vmalloc.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/pfn.h>
  26. #include <linux/kmemleak.h>
  27. #include <linux/highmem.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. /*** Page table manipulation functions ***/
  32. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  33. {
  34. pte_t *pte;
  35. pte = pte_offset_kernel(pmd, addr);
  36. do {
  37. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  38. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  39. } while (pte++, addr += PAGE_SIZE, addr != end);
  40. }
  41. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  42. {
  43. pmd_t *pmd;
  44. unsigned long next;
  45. pmd = pmd_offset(pud, addr);
  46. do {
  47. next = pmd_addr_end(addr, end);
  48. if (pmd_none_or_clear_bad(pmd))
  49. continue;
  50. vunmap_pte_range(pmd, addr, next);
  51. } while (pmd++, addr = next, addr != end);
  52. }
  53. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  54. {
  55. pud_t *pud;
  56. unsigned long next;
  57. pud = pud_offset(pgd, addr);
  58. do {
  59. next = pud_addr_end(addr, end);
  60. if (pud_none_or_clear_bad(pud))
  61. continue;
  62. vunmap_pmd_range(pud, addr, next);
  63. } while (pud++, addr = next, addr != end);
  64. }
  65. static void vunmap_page_range(unsigned long addr, unsigned long end)
  66. {
  67. pgd_t *pgd;
  68. unsigned long next;
  69. BUG_ON(addr >= end);
  70. pgd = pgd_offset_k(addr);
  71. do {
  72. next = pgd_addr_end(addr, end);
  73. if (pgd_none_or_clear_bad(pgd))
  74. continue;
  75. vunmap_pud_range(pgd, addr, next);
  76. } while (pgd++, addr = next, addr != end);
  77. }
  78. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  79. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  80. {
  81. pte_t *pte;
  82. /*
  83. * nr is a running index into the array which helps higher level
  84. * callers keep track of where we're up to.
  85. */
  86. pte = pte_alloc_kernel(pmd, addr);
  87. if (!pte)
  88. return -ENOMEM;
  89. do {
  90. struct page *page = pages[*nr];
  91. if (WARN_ON(!pte_none(*pte)))
  92. return -EBUSY;
  93. if (WARN_ON(!page))
  94. return -ENOMEM;
  95. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  96. (*nr)++;
  97. } while (pte++, addr += PAGE_SIZE, addr != end);
  98. return 0;
  99. }
  100. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  101. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  102. {
  103. pmd_t *pmd;
  104. unsigned long next;
  105. pmd = pmd_alloc(&init_mm, pud, addr);
  106. if (!pmd)
  107. return -ENOMEM;
  108. do {
  109. next = pmd_addr_end(addr, end);
  110. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  111. return -ENOMEM;
  112. } while (pmd++, addr = next, addr != end);
  113. return 0;
  114. }
  115. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  116. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  117. {
  118. pud_t *pud;
  119. unsigned long next;
  120. pud = pud_alloc(&init_mm, pgd, addr);
  121. if (!pud)
  122. return -ENOMEM;
  123. do {
  124. next = pud_addr_end(addr, end);
  125. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  126. return -ENOMEM;
  127. } while (pud++, addr = next, addr != end);
  128. return 0;
  129. }
  130. /*
  131. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  132. * will have pfns corresponding to the "pages" array.
  133. *
  134. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  135. */
  136. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  137. pgprot_t prot, struct page **pages)
  138. {
  139. pgd_t *pgd;
  140. unsigned long next;
  141. unsigned long addr = start;
  142. int err = 0;
  143. int nr = 0;
  144. BUG_ON(addr >= end);
  145. pgd = pgd_offset_k(addr);
  146. do {
  147. next = pgd_addr_end(addr, end);
  148. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  149. if (err)
  150. return err;
  151. } while (pgd++, addr = next, addr != end);
  152. return nr;
  153. }
  154. static int vmap_page_range(unsigned long start, unsigned long end,
  155. pgprot_t prot, struct page **pages)
  156. {
  157. int ret;
  158. ret = vmap_page_range_noflush(start, end, prot, pages);
  159. flush_cache_vmap(start, end);
  160. return ret;
  161. }
  162. static inline int is_vmalloc_or_module_addr(const void *x)
  163. {
  164. /*
  165. * ARM, x86-64 and sparc64 put modules in a special place,
  166. * and fall back on vmalloc() if that fails. Others
  167. * just put it in the vmalloc space.
  168. */
  169. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  170. unsigned long addr = (unsigned long)x;
  171. if (addr >= MODULES_VADDR && addr < MODULES_END)
  172. return 1;
  173. #endif
  174. return is_vmalloc_addr(x);
  175. }
  176. /*
  177. * Walk a vmap address to the struct page it maps.
  178. */
  179. struct page *vmalloc_to_page(const void *vmalloc_addr)
  180. {
  181. unsigned long addr = (unsigned long) vmalloc_addr;
  182. struct page *page = NULL;
  183. pgd_t *pgd = pgd_offset_k(addr);
  184. /*
  185. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  186. * architectures that do not vmalloc module space
  187. */
  188. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  189. if (!pgd_none(*pgd)) {
  190. pud_t *pud = pud_offset(pgd, addr);
  191. if (!pud_none(*pud)) {
  192. pmd_t *pmd = pmd_offset(pud, addr);
  193. if (!pmd_none(*pmd)) {
  194. pte_t *ptep, pte;
  195. ptep = pte_offset_map(pmd, addr);
  196. pte = *ptep;
  197. if (pte_present(pte))
  198. page = pte_page(pte);
  199. pte_unmap(ptep);
  200. }
  201. }
  202. }
  203. return page;
  204. }
  205. EXPORT_SYMBOL(vmalloc_to_page);
  206. /*
  207. * Map a vmalloc()-space virtual address to the physical page frame number.
  208. */
  209. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  210. {
  211. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  212. }
  213. EXPORT_SYMBOL(vmalloc_to_pfn);
  214. /*** Global kva allocator ***/
  215. #define VM_LAZY_FREE 0x01
  216. #define VM_LAZY_FREEING 0x02
  217. #define VM_VM_AREA 0x04
  218. struct vmap_area {
  219. unsigned long va_start;
  220. unsigned long va_end;
  221. unsigned long flags;
  222. struct rb_node rb_node; /* address sorted rbtree */
  223. struct list_head list; /* address sorted list */
  224. struct list_head purge_list; /* "lazy purge" list */
  225. void *private;
  226. struct rcu_head rcu_head;
  227. };
  228. static DEFINE_SPINLOCK(vmap_area_lock);
  229. static struct rb_root vmap_area_root = RB_ROOT;
  230. static LIST_HEAD(vmap_area_list);
  231. static unsigned long vmap_area_pcpu_hole;
  232. static struct vmap_area *__find_vmap_area(unsigned long addr)
  233. {
  234. struct rb_node *n = vmap_area_root.rb_node;
  235. while (n) {
  236. struct vmap_area *va;
  237. va = rb_entry(n, struct vmap_area, rb_node);
  238. if (addr < va->va_start)
  239. n = n->rb_left;
  240. else if (addr > va->va_start)
  241. n = n->rb_right;
  242. else
  243. return va;
  244. }
  245. return NULL;
  246. }
  247. static void __insert_vmap_area(struct vmap_area *va)
  248. {
  249. struct rb_node **p = &vmap_area_root.rb_node;
  250. struct rb_node *parent = NULL;
  251. struct rb_node *tmp;
  252. while (*p) {
  253. struct vmap_area *tmp;
  254. parent = *p;
  255. tmp = rb_entry(parent, struct vmap_area, rb_node);
  256. if (va->va_start < tmp->va_end)
  257. p = &(*p)->rb_left;
  258. else if (va->va_end > tmp->va_start)
  259. p = &(*p)->rb_right;
  260. else
  261. BUG();
  262. }
  263. rb_link_node(&va->rb_node, parent, p);
  264. rb_insert_color(&va->rb_node, &vmap_area_root);
  265. /* address-sort this list so it is usable like the vmlist */
  266. tmp = rb_prev(&va->rb_node);
  267. if (tmp) {
  268. struct vmap_area *prev;
  269. prev = rb_entry(tmp, struct vmap_area, rb_node);
  270. list_add_rcu(&va->list, &prev->list);
  271. } else
  272. list_add_rcu(&va->list, &vmap_area_list);
  273. }
  274. static void purge_vmap_area_lazy(void);
  275. /*
  276. * Allocate a region of KVA of the specified size and alignment, within the
  277. * vstart and vend.
  278. */
  279. static struct vmap_area *alloc_vmap_area(unsigned long size,
  280. unsigned long align,
  281. unsigned long vstart, unsigned long vend,
  282. int node, gfp_t gfp_mask)
  283. {
  284. struct vmap_area *va;
  285. struct rb_node *n;
  286. unsigned long addr;
  287. int purged = 0;
  288. BUG_ON(!size);
  289. BUG_ON(size & ~PAGE_MASK);
  290. va = kmalloc_node(sizeof(struct vmap_area),
  291. gfp_mask & GFP_RECLAIM_MASK, node);
  292. if (unlikely(!va))
  293. return ERR_PTR(-ENOMEM);
  294. retry:
  295. addr = ALIGN(vstart, align);
  296. spin_lock(&vmap_area_lock);
  297. if (addr + size - 1 < addr)
  298. goto overflow;
  299. /* XXX: could have a last_hole cache */
  300. n = vmap_area_root.rb_node;
  301. if (n) {
  302. struct vmap_area *first = NULL;
  303. do {
  304. struct vmap_area *tmp;
  305. tmp = rb_entry(n, struct vmap_area, rb_node);
  306. if (tmp->va_end >= addr) {
  307. if (!first && tmp->va_start < addr + size)
  308. first = tmp;
  309. n = n->rb_left;
  310. } else {
  311. first = tmp;
  312. n = n->rb_right;
  313. }
  314. } while (n);
  315. if (!first)
  316. goto found;
  317. if (first->va_end < addr) {
  318. n = rb_next(&first->rb_node);
  319. if (n)
  320. first = rb_entry(n, struct vmap_area, rb_node);
  321. else
  322. goto found;
  323. }
  324. while (addr + size > first->va_start && addr + size <= vend) {
  325. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  326. if (addr + size - 1 < addr)
  327. goto overflow;
  328. n = rb_next(&first->rb_node);
  329. if (n)
  330. first = rb_entry(n, struct vmap_area, rb_node);
  331. else
  332. goto found;
  333. }
  334. }
  335. found:
  336. if (addr + size > vend) {
  337. overflow:
  338. spin_unlock(&vmap_area_lock);
  339. if (!purged) {
  340. purge_vmap_area_lazy();
  341. purged = 1;
  342. goto retry;
  343. }
  344. if (printk_ratelimit())
  345. printk(KERN_WARNING
  346. "vmap allocation for size %lu failed: "
  347. "use vmalloc=<size> to increase size.\n", size);
  348. kfree(va);
  349. return ERR_PTR(-EBUSY);
  350. }
  351. BUG_ON(addr & (align-1));
  352. va->va_start = addr;
  353. va->va_end = addr + size;
  354. va->flags = 0;
  355. __insert_vmap_area(va);
  356. spin_unlock(&vmap_area_lock);
  357. return va;
  358. }
  359. static void rcu_free_va(struct rcu_head *head)
  360. {
  361. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  362. kfree(va);
  363. }
  364. static void __free_vmap_area(struct vmap_area *va)
  365. {
  366. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  367. rb_erase(&va->rb_node, &vmap_area_root);
  368. RB_CLEAR_NODE(&va->rb_node);
  369. list_del_rcu(&va->list);
  370. /*
  371. * Track the highest possible candidate for pcpu area
  372. * allocation. Areas outside of vmalloc area can be returned
  373. * here too, consider only end addresses which fall inside
  374. * vmalloc area proper.
  375. */
  376. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  377. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  378. call_rcu(&va->rcu_head, rcu_free_va);
  379. }
  380. /*
  381. * Free a region of KVA allocated by alloc_vmap_area
  382. */
  383. static void free_vmap_area(struct vmap_area *va)
  384. {
  385. spin_lock(&vmap_area_lock);
  386. __free_vmap_area(va);
  387. spin_unlock(&vmap_area_lock);
  388. }
  389. /*
  390. * Clear the pagetable entries of a given vmap_area
  391. */
  392. static void unmap_vmap_area(struct vmap_area *va)
  393. {
  394. vunmap_page_range(va->va_start, va->va_end);
  395. }
  396. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  397. {
  398. /*
  399. * Unmap page tables and force a TLB flush immediately if
  400. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  401. * bugs similarly to those in linear kernel virtual address
  402. * space after a page has been freed.
  403. *
  404. * All the lazy freeing logic is still retained, in order to
  405. * minimise intrusiveness of this debugging feature.
  406. *
  407. * This is going to be *slow* (linear kernel virtual address
  408. * debugging doesn't do a broadcast TLB flush so it is a lot
  409. * faster).
  410. */
  411. #ifdef CONFIG_DEBUG_PAGEALLOC
  412. vunmap_page_range(start, end);
  413. flush_tlb_kernel_range(start, end);
  414. #endif
  415. }
  416. /*
  417. * lazy_max_pages is the maximum amount of virtual address space we gather up
  418. * before attempting to purge with a TLB flush.
  419. *
  420. * There is a tradeoff here: a larger number will cover more kernel page tables
  421. * and take slightly longer to purge, but it will linearly reduce the number of
  422. * global TLB flushes that must be performed. It would seem natural to scale
  423. * this number up linearly with the number of CPUs (because vmapping activity
  424. * could also scale linearly with the number of CPUs), however it is likely
  425. * that in practice, workloads might be constrained in other ways that mean
  426. * vmap activity will not scale linearly with CPUs. Also, I want to be
  427. * conservative and not introduce a big latency on huge systems, so go with
  428. * a less aggressive log scale. It will still be an improvement over the old
  429. * code, and it will be simple to change the scale factor if we find that it
  430. * becomes a problem on bigger systems.
  431. */
  432. static unsigned long lazy_max_pages(void)
  433. {
  434. unsigned int log;
  435. log = fls(num_online_cpus());
  436. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  437. }
  438. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  439. /*
  440. * Purges all lazily-freed vmap areas.
  441. *
  442. * If sync is 0 then don't purge if there is already a purge in progress.
  443. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  444. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  445. * their own TLB flushing).
  446. * Returns with *start = min(*start, lowest purged address)
  447. * *end = max(*end, highest purged address)
  448. */
  449. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  450. int sync, int force_flush)
  451. {
  452. static DEFINE_SPINLOCK(purge_lock);
  453. LIST_HEAD(valist);
  454. struct vmap_area *va;
  455. struct vmap_area *n_va;
  456. int nr = 0;
  457. /*
  458. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  459. * should not expect such behaviour. This just simplifies locking for
  460. * the case that isn't actually used at the moment anyway.
  461. */
  462. if (!sync && !force_flush) {
  463. if (!spin_trylock(&purge_lock))
  464. return;
  465. } else
  466. spin_lock(&purge_lock);
  467. rcu_read_lock();
  468. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  469. if (va->flags & VM_LAZY_FREE) {
  470. if (va->va_start < *start)
  471. *start = va->va_start;
  472. if (va->va_end > *end)
  473. *end = va->va_end;
  474. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  475. unmap_vmap_area(va);
  476. list_add_tail(&va->purge_list, &valist);
  477. va->flags |= VM_LAZY_FREEING;
  478. va->flags &= ~VM_LAZY_FREE;
  479. }
  480. }
  481. rcu_read_unlock();
  482. if (nr) {
  483. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  484. atomic_sub(nr, &vmap_lazy_nr);
  485. }
  486. if (nr || force_flush)
  487. flush_tlb_kernel_range(*start, *end);
  488. if (nr) {
  489. spin_lock(&vmap_area_lock);
  490. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  491. __free_vmap_area(va);
  492. spin_unlock(&vmap_area_lock);
  493. }
  494. spin_unlock(&purge_lock);
  495. }
  496. /*
  497. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  498. * is already purging.
  499. */
  500. static void try_purge_vmap_area_lazy(void)
  501. {
  502. unsigned long start = ULONG_MAX, end = 0;
  503. __purge_vmap_area_lazy(&start, &end, 0, 0);
  504. }
  505. /*
  506. * Kick off a purge of the outstanding lazy areas.
  507. */
  508. static void purge_vmap_area_lazy(void)
  509. {
  510. unsigned long start = ULONG_MAX, end = 0;
  511. __purge_vmap_area_lazy(&start, &end, 1, 0);
  512. }
  513. /*
  514. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  515. * called for the correct range previously.
  516. */
  517. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  518. {
  519. va->flags |= VM_LAZY_FREE;
  520. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  521. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  522. try_purge_vmap_area_lazy();
  523. }
  524. /*
  525. * Free and unmap a vmap area
  526. */
  527. static void free_unmap_vmap_area(struct vmap_area *va)
  528. {
  529. flush_cache_vunmap(va->va_start, va->va_end);
  530. free_unmap_vmap_area_noflush(va);
  531. }
  532. static struct vmap_area *find_vmap_area(unsigned long addr)
  533. {
  534. struct vmap_area *va;
  535. spin_lock(&vmap_area_lock);
  536. va = __find_vmap_area(addr);
  537. spin_unlock(&vmap_area_lock);
  538. return va;
  539. }
  540. static void free_unmap_vmap_area_addr(unsigned long addr)
  541. {
  542. struct vmap_area *va;
  543. va = find_vmap_area(addr);
  544. BUG_ON(!va);
  545. free_unmap_vmap_area(va);
  546. }
  547. /*** Per cpu kva allocator ***/
  548. /*
  549. * vmap space is limited especially on 32 bit architectures. Ensure there is
  550. * room for at least 16 percpu vmap blocks per CPU.
  551. */
  552. /*
  553. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  554. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  555. * instead (we just need a rough idea)
  556. */
  557. #if BITS_PER_LONG == 32
  558. #define VMALLOC_SPACE (128UL*1024*1024)
  559. #else
  560. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  561. #endif
  562. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  563. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  564. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  565. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  566. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  567. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  568. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  569. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  570. VMALLOC_PAGES / NR_CPUS / 16))
  571. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  572. static bool vmap_initialized __read_mostly = false;
  573. struct vmap_block_queue {
  574. spinlock_t lock;
  575. struct list_head free;
  576. struct list_head dirty;
  577. unsigned int nr_dirty;
  578. };
  579. struct vmap_block {
  580. spinlock_t lock;
  581. struct vmap_area *va;
  582. struct vmap_block_queue *vbq;
  583. unsigned long free, dirty;
  584. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  585. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  586. union {
  587. struct list_head free_list;
  588. struct rcu_head rcu_head;
  589. };
  590. };
  591. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  592. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  593. /*
  594. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  595. * in the free path. Could get rid of this if we change the API to return a
  596. * "cookie" from alloc, to be passed to free. But no big deal yet.
  597. */
  598. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  599. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  600. /*
  601. * We should probably have a fallback mechanism to allocate virtual memory
  602. * out of partially filled vmap blocks. However vmap block sizing should be
  603. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  604. * big problem.
  605. */
  606. static unsigned long addr_to_vb_idx(unsigned long addr)
  607. {
  608. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  609. addr /= VMAP_BLOCK_SIZE;
  610. return addr;
  611. }
  612. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  613. {
  614. struct vmap_block_queue *vbq;
  615. struct vmap_block *vb;
  616. struct vmap_area *va;
  617. unsigned long vb_idx;
  618. int node, err;
  619. node = numa_node_id();
  620. vb = kmalloc_node(sizeof(struct vmap_block),
  621. gfp_mask & GFP_RECLAIM_MASK, node);
  622. if (unlikely(!vb))
  623. return ERR_PTR(-ENOMEM);
  624. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  625. VMALLOC_START, VMALLOC_END,
  626. node, gfp_mask);
  627. if (unlikely(IS_ERR(va))) {
  628. kfree(vb);
  629. return ERR_PTR(PTR_ERR(va));
  630. }
  631. err = radix_tree_preload(gfp_mask);
  632. if (unlikely(err)) {
  633. kfree(vb);
  634. free_vmap_area(va);
  635. return ERR_PTR(err);
  636. }
  637. spin_lock_init(&vb->lock);
  638. vb->va = va;
  639. vb->free = VMAP_BBMAP_BITS;
  640. vb->dirty = 0;
  641. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  642. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  643. INIT_LIST_HEAD(&vb->free_list);
  644. vb_idx = addr_to_vb_idx(va->va_start);
  645. spin_lock(&vmap_block_tree_lock);
  646. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  647. spin_unlock(&vmap_block_tree_lock);
  648. BUG_ON(err);
  649. radix_tree_preload_end();
  650. vbq = &get_cpu_var(vmap_block_queue);
  651. vb->vbq = vbq;
  652. spin_lock(&vbq->lock);
  653. list_add(&vb->free_list, &vbq->free);
  654. spin_unlock(&vbq->lock);
  655. put_cpu_var(vmap_cpu_blocks);
  656. return vb;
  657. }
  658. static void rcu_free_vb(struct rcu_head *head)
  659. {
  660. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  661. kfree(vb);
  662. }
  663. static void free_vmap_block(struct vmap_block *vb)
  664. {
  665. struct vmap_block *tmp;
  666. unsigned long vb_idx;
  667. BUG_ON(!list_empty(&vb->free_list));
  668. vb_idx = addr_to_vb_idx(vb->va->va_start);
  669. spin_lock(&vmap_block_tree_lock);
  670. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  671. spin_unlock(&vmap_block_tree_lock);
  672. BUG_ON(tmp != vb);
  673. free_unmap_vmap_area_noflush(vb->va);
  674. call_rcu(&vb->rcu_head, rcu_free_vb);
  675. }
  676. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  677. {
  678. struct vmap_block_queue *vbq;
  679. struct vmap_block *vb;
  680. unsigned long addr = 0;
  681. unsigned int order;
  682. BUG_ON(size & ~PAGE_MASK);
  683. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  684. order = get_order(size);
  685. again:
  686. rcu_read_lock();
  687. vbq = &get_cpu_var(vmap_block_queue);
  688. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  689. int i;
  690. spin_lock(&vb->lock);
  691. i = bitmap_find_free_region(vb->alloc_map,
  692. VMAP_BBMAP_BITS, order);
  693. if (i >= 0) {
  694. addr = vb->va->va_start + (i << PAGE_SHIFT);
  695. BUG_ON(addr_to_vb_idx(addr) !=
  696. addr_to_vb_idx(vb->va->va_start));
  697. vb->free -= 1UL << order;
  698. if (vb->free == 0) {
  699. spin_lock(&vbq->lock);
  700. list_del_init(&vb->free_list);
  701. spin_unlock(&vbq->lock);
  702. }
  703. spin_unlock(&vb->lock);
  704. break;
  705. }
  706. spin_unlock(&vb->lock);
  707. }
  708. put_cpu_var(vmap_cpu_blocks);
  709. rcu_read_unlock();
  710. if (!addr) {
  711. vb = new_vmap_block(gfp_mask);
  712. if (IS_ERR(vb))
  713. return vb;
  714. goto again;
  715. }
  716. return (void *)addr;
  717. }
  718. static void vb_free(const void *addr, unsigned long size)
  719. {
  720. unsigned long offset;
  721. unsigned long vb_idx;
  722. unsigned int order;
  723. struct vmap_block *vb;
  724. BUG_ON(size & ~PAGE_MASK);
  725. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  726. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  727. order = get_order(size);
  728. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  729. vb_idx = addr_to_vb_idx((unsigned long)addr);
  730. rcu_read_lock();
  731. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  732. rcu_read_unlock();
  733. BUG_ON(!vb);
  734. spin_lock(&vb->lock);
  735. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  736. vb->dirty += 1UL << order;
  737. if (vb->dirty == VMAP_BBMAP_BITS) {
  738. BUG_ON(vb->free || !list_empty(&vb->free_list));
  739. spin_unlock(&vb->lock);
  740. free_vmap_block(vb);
  741. } else
  742. spin_unlock(&vb->lock);
  743. }
  744. /**
  745. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  746. *
  747. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  748. * to amortize TLB flushing overheads. What this means is that any page you
  749. * have now, may, in a former life, have been mapped into kernel virtual
  750. * address by the vmap layer and so there might be some CPUs with TLB entries
  751. * still referencing that page (additional to the regular 1:1 kernel mapping).
  752. *
  753. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  754. * be sure that none of the pages we have control over will have any aliases
  755. * from the vmap layer.
  756. */
  757. void vm_unmap_aliases(void)
  758. {
  759. unsigned long start = ULONG_MAX, end = 0;
  760. int cpu;
  761. int flush = 0;
  762. if (unlikely(!vmap_initialized))
  763. return;
  764. for_each_possible_cpu(cpu) {
  765. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  766. struct vmap_block *vb;
  767. rcu_read_lock();
  768. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  769. int i;
  770. spin_lock(&vb->lock);
  771. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  772. while (i < VMAP_BBMAP_BITS) {
  773. unsigned long s, e;
  774. int j;
  775. j = find_next_zero_bit(vb->dirty_map,
  776. VMAP_BBMAP_BITS, i);
  777. s = vb->va->va_start + (i << PAGE_SHIFT);
  778. e = vb->va->va_start + (j << PAGE_SHIFT);
  779. vunmap_page_range(s, e);
  780. flush = 1;
  781. if (s < start)
  782. start = s;
  783. if (e > end)
  784. end = e;
  785. i = j;
  786. i = find_next_bit(vb->dirty_map,
  787. VMAP_BBMAP_BITS, i);
  788. }
  789. spin_unlock(&vb->lock);
  790. }
  791. rcu_read_unlock();
  792. }
  793. __purge_vmap_area_lazy(&start, &end, 1, flush);
  794. }
  795. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  796. /**
  797. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  798. * @mem: the pointer returned by vm_map_ram
  799. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  800. */
  801. void vm_unmap_ram(const void *mem, unsigned int count)
  802. {
  803. unsigned long size = count << PAGE_SHIFT;
  804. unsigned long addr = (unsigned long)mem;
  805. BUG_ON(!addr);
  806. BUG_ON(addr < VMALLOC_START);
  807. BUG_ON(addr > VMALLOC_END);
  808. BUG_ON(addr & (PAGE_SIZE-1));
  809. debug_check_no_locks_freed(mem, size);
  810. vmap_debug_free_range(addr, addr+size);
  811. if (likely(count <= VMAP_MAX_ALLOC))
  812. vb_free(mem, size);
  813. else
  814. free_unmap_vmap_area_addr(addr);
  815. }
  816. EXPORT_SYMBOL(vm_unmap_ram);
  817. /**
  818. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  819. * @pages: an array of pointers to the pages to be mapped
  820. * @count: number of pages
  821. * @node: prefer to allocate data structures on this node
  822. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  823. *
  824. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  825. */
  826. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  827. {
  828. unsigned long size = count << PAGE_SHIFT;
  829. unsigned long addr;
  830. void *mem;
  831. if (likely(count <= VMAP_MAX_ALLOC)) {
  832. mem = vb_alloc(size, GFP_KERNEL);
  833. if (IS_ERR(mem))
  834. return NULL;
  835. addr = (unsigned long)mem;
  836. } else {
  837. struct vmap_area *va;
  838. va = alloc_vmap_area(size, PAGE_SIZE,
  839. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  840. if (IS_ERR(va))
  841. return NULL;
  842. addr = va->va_start;
  843. mem = (void *)addr;
  844. }
  845. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  846. vm_unmap_ram(mem, count);
  847. return NULL;
  848. }
  849. return mem;
  850. }
  851. EXPORT_SYMBOL(vm_map_ram);
  852. /**
  853. * vm_area_register_early - register vmap area early during boot
  854. * @vm: vm_struct to register
  855. * @align: requested alignment
  856. *
  857. * This function is used to register kernel vm area before
  858. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  859. * proper values on entry and other fields should be zero. On return,
  860. * vm->addr contains the allocated address.
  861. *
  862. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  863. */
  864. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  865. {
  866. static size_t vm_init_off __initdata;
  867. unsigned long addr;
  868. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  869. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  870. vm->addr = (void *)addr;
  871. vm->next = vmlist;
  872. vmlist = vm;
  873. }
  874. void __init vmalloc_init(void)
  875. {
  876. struct vmap_area *va;
  877. struct vm_struct *tmp;
  878. int i;
  879. for_each_possible_cpu(i) {
  880. struct vmap_block_queue *vbq;
  881. vbq = &per_cpu(vmap_block_queue, i);
  882. spin_lock_init(&vbq->lock);
  883. INIT_LIST_HEAD(&vbq->free);
  884. INIT_LIST_HEAD(&vbq->dirty);
  885. vbq->nr_dirty = 0;
  886. }
  887. /* Import existing vmlist entries. */
  888. for (tmp = vmlist; tmp; tmp = tmp->next) {
  889. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  890. va->flags = tmp->flags | VM_VM_AREA;
  891. va->va_start = (unsigned long)tmp->addr;
  892. va->va_end = va->va_start + tmp->size;
  893. __insert_vmap_area(va);
  894. }
  895. vmap_area_pcpu_hole = VMALLOC_END;
  896. vmap_initialized = true;
  897. }
  898. /**
  899. * map_kernel_range_noflush - map kernel VM area with the specified pages
  900. * @addr: start of the VM area to map
  901. * @size: size of the VM area to map
  902. * @prot: page protection flags to use
  903. * @pages: pages to map
  904. *
  905. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  906. * specify should have been allocated using get_vm_area() and its
  907. * friends.
  908. *
  909. * NOTE:
  910. * This function does NOT do any cache flushing. The caller is
  911. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  912. * before calling this function.
  913. *
  914. * RETURNS:
  915. * The number of pages mapped on success, -errno on failure.
  916. */
  917. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  918. pgprot_t prot, struct page **pages)
  919. {
  920. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  921. }
  922. /**
  923. * unmap_kernel_range_noflush - unmap kernel VM area
  924. * @addr: start of the VM area to unmap
  925. * @size: size of the VM area to unmap
  926. *
  927. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  928. * specify should have been allocated using get_vm_area() and its
  929. * friends.
  930. *
  931. * NOTE:
  932. * This function does NOT do any cache flushing. The caller is
  933. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  934. * before calling this function and flush_tlb_kernel_range() after.
  935. */
  936. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  937. {
  938. vunmap_page_range(addr, addr + size);
  939. }
  940. /**
  941. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  942. * @addr: start of the VM area to unmap
  943. * @size: size of the VM area to unmap
  944. *
  945. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  946. * the unmapping and tlb after.
  947. */
  948. void unmap_kernel_range(unsigned long addr, unsigned long size)
  949. {
  950. unsigned long end = addr + size;
  951. flush_cache_vunmap(addr, end);
  952. vunmap_page_range(addr, end);
  953. flush_tlb_kernel_range(addr, end);
  954. }
  955. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  956. {
  957. unsigned long addr = (unsigned long)area->addr;
  958. unsigned long end = addr + area->size - PAGE_SIZE;
  959. int err;
  960. err = vmap_page_range(addr, end, prot, *pages);
  961. if (err > 0) {
  962. *pages += err;
  963. err = 0;
  964. }
  965. return err;
  966. }
  967. EXPORT_SYMBOL_GPL(map_vm_area);
  968. /*** Old vmalloc interfaces ***/
  969. DEFINE_RWLOCK(vmlist_lock);
  970. struct vm_struct *vmlist;
  971. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  972. unsigned long flags, void *caller)
  973. {
  974. struct vm_struct *tmp, **p;
  975. vm->flags = flags;
  976. vm->addr = (void *)va->va_start;
  977. vm->size = va->va_end - va->va_start;
  978. vm->caller = caller;
  979. va->private = vm;
  980. va->flags |= VM_VM_AREA;
  981. write_lock(&vmlist_lock);
  982. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  983. if (tmp->addr >= vm->addr)
  984. break;
  985. }
  986. vm->next = *p;
  987. *p = vm;
  988. write_unlock(&vmlist_lock);
  989. }
  990. static struct vm_struct *__get_vm_area_node(unsigned long size,
  991. unsigned long flags, unsigned long start, unsigned long end,
  992. int node, gfp_t gfp_mask, void *caller)
  993. {
  994. static struct vmap_area *va;
  995. struct vm_struct *area;
  996. unsigned long align = 1;
  997. BUG_ON(in_interrupt());
  998. if (flags & VM_IOREMAP) {
  999. int bit = fls(size);
  1000. if (bit > IOREMAP_MAX_ORDER)
  1001. bit = IOREMAP_MAX_ORDER;
  1002. else if (bit < PAGE_SHIFT)
  1003. bit = PAGE_SHIFT;
  1004. align = 1ul << bit;
  1005. }
  1006. size = PAGE_ALIGN(size);
  1007. if (unlikely(!size))
  1008. return NULL;
  1009. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1010. if (unlikely(!area))
  1011. return NULL;
  1012. /*
  1013. * We always allocate a guard page.
  1014. */
  1015. size += PAGE_SIZE;
  1016. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1017. if (IS_ERR(va)) {
  1018. kfree(area);
  1019. return NULL;
  1020. }
  1021. insert_vmalloc_vm(area, va, flags, caller);
  1022. return area;
  1023. }
  1024. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1025. unsigned long start, unsigned long end)
  1026. {
  1027. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1028. __builtin_return_address(0));
  1029. }
  1030. EXPORT_SYMBOL_GPL(__get_vm_area);
  1031. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1032. unsigned long start, unsigned long end,
  1033. void *caller)
  1034. {
  1035. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1036. caller);
  1037. }
  1038. /**
  1039. * get_vm_area - reserve a contiguous kernel virtual area
  1040. * @size: size of the area
  1041. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1042. *
  1043. * Search an area of @size in the kernel virtual mapping area,
  1044. * and reserved it for out purposes. Returns the area descriptor
  1045. * on success or %NULL on failure.
  1046. */
  1047. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1048. {
  1049. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1050. -1, GFP_KERNEL, __builtin_return_address(0));
  1051. }
  1052. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1053. void *caller)
  1054. {
  1055. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1056. -1, GFP_KERNEL, caller);
  1057. }
  1058. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1059. int node, gfp_t gfp_mask)
  1060. {
  1061. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  1062. gfp_mask, __builtin_return_address(0));
  1063. }
  1064. static struct vm_struct *find_vm_area(const void *addr)
  1065. {
  1066. struct vmap_area *va;
  1067. va = find_vmap_area((unsigned long)addr);
  1068. if (va && va->flags & VM_VM_AREA)
  1069. return va->private;
  1070. return NULL;
  1071. }
  1072. /**
  1073. * remove_vm_area - find and remove a continuous kernel virtual area
  1074. * @addr: base address
  1075. *
  1076. * Search for the kernel VM area starting at @addr, and remove it.
  1077. * This function returns the found VM area, but using it is NOT safe
  1078. * on SMP machines, except for its size or flags.
  1079. */
  1080. struct vm_struct *remove_vm_area(const void *addr)
  1081. {
  1082. struct vmap_area *va;
  1083. va = find_vmap_area((unsigned long)addr);
  1084. if (va && va->flags & VM_VM_AREA) {
  1085. struct vm_struct *vm = va->private;
  1086. struct vm_struct *tmp, **p;
  1087. /*
  1088. * remove from list and disallow access to this vm_struct
  1089. * before unmap. (address range confliction is maintained by
  1090. * vmap.)
  1091. */
  1092. write_lock(&vmlist_lock);
  1093. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1094. ;
  1095. *p = tmp->next;
  1096. write_unlock(&vmlist_lock);
  1097. vmap_debug_free_range(va->va_start, va->va_end);
  1098. free_unmap_vmap_area(va);
  1099. vm->size -= PAGE_SIZE;
  1100. return vm;
  1101. }
  1102. return NULL;
  1103. }
  1104. static void __vunmap(const void *addr, int deallocate_pages)
  1105. {
  1106. struct vm_struct *area;
  1107. if (!addr)
  1108. return;
  1109. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1110. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1111. return;
  1112. }
  1113. area = remove_vm_area(addr);
  1114. if (unlikely(!area)) {
  1115. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1116. addr);
  1117. return;
  1118. }
  1119. debug_check_no_locks_freed(addr, area->size);
  1120. debug_check_no_obj_freed(addr, area->size);
  1121. if (deallocate_pages) {
  1122. int i;
  1123. for (i = 0; i < area->nr_pages; i++) {
  1124. struct page *page = area->pages[i];
  1125. BUG_ON(!page);
  1126. __free_page(page);
  1127. }
  1128. if (area->flags & VM_VPAGES)
  1129. vfree(area->pages);
  1130. else
  1131. kfree(area->pages);
  1132. }
  1133. kfree(area);
  1134. return;
  1135. }
  1136. /**
  1137. * vfree - release memory allocated by vmalloc()
  1138. * @addr: memory base address
  1139. *
  1140. * Free the virtually continuous memory area starting at @addr, as
  1141. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1142. * NULL, no operation is performed.
  1143. *
  1144. * Must not be called in interrupt context.
  1145. */
  1146. void vfree(const void *addr)
  1147. {
  1148. BUG_ON(in_interrupt());
  1149. kmemleak_free(addr);
  1150. __vunmap(addr, 1);
  1151. }
  1152. EXPORT_SYMBOL(vfree);
  1153. /**
  1154. * vunmap - release virtual mapping obtained by vmap()
  1155. * @addr: memory base address
  1156. *
  1157. * Free the virtually contiguous memory area starting at @addr,
  1158. * which was created from the page array passed to vmap().
  1159. *
  1160. * Must not be called in interrupt context.
  1161. */
  1162. void vunmap(const void *addr)
  1163. {
  1164. BUG_ON(in_interrupt());
  1165. might_sleep();
  1166. __vunmap(addr, 0);
  1167. }
  1168. EXPORT_SYMBOL(vunmap);
  1169. /**
  1170. * vmap - map an array of pages into virtually contiguous space
  1171. * @pages: array of page pointers
  1172. * @count: number of pages to map
  1173. * @flags: vm_area->flags
  1174. * @prot: page protection for the mapping
  1175. *
  1176. * Maps @count pages from @pages into contiguous kernel virtual
  1177. * space.
  1178. */
  1179. void *vmap(struct page **pages, unsigned int count,
  1180. unsigned long flags, pgprot_t prot)
  1181. {
  1182. struct vm_struct *area;
  1183. might_sleep();
  1184. if (count > totalram_pages)
  1185. return NULL;
  1186. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1187. __builtin_return_address(0));
  1188. if (!area)
  1189. return NULL;
  1190. if (map_vm_area(area, prot, &pages)) {
  1191. vunmap(area->addr);
  1192. return NULL;
  1193. }
  1194. return area->addr;
  1195. }
  1196. EXPORT_SYMBOL(vmap);
  1197. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1198. int node, void *caller);
  1199. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1200. pgprot_t prot, int node, void *caller)
  1201. {
  1202. struct page **pages;
  1203. unsigned int nr_pages, array_size, i;
  1204. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1205. array_size = (nr_pages * sizeof(struct page *));
  1206. area->nr_pages = nr_pages;
  1207. /* Please note that the recursion is strictly bounded. */
  1208. if (array_size > PAGE_SIZE) {
  1209. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1210. PAGE_KERNEL, node, caller);
  1211. area->flags |= VM_VPAGES;
  1212. } else {
  1213. pages = kmalloc_node(array_size,
  1214. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1215. node);
  1216. }
  1217. area->pages = pages;
  1218. area->caller = caller;
  1219. if (!area->pages) {
  1220. remove_vm_area(area->addr);
  1221. kfree(area);
  1222. return NULL;
  1223. }
  1224. for (i = 0; i < area->nr_pages; i++) {
  1225. struct page *page;
  1226. if (node < 0)
  1227. page = alloc_page(gfp_mask);
  1228. else
  1229. page = alloc_pages_node(node, gfp_mask, 0);
  1230. if (unlikely(!page)) {
  1231. /* Successfully allocated i pages, free them in __vunmap() */
  1232. area->nr_pages = i;
  1233. goto fail;
  1234. }
  1235. area->pages[i] = page;
  1236. }
  1237. if (map_vm_area(area, prot, &pages))
  1238. goto fail;
  1239. return area->addr;
  1240. fail:
  1241. vfree(area->addr);
  1242. return NULL;
  1243. }
  1244. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1245. {
  1246. void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
  1247. __builtin_return_address(0));
  1248. /*
  1249. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1250. * structures allocated in the __get_vm_area_node() function contain
  1251. * references to the virtual address of the vmalloc'ed block.
  1252. */
  1253. kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
  1254. return addr;
  1255. }
  1256. /**
  1257. * __vmalloc_node - allocate virtually contiguous memory
  1258. * @size: allocation size
  1259. * @gfp_mask: flags for the page level allocator
  1260. * @prot: protection mask for the allocated pages
  1261. * @node: node to use for allocation or -1
  1262. * @caller: caller's return address
  1263. *
  1264. * Allocate enough pages to cover @size from the page level
  1265. * allocator with @gfp_mask flags. Map them into contiguous
  1266. * kernel virtual space, using a pagetable protection of @prot.
  1267. */
  1268. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1269. int node, void *caller)
  1270. {
  1271. struct vm_struct *area;
  1272. void *addr;
  1273. unsigned long real_size = size;
  1274. size = PAGE_ALIGN(size);
  1275. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1276. return NULL;
  1277. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1278. node, gfp_mask, caller);
  1279. if (!area)
  1280. return NULL;
  1281. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1282. /*
  1283. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1284. * structures allocated in the __get_vm_area_node() function contain
  1285. * references to the virtual address of the vmalloc'ed block.
  1286. */
  1287. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1288. return addr;
  1289. }
  1290. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1291. {
  1292. return __vmalloc_node(size, gfp_mask, prot, -1,
  1293. __builtin_return_address(0));
  1294. }
  1295. EXPORT_SYMBOL(__vmalloc);
  1296. /**
  1297. * vmalloc - allocate virtually contiguous memory
  1298. * @size: allocation size
  1299. * Allocate enough pages to cover @size from the page level
  1300. * allocator and map them into contiguous kernel virtual space.
  1301. *
  1302. * For tight control over page level allocator and protection flags
  1303. * use __vmalloc() instead.
  1304. */
  1305. void *vmalloc(unsigned long size)
  1306. {
  1307. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1308. -1, __builtin_return_address(0));
  1309. }
  1310. EXPORT_SYMBOL(vmalloc);
  1311. /**
  1312. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1313. * @size: allocation size
  1314. *
  1315. * The resulting memory area is zeroed so it can be mapped to userspace
  1316. * without leaking data.
  1317. */
  1318. void *vmalloc_user(unsigned long size)
  1319. {
  1320. struct vm_struct *area;
  1321. void *ret;
  1322. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1323. PAGE_KERNEL, -1, __builtin_return_address(0));
  1324. if (ret) {
  1325. area = find_vm_area(ret);
  1326. area->flags |= VM_USERMAP;
  1327. }
  1328. return ret;
  1329. }
  1330. EXPORT_SYMBOL(vmalloc_user);
  1331. /**
  1332. * vmalloc_node - allocate memory on a specific node
  1333. * @size: allocation size
  1334. * @node: numa node
  1335. *
  1336. * Allocate enough pages to cover @size from the page level
  1337. * allocator and map them into contiguous kernel virtual space.
  1338. *
  1339. * For tight control over page level allocator and protection flags
  1340. * use __vmalloc() instead.
  1341. */
  1342. void *vmalloc_node(unsigned long size, int node)
  1343. {
  1344. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1345. node, __builtin_return_address(0));
  1346. }
  1347. EXPORT_SYMBOL(vmalloc_node);
  1348. #ifndef PAGE_KERNEL_EXEC
  1349. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1350. #endif
  1351. /**
  1352. * vmalloc_exec - allocate virtually contiguous, executable memory
  1353. * @size: allocation size
  1354. *
  1355. * Kernel-internal function to allocate enough pages to cover @size
  1356. * the page level allocator and map them into contiguous and
  1357. * executable kernel virtual space.
  1358. *
  1359. * For tight control over page level allocator and protection flags
  1360. * use __vmalloc() instead.
  1361. */
  1362. void *vmalloc_exec(unsigned long size)
  1363. {
  1364. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1365. -1, __builtin_return_address(0));
  1366. }
  1367. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1368. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1369. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1370. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1371. #else
  1372. #define GFP_VMALLOC32 GFP_KERNEL
  1373. #endif
  1374. /**
  1375. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1376. * @size: allocation size
  1377. *
  1378. * Allocate enough 32bit PA addressable pages to cover @size from the
  1379. * page level allocator and map them into contiguous kernel virtual space.
  1380. */
  1381. void *vmalloc_32(unsigned long size)
  1382. {
  1383. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1384. -1, __builtin_return_address(0));
  1385. }
  1386. EXPORT_SYMBOL(vmalloc_32);
  1387. /**
  1388. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1389. * @size: allocation size
  1390. *
  1391. * The resulting memory area is 32bit addressable and zeroed so it can be
  1392. * mapped to userspace without leaking data.
  1393. */
  1394. void *vmalloc_32_user(unsigned long size)
  1395. {
  1396. struct vm_struct *area;
  1397. void *ret;
  1398. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1399. -1, __builtin_return_address(0));
  1400. if (ret) {
  1401. area = find_vm_area(ret);
  1402. area->flags |= VM_USERMAP;
  1403. }
  1404. return ret;
  1405. }
  1406. EXPORT_SYMBOL(vmalloc_32_user);
  1407. /*
  1408. * small helper routine , copy contents to buf from addr.
  1409. * If the page is not present, fill zero.
  1410. */
  1411. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1412. {
  1413. struct page *p;
  1414. int copied = 0;
  1415. while (count) {
  1416. unsigned long offset, length;
  1417. offset = (unsigned long)addr & ~PAGE_MASK;
  1418. length = PAGE_SIZE - offset;
  1419. if (length > count)
  1420. length = count;
  1421. p = vmalloc_to_page(addr);
  1422. /*
  1423. * To do safe access to this _mapped_ area, we need
  1424. * lock. But adding lock here means that we need to add
  1425. * overhead of vmalloc()/vfree() calles for this _debug_
  1426. * interface, rarely used. Instead of that, we'll use
  1427. * kmap() and get small overhead in this access function.
  1428. */
  1429. if (p) {
  1430. /*
  1431. * we can expect USER0 is not used (see vread/vwrite's
  1432. * function description)
  1433. */
  1434. void *map = kmap_atomic(p, KM_USER0);
  1435. memcpy(buf, map + offset, length);
  1436. kunmap_atomic(map, KM_USER0);
  1437. } else
  1438. memset(buf, 0, length);
  1439. addr += length;
  1440. buf += length;
  1441. copied += length;
  1442. count -= length;
  1443. }
  1444. return copied;
  1445. }
  1446. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1447. {
  1448. struct page *p;
  1449. int copied = 0;
  1450. while (count) {
  1451. unsigned long offset, length;
  1452. offset = (unsigned long)addr & ~PAGE_MASK;
  1453. length = PAGE_SIZE - offset;
  1454. if (length > count)
  1455. length = count;
  1456. p = vmalloc_to_page(addr);
  1457. /*
  1458. * To do safe access to this _mapped_ area, we need
  1459. * lock. But adding lock here means that we need to add
  1460. * overhead of vmalloc()/vfree() calles for this _debug_
  1461. * interface, rarely used. Instead of that, we'll use
  1462. * kmap() and get small overhead in this access function.
  1463. */
  1464. if (p) {
  1465. /*
  1466. * we can expect USER0 is not used (see vread/vwrite's
  1467. * function description)
  1468. */
  1469. void *map = kmap_atomic(p, KM_USER0);
  1470. memcpy(map + offset, buf, length);
  1471. kunmap_atomic(map, KM_USER0);
  1472. }
  1473. addr += length;
  1474. buf += length;
  1475. copied += length;
  1476. count -= length;
  1477. }
  1478. return copied;
  1479. }
  1480. /**
  1481. * vread() - read vmalloc area in a safe way.
  1482. * @buf: buffer for reading data
  1483. * @addr: vm address.
  1484. * @count: number of bytes to be read.
  1485. *
  1486. * Returns # of bytes which addr and buf should be increased.
  1487. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1488. * includes any intersect with alive vmalloc area.
  1489. *
  1490. * This function checks that addr is a valid vmalloc'ed area, and
  1491. * copy data from that area to a given buffer. If the given memory range
  1492. * of [addr...addr+count) includes some valid address, data is copied to
  1493. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1494. * IOREMAP area is treated as memory hole and no copy is done.
  1495. *
  1496. * If [addr...addr+count) doesn't includes any intersects with alive
  1497. * vm_struct area, returns 0.
  1498. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1499. * the caller should guarantee KM_USER0 is not used.
  1500. *
  1501. * Note: In usual ops, vread() is never necessary because the caller
  1502. * should know vmalloc() area is valid and can use memcpy().
  1503. * This is for routines which have to access vmalloc area without
  1504. * any informaion, as /dev/kmem.
  1505. *
  1506. */
  1507. long vread(char *buf, char *addr, unsigned long count)
  1508. {
  1509. struct vm_struct *tmp;
  1510. char *vaddr, *buf_start = buf;
  1511. unsigned long buflen = count;
  1512. unsigned long n;
  1513. /* Don't allow overflow */
  1514. if ((unsigned long) addr + count < count)
  1515. count = -(unsigned long) addr;
  1516. read_lock(&vmlist_lock);
  1517. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1518. vaddr = (char *) tmp->addr;
  1519. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1520. continue;
  1521. while (addr < vaddr) {
  1522. if (count == 0)
  1523. goto finished;
  1524. *buf = '\0';
  1525. buf++;
  1526. addr++;
  1527. count--;
  1528. }
  1529. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1530. if (n > count)
  1531. n = count;
  1532. if (!(tmp->flags & VM_IOREMAP))
  1533. aligned_vread(buf, addr, n);
  1534. else /* IOREMAP area is treated as memory hole */
  1535. memset(buf, 0, n);
  1536. buf += n;
  1537. addr += n;
  1538. count -= n;
  1539. }
  1540. finished:
  1541. read_unlock(&vmlist_lock);
  1542. if (buf == buf_start)
  1543. return 0;
  1544. /* zero-fill memory holes */
  1545. if (buf != buf_start + buflen)
  1546. memset(buf, 0, buflen - (buf - buf_start));
  1547. return buflen;
  1548. }
  1549. /**
  1550. * vwrite() - write vmalloc area in a safe way.
  1551. * @buf: buffer for source data
  1552. * @addr: vm address.
  1553. * @count: number of bytes to be read.
  1554. *
  1555. * Returns # of bytes which addr and buf should be incresed.
  1556. * (same number to @count).
  1557. * If [addr...addr+count) doesn't includes any intersect with valid
  1558. * vmalloc area, returns 0.
  1559. *
  1560. * This function checks that addr is a valid vmalloc'ed area, and
  1561. * copy data from a buffer to the given addr. If specified range of
  1562. * [addr...addr+count) includes some valid address, data is copied from
  1563. * proper area of @buf. If there are memory holes, no copy to hole.
  1564. * IOREMAP area is treated as memory hole and no copy is done.
  1565. *
  1566. * If [addr...addr+count) doesn't includes any intersects with alive
  1567. * vm_struct area, returns 0.
  1568. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1569. * the caller should guarantee KM_USER0 is not used.
  1570. *
  1571. * Note: In usual ops, vwrite() is never necessary because the caller
  1572. * should know vmalloc() area is valid and can use memcpy().
  1573. * This is for routines which have to access vmalloc area without
  1574. * any informaion, as /dev/kmem.
  1575. *
  1576. * The caller should guarantee KM_USER1 is not used.
  1577. */
  1578. long vwrite(char *buf, char *addr, unsigned long count)
  1579. {
  1580. struct vm_struct *tmp;
  1581. char *vaddr;
  1582. unsigned long n, buflen;
  1583. int copied = 0;
  1584. /* Don't allow overflow */
  1585. if ((unsigned long) addr + count < count)
  1586. count = -(unsigned long) addr;
  1587. buflen = count;
  1588. read_lock(&vmlist_lock);
  1589. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1590. vaddr = (char *) tmp->addr;
  1591. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1592. continue;
  1593. while (addr < vaddr) {
  1594. if (count == 0)
  1595. goto finished;
  1596. buf++;
  1597. addr++;
  1598. count--;
  1599. }
  1600. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1601. if (n > count)
  1602. n = count;
  1603. if (!(tmp->flags & VM_IOREMAP)) {
  1604. aligned_vwrite(buf, addr, n);
  1605. copied++;
  1606. }
  1607. buf += n;
  1608. addr += n;
  1609. count -= n;
  1610. }
  1611. finished:
  1612. read_unlock(&vmlist_lock);
  1613. if (!copied)
  1614. return 0;
  1615. return buflen;
  1616. }
  1617. /**
  1618. * remap_vmalloc_range - map vmalloc pages to userspace
  1619. * @vma: vma to cover (map full range of vma)
  1620. * @addr: vmalloc memory
  1621. * @pgoff: number of pages into addr before first page to map
  1622. *
  1623. * Returns: 0 for success, -Exxx on failure
  1624. *
  1625. * This function checks that addr is a valid vmalloc'ed area, and
  1626. * that it is big enough to cover the vma. Will return failure if
  1627. * that criteria isn't met.
  1628. *
  1629. * Similar to remap_pfn_range() (see mm/memory.c)
  1630. */
  1631. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1632. unsigned long pgoff)
  1633. {
  1634. struct vm_struct *area;
  1635. unsigned long uaddr = vma->vm_start;
  1636. unsigned long usize = vma->vm_end - vma->vm_start;
  1637. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1638. return -EINVAL;
  1639. area = find_vm_area(addr);
  1640. if (!area)
  1641. return -EINVAL;
  1642. if (!(area->flags & VM_USERMAP))
  1643. return -EINVAL;
  1644. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1645. return -EINVAL;
  1646. addr += pgoff << PAGE_SHIFT;
  1647. do {
  1648. struct page *page = vmalloc_to_page(addr);
  1649. int ret;
  1650. ret = vm_insert_page(vma, uaddr, page);
  1651. if (ret)
  1652. return ret;
  1653. uaddr += PAGE_SIZE;
  1654. addr += PAGE_SIZE;
  1655. usize -= PAGE_SIZE;
  1656. } while (usize > 0);
  1657. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1658. vma->vm_flags |= VM_RESERVED;
  1659. return 0;
  1660. }
  1661. EXPORT_SYMBOL(remap_vmalloc_range);
  1662. /*
  1663. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1664. * have one.
  1665. */
  1666. void __attribute__((weak)) vmalloc_sync_all(void)
  1667. {
  1668. }
  1669. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1670. {
  1671. /* apply_to_page_range() does all the hard work. */
  1672. return 0;
  1673. }
  1674. /**
  1675. * alloc_vm_area - allocate a range of kernel address space
  1676. * @size: size of the area
  1677. *
  1678. * Returns: NULL on failure, vm_struct on success
  1679. *
  1680. * This function reserves a range of kernel address space, and
  1681. * allocates pagetables to map that range. No actual mappings
  1682. * are created. If the kernel address space is not shared
  1683. * between processes, it syncs the pagetable across all
  1684. * processes.
  1685. */
  1686. struct vm_struct *alloc_vm_area(size_t size)
  1687. {
  1688. struct vm_struct *area;
  1689. area = get_vm_area_caller(size, VM_IOREMAP,
  1690. __builtin_return_address(0));
  1691. if (area == NULL)
  1692. return NULL;
  1693. /*
  1694. * This ensures that page tables are constructed for this region
  1695. * of kernel virtual address space and mapped into init_mm.
  1696. */
  1697. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1698. area->size, f, NULL)) {
  1699. free_vm_area(area);
  1700. return NULL;
  1701. }
  1702. /* Make sure the pagetables are constructed in process kernel
  1703. mappings */
  1704. vmalloc_sync_all();
  1705. return area;
  1706. }
  1707. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1708. void free_vm_area(struct vm_struct *area)
  1709. {
  1710. struct vm_struct *ret;
  1711. ret = remove_vm_area(area->addr);
  1712. BUG_ON(ret != area);
  1713. kfree(area);
  1714. }
  1715. EXPORT_SYMBOL_GPL(free_vm_area);
  1716. static struct vmap_area *node_to_va(struct rb_node *n)
  1717. {
  1718. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1719. }
  1720. /**
  1721. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1722. * @end: target address
  1723. * @pnext: out arg for the next vmap_area
  1724. * @pprev: out arg for the previous vmap_area
  1725. *
  1726. * Returns: %true if either or both of next and prev are found,
  1727. * %false if no vmap_area exists
  1728. *
  1729. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1730. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1731. */
  1732. static bool pvm_find_next_prev(unsigned long end,
  1733. struct vmap_area **pnext,
  1734. struct vmap_area **pprev)
  1735. {
  1736. struct rb_node *n = vmap_area_root.rb_node;
  1737. struct vmap_area *va = NULL;
  1738. while (n) {
  1739. va = rb_entry(n, struct vmap_area, rb_node);
  1740. if (end < va->va_end)
  1741. n = n->rb_left;
  1742. else if (end > va->va_end)
  1743. n = n->rb_right;
  1744. else
  1745. break;
  1746. }
  1747. if (!va)
  1748. return false;
  1749. if (va->va_end > end) {
  1750. *pnext = va;
  1751. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1752. } else {
  1753. *pprev = va;
  1754. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1755. }
  1756. return true;
  1757. }
  1758. /**
  1759. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1760. * @pnext: in/out arg for the next vmap_area
  1761. * @pprev: in/out arg for the previous vmap_area
  1762. * @align: alignment
  1763. *
  1764. * Returns: determined end address
  1765. *
  1766. * Find the highest aligned address between *@pnext and *@pprev below
  1767. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1768. * down address is between the end addresses of the two vmap_areas.
  1769. *
  1770. * Please note that the address returned by this function may fall
  1771. * inside *@pnext vmap_area. The caller is responsible for checking
  1772. * that.
  1773. */
  1774. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1775. struct vmap_area **pprev,
  1776. unsigned long align)
  1777. {
  1778. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1779. unsigned long addr;
  1780. if (*pnext)
  1781. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1782. else
  1783. addr = vmalloc_end;
  1784. while (*pprev && (*pprev)->va_end > addr) {
  1785. *pnext = *pprev;
  1786. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1787. }
  1788. return addr;
  1789. }
  1790. /**
  1791. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1792. * @offsets: array containing offset of each area
  1793. * @sizes: array containing size of each area
  1794. * @nr_vms: the number of areas to allocate
  1795. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1796. * @gfp_mask: allocation mask
  1797. *
  1798. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1799. * vm_structs on success, %NULL on failure
  1800. *
  1801. * Percpu allocator wants to use congruent vm areas so that it can
  1802. * maintain the offsets among percpu areas. This function allocates
  1803. * congruent vmalloc areas for it. These areas tend to be scattered
  1804. * pretty far, distance between two areas easily going up to
  1805. * gigabytes. To avoid interacting with regular vmallocs, these areas
  1806. * are allocated from top.
  1807. *
  1808. * Despite its complicated look, this allocator is rather simple. It
  1809. * does everything top-down and scans areas from the end looking for
  1810. * matching slot. While scanning, if any of the areas overlaps with
  1811. * existing vmap_area, the base address is pulled down to fit the
  1812. * area. Scanning is repeated till all the areas fit and then all
  1813. * necessary data structres are inserted and the result is returned.
  1814. */
  1815. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1816. const size_t *sizes, int nr_vms,
  1817. size_t align, gfp_t gfp_mask)
  1818. {
  1819. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1820. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1821. struct vmap_area **vas, *prev, *next;
  1822. struct vm_struct **vms;
  1823. int area, area2, last_area, term_area;
  1824. unsigned long base, start, end, last_end;
  1825. bool purged = false;
  1826. gfp_mask &= GFP_RECLAIM_MASK;
  1827. /* verify parameters and allocate data structures */
  1828. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1829. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1830. start = offsets[area];
  1831. end = start + sizes[area];
  1832. /* is everything aligned properly? */
  1833. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1834. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1835. /* detect the area with the highest address */
  1836. if (start > offsets[last_area])
  1837. last_area = area;
  1838. for (area2 = 0; area2 < nr_vms; area2++) {
  1839. unsigned long start2 = offsets[area2];
  1840. unsigned long end2 = start2 + sizes[area2];
  1841. if (area2 == area)
  1842. continue;
  1843. BUG_ON(start2 >= start && start2 < end);
  1844. BUG_ON(end2 <= end && end2 > start);
  1845. }
  1846. }
  1847. last_end = offsets[last_area] + sizes[last_area];
  1848. if (vmalloc_end - vmalloc_start < last_end) {
  1849. WARN_ON(true);
  1850. return NULL;
  1851. }
  1852. vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
  1853. vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
  1854. if (!vas || !vms)
  1855. goto err_free;
  1856. for (area = 0; area < nr_vms; area++) {
  1857. vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
  1858. vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
  1859. if (!vas[area] || !vms[area])
  1860. goto err_free;
  1861. }
  1862. retry:
  1863. spin_lock(&vmap_area_lock);
  1864. /* start scanning - we scan from the top, begin with the last area */
  1865. area = term_area = last_area;
  1866. start = offsets[area];
  1867. end = start + sizes[area];
  1868. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  1869. base = vmalloc_end - last_end;
  1870. goto found;
  1871. }
  1872. base = pvm_determine_end(&next, &prev, align) - end;
  1873. while (true) {
  1874. BUG_ON(next && next->va_end <= base + end);
  1875. BUG_ON(prev && prev->va_end > base + end);
  1876. /*
  1877. * base might have underflowed, add last_end before
  1878. * comparing.
  1879. */
  1880. if (base + last_end < vmalloc_start + last_end) {
  1881. spin_unlock(&vmap_area_lock);
  1882. if (!purged) {
  1883. purge_vmap_area_lazy();
  1884. purged = true;
  1885. goto retry;
  1886. }
  1887. goto err_free;
  1888. }
  1889. /*
  1890. * If next overlaps, move base downwards so that it's
  1891. * right below next and then recheck.
  1892. */
  1893. if (next && next->va_start < base + end) {
  1894. base = pvm_determine_end(&next, &prev, align) - end;
  1895. term_area = area;
  1896. continue;
  1897. }
  1898. /*
  1899. * If prev overlaps, shift down next and prev and move
  1900. * base so that it's right below new next and then
  1901. * recheck.
  1902. */
  1903. if (prev && prev->va_end > base + start) {
  1904. next = prev;
  1905. prev = node_to_va(rb_prev(&next->rb_node));
  1906. base = pvm_determine_end(&next, &prev, align) - end;
  1907. term_area = area;
  1908. continue;
  1909. }
  1910. /*
  1911. * This area fits, move on to the previous one. If
  1912. * the previous one is the terminal one, we're done.
  1913. */
  1914. area = (area + nr_vms - 1) % nr_vms;
  1915. if (area == term_area)
  1916. break;
  1917. start = offsets[area];
  1918. end = start + sizes[area];
  1919. pvm_find_next_prev(base + end, &next, &prev);
  1920. }
  1921. found:
  1922. /* we've found a fitting base, insert all va's */
  1923. for (area = 0; area < nr_vms; area++) {
  1924. struct vmap_area *va = vas[area];
  1925. va->va_start = base + offsets[area];
  1926. va->va_end = va->va_start + sizes[area];
  1927. __insert_vmap_area(va);
  1928. }
  1929. vmap_area_pcpu_hole = base + offsets[last_area];
  1930. spin_unlock(&vmap_area_lock);
  1931. /* insert all vm's */
  1932. for (area = 0; area < nr_vms; area++)
  1933. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  1934. pcpu_get_vm_areas);
  1935. kfree(vas);
  1936. return vms;
  1937. err_free:
  1938. for (area = 0; area < nr_vms; area++) {
  1939. if (vas)
  1940. kfree(vas[area]);
  1941. if (vms)
  1942. kfree(vms[area]);
  1943. }
  1944. kfree(vas);
  1945. kfree(vms);
  1946. return NULL;
  1947. }
  1948. /**
  1949. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  1950. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  1951. * @nr_vms: the number of allocated areas
  1952. *
  1953. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  1954. */
  1955. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  1956. {
  1957. int i;
  1958. for (i = 0; i < nr_vms; i++)
  1959. free_vm_area(vms[i]);
  1960. kfree(vms);
  1961. }
  1962. #ifdef CONFIG_PROC_FS
  1963. static void *s_start(struct seq_file *m, loff_t *pos)
  1964. {
  1965. loff_t n = *pos;
  1966. struct vm_struct *v;
  1967. read_lock(&vmlist_lock);
  1968. v = vmlist;
  1969. while (n > 0 && v) {
  1970. n--;
  1971. v = v->next;
  1972. }
  1973. if (!n)
  1974. return v;
  1975. return NULL;
  1976. }
  1977. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1978. {
  1979. struct vm_struct *v = p;
  1980. ++*pos;
  1981. return v->next;
  1982. }
  1983. static void s_stop(struct seq_file *m, void *p)
  1984. {
  1985. read_unlock(&vmlist_lock);
  1986. }
  1987. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1988. {
  1989. if (NUMA_BUILD) {
  1990. unsigned int nr, *counters = m->private;
  1991. if (!counters)
  1992. return;
  1993. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1994. for (nr = 0; nr < v->nr_pages; nr++)
  1995. counters[page_to_nid(v->pages[nr])]++;
  1996. for_each_node_state(nr, N_HIGH_MEMORY)
  1997. if (counters[nr])
  1998. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1999. }
  2000. }
  2001. static int s_show(struct seq_file *m, void *p)
  2002. {
  2003. struct vm_struct *v = p;
  2004. seq_printf(m, "0x%p-0x%p %7ld",
  2005. v->addr, v->addr + v->size, v->size);
  2006. if (v->caller) {
  2007. char buff[KSYM_SYMBOL_LEN];
  2008. seq_putc(m, ' ');
  2009. sprint_symbol(buff, (unsigned long)v->caller);
  2010. seq_puts(m, buff);
  2011. }
  2012. if (v->nr_pages)
  2013. seq_printf(m, " pages=%d", v->nr_pages);
  2014. if (v->phys_addr)
  2015. seq_printf(m, " phys=%lx", v->phys_addr);
  2016. if (v->flags & VM_IOREMAP)
  2017. seq_printf(m, " ioremap");
  2018. if (v->flags & VM_ALLOC)
  2019. seq_printf(m, " vmalloc");
  2020. if (v->flags & VM_MAP)
  2021. seq_printf(m, " vmap");
  2022. if (v->flags & VM_USERMAP)
  2023. seq_printf(m, " user");
  2024. if (v->flags & VM_VPAGES)
  2025. seq_printf(m, " vpages");
  2026. show_numa_info(m, v);
  2027. seq_putc(m, '\n');
  2028. return 0;
  2029. }
  2030. static const struct seq_operations vmalloc_op = {
  2031. .start = s_start,
  2032. .next = s_next,
  2033. .stop = s_stop,
  2034. .show = s_show,
  2035. };
  2036. static int vmalloc_open(struct inode *inode, struct file *file)
  2037. {
  2038. unsigned int *ptr = NULL;
  2039. int ret;
  2040. if (NUMA_BUILD)
  2041. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2042. ret = seq_open(file, &vmalloc_op);
  2043. if (!ret) {
  2044. struct seq_file *m = file->private_data;
  2045. m->private = ptr;
  2046. } else
  2047. kfree(ptr);
  2048. return ret;
  2049. }
  2050. static const struct file_operations proc_vmalloc_operations = {
  2051. .open = vmalloc_open,
  2052. .read = seq_read,
  2053. .llseek = seq_lseek,
  2054. .release = seq_release_private,
  2055. };
  2056. static int __init proc_vmalloc_init(void)
  2057. {
  2058. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2059. return 0;
  2060. }
  2061. module_init(proc_vmalloc_init);
  2062. #endif