udp.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316
  1. /*
  2. * UDP over IPv6
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * Based on linux/ipv4/udp.c
  9. *
  10. * Fixes:
  11. * Hideaki YOSHIFUJI : sin6_scope_id support
  12. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  13. * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
  14. * a single port at the same time.
  15. * Kazunori MIYAZAWA @USAGI: change process style to use ip6_append_data
  16. * YOSHIFUJI Hideaki @USAGI: convert /proc/net/udp6 to seq_file.
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/errno.h>
  24. #include <linux/types.h>
  25. #include <linux/socket.h>
  26. #include <linux/sockios.h>
  27. #include <linux/net.h>
  28. #include <linux/in6.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_arp.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/icmpv6.h>
  33. #include <linux/init.h>
  34. #include <linux/module.h>
  35. #include <linux/skbuff.h>
  36. #include <asm/uaccess.h>
  37. #include <net/ndisc.h>
  38. #include <net/protocol.h>
  39. #include <net/transp_v6.h>
  40. #include <net/ip6_route.h>
  41. #include <net/raw.h>
  42. #include <net/tcp_states.h>
  43. #include <net/ip6_checksum.h>
  44. #include <net/xfrm.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include "udp_impl.h"
  48. int ipv6_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2)
  49. {
  50. const struct in6_addr *sk_rcv_saddr6 = &inet6_sk(sk)->rcv_saddr;
  51. const struct in6_addr *sk2_rcv_saddr6 = inet6_rcv_saddr(sk2);
  52. __be32 sk_rcv_saddr = inet_sk(sk)->rcv_saddr;
  53. __be32 sk2_rcv_saddr = inet_rcv_saddr(sk2);
  54. int sk_ipv6only = ipv6_only_sock(sk);
  55. int sk2_ipv6only = inet_v6_ipv6only(sk2);
  56. int addr_type = ipv6_addr_type(sk_rcv_saddr6);
  57. int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  58. /* if both are mapped, treat as IPv4 */
  59. if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED)
  60. return (!sk2_ipv6only &&
  61. (!sk_rcv_saddr || !sk2_rcv_saddr ||
  62. sk_rcv_saddr == sk2_rcv_saddr));
  63. if (addr_type2 == IPV6_ADDR_ANY &&
  64. !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  65. return 1;
  66. if (addr_type == IPV6_ADDR_ANY &&
  67. !(sk_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  68. return 1;
  69. if (sk2_rcv_saddr6 &&
  70. ipv6_addr_equal(sk_rcv_saddr6, sk2_rcv_saddr6))
  71. return 1;
  72. return 0;
  73. }
  74. int udp_v6_get_port(struct sock *sk, unsigned short snum)
  75. {
  76. return udp_lib_get_port(sk, snum, ipv6_rcv_saddr_equal);
  77. }
  78. static inline int compute_score(struct sock *sk, struct net *net,
  79. unsigned short hnum,
  80. struct in6_addr *saddr, __be16 sport,
  81. struct in6_addr *daddr, __be16 dport,
  82. int dif)
  83. {
  84. int score = -1;
  85. if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
  86. sk->sk_family == PF_INET6) {
  87. struct ipv6_pinfo *np = inet6_sk(sk);
  88. struct inet_sock *inet = inet_sk(sk);
  89. score = 0;
  90. if (inet->dport) {
  91. if (inet->dport != sport)
  92. return -1;
  93. score++;
  94. }
  95. if (!ipv6_addr_any(&np->rcv_saddr)) {
  96. if (!ipv6_addr_equal(&np->rcv_saddr, daddr))
  97. return -1;
  98. score++;
  99. }
  100. if (!ipv6_addr_any(&np->daddr)) {
  101. if (!ipv6_addr_equal(&np->daddr, saddr))
  102. return -1;
  103. score++;
  104. }
  105. if (sk->sk_bound_dev_if) {
  106. if (sk->sk_bound_dev_if != dif)
  107. return -1;
  108. score++;
  109. }
  110. }
  111. return score;
  112. }
  113. static struct sock *__udp6_lib_lookup(struct net *net,
  114. struct in6_addr *saddr, __be16 sport,
  115. struct in6_addr *daddr, __be16 dport,
  116. int dif, struct udp_table *udptable)
  117. {
  118. struct sock *sk, *result;
  119. struct hlist_nulls_node *node;
  120. unsigned short hnum = ntohs(dport);
  121. unsigned int hash = udp_hashfn(net, hnum);
  122. struct udp_hslot *hslot = &udptable->hash[hash];
  123. int score, badness;
  124. rcu_read_lock();
  125. begin:
  126. result = NULL;
  127. badness = -1;
  128. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  129. score = compute_score(sk, net, hnum, saddr, sport, daddr, dport, dif);
  130. if (score > badness) {
  131. result = sk;
  132. badness = score;
  133. }
  134. }
  135. /*
  136. * if the nulls value we got at the end of this lookup is
  137. * not the expected one, we must restart lookup.
  138. * We probably met an item that was moved to another chain.
  139. */
  140. if (get_nulls_value(node) != hash)
  141. goto begin;
  142. if (result) {
  143. if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
  144. result = NULL;
  145. else if (unlikely(compute_score(result, net, hnum, saddr, sport,
  146. daddr, dport, dif) < badness)) {
  147. sock_put(result);
  148. goto begin;
  149. }
  150. }
  151. rcu_read_unlock();
  152. return result;
  153. }
  154. static struct sock *__udp6_lib_lookup_skb(struct sk_buff *skb,
  155. __be16 sport, __be16 dport,
  156. struct udp_table *udptable)
  157. {
  158. struct sock *sk;
  159. struct ipv6hdr *iph = ipv6_hdr(skb);
  160. if (unlikely(sk = skb_steal_sock(skb)))
  161. return sk;
  162. return __udp6_lib_lookup(dev_net(skb_dst(skb)->dev), &iph->saddr, sport,
  163. &iph->daddr, dport, inet6_iif(skb),
  164. udptable);
  165. }
  166. /*
  167. * This should be easy, if there is something there we
  168. * return it, otherwise we block.
  169. */
  170. int udpv6_recvmsg(struct kiocb *iocb, struct sock *sk,
  171. struct msghdr *msg, size_t len,
  172. int noblock, int flags, int *addr_len)
  173. {
  174. struct ipv6_pinfo *np = inet6_sk(sk);
  175. struct inet_sock *inet = inet_sk(sk);
  176. struct sk_buff *skb;
  177. unsigned int ulen, copied;
  178. int peeked;
  179. int err;
  180. int is_udplite = IS_UDPLITE(sk);
  181. int is_udp4;
  182. if (addr_len)
  183. *addr_len=sizeof(struct sockaddr_in6);
  184. if (flags & MSG_ERRQUEUE)
  185. return ipv6_recv_error(sk, msg, len);
  186. try_again:
  187. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  188. &peeked, &err);
  189. if (!skb)
  190. goto out;
  191. ulen = skb->len - sizeof(struct udphdr);
  192. copied = len;
  193. if (copied > ulen)
  194. copied = ulen;
  195. else if (copied < ulen)
  196. msg->msg_flags |= MSG_TRUNC;
  197. is_udp4 = (skb->protocol == htons(ETH_P_IP));
  198. /*
  199. * If checksum is needed at all, try to do it while copying the
  200. * data. If the data is truncated, or if we only want a partial
  201. * coverage checksum (UDP-Lite), do it before the copy.
  202. */
  203. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  204. if (udp_lib_checksum_complete(skb))
  205. goto csum_copy_err;
  206. }
  207. if (skb_csum_unnecessary(skb))
  208. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  209. msg->msg_iov, copied );
  210. else {
  211. err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
  212. if (err == -EINVAL)
  213. goto csum_copy_err;
  214. }
  215. if (err)
  216. goto out_free;
  217. if (!peeked) {
  218. if (is_udp4)
  219. UDP_INC_STATS_USER(sock_net(sk),
  220. UDP_MIB_INDATAGRAMS, is_udplite);
  221. else
  222. UDP6_INC_STATS_USER(sock_net(sk),
  223. UDP_MIB_INDATAGRAMS, is_udplite);
  224. }
  225. sock_recv_timestamp(msg, sk, skb);
  226. /* Copy the address. */
  227. if (msg->msg_name) {
  228. struct sockaddr_in6 *sin6;
  229. sin6 = (struct sockaddr_in6 *) msg->msg_name;
  230. sin6->sin6_family = AF_INET6;
  231. sin6->sin6_port = udp_hdr(skb)->source;
  232. sin6->sin6_flowinfo = 0;
  233. sin6->sin6_scope_id = 0;
  234. if (is_udp4)
  235. ipv6_addr_set(&sin6->sin6_addr, 0, 0,
  236. htonl(0xffff), ip_hdr(skb)->saddr);
  237. else {
  238. ipv6_addr_copy(&sin6->sin6_addr,
  239. &ipv6_hdr(skb)->saddr);
  240. if (ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
  241. sin6->sin6_scope_id = IP6CB(skb)->iif;
  242. }
  243. }
  244. if (is_udp4) {
  245. if (inet->cmsg_flags)
  246. ip_cmsg_recv(msg, skb);
  247. } else {
  248. if (np->rxopt.all)
  249. datagram_recv_ctl(sk, msg, skb);
  250. }
  251. err = copied;
  252. if (flags & MSG_TRUNC)
  253. err = ulen;
  254. out_free:
  255. lock_sock(sk);
  256. skb_free_datagram(sk, skb);
  257. release_sock(sk);
  258. out:
  259. return err;
  260. csum_copy_err:
  261. lock_sock(sk);
  262. if (!skb_kill_datagram(sk, skb, flags)) {
  263. if (is_udp4)
  264. UDP_INC_STATS_USER(sock_net(sk),
  265. UDP_MIB_INERRORS, is_udplite);
  266. else
  267. UDP6_INC_STATS_USER(sock_net(sk),
  268. UDP_MIB_INERRORS, is_udplite);
  269. }
  270. release_sock(sk);
  271. if (flags & MSG_DONTWAIT)
  272. return -EAGAIN;
  273. goto try_again;
  274. }
  275. void __udp6_lib_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
  276. u8 type, u8 code, int offset, __be32 info,
  277. struct udp_table *udptable)
  278. {
  279. struct ipv6_pinfo *np;
  280. struct ipv6hdr *hdr = (struct ipv6hdr*)skb->data;
  281. struct in6_addr *saddr = &hdr->saddr;
  282. struct in6_addr *daddr = &hdr->daddr;
  283. struct udphdr *uh = (struct udphdr*)(skb->data+offset);
  284. struct sock *sk;
  285. int err;
  286. sk = __udp6_lib_lookup(dev_net(skb->dev), daddr, uh->dest,
  287. saddr, uh->source, inet6_iif(skb), udptable);
  288. if (sk == NULL)
  289. return;
  290. np = inet6_sk(sk);
  291. if (!icmpv6_err_convert(type, code, &err) && !np->recverr)
  292. goto out;
  293. if (sk->sk_state != TCP_ESTABLISHED && !np->recverr)
  294. goto out;
  295. if (np->recverr)
  296. ipv6_icmp_error(sk, skb, err, uh->dest, ntohl(info), (u8 *)(uh+1));
  297. sk->sk_err = err;
  298. sk->sk_error_report(sk);
  299. out:
  300. sock_put(sk);
  301. }
  302. static __inline__ void udpv6_err(struct sk_buff *skb,
  303. struct inet6_skb_parm *opt, u8 type,
  304. u8 code, int offset, __be32 info )
  305. {
  306. __udp6_lib_err(skb, opt, type, code, offset, info, &udp_table);
  307. }
  308. int udpv6_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
  309. {
  310. struct udp_sock *up = udp_sk(sk);
  311. int rc;
  312. int is_udplite = IS_UDPLITE(sk);
  313. if (!xfrm6_policy_check(sk, XFRM_POLICY_IN, skb))
  314. goto drop;
  315. /*
  316. * UDP-Lite specific tests, ignored on UDP sockets (see net/ipv4/udp.c).
  317. */
  318. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  319. if (up->pcrlen == 0) { /* full coverage was set */
  320. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: partial coverage"
  321. " %d while full coverage %d requested\n",
  322. UDP_SKB_CB(skb)->cscov, skb->len);
  323. goto drop;
  324. }
  325. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  326. LIMIT_NETDEBUG(KERN_WARNING "UDPLITE6: coverage %d "
  327. "too small, need min %d\n",
  328. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  329. goto drop;
  330. }
  331. }
  332. if (sk->sk_filter) {
  333. if (udp_lib_checksum_complete(skb))
  334. goto drop;
  335. }
  336. if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
  337. /* Note that an ENOMEM error is charged twice */
  338. if (rc == -ENOMEM) {
  339. UDP6_INC_STATS_BH(sock_net(sk),
  340. UDP_MIB_RCVBUFERRORS, is_udplite);
  341. atomic_inc(&sk->sk_drops);
  342. }
  343. goto drop;
  344. }
  345. return 0;
  346. drop:
  347. UDP6_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  348. kfree_skb(skb);
  349. return -1;
  350. }
  351. static struct sock *udp_v6_mcast_next(struct net *net, struct sock *sk,
  352. __be16 loc_port, struct in6_addr *loc_addr,
  353. __be16 rmt_port, struct in6_addr *rmt_addr,
  354. int dif)
  355. {
  356. struct hlist_nulls_node *node;
  357. struct sock *s = sk;
  358. unsigned short num = ntohs(loc_port);
  359. sk_nulls_for_each_from(s, node) {
  360. struct inet_sock *inet = inet_sk(s);
  361. if (!net_eq(sock_net(s), net))
  362. continue;
  363. if (s->sk_hash == num && s->sk_family == PF_INET6) {
  364. struct ipv6_pinfo *np = inet6_sk(s);
  365. if (inet->dport) {
  366. if (inet->dport != rmt_port)
  367. continue;
  368. }
  369. if (!ipv6_addr_any(&np->daddr) &&
  370. !ipv6_addr_equal(&np->daddr, rmt_addr))
  371. continue;
  372. if (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)
  373. continue;
  374. if (!ipv6_addr_any(&np->rcv_saddr)) {
  375. if (!ipv6_addr_equal(&np->rcv_saddr, loc_addr))
  376. continue;
  377. }
  378. if (!inet6_mc_check(s, loc_addr, rmt_addr))
  379. continue;
  380. return s;
  381. }
  382. }
  383. return NULL;
  384. }
  385. /*
  386. * Note: called only from the BH handler context,
  387. * so we don't need to lock the hashes.
  388. */
  389. static int __udp6_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  390. struct in6_addr *saddr, struct in6_addr *daddr,
  391. struct udp_table *udptable)
  392. {
  393. struct sock *sk, *sk2;
  394. const struct udphdr *uh = udp_hdr(skb);
  395. struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
  396. int dif;
  397. spin_lock(&hslot->lock);
  398. sk = sk_nulls_head(&hslot->head);
  399. dif = inet6_iif(skb);
  400. sk = udp_v6_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  401. if (!sk) {
  402. kfree_skb(skb);
  403. goto out;
  404. }
  405. sk2 = sk;
  406. while ((sk2 = udp_v6_mcast_next(net, sk_nulls_next(sk2), uh->dest, daddr,
  407. uh->source, saddr, dif))) {
  408. struct sk_buff *buff = skb_clone(skb, GFP_ATOMIC);
  409. if (buff) {
  410. bh_lock_sock(sk2);
  411. if (!sock_owned_by_user(sk2))
  412. udpv6_queue_rcv_skb(sk2, buff);
  413. else
  414. sk_add_backlog(sk2, buff);
  415. bh_unlock_sock(sk2);
  416. }
  417. }
  418. bh_lock_sock(sk);
  419. if (!sock_owned_by_user(sk))
  420. udpv6_queue_rcv_skb(sk, skb);
  421. else
  422. sk_add_backlog(sk, skb);
  423. bh_unlock_sock(sk);
  424. out:
  425. spin_unlock(&hslot->lock);
  426. return 0;
  427. }
  428. static inline int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh,
  429. int proto)
  430. {
  431. int err;
  432. UDP_SKB_CB(skb)->partial_cov = 0;
  433. UDP_SKB_CB(skb)->cscov = skb->len;
  434. if (proto == IPPROTO_UDPLITE) {
  435. err = udplite_checksum_init(skb, uh);
  436. if (err)
  437. return err;
  438. }
  439. if (uh->check == 0) {
  440. /* RFC 2460 section 8.1 says that we SHOULD log
  441. this error. Well, it is reasonable.
  442. */
  443. LIMIT_NETDEBUG(KERN_INFO "IPv6: udp checksum is 0\n");
  444. return 1;
  445. }
  446. if (skb->ip_summed == CHECKSUM_COMPLETE &&
  447. !csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
  448. skb->len, proto, skb->csum))
  449. skb->ip_summed = CHECKSUM_UNNECESSARY;
  450. if (!skb_csum_unnecessary(skb))
  451. skb->csum = ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  452. &ipv6_hdr(skb)->daddr,
  453. skb->len, proto, 0));
  454. return 0;
  455. }
  456. int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  457. int proto)
  458. {
  459. struct sock *sk;
  460. struct udphdr *uh;
  461. struct net_device *dev = skb->dev;
  462. struct in6_addr *saddr, *daddr;
  463. u32 ulen = 0;
  464. struct net *net = dev_net(skb->dev);
  465. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  466. goto short_packet;
  467. saddr = &ipv6_hdr(skb)->saddr;
  468. daddr = &ipv6_hdr(skb)->daddr;
  469. uh = udp_hdr(skb);
  470. ulen = ntohs(uh->len);
  471. if (ulen > skb->len)
  472. goto short_packet;
  473. if (proto == IPPROTO_UDP) {
  474. /* UDP validates ulen. */
  475. /* Check for jumbo payload */
  476. if (ulen == 0)
  477. ulen = skb->len;
  478. if (ulen < sizeof(*uh))
  479. goto short_packet;
  480. if (ulen < skb->len) {
  481. if (pskb_trim_rcsum(skb, ulen))
  482. goto short_packet;
  483. saddr = &ipv6_hdr(skb)->saddr;
  484. daddr = &ipv6_hdr(skb)->daddr;
  485. uh = udp_hdr(skb);
  486. }
  487. }
  488. if (udp6_csum_init(skb, uh, proto))
  489. goto discard;
  490. /*
  491. * Multicast receive code
  492. */
  493. if (ipv6_addr_is_multicast(daddr))
  494. return __udp6_lib_mcast_deliver(net, skb,
  495. saddr, daddr, udptable);
  496. /* Unicast */
  497. /*
  498. * check socket cache ... must talk to Alan about his plans
  499. * for sock caches... i'll skip this for now.
  500. */
  501. sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  502. if (sk == NULL) {
  503. if (!xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
  504. goto discard;
  505. if (udp_lib_checksum_complete(skb))
  506. goto discard;
  507. UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS,
  508. proto == IPPROTO_UDPLITE);
  509. icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0, dev);
  510. kfree_skb(skb);
  511. return 0;
  512. }
  513. /* deliver */
  514. bh_lock_sock(sk);
  515. if (!sock_owned_by_user(sk))
  516. udpv6_queue_rcv_skb(sk, skb);
  517. else
  518. sk_add_backlog(sk, skb);
  519. bh_unlock_sock(sk);
  520. sock_put(sk);
  521. return 0;
  522. short_packet:
  523. LIMIT_NETDEBUG(KERN_DEBUG "UDP%sv6: short packet: %d/%u\n",
  524. proto == IPPROTO_UDPLITE ? "-Lite" : "",
  525. ulen, skb->len);
  526. discard:
  527. UDP6_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  528. kfree_skb(skb);
  529. return 0;
  530. }
  531. static __inline__ int udpv6_rcv(struct sk_buff *skb)
  532. {
  533. return __udp6_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  534. }
  535. /*
  536. * Throw away all pending data and cancel the corking. Socket is locked.
  537. */
  538. static void udp_v6_flush_pending_frames(struct sock *sk)
  539. {
  540. struct udp_sock *up = udp_sk(sk);
  541. if (up->pending == AF_INET)
  542. udp_flush_pending_frames(sk);
  543. else if (up->pending) {
  544. up->len = 0;
  545. up->pending = 0;
  546. ip6_flush_pending_frames(sk);
  547. }
  548. }
  549. /**
  550. * udp6_hwcsum_outgoing - handle outgoing HW checksumming
  551. * @sk: socket we are sending on
  552. * @skb: sk_buff containing the filled-in UDP header
  553. * (checksum field must be zeroed out)
  554. */
  555. static void udp6_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
  556. const struct in6_addr *saddr,
  557. const struct in6_addr *daddr, int len)
  558. {
  559. unsigned int offset;
  560. struct udphdr *uh = udp_hdr(skb);
  561. __wsum csum = 0;
  562. if (skb_queue_len(&sk->sk_write_queue) == 1) {
  563. /* Only one fragment on the socket. */
  564. skb->csum_start = skb_transport_header(skb) - skb->head;
  565. skb->csum_offset = offsetof(struct udphdr, check);
  566. uh->check = ~csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, 0);
  567. } else {
  568. /*
  569. * HW-checksum won't work as there are two or more
  570. * fragments on the socket so that all csums of sk_buffs
  571. * should be together
  572. */
  573. offset = skb_transport_offset(skb);
  574. skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
  575. skb->ip_summed = CHECKSUM_NONE;
  576. skb_queue_walk(&sk->sk_write_queue, skb) {
  577. csum = csum_add(csum, skb->csum);
  578. }
  579. uh->check = csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP,
  580. csum);
  581. if (uh->check == 0)
  582. uh->check = CSUM_MANGLED_0;
  583. }
  584. }
  585. /*
  586. * Sending
  587. */
  588. static int udp_v6_push_pending_frames(struct sock *sk)
  589. {
  590. struct sk_buff *skb;
  591. struct udphdr *uh;
  592. struct udp_sock *up = udp_sk(sk);
  593. struct inet_sock *inet = inet_sk(sk);
  594. struct flowi *fl = &inet->cork.fl;
  595. int err = 0;
  596. int is_udplite = IS_UDPLITE(sk);
  597. __wsum csum = 0;
  598. /* Grab the skbuff where UDP header space exists. */
  599. if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
  600. goto out;
  601. /*
  602. * Create a UDP header
  603. */
  604. uh = udp_hdr(skb);
  605. uh->source = fl->fl_ip_sport;
  606. uh->dest = fl->fl_ip_dport;
  607. uh->len = htons(up->len);
  608. uh->check = 0;
  609. if (is_udplite)
  610. csum = udplite_csum_outgoing(sk, skb);
  611. else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  612. udp6_hwcsum_outgoing(sk, skb, &fl->fl6_src, &fl->fl6_dst,
  613. up->len);
  614. goto send;
  615. } else
  616. csum = udp_csum_outgoing(sk, skb);
  617. /* add protocol-dependent pseudo-header */
  618. uh->check = csum_ipv6_magic(&fl->fl6_src, &fl->fl6_dst,
  619. up->len, fl->proto, csum );
  620. if (uh->check == 0)
  621. uh->check = CSUM_MANGLED_0;
  622. send:
  623. err = ip6_push_pending_frames(sk);
  624. if (err) {
  625. if (err == -ENOBUFS && !inet6_sk(sk)->recverr) {
  626. UDP6_INC_STATS_USER(sock_net(sk),
  627. UDP_MIB_SNDBUFERRORS, is_udplite);
  628. err = 0;
  629. }
  630. } else
  631. UDP6_INC_STATS_USER(sock_net(sk),
  632. UDP_MIB_OUTDATAGRAMS, is_udplite);
  633. out:
  634. up->len = 0;
  635. up->pending = 0;
  636. return err;
  637. }
  638. int udpv6_sendmsg(struct kiocb *iocb, struct sock *sk,
  639. struct msghdr *msg, size_t len)
  640. {
  641. struct ipv6_txoptions opt_space;
  642. struct udp_sock *up = udp_sk(sk);
  643. struct inet_sock *inet = inet_sk(sk);
  644. struct ipv6_pinfo *np = inet6_sk(sk);
  645. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) msg->msg_name;
  646. struct in6_addr *daddr, *final_p = NULL, final;
  647. struct ipv6_txoptions *opt = NULL;
  648. struct ip6_flowlabel *flowlabel = NULL;
  649. struct flowi fl;
  650. struct dst_entry *dst;
  651. int addr_len = msg->msg_namelen;
  652. int ulen = len;
  653. int hlimit = -1;
  654. int tclass = -1;
  655. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  656. int err;
  657. int connected = 0;
  658. int is_udplite = IS_UDPLITE(sk);
  659. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  660. /* destination address check */
  661. if (sin6) {
  662. if (addr_len < offsetof(struct sockaddr, sa_data))
  663. return -EINVAL;
  664. switch (sin6->sin6_family) {
  665. case AF_INET6:
  666. if (addr_len < SIN6_LEN_RFC2133)
  667. return -EINVAL;
  668. daddr = &sin6->sin6_addr;
  669. break;
  670. case AF_INET:
  671. goto do_udp_sendmsg;
  672. case AF_UNSPEC:
  673. msg->msg_name = sin6 = NULL;
  674. msg->msg_namelen = addr_len = 0;
  675. daddr = NULL;
  676. break;
  677. default:
  678. return -EINVAL;
  679. }
  680. } else if (!up->pending) {
  681. if (sk->sk_state != TCP_ESTABLISHED)
  682. return -EDESTADDRREQ;
  683. daddr = &np->daddr;
  684. } else
  685. daddr = NULL;
  686. if (daddr) {
  687. if (ipv6_addr_v4mapped(daddr)) {
  688. struct sockaddr_in sin;
  689. sin.sin_family = AF_INET;
  690. sin.sin_port = sin6 ? sin6->sin6_port : inet->dport;
  691. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  692. msg->msg_name = &sin;
  693. msg->msg_namelen = sizeof(sin);
  694. do_udp_sendmsg:
  695. if (__ipv6_only_sock(sk))
  696. return -ENETUNREACH;
  697. return udp_sendmsg(iocb, sk, msg, len);
  698. }
  699. }
  700. if (up->pending == AF_INET)
  701. return udp_sendmsg(iocb, sk, msg, len);
  702. /* Rough check on arithmetic overflow,
  703. better check is made in ip6_append_data().
  704. */
  705. if (len > INT_MAX - sizeof(struct udphdr))
  706. return -EMSGSIZE;
  707. if (up->pending) {
  708. /*
  709. * There are pending frames.
  710. * The socket lock must be held while it's corked.
  711. */
  712. lock_sock(sk);
  713. if (likely(up->pending)) {
  714. if (unlikely(up->pending != AF_INET6)) {
  715. release_sock(sk);
  716. return -EAFNOSUPPORT;
  717. }
  718. dst = NULL;
  719. goto do_append_data;
  720. }
  721. release_sock(sk);
  722. }
  723. ulen += sizeof(struct udphdr);
  724. memset(&fl, 0, sizeof(fl));
  725. if (sin6) {
  726. if (sin6->sin6_port == 0)
  727. return -EINVAL;
  728. fl.fl_ip_dport = sin6->sin6_port;
  729. daddr = &sin6->sin6_addr;
  730. if (np->sndflow) {
  731. fl.fl6_flowlabel = sin6->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  732. if (fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) {
  733. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  734. if (flowlabel == NULL)
  735. return -EINVAL;
  736. daddr = &flowlabel->dst;
  737. }
  738. }
  739. /*
  740. * Otherwise it will be difficult to maintain
  741. * sk->sk_dst_cache.
  742. */
  743. if (sk->sk_state == TCP_ESTABLISHED &&
  744. ipv6_addr_equal(daddr, &np->daddr))
  745. daddr = &np->daddr;
  746. if (addr_len >= sizeof(struct sockaddr_in6) &&
  747. sin6->sin6_scope_id &&
  748. ipv6_addr_type(daddr)&IPV6_ADDR_LINKLOCAL)
  749. fl.oif = sin6->sin6_scope_id;
  750. } else {
  751. if (sk->sk_state != TCP_ESTABLISHED)
  752. return -EDESTADDRREQ;
  753. fl.fl_ip_dport = inet->dport;
  754. daddr = &np->daddr;
  755. fl.fl6_flowlabel = np->flow_label;
  756. connected = 1;
  757. }
  758. if (!fl.oif)
  759. fl.oif = sk->sk_bound_dev_if;
  760. if (!fl.oif)
  761. fl.oif = np->sticky_pktinfo.ipi6_ifindex;
  762. if (msg->msg_controllen) {
  763. opt = &opt_space;
  764. memset(opt, 0, sizeof(struct ipv6_txoptions));
  765. opt->tot_len = sizeof(*opt);
  766. err = datagram_send_ctl(sock_net(sk), msg, &fl, opt, &hlimit, &tclass);
  767. if (err < 0) {
  768. fl6_sock_release(flowlabel);
  769. return err;
  770. }
  771. if ((fl.fl6_flowlabel&IPV6_FLOWLABEL_MASK) && !flowlabel) {
  772. flowlabel = fl6_sock_lookup(sk, fl.fl6_flowlabel);
  773. if (flowlabel == NULL)
  774. return -EINVAL;
  775. }
  776. if (!(opt->opt_nflen|opt->opt_flen))
  777. opt = NULL;
  778. connected = 0;
  779. }
  780. if (opt == NULL)
  781. opt = np->opt;
  782. if (flowlabel)
  783. opt = fl6_merge_options(&opt_space, flowlabel, opt);
  784. opt = ipv6_fixup_options(&opt_space, opt);
  785. fl.proto = sk->sk_protocol;
  786. if (!ipv6_addr_any(daddr))
  787. ipv6_addr_copy(&fl.fl6_dst, daddr);
  788. else
  789. fl.fl6_dst.s6_addr[15] = 0x1; /* :: means loopback (BSD'ism) */
  790. if (ipv6_addr_any(&fl.fl6_src) && !ipv6_addr_any(&np->saddr))
  791. ipv6_addr_copy(&fl.fl6_src, &np->saddr);
  792. fl.fl_ip_sport = inet->sport;
  793. /* merge ip6_build_xmit from ip6_output */
  794. if (opt && opt->srcrt) {
  795. struct rt0_hdr *rt0 = (struct rt0_hdr *) opt->srcrt;
  796. ipv6_addr_copy(&final, &fl.fl6_dst);
  797. ipv6_addr_copy(&fl.fl6_dst, rt0->addr);
  798. final_p = &final;
  799. connected = 0;
  800. }
  801. if (!fl.oif && ipv6_addr_is_multicast(&fl.fl6_dst)) {
  802. fl.oif = np->mcast_oif;
  803. connected = 0;
  804. }
  805. security_sk_classify_flow(sk, &fl);
  806. err = ip6_sk_dst_lookup(sk, &dst, &fl);
  807. if (err)
  808. goto out;
  809. if (final_p)
  810. ipv6_addr_copy(&fl.fl6_dst, final_p);
  811. err = __xfrm_lookup(sock_net(sk), &dst, &fl, sk, XFRM_LOOKUP_WAIT);
  812. if (err < 0) {
  813. if (err == -EREMOTE)
  814. err = ip6_dst_blackhole(sk, &dst, &fl);
  815. if (err < 0)
  816. goto out;
  817. }
  818. if (hlimit < 0) {
  819. if (ipv6_addr_is_multicast(&fl.fl6_dst))
  820. hlimit = np->mcast_hops;
  821. else
  822. hlimit = np->hop_limit;
  823. if (hlimit < 0)
  824. hlimit = ip6_dst_hoplimit(dst);
  825. }
  826. if (tclass < 0)
  827. tclass = np->tclass;
  828. if (msg->msg_flags&MSG_CONFIRM)
  829. goto do_confirm;
  830. back_from_confirm:
  831. lock_sock(sk);
  832. if (unlikely(up->pending)) {
  833. /* The socket is already corked while preparing it. */
  834. /* ... which is an evident application bug. --ANK */
  835. release_sock(sk);
  836. LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
  837. err = -EINVAL;
  838. goto out;
  839. }
  840. up->pending = AF_INET6;
  841. do_append_data:
  842. up->len += ulen;
  843. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  844. err = ip6_append_data(sk, getfrag, msg->msg_iov, ulen,
  845. sizeof(struct udphdr), hlimit, tclass, opt, &fl,
  846. (struct rt6_info*)dst,
  847. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  848. if (err)
  849. udp_v6_flush_pending_frames(sk);
  850. else if (!corkreq)
  851. err = udp_v6_push_pending_frames(sk);
  852. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  853. up->pending = 0;
  854. if (dst) {
  855. if (connected) {
  856. ip6_dst_store(sk, dst,
  857. ipv6_addr_equal(&fl.fl6_dst, &np->daddr) ?
  858. &np->daddr : NULL,
  859. #ifdef CONFIG_IPV6_SUBTREES
  860. ipv6_addr_equal(&fl.fl6_src, &np->saddr) ?
  861. &np->saddr :
  862. #endif
  863. NULL);
  864. } else {
  865. dst_release(dst);
  866. }
  867. dst = NULL;
  868. }
  869. if (err > 0)
  870. err = np->recverr ? net_xmit_errno(err) : 0;
  871. release_sock(sk);
  872. out:
  873. dst_release(dst);
  874. fl6_sock_release(flowlabel);
  875. if (!err)
  876. return len;
  877. /*
  878. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  879. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  880. * we don't have a good statistic (IpOutDiscards but it can be too many
  881. * things). We could add another new stat but at least for now that
  882. * seems like overkill.
  883. */
  884. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  885. UDP6_INC_STATS_USER(sock_net(sk),
  886. UDP_MIB_SNDBUFERRORS, is_udplite);
  887. }
  888. return err;
  889. do_confirm:
  890. dst_confirm(dst);
  891. if (!(msg->msg_flags&MSG_PROBE) || len)
  892. goto back_from_confirm;
  893. err = 0;
  894. goto out;
  895. }
  896. void udpv6_destroy_sock(struct sock *sk)
  897. {
  898. lock_sock(sk);
  899. udp_v6_flush_pending_frames(sk);
  900. release_sock(sk);
  901. inet6_destroy_sock(sk);
  902. }
  903. /*
  904. * Socket option code for UDP
  905. */
  906. int udpv6_setsockopt(struct sock *sk, int level, int optname,
  907. char __user *optval, int optlen)
  908. {
  909. if (level == SOL_UDP || level == SOL_UDPLITE)
  910. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  911. udp_v6_push_pending_frames);
  912. return ipv6_setsockopt(sk, level, optname, optval, optlen);
  913. }
  914. #ifdef CONFIG_COMPAT
  915. int compat_udpv6_setsockopt(struct sock *sk, int level, int optname,
  916. char __user *optval, int optlen)
  917. {
  918. if (level == SOL_UDP || level == SOL_UDPLITE)
  919. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  920. udp_v6_push_pending_frames);
  921. return compat_ipv6_setsockopt(sk, level, optname, optval, optlen);
  922. }
  923. #endif
  924. int udpv6_getsockopt(struct sock *sk, int level, int optname,
  925. char __user *optval, int __user *optlen)
  926. {
  927. if (level == SOL_UDP || level == SOL_UDPLITE)
  928. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  929. return ipv6_getsockopt(sk, level, optname, optval, optlen);
  930. }
  931. #ifdef CONFIG_COMPAT
  932. int compat_udpv6_getsockopt(struct sock *sk, int level, int optname,
  933. char __user *optval, int __user *optlen)
  934. {
  935. if (level == SOL_UDP || level == SOL_UDPLITE)
  936. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  937. return compat_ipv6_getsockopt(sk, level, optname, optval, optlen);
  938. }
  939. #endif
  940. static int udp6_ufo_send_check(struct sk_buff *skb)
  941. {
  942. struct ipv6hdr *ipv6h;
  943. struct udphdr *uh;
  944. if (!pskb_may_pull(skb, sizeof(*uh)))
  945. return -EINVAL;
  946. ipv6h = ipv6_hdr(skb);
  947. uh = udp_hdr(skb);
  948. uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, skb->len,
  949. IPPROTO_UDP, 0);
  950. skb->csum_start = skb_transport_header(skb) - skb->head;
  951. skb->csum_offset = offsetof(struct udphdr, check);
  952. skb->ip_summed = CHECKSUM_PARTIAL;
  953. return 0;
  954. }
  955. static struct sk_buff *udp6_ufo_fragment(struct sk_buff *skb, int features)
  956. {
  957. struct sk_buff *segs = ERR_PTR(-EINVAL);
  958. unsigned int mss;
  959. unsigned int unfrag_ip6hlen, unfrag_len;
  960. struct frag_hdr *fptr;
  961. u8 *mac_start, *prevhdr;
  962. u8 nexthdr;
  963. u8 frag_hdr_sz = sizeof(struct frag_hdr);
  964. int offset;
  965. __wsum csum;
  966. mss = skb_shinfo(skb)->gso_size;
  967. if (unlikely(skb->len <= mss))
  968. goto out;
  969. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  970. /* Packet is from an untrusted source, reset gso_segs. */
  971. int type = skb_shinfo(skb)->gso_type;
  972. if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
  973. !(type & (SKB_GSO_UDP))))
  974. goto out;
  975. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  976. segs = NULL;
  977. goto out;
  978. }
  979. /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
  980. * do checksum of UDP packets sent as multiple IP fragments.
  981. */
  982. offset = skb->csum_start - skb_headroom(skb);
  983. csum = skb_checksum(skb, offset, skb->len- offset, 0);
  984. offset += skb->csum_offset;
  985. *(__sum16 *)(skb->data + offset) = csum_fold(csum);
  986. skb->ip_summed = CHECKSUM_NONE;
  987. /* Check if there is enough headroom to insert fragment header. */
  988. if ((skb_headroom(skb) < frag_hdr_sz) &&
  989. pskb_expand_head(skb, frag_hdr_sz, 0, GFP_ATOMIC))
  990. goto out;
  991. /* Find the unfragmentable header and shift it left by frag_hdr_sz
  992. * bytes to insert fragment header.
  993. */
  994. unfrag_ip6hlen = ip6_find_1stfragopt(skb, &prevhdr);
  995. nexthdr = *prevhdr;
  996. *prevhdr = NEXTHDR_FRAGMENT;
  997. unfrag_len = skb_network_header(skb) - skb_mac_header(skb) +
  998. unfrag_ip6hlen;
  999. mac_start = skb_mac_header(skb);
  1000. memmove(mac_start-frag_hdr_sz, mac_start, unfrag_len);
  1001. skb->mac_header -= frag_hdr_sz;
  1002. skb->network_header -= frag_hdr_sz;
  1003. fptr = (struct frag_hdr *)(skb_network_header(skb) + unfrag_ip6hlen);
  1004. fptr->nexthdr = nexthdr;
  1005. fptr->reserved = 0;
  1006. ipv6_select_ident(fptr);
  1007. /* Fragment the skb. ipv6 header and the remaining fields of the
  1008. * fragment header are updated in ipv6_gso_segment()
  1009. */
  1010. segs = skb_segment(skb, features);
  1011. out:
  1012. return segs;
  1013. }
  1014. static const struct inet6_protocol udpv6_protocol = {
  1015. .handler = udpv6_rcv,
  1016. .err_handler = udpv6_err,
  1017. .gso_send_check = udp6_ufo_send_check,
  1018. .gso_segment = udp6_ufo_fragment,
  1019. .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
  1020. };
  1021. /* ------------------------------------------------------------------------ */
  1022. #ifdef CONFIG_PROC_FS
  1023. static void udp6_sock_seq_show(struct seq_file *seq, struct sock *sp, int bucket)
  1024. {
  1025. struct inet_sock *inet = inet_sk(sp);
  1026. struct ipv6_pinfo *np = inet6_sk(sp);
  1027. struct in6_addr *dest, *src;
  1028. __u16 destp, srcp;
  1029. dest = &np->daddr;
  1030. src = &np->rcv_saddr;
  1031. destp = ntohs(inet->dport);
  1032. srcp = ntohs(inet->sport);
  1033. seq_printf(seq,
  1034. "%4d: %08X%08X%08X%08X:%04X %08X%08X%08X%08X:%04X "
  1035. "%02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d\n",
  1036. bucket,
  1037. src->s6_addr32[0], src->s6_addr32[1],
  1038. src->s6_addr32[2], src->s6_addr32[3], srcp,
  1039. dest->s6_addr32[0], dest->s6_addr32[1],
  1040. dest->s6_addr32[2], dest->s6_addr32[3], destp,
  1041. sp->sk_state,
  1042. sk_wmem_alloc_get(sp),
  1043. sk_rmem_alloc_get(sp),
  1044. 0, 0L, 0,
  1045. sock_i_uid(sp), 0,
  1046. sock_i_ino(sp),
  1047. atomic_read(&sp->sk_refcnt), sp,
  1048. atomic_read(&sp->sk_drops));
  1049. }
  1050. int udp6_seq_show(struct seq_file *seq, void *v)
  1051. {
  1052. if (v == SEQ_START_TOKEN)
  1053. seq_printf(seq,
  1054. " sl "
  1055. "local_address "
  1056. "remote_address "
  1057. "st tx_queue rx_queue tr tm->when retrnsmt"
  1058. " uid timeout inode ref pointer drops\n");
  1059. else
  1060. udp6_sock_seq_show(seq, v, ((struct udp_iter_state *)seq->private)->bucket);
  1061. return 0;
  1062. }
  1063. static struct udp_seq_afinfo udp6_seq_afinfo = {
  1064. .name = "udp6",
  1065. .family = AF_INET6,
  1066. .udp_table = &udp_table,
  1067. .seq_fops = {
  1068. .owner = THIS_MODULE,
  1069. },
  1070. .seq_ops = {
  1071. .show = udp6_seq_show,
  1072. },
  1073. };
  1074. int udp6_proc_init(struct net *net)
  1075. {
  1076. return udp_proc_register(net, &udp6_seq_afinfo);
  1077. }
  1078. void udp6_proc_exit(struct net *net) {
  1079. udp_proc_unregister(net, &udp6_seq_afinfo);
  1080. }
  1081. #endif /* CONFIG_PROC_FS */
  1082. /* ------------------------------------------------------------------------ */
  1083. struct proto udpv6_prot = {
  1084. .name = "UDPv6",
  1085. .owner = THIS_MODULE,
  1086. .close = udp_lib_close,
  1087. .connect = ip6_datagram_connect,
  1088. .disconnect = udp_disconnect,
  1089. .ioctl = udp_ioctl,
  1090. .destroy = udpv6_destroy_sock,
  1091. .setsockopt = udpv6_setsockopt,
  1092. .getsockopt = udpv6_getsockopt,
  1093. .sendmsg = udpv6_sendmsg,
  1094. .recvmsg = udpv6_recvmsg,
  1095. .backlog_rcv = udpv6_queue_rcv_skb,
  1096. .hash = udp_lib_hash,
  1097. .unhash = udp_lib_unhash,
  1098. .get_port = udp_v6_get_port,
  1099. .memory_allocated = &udp_memory_allocated,
  1100. .sysctl_mem = sysctl_udp_mem,
  1101. .sysctl_wmem = &sysctl_udp_wmem_min,
  1102. .sysctl_rmem = &sysctl_udp_rmem_min,
  1103. .obj_size = sizeof(struct udp6_sock),
  1104. .slab_flags = SLAB_DESTROY_BY_RCU,
  1105. .h.udp_table = &udp_table,
  1106. #ifdef CONFIG_COMPAT
  1107. .compat_setsockopt = compat_udpv6_setsockopt,
  1108. .compat_getsockopt = compat_udpv6_getsockopt,
  1109. #endif
  1110. };
  1111. static struct inet_protosw udpv6_protosw = {
  1112. .type = SOCK_DGRAM,
  1113. .protocol = IPPROTO_UDP,
  1114. .prot = &udpv6_prot,
  1115. .ops = &inet6_dgram_ops,
  1116. .capability =-1,
  1117. .no_check = UDP_CSUM_DEFAULT,
  1118. .flags = INET_PROTOSW_PERMANENT,
  1119. };
  1120. int __init udpv6_init(void)
  1121. {
  1122. int ret;
  1123. ret = inet6_add_protocol(&udpv6_protocol, IPPROTO_UDP);
  1124. if (ret)
  1125. goto out;
  1126. ret = inet6_register_protosw(&udpv6_protosw);
  1127. if (ret)
  1128. goto out_udpv6_protocol;
  1129. out:
  1130. return ret;
  1131. out_udpv6_protocol:
  1132. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1133. goto out;
  1134. }
  1135. void udpv6_exit(void)
  1136. {
  1137. inet6_unregister_protosw(&udpv6_protosw);
  1138. inet6_del_protocol(&udpv6_protocol, IPPROTO_UDP);
  1139. }