  1322. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1323. pagefault_enable();
  1324. if (r)
  1325. return -EFAULT;
  1326. return 0;
  1327. }
  1328. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1329. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1330. int offset, int len)
  1331. {
  1332. int r;
  1333. unsigned long addr;
  1334. addr = gfn_to_hva(kvm, gfn);
  1335. if (kvm_is_error_hva(addr))
  1336. return -EFAULT;
  1337. r = copy_to_user((void __user *)addr + offset, data, len);
  1338. if (r)
  1339. return -EFAULT;
  1340. mark_page_dirty(kvm, gfn);
  1341. return 0;
  1342. }
  1343. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1344. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1345. unsigned long len)
  1346. {
  1347. gfn_t gfn = gpa >> PAGE_SHIFT;
  1348. int seg;
  1349. int offset = offset_in_page(gpa);
  1350. int ret;
  1351. while ((seg = next_segment(len, offset)) != 0) {
  1352. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1353. if (ret < 0)
  1354. return ret;
  1355. offset = 0;
  1356. len -= seg;
  1357. data += seg;
  1358. ++gfn;
  1359. }
  1360. return 0;
  1361. }
  1362. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1363. {
  1364. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1365. }
  1366. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1367. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1368. {
  1369. gfn_t gfn = gpa >> PAGE_SHIFT;
  1370. int seg;
  1371. int offset = offset_in_page(gpa);
  1372. int ret;
  1373. while ((seg = next_segment(len, offset)) != 0) {
  1374. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1375. if (ret < 0)
  1376. return ret;
  1377. offset = 0;
  1378. len -= seg;
  1379. ++gfn;
  1380. }
  1381. return 0;
  1382. }
  1383. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1384. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1385. {
  1386. struct kvm_memory_slot *memslot;
  1387. gfn = unalias_gfn(kvm, gfn);
  1388. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1389. if (memslot && memslot->dirty_bitmap) {
  1390. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1391. /* avoid RMW */
  1392. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1393. set_bit(rel_gfn, memslot->dirty_bitmap);
  1394. }
  1395. }
  1396. /*
  1397. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1398. */
  1399. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1400. {
  1401. DEFINE_WAIT(wait);
  1402. for (;;) {
  1403. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1404. if (kvm_arch_vcpu_runnable(vcpu)) {
  1405. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1406. break;
  1407. }
  1408. if (kvm_cpu_has_pending_timer(vcpu))
  1409. break;
  1410. if (signal_pending(current))
  1411. break;
  1412. vcpu_put(vcpu);
  1413. schedule();
  1414. vcpu_load(vcpu);
  1415. }
  1416. finish_wait(&vcpu->wq, &wait);
  1417. }
  1418. void kvm_resched(struct kvm_vcpu *vcpu)
  1419. {
  1420. if (!need_resched())
  1421. return;
  1422. cond_resched();
  1423. }
  1424. EXPORT_SYMBOL_GPL(kvm_resched);
  1425. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1426. {
  1427. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1428. struct page *page;
  1429. if (vmf->pgoff == 0)
  1430. page = virt_to_page(vcpu->run);
  1431. #ifdef CONFIG_X86
  1432. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1433. page = virt_to_page(vcpu->arch.pio_data);
  1434. #endif
  1435. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1436. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1437. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1438. #endif
  1439. else
  1440. return VM_FAULT_SIGBUS;
  1441. get_page(page);
  1442. vmf->page = page;
  1443. return 0;
  1444. }
  1445. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1446. .fault = kvm_vcpu_fault,
  1447. };
  1448. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1449. {
  1450. vma->vm_ops = &kvm_vcpu_vm_ops;
  1451. return 0;
  1452. }
  1453. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1454. {
  1455. struct kvm_vcpu *vcpu = filp->private_data;
  1456. kvm_put_kvm(vcpu->kvm);
  1457. return 0;
  1458. }
  1459. static struct file_operations kvm_vcpu_fops = {
  1460. .release = kvm_vcpu_release,
  1461. .unlocked_ioctl = kvm_vcpu_ioctl,
  1462. .compat_ioctl = kvm_vcpu_ioctl,
  1463. .mmap = kvm_vcpu_mmap,
  1464. };
  1465. /*
  1466. * Allocates an inode for the vcpu.
  1467. */
  1468. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1469. {
  1470. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1471. }
  1472. /*
  1473. * Creates some virtual cpus. Good luck creating more than one.
  1474. */
  1475. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1476. {
  1477. int r;
  1478. struct kvm_vcpu *vcpu, *v;
  1479. vcpu = kvm_arch_vcpu_create(kvm, id);
  1480. if (IS_ERR(vcpu))
  1481. return PTR_ERR(vcpu);
  1482. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1483. r = kvm_arch_vcpu_setup(vcpu);
  1484. if (r)
  1485. return r;
  1486. mutex_lock(&kvm->lock);
  1487. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1488. r = -EINVAL;
  1489. goto vcpu_destroy;
  1490. }
  1491. kvm_for_each_vcpu(r, v, kvm)
  1492. if (v->vcpu_id == id) {
  1493. r = -EEXIST;
  1494. goto vcpu_destroy;
  1495. }
  1496. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1497. /* Now it's all set up, let userspace reach it */
  1498. kvm_get_kvm(kvm);
  1499. r = create_vcpu_fd(vcpu);
  1500. if (r < 0) {
  1501. kvm_put_kvm(kvm);
  1502. goto vcpu_destroy;
  1503. }
  1504. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1505. smp_wmb();
  1506. atomic_inc(&kvm->online_vcpus);
  1507. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1508. if (kvm->bsp_vcpu_id == id)
  1509. kvm->bsp_vcpu = vcpu;
  1510. #endif
  1511. mutex_unlock(&kvm->lock);
  1512. return r;
  1513. vcpu_destroy:
  1514. mutex_unlock(&kvm->lock);
  1515. kvm_arch_vcpu_destroy(vcpu);
  1516. return r;
  1517. }
  1518. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1519. {
  1520. if (sigset) {
  1521. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1522. vcpu->sigset_active = 1;
  1523. vcpu->sigset = *sigset;
  1524. } else
  1525. vcpu->sigset_active = 0;
  1526. return 0;
  1527. }
  1528. #ifdef __KVM_HAVE_MSIX
  1529. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1530. struct kvm_assigned_msix_nr *entry_nr)
  1531. {
  1532. int r = 0;
  1533. struct kvm_assigned_dev_kernel *adev;
  1534. mutex_lock(&kvm->lock);
  1535. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1536. entry_nr->assigned_dev_id);
  1537. if (!adev) {
  1538. r = -EINVAL;
  1539. goto msix_nr_out;
  1540. }
  1541. if (adev->entries_nr == 0) {
  1542. adev->entries_nr = entry_nr->entry_nr;
  1543. if (adev->entries_nr == 0 ||
  1544. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1545. r = -EINVAL;
  1546. goto msix_nr_out;
  1547. }
  1548. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1549. entry_nr->entry_nr,
  1550. GFP_KERNEL);
  1551. if (!adev->host_msix_entries) {
  1552. r = -ENOMEM;
  1553. goto msix_nr_out;
  1554. }
  1555. adev->guest_msix_entries = kzalloc(
  1556. sizeof(struct kvm_guest_msix_entry) *
  1557. entry_nr->entry_nr, GFP_KERNEL);
  1558. if (!adev->guest_msix_entries) {
  1559. kfree(adev->host_msix_entries);
  1560. r = -ENOMEM;
  1561. goto msix_nr_out;
  1562. }
  1563. } else /* Not allowed set MSI-X number twice */
  1564. r = -EINVAL;
  1565. msix_nr_out:
  1566. mutex_unlock(&kvm->lock);
  1567. return r;
  1568. }
  1569. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1570. struct kvm_assigned_msix_entry *entry)
  1571. {
  1572. int r = 0, i;
  1573. struct kvm_assigned_dev_kernel *adev;
  1574. mutex_lock(&kvm->lock);
  1575. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1576. entry->assigned_dev_id);
  1577. if (!adev) {
  1578. r = -EINVAL;
  1579. goto msix_entry_out;
  1580. }
  1581. for (i = 0; i < adev->entries_nr; i++)
  1582. if (adev->guest_msix_entries[i].vector == 0 ||
  1583. adev->guest_msix_entries[i].entry == entry->entry) {
  1584. adev->guest_msix_entries[i].entry = entry->entry;
  1585. adev->guest_msix_entries[i].vector = entry->gsi;
  1586. adev->host_msix_entries[i].entry = entry->entry;
  1587. break;
  1588. }
  1589. if (i == adev->entries_nr) {
  1590. r = -ENOSPC;
  1591. goto msix_entry_out;
  1592. }
  1593. msix_entry_out:
  1594. mutex_unlock(&kvm->lock);
  1595. return r;
  1596. }
  1597. #endif
  1598. static long kvm_vcpu_ioctl(struct file *filp,
  1599. unsigned int ioctl, unsigned long arg)
  1600. {
  1601. struct kvm_vcpu *vcpu = filp->private_data;
  1602. void __user *argp = (void __user *)arg;
  1603. int r;
  1604. struct kvm_fpu *fpu = NULL;
  1605. struct kvm_sregs *kvm_sregs = NULL;
  1606. if (vcpu->kvm->mm != current->mm)
  1607. return -EIO;
  1608. switch (ioctl) {
  1609. case KVM_RUN:
  1610. r = -EINVAL;
  1611. if (arg)
  1612. goto out;
  1613. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1614. break;
  1615. case KVM_GET_REGS: {
  1616. struct kvm_regs *kvm_regs;
  1617. r = -ENOMEM;
  1618. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1619. if (!kvm_regs)
  1620. goto out;
  1621. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1622. if (r)
  1623. goto out_free1;
  1624. r = -EFAULT;
  1625. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1626. goto out_free1;
  1627. r = 0;
  1628. out_free1:
  1629. kfree(kvm_regs);
  1630. break;
  1631. }
  1632. case KVM_SET_REGS: {
  1633. struct kvm_regs *kvm_regs;
  1634. r = -ENOMEM;
  1635. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1636. if (!kvm_regs)
  1637. goto out;
  1638. r = -EFAULT;
  1639. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1640. goto out_free2;
  1641. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1642. if (r)
  1643. goto out_free2;
  1644. r = 0;
  1645. out_free2:
  1646. kfree(kvm_regs);
  1647. break;
  1648. }
  1649. case KVM_GET_SREGS: {
  1650. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1651. r = -ENOMEM;
  1652. if (!kvm_sregs)
  1653. goto out;
  1654. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1655. if (r)
  1656. goto out;
  1657. r = -EFAULT;
  1658. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1659. goto out;
  1660. r = 0;
  1661. break;
  1662. }
  1663. case KVM_SET_SREGS: {
  1664. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1665. r = -ENOMEM;
  1666. if (!kvm_sregs)
  1667. goto out;
  1668. r = -EFAULT;
  1669. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1670. goto out;
  1671. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1672. if (r)
  1673. goto out;
  1674. r = 0;
  1675. break;
  1676. }
  1677. case KVM_GET_MP_STATE: {
  1678. struct kvm_mp_state mp_state;
  1679. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1680. if (r)
  1681. goto out;
  1682. r = -EFAULT;
  1683. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1684. goto out;
  1685. r = 0;
  1686. break;
  1687. }
  1688. case KVM_SET_MP_STATE: {
  1689. struct kvm_mp_state mp_state;
  1690. r = -EFAULT;
  1691. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1692. goto out;
  1693. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1694. if (r)
  1695. goto out;
  1696. r = 0;
  1697. break;
  1698. }
  1699. case KVM_TRANSLATE: {
  1700. struct kvm_translation tr;
  1701. r = -EFAULT;
  1702. if (copy_from_user(&tr, argp, sizeof tr))
  1703. goto out;
  1704. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1705. if (r)
  1706. goto out;
  1707. r = -EFAULT;
  1708. if (copy_to_user(argp, &tr, sizeof tr))
  1709. goto out;
  1710. r = 0;
  1711. break;
  1712. }
  1713. case KVM_SET_GUEST_DEBUG: {
  1714. struct kvm_guest_debug dbg;
  1715. r = -EFAULT;
  1716. if (copy_from_user(&dbg, argp, sizeof dbg))
  1717. goto out;
  1718. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1719. if (r)
  1720. goto out;
  1721. r = 0;
  1722. break;
  1723. }
  1724. case KVM_SET_SIGNAL_MASK: {
  1725. struct kvm_signal_mask __user *sigmask_arg = argp;
  1726. struct kvm_signal_mask kvm_sigmask;
  1727. sigset_t sigset, *p;
  1728. p = NULL;
  1729. if (argp) {
  1730. r = -EFAULT;
  1731. if (copy_from_user(&kvm_sigmask, argp,
  1732. sizeof kvm_sigmask))
  1733. goto out;
  1734. r = -EINVAL;
  1735. if (kvm_sigmask.len != sizeof sigset)
  1736. goto out;
  1737. r = -EFAULT;
  1738. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1739. sizeof sigset))
  1740. goto out;
  1741. p = &sigset;
  1742. }
  1743. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1744. break;
  1745. }
  1746. case KVM_GET_FPU: {
  1747. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1748. r = -ENOMEM;
  1749. if (!fpu)
  1750. goto out;
  1751. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1752. if (r)
  1753. goto out;
  1754. r = -EFAULT;
  1755. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1756. goto out;
  1757. r = 0;
  1758. break;
  1759. }
  1760. case KVM_SET_FPU: {
  1761. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1762. r = -ENOMEM;
  1763. if (!fpu)
  1764. goto out;
  1765. r = -EFAULT;
  1766. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1767. goto out;
  1768. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1769. if (r)
  1770. goto out;
  1771. r = 0;
  1772. break;
  1773. }
  1774. default:
  1775. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1776. }
  1777. out:
  1778. kfree(fpu);
  1779. kfree(kvm_sregs);
  1780. return r;
  1781. }
  1782. static long kvm_vm_ioctl(struct file *filp,
  1783. unsigned int ioctl, unsigned long arg)
  1784. {
  1785. struct kvm *kvm = filp->private_data;
  1786. void __user *argp = (void __user *)arg;
  1787. int r;
  1788. if (kvm->mm != current->mm)
  1789. return -EIO;
  1790. switch (ioctl) {
  1791. case KVM_CREATE_VCPU:
  1792. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1793. if (r < 0)
  1794. goto out;
  1795. break;
  1796. case KVM_SET_USER_MEMORY_REGION: {
  1797. struct kvm_userspace_memory_region kvm_userspace_mem;
  1798. r = -EFAULT;
  1799. if (copy_from_user(&kvm_userspace_mem, argp,
  1800. sizeof kvm_userspace_mem))
  1801. goto out;
  1802. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1803. if (r)
  1804. goto out;
  1805. break;
  1806. }
  1807. case KVM_GET_DIRTY_LOG: {
  1808. struct kvm_dirty_log log;
  1809. r = -EFAULT;
  1810. if (copy_from_user(&log, argp, sizeof log))
  1811. goto out;
  1812. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1813. if (r)
  1814. goto out;
  1815. break;
  1816. }
  1817. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1818. case KVM_REGISTER_COALESCED_MMIO: {
  1819. struct kvm_coalesced_mmio_zone zone;
  1820. r = -EFAULT;
  1821. if (copy_from_user(&zone, argp, sizeof zone))
  1822. goto out;
  1823. r = -ENXIO;
  1824. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1825. if (r)
  1826. goto out;
  1827. r = 0;
  1828. break;
  1829. }
  1830. case KVM_UNREGISTER_COALESCED_MMIO: {
  1831. struct kvm_coalesced_mmio_zone zone;
  1832. r = -EFAULT;
  1833. if (copy_from_user(&zone, argp, sizeof zone))
  1834. goto out;
  1835. r = -ENXIO;
  1836. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1837. if (r)
  1838. goto out;
  1839. r = 0;
  1840. break;
  1841. }
  1842. #endif
  1843. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1844. case KVM_ASSIGN_PCI_DEVICE: {
  1845. struct kvm_assigned_pci_dev assigned_dev;
  1846. r = -EFAULT;
  1847. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1848. goto out;
  1849. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1850. if (r)
  1851. goto out;
  1852. break;
  1853. }
  1854. case KVM_ASSIGN_IRQ: {
  1855. r = -EOPNOTSUPP;
  1856. break;
  1857. }
  1858. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1859. case KVM_ASSIGN_DEV_IRQ: {
  1860. struct kvm_assigned_irq assigned_irq;
  1861. r = -EFAULT;
  1862. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1863. goto out;
  1864. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1865. if (r)
  1866. goto out;
  1867. break;
  1868. }
  1869. case KVM_DEASSIGN_DEV_IRQ: {
  1870. struct kvm_assigned_irq assigned_irq;
  1871. r = -EFAULT;
  1872. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1873. goto out;
  1874. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1875. if (r)
  1876. goto out;
  1877. break;
  1878. }
  1879. #endif
  1880. #endif
  1881. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1882. case KVM_DEASSIGN_PCI_DEVICE: {
  1883. struct kvm_assigned_pci_dev assigned_dev;
  1884. r = -EFAULT;
  1885. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1886. goto out;
  1887. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1888. if (r)
  1889. goto out;
  1890. break;
  1891. }
  1892. #endif
  1893. #ifdef KVM_CAP_IRQ_ROUTING
  1894. case KVM_SET_GSI_ROUTING: {
  1895. struct kvm_irq_routing routing;
  1896. struct kvm_irq_routing __user *urouting;
  1897. struct kvm_irq_routing_entry *entries;
  1898. r = -EFAULT;
  1899. if (copy_from_user(&routing, argp, sizeof(routing)))
  1900. goto out;
  1901. r = -EINVAL;
  1902. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1903. goto out;
  1904. if (routing.flags)
  1905. goto out;
  1906. r = -ENOMEM;
  1907. entries = vmalloc(routing.nr * sizeof(*entries));
  1908. if (!entries)
  1909. goto out;
  1910. r = -EFAULT;
  1911. urouting = argp;
  1912. if (copy_from_user(entries, urouting->entries,
  1913. routing.nr * sizeof(*entries)))
  1914. goto out_free_irq_routing;
  1915. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1916. routing.flags);
  1917. out_free_irq_routing:
  1918. vfree(entries);
  1919. break;
  1920. }
  1921. #endif /* KVM_CAP_IRQ_ROUTING */
  1922. #ifdef __KVM_HAVE_MSIX
  1923. case KVM_ASSIGN_SET_MSIX_NR: {
  1924. struct kvm_assigned_msix_nr entry_nr;
  1925. r = -EFAULT;
  1926. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1927. goto out;
  1928. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1929. if (r)
  1930. goto out;
  1931. break;
  1932. }
  1933. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1934. struct kvm_assigned_msix_entry entry;
  1935. r = -EFAULT;
  1936. if (copy_from_user(&entry, argp, sizeof entry))
  1937. goto out;
  1938. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1939. if (r)
  1940. goto out;
  1941. break;
  1942. }
  1943. #endif
  1944. case KVM_IRQFD: {
  1945. struct kvm_irqfd data;
  1946. r = -EFAULT;
  1947. if (copy_from_user(&data, argp, sizeof data))
  1948. goto out;
  1949. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1950. break;
  1951. }
  1952. case KVM_IOEVENTFD: {
  1953. struct kvm_ioeventfd data;
  1954. r = -EFAULT;
  1955. if (copy_from_user(&data, argp, sizeof data))
  1956. goto out;
  1957. r = kvm_ioeventfd(kvm, &data);
  1958. break;
  1959. }
  1960. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1961. case KVM_SET_BOOT_CPU_ID:
  1962. r = 0;
  1963. mutex_lock(&kvm->lock);
  1964. if (atomic_read(&kvm->online_vcpus) != 0)
  1965. r = -EBUSY;
  1966. else
  1967. kvm->bsp_vcpu_id = arg;
  1968. mutex_unlock(&kvm->lock);
  1969. break;
  1970. #endif
  1971. default:
  1972. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1973. }
  1974. out:
  1975. return r;
  1976. }
  1977. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1978. {
  1979. struct page *page[1];
  1980. unsigned long addr;
  1981. int npages;
  1982. gfn_t gfn = vmf->pgoff;
  1983. struct kvm *kvm = vma->vm_file->private_data;
  1984. addr = gfn_to_hva(kvm, gfn);
  1985. if (kvm_is_error_hva(addr))
  1986. return VM_FAULT_SIGBUS;
  1987. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1988. NULL);
  1989. if (unlikely(npages != 1))
  1990. return VM_FAULT_SIGBUS;
  1991. vmf->page = page[0];
  1992. return 0;
  1993. }
  1994. static struct vm_operations_struct kvm_vm_vm_ops = {
  1995. .fault = kvm_vm_fault,
  1996. };
  1997. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1998. {
  1999. vma->vm_ops = &kvm_vm_vm_ops;
  2000. return 0;
  2001. }
  2002. static struct file_operations kvm_vm_fops = {
  2003. .release = kvm_vm_release,
  2004. .unlocked_ioctl = kvm_vm_ioctl,
  2005. .compat_ioctl = kvm_vm_ioctl,
  2006. .mmap = kvm_vm_mmap,
  2007. };
  2008. static int kvm_dev_ioctl_create_vm(void)
  2009. {
  2010. int fd;
  2011. struct kvm *kvm;
  2012. kvm = kvm_create_vm();
  2013. if (IS_ERR(kvm))
  2014. return PTR_ERR(kvm);
  2015. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  2016. if (fd < 0)
  2017. kvm_put_kvm(kvm);
  2018. return fd;
  2019. }
  2020. static long kvm_dev_ioctl_check_extension_generic(long arg)
  2021. {
  2022. switch (arg) {
  2023. case KVM_CAP_USER_MEMORY:
  2024. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2025. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2026. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  2027. case KVM_CAP_SET_BOOT_CPU_ID:
  2028. #endif
  2029. return 1;
  2030. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  2031. case KVM_CAP_IRQ_ROUTING:
  2032. return KVM_MAX_IRQ_ROUTES;
  2033. #endif
  2034. default:
  2035. break;
  2036. }
  2037. return kvm_dev_ioctl_check_extension(arg);
  2038. }
  2039. static long kvm_dev_ioctl(struct file *filp,
  2040. unsigned int ioctl, unsigned long arg)
  2041. {
  2042. long r = -EINVAL;
  2043. switch (ioctl) {
  2044. case KVM_GET_API_VERSION:
  2045. r = -EINVAL;
  2046. if (arg)
  2047. goto out;
  2048. r = KVM_API_VERSION;
  2049. break;
  2050. case KVM_CREATE_VM:
  2051. r = -EINVAL;
  2052. if (arg)
  2053. goto out;
  2054. r = kvm_dev_ioctl_create_vm();
  2055. break;
  2056. case KVM_CHECK_EXTENSION:
  2057. r = kvm_dev_ioctl_check_extension_generic(arg);
  2058. break;
  2059. case KVM_GET_VCPU_MMAP_SIZE:
  2060. r = -EINVAL;
  2061. if (arg)
  2062. goto out;
  2063. r = PAGE_SIZE; /* struct kvm_run */
  2064. #ifdef CONFIG_X86
  2065. r += PAGE_SIZE; /* pio data page */
  2066. #endif
  2067. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2068. r += PAGE_SIZE; /* coalesced mmio ring page */
  2069. #endif
  2070. break;
  2071. case KVM_TRACE_ENABLE:
  2072. case KVM_TRACE_PAUSE:
  2073. case KVM_TRACE_DISABLE:
  2074. r = -EOPNOTSUPP;
  2075. break;
  2076. default:
  2077. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2078. }
  2079. out:
  2080. return r;
  2081. }
  2082. static struct file_operations kvm_chardev_ops = {
  2083. .unlocked_ioctl = kvm_dev_ioctl,
  2084. .compat_ioctl = kvm_dev_ioctl,
  2085. };
  2086. static struct miscdevice kvm_dev = {
  2087. KVM_MINOR,
  2088. "kvm",
  2089. &kvm_chardev_ops,
  2090. };
  2091. static void hardware_enable(void *junk)
  2092. {
  2093. int cpu = raw_smp_processor_id();
  2094. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2095. return;
  2096. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2097. kvm_arch_hardware_enable(NULL);
  2098. }
  2099. static void hardware_disable(void *junk)
  2100. {
  2101. int cpu = raw_smp_processor_id();
  2102. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2103. return;
  2104. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2105. kvm_arch_hardware_disable(NULL);
  2106. }
  2107. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2108. void *v)
  2109. {
  2110. int cpu = (long)v;
  2111. val &= ~CPU_TASKS_FROZEN;
  2112. switch (val) {
  2113. case CPU_DYING:
  2114. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2115. cpu);
  2116. hardware_disable(NULL);
  2117. break;
  2118. case CPU_UP_CANCELED:
  2119. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2120. cpu);
  2121. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2122. break;
  2123. case CPU_ONLINE:
  2124. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2125. cpu);
  2126. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2127. break;
  2128. }
  2129. return NOTIFY_OK;
  2130. }
  2131. asmlinkage void kvm_handle_fault_on_reboot(void)
  2132. {
  2133. if (kvm_rebooting)
  2134. /* spin while reset goes on */
  2135. while (true)
  2136. ;
  2137. /* Fault while not rebooting. We want the trace. */
  2138. BUG();
  2139. }
  2140. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2141. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2142. void *v)
  2143. {
  2144. /*
  2145. * Some (well, at least mine) BIOSes hang on reboot if
  2146. * in vmx root mode.
  2147. *
  2148. * And Intel TXT required VMX off for all cpu when system shutdown.
  2149. */
  2150. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2151. kvm_rebooting = true;
  2152. on_each_cpu(hardware_disable, NULL, 1);
  2153. return NOTIFY_OK;
  2154. }
  2155. static struct notifier_block kvm_reboot_notifier = {
  2156. .notifier_call = kvm_reboot,
  2157. .priority = 0,
  2158. };
  2159. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2160. {
  2161. memset(bus, 0, sizeof(*bus));
  2162. }
  2163. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2164. {
  2165. int i;
  2166. for (i = 0; i < bus->dev_count; i++) {
  2167. struct kvm_io_device *pos = bus->devs[i];
  2168. kvm_iodevice_destructor(pos);
  2169. }
  2170. }
  2171. /* kvm_io_bus_write - called under kvm->slots_lock */
  2172. int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
  2173. int len, const void *val)
  2174. {
  2175. int i;
  2176. for (i = 0; i < bus->dev_count; i++)
  2177. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  2178. return 0;
  2179. return -EOPNOTSUPP;
  2180. }
  2181. /* kvm_io_bus_read - called under kvm->slots_lock */
  2182. int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
  2183. {
  2184. int i;
  2185. for (i = 0; i < bus->dev_count; i++)
  2186. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  2187. return 0;
  2188. return -EOPNOTSUPP;
  2189. }
  2190. int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
  2191. struct kvm_io_device *dev)
  2192. {
  2193. int ret;
  2194. down_write(&kvm->slots_lock);
  2195. ret = __kvm_io_bus_register_dev(bus, dev);
  2196. up_write(&kvm->slots_lock);
  2197. return ret;
  2198. }
  2199. /* An unlocked version. Caller must have write lock on slots_lock. */
  2200. int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
  2201. struct kvm_io_device *dev)
  2202. {
  2203. if (bus->dev_count > NR_IOBUS_DEVS-1)
  2204. return -ENOSPC;
  2205. bus->devs[bus->dev_count++] = dev;
  2206. return 0;
  2207. }
  2208. void kvm_io_bus_unregister_dev(struct kvm *kvm,
  2209. struct kvm_io_bus *bus,
  2210. struct kvm_io_device *dev)
  2211. {
  2212. down_write(&kvm->slots_lock);
  2213. __kvm_io_bus_unregister_dev(bus, dev);
  2214. up_write(&kvm->slots_lock);
  2215. }
  2216. /* An unlocked version. Caller must have write lock on slots_lock. */
  2217. void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
  2218. struct kvm_io_device *dev)
  2219. {
  2220. int i;
  2221. for (i = 0; i < bus->dev_count; i++)
  2222. if (bus->devs[i] == dev) {
  2223. bus->devs[i] = bus->devs[--bus->dev_count];
  2224. break;
  2225. }
  2226. }
  2227. static struct notifier_block kvm_cpu_notifier = {
  2228. .notifier_call = kvm_cpu_hotplug,
  2229. .priority = 20, /* must be > scheduler priority */
  2230. };
  2231. static int vm_stat_get(void *_offset, u64 *val)
  2232. {
  2233. unsigned offset = (long)_offset;
  2234. struct kvm *kvm;
  2235. *val = 0;
  2236. spin_lock(&kvm_lock);
  2237. list_for_each_entry(kvm, &vm_list, vm_list)
  2238. *val += *(u32 *)((void *)kvm + offset);
  2239. spin_unlock(&kvm_lock);
  2240. return 0;
  2241. }
  2242. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2243. static int vcpu_stat_get(void *_offset, u64 *val)
  2244. {
  2245. unsigned offset = (long)_offset;
  2246. struct kvm *kvm;
  2247. struct kvm_vcpu *vcpu;
  2248. int i;
  2249. *val = 0;
  2250. spin_lock(&kvm_lock);
  2251. list_for_each_entry(kvm, &vm_list, vm_list)
  2252. kvm_for_each_vcpu(i, vcpu, kvm)
  2253. *val += *(u32 *)((void *)vcpu + offset);
  2254. spin_unlock(&kvm_lock);
  2255. return 0;
  2256. }
  2257. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2258. static struct file_operations *stat_fops[] = {
  2259. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2260. [KVM_STAT_VM] = &vm_stat_fops,
  2261. };
  2262. static void kvm_init_debug(void)
  2263. {
  2264. struct kvm_stats_debugfs_item *p;
  2265. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2266. for (p = debugfs_entries; p->name; ++p)
  2267. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2268. (void *)(long)p->offset,
  2269. stat_fops[p->kind]);
  2270. }
  2271. static void kvm_exit_debug(void)
  2272. {
  2273. struct kvm_stats_debugfs_item *p;
  2274. for (p = debugfs_entries; p->name; ++p)
  2275. debugfs_remove(p->dentry);
  2276. debugfs_remove(kvm_debugfs_dir);
  2277. }
  2278. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2279. {
  2280. hardware_disable(NULL);
  2281. return 0;
  2282. }
  2283. static int kvm_resume(struct sys_device *dev)
  2284. {
  2285. hardware_enable(NULL);
  2286. return 0;
  2287. }
  2288. static struct sysdev_class kvm_sysdev_class = {
  2289. .name = "kvm",
  2290. .suspend = kvm_suspend,
  2291. .resume = kvm_resume,
  2292. };
  2293. static struct sys_device kvm_sysdev = {
  2294. .id = 0,
  2295. .cls = &kvm_sysdev_class,
  2296. };
  2297. struct page *bad_page;
  2298. pfn_t bad_pfn;
  2299. static inline
  2300. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2301. {
  2302. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2303. }
  2304. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2305. {
  2306. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2307. kvm_arch_vcpu_load(vcpu, cpu);
  2308. }
  2309. static void kvm_sched_out(struct preempt_notifier *pn,
  2310. struct task_struct *next)
  2311. {
  2312. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2313. kvm_arch_vcpu_put(vcpu);
  2314. }
  2315. int kvm_init(void *opaque, unsigned int vcpu_size,
  2316. struct module *module)
  2317. {
  2318. int r;
  2319. int cpu;
  2320. kvm_init_debug();
  2321. r = kvm_arch_init(opaque);
  2322. if (r)
  2323. goto out_fail;
  2324. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2325. if (bad_page == NULL) {
  2326. r = -ENOMEM;
  2327. goto out;
  2328. }
  2329. bad_pfn = page_to_pfn(bad_page);
  2330. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2331. r = -ENOMEM;
  2332. goto out_free_0;
  2333. }
  2334. r = kvm_arch_hardware_setup();
  2335. if (r < 0)
  2336. goto out_free_0a;
  2337. for_each_online_cpu(cpu) {
  2338. smp_call_function_single(cpu,
  2339. kvm_arch_check_processor_compat,
  2340. &r, 1);
  2341. if (r < 0)
  2342. goto out_free_1;
  2343. }
  2344. on_each_cpu(hardware_enable, NULL, 1);
  2345. r = register_cpu_notifier(&kvm_cpu_notifier);
  2346. if (r)
  2347. goto out_free_2;
  2348. register_reboot_notifier(&kvm_reboot_notifier);
  2349. r = sysdev_class_register(&kvm_sysdev_class);
  2350. if (r)
  2351. goto out_free_3;
  2352. r = sysdev_register(&kvm_sysdev);
  2353. if (r)
  2354. goto out_free_4;
  2355. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2356. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2357. __alignof__(struct kvm_vcpu),
  2358. 0, NULL);
  2359. if (!kvm_vcpu_cache) {
  2360. r = -ENOMEM;
  2361. goto out_free_5;
  2362. }
  2363. kvm_chardev_ops.owner = module;
  2364. kvm_vm_fops.owner = module;
  2365. kvm_vcpu_fops.owner = module;
  2366. r = misc_register(&kvm_dev);
  2367. if (r) {
  2368. printk(KERN_ERR "kvm: misc device register failed\n");
  2369. goto out_free;
  2370. }
  2371. kvm_preempt_ops.sched_in = kvm_sched_in;
  2372. kvm_preempt_ops.sched_out = kvm_sched_out;
  2373. return 0;
  2374. out_free:
  2375. kmem_cache_destroy(kvm_vcpu_cache);
  2376. out_free_5:
  2377. sysdev_unregister(&kvm_sysdev);
  2378. out_free_4:
  2379. sysdev_class_unregister(&kvm_sysdev_class);
  2380. out_free_3:
  2381. unregister_reboot_notifier(&kvm_reboot_notifier);
  2382. unregister_cpu_notifier(&kvm_cpu_notifier);
  2383. out_free_2:
  2384. on_each_cpu(hardware_disable, NULL, 1);
  2385. out_free_1:
  2386. kvm_arch_hardware_unsetup();
  2387. out_free_0a:
  2388. free_cpumask_var(cpus_hardware_enabled);
  2389. out_free_0:
  2390. __free_page(bad_page);
  2391. out:
  2392. kvm_arch_exit();
  2393. out_fail:
  2394. kvm_exit_debug();
  2395. return r;
  2396. }
  2397. EXPORT_SYMBOL_GPL(kvm_init);
  2398. void kvm_exit(void)
  2399. {
  2400. tracepoint_synchronize_unregister();
  2401. misc_deregister(&kvm_dev);
  2402. kmem_cache_destroy(kvm_vcpu_cache);
  2403. sysdev_unregister(&kvm_sysdev);
  2404. sysdev_class_unregister(&kvm_sysdev_class);
  2405. unregister_reboot_notifier(&kvm_reboot_notifier);
  2406. unregister_cpu_notifier(&kvm_cpu_notifier);
  2407. on_each_cpu(hardware_disable, NULL, 1);
  2408. kvm_arch_hardware_unsetup();
  2409. kvm_arch_exit();
  2410. kvm_exit_debug();
  2411. free_cpumask_var(cpus_hardware_enabled);
  2412. __free_page(bad_page);
  2413. }
  2414. EXPORT_SYMBOL_GPL(kvm_exit);