percpu.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
  1. /*
  2. * linux/mm/percpu.c - percpu memory allocator
  3. *
  4. * Copyright (C) 2009 SUSE Linux Products GmbH
  5. * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * This is percpu allocator which can handle both static and dynamic
  10. * areas. Percpu areas are allocated in chunks in vmalloc area. Each
  11. * chunk is consisted of boot-time determined number of units and the
  12. * first chunk is used for static percpu variables in the kernel image
  13. * (special boot time alloc/init handling necessary as these areas
  14. * need to be brought up before allocation services are running).
  15. * Unit grows as necessary and all units grow or shrink in unison.
  16. * When a chunk is filled up, another chunk is allocated. ie. in
  17. * vmalloc area
  18. *
  19. * c0 c1 c2
  20. * ------------------- ------------------- ------------
  21. * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
  22. * ------------------- ...... ------------------- .... ------------
  23. *
  24. * Allocation is done in offset-size areas of single unit space. Ie,
  25. * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  26. * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
  27. * cpus. On NUMA, the mapping can be non-linear and even sparse.
  28. * Percpu access can be done by configuring percpu base registers
  29. * according to cpu to unit mapping and pcpu_unit_size.
  30. *
  31. * There are usually many small percpu allocations many of them being
  32. * as small as 4 bytes. The allocator organizes chunks into lists
  33. * according to free size and tries to allocate from the fullest one.
  34. * Each chunk keeps the maximum contiguous area size hint which is
  35. * guaranteed to be eqaul to or larger than the maximum contiguous
  36. * area in the chunk. This helps the allocator not to iterate the
  37. * chunk maps unnecessarily.
  38. *
  39. * Allocation state in each chunk is kept using an array of integers
  40. * on chunk->map. A positive value in the map represents a free
  41. * region and negative allocated. Allocation inside a chunk is done
  42. * by scanning this map sequentially and serving the first matching
  43. * entry. This is mostly copied from the percpu_modalloc() allocator.
  44. * Chunks can be determined from the address using the index field
  45. * in the page struct. The index field contains a pointer to the chunk.
  46. *
  47. * To use this allocator, arch code should do the followings.
  48. *
  49. * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
  50. *
  51. * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  52. * regular address to percpu pointer and back if they need to be
  53. * different from the default
  54. *
  55. * - use pcpu_setup_first_chunk() during percpu area initialization to
  56. * setup the first chunk containing the kernel static percpu area
  57. */
  58. #include <linux/bitmap.h>
  59. #include <linux/bootmem.h>
  60. #include <linux/err.h>
  61. #include <linux/list.h>
  62. #include <linux/log2.h>
  63. #include <linux/mm.h>
  64. #include <linux/module.h>
  65. #include <linux/mutex.h>
  66. #include <linux/percpu.h>
  67. #include <linux/pfn.h>
  68. #include <linux/slab.h>
  69. #include <linux/spinlock.h>
  70. #include <linux/vmalloc.h>
  71. #include <linux/workqueue.h>
  72. #include <asm/cacheflush.h>
  73. #include <asm/sections.h>
  74. #include <asm/tlbflush.h>
  75. #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
  76. #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
  77. /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  78. #ifndef __addr_to_pcpu_ptr
  79. #define __addr_to_pcpu_ptr(addr) \
  80. (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
  81. + (unsigned long)__per_cpu_start)
  82. #endif
  83. #ifndef __pcpu_ptr_to_addr
  84. #define __pcpu_ptr_to_addr(ptr) \
  85. (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
  86. - (unsigned long)__per_cpu_start)
  87. #endif
  88. struct pcpu_chunk {
  89. struct list_head list; /* linked to pcpu_slot lists */
  90. int free_size; /* free bytes in the chunk */
  91. int contig_hint; /* max contiguous size hint */
  92. void *base_addr; /* base address of this chunk */
  93. int map_used; /* # of map entries used */
  94. int map_alloc; /* # of map entries allocated */
  95. int *map; /* allocation map */
  96. struct vm_struct **vms; /* mapped vmalloc regions */
  97. bool immutable; /* no [de]population allowed */
  98. unsigned long populated[]; /* populated bitmap */
  99. };
  100. static int pcpu_unit_pages __read_mostly;
  101. static int pcpu_unit_size __read_mostly;
  102. static int pcpu_nr_units __read_mostly;
  103. static int pcpu_atom_size __read_mostly;
  104. static int pcpu_nr_slots __read_mostly;
  105. static size_t pcpu_chunk_struct_size __read_mostly;
  106. /* cpus with the lowest and highest unit numbers */
  107. static unsigned int pcpu_first_unit_cpu __read_mostly;
  108. static unsigned int pcpu_last_unit_cpu __read_mostly;
  109. /* the address of the first chunk which starts with the kernel static area */
  110. void *pcpu_base_addr __read_mostly;
  111. EXPORT_SYMBOL_GPL(pcpu_base_addr);
  112. static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
  113. const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
  114. /* group information, used for vm allocation */
  115. static int pcpu_nr_groups __read_mostly;
  116. static const unsigned long *pcpu_group_offsets __read_mostly;
  117. static const size_t *pcpu_group_sizes __read_mostly;
  118. /*
  119. * The first chunk which always exists. Note that unlike other
  120. * chunks, this one can be allocated and mapped in several different
  121. * ways and thus often doesn't live in the vmalloc area.
  122. */
  123. static struct pcpu_chunk *pcpu_first_chunk;
  124. /*
  125. * Optional reserved chunk. This chunk reserves part of the first
  126. * chunk and serves it for reserved allocations. The amount of
  127. * reserved offset is in pcpu_reserved_chunk_limit. When reserved
  128. * area doesn't exist, the following variables contain NULL and 0
  129. * respectively.
  130. */
  131. static struct pcpu_chunk *pcpu_reserved_chunk;
  132. static int pcpu_reserved_chunk_limit;
  133. /*
  134. * Synchronization rules.
  135. *
  136. * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
  137. * protects allocation/reclaim paths, chunks, populated bitmap and
  138. * vmalloc mapping. The latter is a spinlock and protects the index
  139. * data structures - chunk slots, chunks and area maps in chunks.
  140. *
  141. * During allocation, pcpu_alloc_mutex is kept locked all the time and
  142. * pcpu_lock is grabbed and released as necessary. All actual memory
  143. * allocations are done using GFP_KERNEL with pcpu_lock released.
  144. *
  145. * Free path accesses and alters only the index data structures, so it
  146. * can be safely called from atomic context. When memory needs to be
  147. * returned to the system, free path schedules reclaim_work which
  148. * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
  149. * reclaimed, release both locks and frees the chunks. Note that it's
  150. * necessary to grab both locks to remove a chunk from circulation as
  151. * allocation path might be referencing the chunk with only
  152. * pcpu_alloc_mutex locked.
  153. */
  154. static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
  155. static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
  156. static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
  157. /* reclaim work to release fully free chunks, scheduled from free path */
  158. static void pcpu_reclaim(struct work_struct *work);
  159. static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
  160. static int __pcpu_size_to_slot(int size)
  161. {
  162. int highbit = fls(size); /* size is in bytes */
  163. return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
  164. }
  165. static int pcpu_size_to_slot(int size)
  166. {
  167. if (size == pcpu_unit_size)
  168. return pcpu_nr_slots - 1;
  169. return __pcpu_size_to_slot(size);
  170. }
  171. static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
  172. {
  173. if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
  174. return 0;
  175. return pcpu_size_to_slot(chunk->free_size);
  176. }
  177. static int pcpu_page_idx(unsigned int cpu, int page_idx)
  178. {
  179. return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
  180. }
  181. static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
  182. unsigned int cpu, int page_idx)
  183. {
  184. return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
  185. (page_idx << PAGE_SHIFT);
  186. }
  187. static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
  188. unsigned int cpu, int page_idx)
  189. {
  190. /* must not be used on pre-mapped chunk */
  191. WARN_ON(chunk->immutable);
  192. return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
  193. }
  194. /* set the pointer to a chunk in a page struct */
  195. static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
  196. {
  197. page->index = (unsigned long)pcpu;
  198. }
  199. /* obtain pointer to a chunk from a page struct */
  200. static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
  201. {
  202. return (struct pcpu_chunk *)page->index;
  203. }
  204. static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
  205. {
  206. *rs = find_next_zero_bit(chunk->populated, end, *rs);
  207. *re = find_next_bit(chunk->populated, end, *rs + 1);
  208. }
  209. static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
  210. {
  211. *rs = find_next_bit(chunk->populated, end, *rs);
  212. *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
  213. }
  214. /*
  215. * (Un)populated page region iterators. Iterate over (un)populated
  216. * page regions betwen @start and @end in @chunk. @rs and @re should
  217. * be integer variables and will be set to start and end page index of
  218. * the current region.
  219. */
  220. #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
  221. for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
  222. (rs) < (re); \
  223. (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
  224. #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
  225. for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
  226. (rs) < (re); \
  227. (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
  228. /**
  229. * pcpu_mem_alloc - allocate memory
  230. * @size: bytes to allocate
  231. *
  232. * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
  233. * kzalloc() is used; otherwise, vmalloc() is used. The returned
  234. * memory is always zeroed.
  235. *
  236. * CONTEXT:
  237. * Does GFP_KERNEL allocation.
  238. *
  239. * RETURNS:
  240. * Pointer to the allocated area on success, NULL on failure.
  241. */
  242. static void *pcpu_mem_alloc(size_t size)
  243. {
  244. if (size <= PAGE_SIZE)
  245. return kzalloc(size, GFP_KERNEL);
  246. else {
  247. void *ptr = vmalloc(size);
  248. if (ptr)
  249. memset(ptr, 0, size);
  250. return ptr;
  251. }
  252. }
  253. /**
  254. * pcpu_mem_free - free memory
  255. * @ptr: memory to free
  256. * @size: size of the area
  257. *
  258. * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
  259. */
  260. static void pcpu_mem_free(void *ptr, size_t size)
  261. {
  262. if (size <= PAGE_SIZE)
  263. kfree(ptr);
  264. else
  265. vfree(ptr);
  266. }
  267. /**
  268. * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
  269. * @chunk: chunk of interest
  270. * @oslot: the previous slot it was on
  271. *
  272. * This function is called after an allocation or free changed @chunk.
  273. * New slot according to the changed state is determined and @chunk is
  274. * moved to the slot. Note that the reserved chunk is never put on
  275. * chunk slots.
  276. *
  277. * CONTEXT:
  278. * pcpu_lock.
  279. */
  280. static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
  281. {
  282. int nslot = pcpu_chunk_slot(chunk);
  283. if (chunk != pcpu_reserved_chunk && oslot != nslot) {
  284. if (oslot < nslot)
  285. list_move(&chunk->list, &pcpu_slot[nslot]);
  286. else
  287. list_move_tail(&chunk->list, &pcpu_slot[nslot]);
  288. }
  289. }
  290. /**
  291. * pcpu_chunk_addr_search - determine chunk containing specified address
  292. * @addr: address for which the chunk needs to be determined.
  293. *
  294. * RETURNS:
  295. * The address of the found chunk.
  296. */
  297. static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
  298. {
  299. void *first_start = pcpu_first_chunk->base_addr;
  300. /* is it in the first chunk? */
  301. if (addr >= first_start && addr < first_start + pcpu_unit_size) {
  302. /* is it in the reserved area? */
  303. if (addr < first_start + pcpu_reserved_chunk_limit)
  304. return pcpu_reserved_chunk;
  305. return pcpu_first_chunk;
  306. }
  307. /*
  308. * The address is relative to unit0 which might be unused and
  309. * thus unmapped. Offset the address to the unit space of the
  310. * current processor before looking it up in the vmalloc
  311. * space. Note that any possible cpu id can be used here, so
  312. * there's no need to worry about preemption or cpu hotplug.
  313. */
  314. addr += pcpu_unit_offsets[raw_smp_processor_id()];
  315. return pcpu_get_page_chunk(vmalloc_to_page(addr));
  316. }
  317. /**
  318. * pcpu_extend_area_map - extend area map for allocation
  319. * @chunk: target chunk
  320. *
  321. * Extend area map of @chunk so that it can accomodate an allocation.
  322. * A single allocation can split an area into three areas, so this
  323. * function makes sure that @chunk->map has at least two extra slots.
  324. *
  325. * CONTEXT:
  326. * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
  327. * if area map is extended.
  328. *
  329. * RETURNS:
  330. * 0 if noop, 1 if successfully extended, -errno on failure.
  331. */
  332. static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
  333. {
  334. int new_alloc;
  335. int *new;
  336. size_t size;
  337. /* has enough? */
  338. if (chunk->map_alloc >= chunk->map_used + 2)
  339. return 0;
  340. spin_unlock_irq(&pcpu_lock);
  341. new_alloc = PCPU_DFL_MAP_ALLOC;
  342. while (new_alloc < chunk->map_used + 2)
  343. new_alloc *= 2;
  344. new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
  345. if (!new) {
  346. spin_lock_irq(&pcpu_lock);
  347. return -ENOMEM;
  348. }
  349. /*
  350. * Acquire pcpu_lock and switch to new area map. Only free
  351. * could have happened inbetween, so map_used couldn't have
  352. * grown.
  353. */
  354. spin_lock_irq(&pcpu_lock);
  355. BUG_ON(new_alloc < chunk->map_used + 2);
  356. size = chunk->map_alloc * sizeof(chunk->map[0]);
  357. memcpy(new, chunk->map, size);
  358. /*
  359. * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
  360. * one of the first chunks and still using static map.
  361. */
  362. if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
  363. pcpu_mem_free(chunk->map, size);
  364. chunk->map_alloc = new_alloc;
  365. chunk->map = new;
  366. return 0;
  367. }
  368. /**
  369. * pcpu_split_block - split a map block
  370. * @chunk: chunk of interest
  371. * @i: index of map block to split
  372. * @head: head size in bytes (can be 0)
  373. * @tail: tail size in bytes (can be 0)
  374. *
  375. * Split the @i'th map block into two or three blocks. If @head is
  376. * non-zero, @head bytes block is inserted before block @i moving it
  377. * to @i+1 and reducing its size by @head bytes.
  378. *
  379. * If @tail is non-zero, the target block, which can be @i or @i+1
  380. * depending on @head, is reduced by @tail bytes and @tail byte block
  381. * is inserted after the target block.
  382. *
  383. * @chunk->map must have enough free slots to accomodate the split.
  384. *
  385. * CONTEXT:
  386. * pcpu_lock.
  387. */
  388. static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
  389. int head, int tail)
  390. {
  391. int nr_extra = !!head + !!tail;
  392. BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
  393. /* insert new subblocks */
  394. memmove(&chunk->map[i + nr_extra], &chunk->map[i],
  395. sizeof(chunk->map[0]) * (chunk->map_used - i));
  396. chunk->map_used += nr_extra;
  397. if (head) {
  398. chunk->map[i + 1] = chunk->map[i] - head;
  399. chunk->map[i++] = head;
  400. }
  401. if (tail) {
  402. chunk->map[i++] -= tail;
  403. chunk->map[i] = tail;
  404. }
  405. }
  406. /**
  407. * pcpu_alloc_area - allocate area from a pcpu_chunk
  408. * @chunk: chunk of interest
  409. * @size: wanted size in bytes
  410. * @align: wanted align
  411. *
  412. * Try to allocate @size bytes area aligned at @align from @chunk.
  413. * Note that this function only allocates the offset. It doesn't
  414. * populate or map the area.
  415. *
  416. * @chunk->map must have at least two free slots.
  417. *
  418. * CONTEXT:
  419. * pcpu_lock.
  420. *
  421. * RETURNS:
  422. * Allocated offset in @chunk on success, -1 if no matching area is
  423. * found.
  424. */
  425. static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
  426. {
  427. int oslot = pcpu_chunk_slot(chunk);
  428. int max_contig = 0;
  429. int i, off;
  430. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
  431. bool is_last = i + 1 == chunk->map_used;
  432. int head, tail;
  433. /* extra for alignment requirement */
  434. head = ALIGN(off, align) - off;
  435. BUG_ON(i == 0 && head != 0);
  436. if (chunk->map[i] < 0)
  437. continue;
  438. if (chunk->map[i] < head + size) {
  439. max_contig = max(chunk->map[i], max_contig);
  440. continue;
  441. }
  442. /*
  443. * If head is small or the previous block is free,
  444. * merge'em. Note that 'small' is defined as smaller
  445. * than sizeof(int), which is very small but isn't too
  446. * uncommon for percpu allocations.
  447. */
  448. if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
  449. if (chunk->map[i - 1] > 0)
  450. chunk->map[i - 1] += head;
  451. else {
  452. chunk->map[i - 1] -= head;
  453. chunk->free_size -= head;
  454. }
  455. chunk->map[i] -= head;
  456. off += head;
  457. head = 0;
  458. }
  459. /* if tail is small, just keep it around */
  460. tail = chunk->map[i] - head - size;
  461. if (tail < sizeof(int))
  462. tail = 0;
  463. /* split if warranted */
  464. if (head || tail) {
  465. pcpu_split_block(chunk, i, head, tail);
  466. if (head) {
  467. i++;
  468. off += head;
  469. max_contig = max(chunk->map[i - 1], max_contig);
  470. }
  471. if (tail)
  472. max_contig = max(chunk->map[i + 1], max_contig);
  473. }
  474. /* update hint and mark allocated */
  475. if (is_last)
  476. chunk->contig_hint = max_contig; /* fully scanned */
  477. else
  478. chunk->contig_hint = max(chunk->contig_hint,
  479. max_contig);
  480. chunk->free_size -= chunk->map[i];
  481. chunk->map[i] = -chunk->map[i];
  482. pcpu_chunk_relocate(chunk, oslot);
  483. return off;
  484. }
  485. chunk->contig_hint = max_contig; /* fully scanned */
  486. pcpu_chunk_relocate(chunk, oslot);
  487. /* tell the upper layer that this chunk has no matching area */
  488. return -1;
  489. }
  490. /**
  491. * pcpu_free_area - free area to a pcpu_chunk
  492. * @chunk: chunk of interest
  493. * @freeme: offset of area to free
  494. *
  495. * Free area starting from @freeme to @chunk. Note that this function
  496. * only modifies the allocation map. It doesn't depopulate or unmap
  497. * the area.
  498. *
  499. * CONTEXT:
  500. * pcpu_lock.
  501. */
  502. static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
  503. {
  504. int oslot = pcpu_chunk_slot(chunk);
  505. int i, off;
  506. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
  507. if (off == freeme)
  508. break;
  509. BUG_ON(off != freeme);
  510. BUG_ON(chunk->map[i] > 0);
  511. chunk->map[i] = -chunk->map[i];
  512. chunk->free_size += chunk->map[i];
  513. /* merge with previous? */
  514. if (i > 0 && chunk->map[i - 1] >= 0) {
  515. chunk->map[i - 1] += chunk->map[i];
  516. chunk->map_used--;
  517. memmove(&chunk->map[i], &chunk->map[i + 1],
  518. (chunk->map_used - i) * sizeof(chunk->map[0]));
  519. i--;
  520. }
  521. /* merge with next? */
  522. if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
  523. chunk->map[i] += chunk->map[i + 1];
  524. chunk->map_used--;
  525. memmove(&chunk->map[i + 1], &chunk->map[i + 2],
  526. (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
  527. }
  528. chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
  529. pcpu_chunk_relocate(chunk, oslot);
  530. }
  531. /**
  532. * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
  533. * @chunk: chunk of interest
  534. * @bitmapp: output parameter for bitmap
  535. * @may_alloc: may allocate the array
  536. *
  537. * Returns pointer to array of pointers to struct page and bitmap,
  538. * both of which can be indexed with pcpu_page_idx(). The returned
  539. * array is cleared to zero and *@bitmapp is copied from
  540. * @chunk->populated. Note that there is only one array and bitmap
  541. * and access exclusion is the caller's responsibility.
  542. *
  543. * CONTEXT:
  544. * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
  545. * Otherwise, don't care.
  546. *
  547. * RETURNS:
  548. * Pointer to temp pages array on success, NULL on failure.
  549. */
  550. static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
  551. unsigned long **bitmapp,
  552. bool may_alloc)
  553. {
  554. static struct page **pages;
  555. static unsigned long *bitmap;
  556. size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
  557. size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
  558. sizeof(unsigned long);
  559. if (!pages || !bitmap) {
  560. if (may_alloc && !pages)
  561. pages = pcpu_mem_alloc(pages_size);
  562. if (may_alloc && !bitmap)
  563. bitmap = pcpu_mem_alloc(bitmap_size);
  564. if (!pages || !bitmap)
  565. return NULL;
  566. }
  567. memset(pages, 0, pages_size);
  568. bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
  569. *bitmapp = bitmap;
  570. return pages;
  571. }
  572. /**
  573. * pcpu_free_pages - free pages which were allocated for @chunk
  574. * @chunk: chunk pages were allocated for
  575. * @pages: array of pages to be freed, indexed by pcpu_page_idx()
  576. * @populated: populated bitmap
  577. * @page_start: page index of the first page to be freed
  578. * @page_end: page index of the last page to be freed + 1
  579. *
  580. * Free pages [@page_start and @page_end) in @pages for all units.
  581. * The pages were allocated for @chunk.
  582. */
  583. static void pcpu_free_pages(struct pcpu_chunk *chunk,
  584. struct page **pages, unsigned long *populated,
  585. int page_start, int page_end)
  586. {
  587. unsigned int cpu;
  588. int i;
  589. for_each_possible_cpu(cpu) {
  590. for (i = page_start; i < page_end; i++) {
  591. struct page *page = pages[pcpu_page_idx(cpu, i)];
  592. if (page)
  593. __free_page(page);
  594. }
  595. }
  596. }
  597. /**
  598. * pcpu_alloc_pages - allocates pages for @chunk
  599. * @chunk: target chunk
  600. * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
  601. * @populated: populated bitmap
  602. * @page_start: page index of the first page to be allocated
  603. * @page_end: page index of the last page to be allocated + 1
  604. *
  605. * Allocate pages [@page_start,@page_end) into @pages for all units.
  606. * The allocation is for @chunk. Percpu core doesn't care about the
  607. * content of @pages and will pass it verbatim to pcpu_map_pages().
  608. */
  609. static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
  610. struct page **pages, unsigned long *populated,
  611. int page_start, int page_end)
  612. {
  613. const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
  614. unsigned int cpu;
  615. int i;
  616. for_each_possible_cpu(cpu) {
  617. for (i = page_start; i < page_end; i++) {
  618. struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
  619. *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
  620. if (!*pagep) {
  621. pcpu_free_pages(chunk, pages, populated,
  622. page_start, page_end);
  623. return -ENOMEM;
  624. }
  625. }
  626. }
  627. return 0;
  628. }
  629. /**
  630. * pcpu_pre_unmap_flush - flush cache prior to unmapping
  631. * @chunk: chunk the regions to be flushed belongs to
  632. * @page_start: page index of the first page to be flushed
  633. * @page_end: page index of the last page to be flushed + 1
  634. *
  635. * Pages in [@page_start,@page_end) of @chunk are about to be
  636. * unmapped. Flush cache. As each flushing trial can be very
  637. * expensive, issue flush on the whole region at once rather than
  638. * doing it for each cpu. This could be an overkill but is more
  639. * scalable.
  640. */
  641. static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
  642. int page_start, int page_end)
  643. {
  644. flush_cache_vunmap(
  645. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  646. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  647. }
  648. static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
  649. {
  650. unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
  651. }
  652. /**
  653. * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
  654. * @chunk: chunk of interest
  655. * @pages: pages array which can be used to pass information to free
  656. * @populated: populated bitmap
  657. * @page_start: page index of the first page to unmap
  658. * @page_end: page index of the last page to unmap + 1
  659. *
  660. * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
  661. * Corresponding elements in @pages were cleared by the caller and can
  662. * be used to carry information to pcpu_free_pages() which will be
  663. * called after all unmaps are finished. The caller should call
  664. * proper pre/post flush functions.
  665. */
  666. static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
  667. struct page **pages, unsigned long *populated,
  668. int page_start, int page_end)
  669. {
  670. unsigned int cpu;
  671. int i;
  672. for_each_possible_cpu(cpu) {
  673. for (i = page_start; i < page_end; i++) {
  674. struct page *page;
  675. page = pcpu_chunk_page(chunk, cpu, i);
  676. WARN_ON(!page);
  677. pages[pcpu_page_idx(cpu, i)] = page;
  678. }
  679. __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
  680. page_end - page_start);
  681. }
  682. for (i = page_start; i < page_end; i++)
  683. __clear_bit(i, populated);
  684. }
  685. /**
  686. * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
  687. * @chunk: pcpu_chunk the regions to be flushed belong to
  688. * @page_start: page index of the first page to be flushed
  689. * @page_end: page index of the last page to be flushed + 1
  690. *
  691. * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
  692. * TLB for the regions. This can be skipped if the area is to be
  693. * returned to vmalloc as vmalloc will handle TLB flushing lazily.
  694. *
  695. * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
  696. * for the whole region.
  697. */
  698. static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
  699. int page_start, int page_end)
  700. {
  701. flush_tlb_kernel_range(
  702. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  703. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  704. }
  705. static int __pcpu_map_pages(unsigned long addr, struct page **pages,
  706. int nr_pages)
  707. {
  708. return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
  709. PAGE_KERNEL, pages);
  710. }
  711. /**
  712. * pcpu_map_pages - map pages into a pcpu_chunk
  713. * @chunk: chunk of interest
  714. * @pages: pages array containing pages to be mapped
  715. * @populated: populated bitmap
  716. * @page_start: page index of the first page to map
  717. * @page_end: page index of the last page to map + 1
  718. *
  719. * For each cpu, map pages [@page_start,@page_end) into @chunk. The
  720. * caller is responsible for calling pcpu_post_map_flush() after all
  721. * mappings are complete.
  722. *
  723. * This function is responsible for setting corresponding bits in
  724. * @chunk->populated bitmap and whatever is necessary for reverse
  725. * lookup (addr -> chunk).
  726. */
  727. static int pcpu_map_pages(struct pcpu_chunk *chunk,
  728. struct page **pages, unsigned long *populated,
  729. int page_start, int page_end)
  730. {
  731. unsigned int cpu, tcpu;
  732. int i, err;
  733. for_each_possible_cpu(cpu) {
  734. err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
  735. &pages[pcpu_page_idx(cpu, page_start)],
  736. page_end - page_start);
  737. if (err < 0)
  738. goto err;
  739. }
  740. /* mapping successful, link chunk and mark populated */
  741. for (i = page_start; i < page_end; i++) {
  742. for_each_possible_cpu(cpu)
  743. pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
  744. chunk);
  745. __set_bit(i, populated);
  746. }
  747. return 0;
  748. err:
  749. for_each_possible_cpu(tcpu) {
  750. if (tcpu == cpu)
  751. break;
  752. __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
  753. page_end - page_start);
  754. }
  755. return err;
  756. }
  757. /**
  758. * pcpu_post_map_flush - flush cache after mapping
  759. * @chunk: pcpu_chunk the regions to be flushed belong to
  760. * @page_start: page index of the first page to be flushed
  761. * @page_end: page index of the last page to be flushed + 1
  762. *
  763. * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
  764. * cache.
  765. *
  766. * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
  767. * for the whole region.
  768. */
  769. static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
  770. int page_start, int page_end)
  771. {
  772. flush_cache_vmap(
  773. pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
  774. pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
  775. }
  776. /**
  777. * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
  778. * @chunk: chunk to depopulate
  779. * @off: offset to the area to depopulate
  780. * @size: size of the area to depopulate in bytes
  781. * @flush: whether to flush cache and tlb or not
  782. *
  783. * For each cpu, depopulate and unmap pages [@page_start,@page_end)
  784. * from @chunk. If @flush is true, vcache is flushed before unmapping
  785. * and tlb after.
  786. *
  787. * CONTEXT:
  788. * pcpu_alloc_mutex.
  789. */
  790. static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
  791. {
  792. int page_start = PFN_DOWN(off);
  793. int page_end = PFN_UP(off + size);
  794. struct page **pages;
  795. unsigned long *populated;
  796. int rs, re;
  797. /* quick path, check whether it's empty already */
  798. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  799. if (rs == page_start && re == page_end)
  800. return;
  801. break;
  802. }
  803. /* immutable chunks can't be depopulated */
  804. WARN_ON(chunk->immutable);
  805. /*
  806. * If control reaches here, there must have been at least one
  807. * successful population attempt so the temp pages array must
  808. * be available now.
  809. */
  810. pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
  811. BUG_ON(!pages);
  812. /* unmap and free */
  813. pcpu_pre_unmap_flush(chunk, page_start, page_end);
  814. pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
  815. pcpu_unmap_pages(chunk, pages, populated, rs, re);
  816. /* no need to flush tlb, vmalloc will handle it lazily */
  817. pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
  818. pcpu_free_pages(chunk, pages, populated, rs, re);
  819. /* commit new bitmap */
  820. bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
  821. }
  822. /**
  823. * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
  824. * @chunk: chunk of interest
  825. * @off: offset to the area to populate
  826. * @size: size of the area to populate in bytes
  827. *
  828. * For each cpu, populate and map pages [@page_start,@page_end) into
  829. * @chunk. The area is cleared on return.
  830. *
  831. * CONTEXT:
  832. * pcpu_alloc_mutex, does GFP_KERNEL allocation.
  833. */
  834. static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
  835. {
  836. int page_start = PFN_DOWN(off);
  837. int page_end = PFN_UP(off + size);
  838. int free_end = page_start, unmap_end = page_start;
  839. struct page **pages;
  840. unsigned long *populated;
  841. unsigned int cpu;
  842. int rs, re, rc;
  843. /* quick path, check whether all pages are already there */
  844. pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
  845. if (rs == page_start && re == page_end)
  846. goto clear;
  847. break;
  848. }
  849. /* need to allocate and map pages, this chunk can't be immutable */
  850. WARN_ON(chunk->immutable);
  851. pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
  852. if (!pages)
  853. return -ENOMEM;
  854. /* alloc and map */
  855. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  856. rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
  857. if (rc)
  858. goto err_free;
  859. free_end = re;
  860. }
  861. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  862. rc = pcpu_map_pages(chunk, pages, populated, rs, re);
  863. if (rc)
  864. goto err_unmap;
  865. unmap_end = re;
  866. }
  867. pcpu_post_map_flush(chunk, page_start, page_end);
  868. /* commit new bitmap */
  869. bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
  870. clear:
  871. for_each_possible_cpu(cpu)
  872. memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
  873. return 0;
  874. err_unmap:
  875. pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
  876. pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
  877. pcpu_unmap_pages(chunk, pages, populated, rs, re);
  878. pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
  879. err_free:
  880. pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
  881. pcpu_free_pages(chunk, pages, populated, rs, re);
  882. return rc;
  883. }
  884. static void free_pcpu_chunk(struct pcpu_chunk *chunk)
  885. {
  886. if (!chunk)
  887. return;
  888. if (chunk->vms)
  889. pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
  890. pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
  891. kfree(chunk);
  892. }
  893. static struct pcpu_chunk *alloc_pcpu_chunk(void)
  894. {
  895. struct pcpu_chunk *chunk;
  896. chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
  897. if (!chunk)
  898. return NULL;
  899. chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
  900. chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
  901. chunk->map[chunk->map_used++] = pcpu_unit_size;
  902. chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
  903. pcpu_nr_groups, pcpu_atom_size,
  904. GFP_KERNEL);
  905. if (!chunk->vms) {
  906. free_pcpu_chunk(chunk);
  907. return NULL;
  908. }
  909. INIT_LIST_HEAD(&chunk->list);
  910. chunk->free_size = pcpu_unit_size;
  911. chunk->contig_hint = pcpu_unit_size;
  912. chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
  913. return chunk;
  914. }
  915. /**
  916. * pcpu_alloc - the percpu allocator
  917. * @size: size of area to allocate in bytes
  918. * @align: alignment of area (max PAGE_SIZE)
  919. * @reserved: allocate from the reserved chunk if available
  920. *
  921. * Allocate percpu area of @size bytes aligned at @align.
  922. *
  923. * CONTEXT:
  924. * Does GFP_KERNEL allocation.
  925. *
  926. * RETURNS:
  927. * Percpu pointer to the allocated area on success, NULL on failure.
  928. */
  929. static void *pcpu_alloc(size_t size, size_t align, bool reserved)
  930. {
  931. struct pcpu_chunk *chunk;
  932. int slot, off;
  933. if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
  934. WARN(true, "illegal size (%zu) or align (%zu) for "
  935. "percpu allocation\n", size, align);
  936. return NULL;
  937. }
  938. mutex_lock(&pcpu_alloc_mutex);
  939. spin_lock_irq(&pcpu_lock);
  940. /* serve reserved allocations from the reserved chunk if available */
  941. if (reserved && pcpu_reserved_chunk) {
  942. chunk = pcpu_reserved_chunk;
  943. if (size > chunk->contig_hint ||
  944. pcpu_extend_area_map(chunk) < 0)
  945. goto fail_unlock;
  946. off = pcpu_alloc_area(chunk, size, align);
  947. if (off >= 0)
  948. goto area_found;
  949. goto fail_unlock;
  950. }
  951. restart:
  952. /* search through normal chunks */
  953. for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
  954. list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  955. if (size > chunk->contig_hint)
  956. continue;
  957. switch (pcpu_extend_area_map(chunk)) {
  958. case 0:
  959. break;
  960. case 1:
  961. goto restart; /* pcpu_lock dropped, restart */
  962. default:
  963. goto fail_unlock;
  964. }
  965. off = pcpu_alloc_area(chunk, size, align);
  966. if (off >= 0)
  967. goto area_found;
  968. }
  969. }
  970. /* hmmm... no space left, create a new chunk */
  971. spin_unlock_irq(&pcpu_lock);
  972. chunk = alloc_pcpu_chunk();
  973. if (!chunk)
  974. goto fail_unlock_mutex;
  975. spin_lock_irq(&pcpu_lock);
  976. pcpu_chunk_relocate(chunk, -1);
  977. goto restart;
  978. area_found:
  979. spin_unlock_irq(&pcpu_lock);
  980. /* populate, map and clear the area */
  981. if (pcpu_populate_chunk(chunk, off, size)) {
  982. spin_lock_irq(&pcpu_lock);
  983. pcpu_free_area(chunk, off);
  984. goto fail_unlock;
  985. }
  986. mutex_unlock(&pcpu_alloc_mutex);
  987. /* return address relative to base address */
  988. return __addr_to_pcpu_ptr(chunk->base_addr + off);
  989. fail_unlock:
  990. spin_unlock_irq(&pcpu_lock);
  991. fail_unlock_mutex:
  992. mutex_unlock(&pcpu_alloc_mutex);
  993. return NULL;
  994. }
  995. /**
  996. * __alloc_percpu - allocate dynamic percpu area
  997. * @size: size of area to allocate in bytes
  998. * @align: alignment of area (max PAGE_SIZE)
  999. *
  1000. * Allocate percpu area of @size bytes aligned at @align. Might
  1001. * sleep. Might trigger writeouts.
  1002. *
  1003. * CONTEXT:
  1004. * Does GFP_KERNEL allocation.
  1005. *
  1006. * RETURNS:
  1007. * Percpu pointer to the allocated area on success, NULL on failure.
  1008. */
  1009. void *__alloc_percpu(size_t size, size_t align)
  1010. {
  1011. return pcpu_alloc(size, align, false);
  1012. }
  1013. EXPORT_SYMBOL_GPL(__alloc_percpu);
  1014. /**
  1015. * __alloc_reserved_percpu - allocate reserved percpu area
  1016. * @size: size of area to allocate in bytes
  1017. * @align: alignment of area (max PAGE_SIZE)
  1018. *
  1019. * Allocate percpu area of @size bytes aligned at @align from reserved
  1020. * percpu area if arch has set it up; otherwise, allocation is served
  1021. * from the same dynamic area. Might sleep. Might trigger writeouts.
  1022. *
  1023. * CONTEXT:
  1024. * Does GFP_KERNEL allocation.
  1025. *
  1026. * RETURNS:
  1027. * Percpu pointer to the allocated area on success, NULL on failure.
  1028. */
  1029. void *__alloc_reserved_percpu(size_t size, size_t align)
  1030. {
  1031. return pcpu_alloc(size, align, true);
  1032. }
  1033. /**
  1034. * pcpu_reclaim - reclaim fully free chunks, workqueue function
  1035. * @work: unused
  1036. *
  1037. * Reclaim all fully free chunks except for the first one.
  1038. *
  1039. * CONTEXT:
  1040. * workqueue context.
  1041. */
  1042. static void pcpu_reclaim(struct work_struct *work)
  1043. {
  1044. LIST_HEAD(todo);
  1045. struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
  1046. struct pcpu_chunk *chunk, *next;
  1047. mutex_lock(&pcpu_alloc_mutex);
  1048. spin_lock_irq(&pcpu_lock);
  1049. list_for_each_entry_safe(chunk, next, head, list) {
  1050. WARN_ON(chunk->immutable);
  1051. /* spare the first one */
  1052. if (chunk == list_first_entry(head, struct pcpu_chunk, list))
  1053. continue;
  1054. list_move(&chunk->list, &todo);
  1055. }
  1056. spin_unlock_irq(&pcpu_lock);
  1057. list_for_each_entry_safe(chunk, next, &todo, list) {
  1058. pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
  1059. free_pcpu_chunk(chunk);
  1060. }
  1061. mutex_unlock(&pcpu_alloc_mutex);
  1062. }
  1063. /**
  1064. * free_percpu - free percpu area
  1065. * @ptr: pointer to area to free
  1066. *
  1067. * Free percpu area @ptr.
  1068. *
  1069. * CONTEXT:
  1070. * Can be called from atomic context.
  1071. */
  1072. void free_percpu(void *ptr)
  1073. {
  1074. void *addr = __pcpu_ptr_to_addr(ptr);
  1075. struct pcpu_chunk *chunk;
  1076. unsigned long flags;
  1077. int off;
  1078. if (!ptr)
  1079. return;
  1080. spin_lock_irqsave(&pcpu_lock, flags);
  1081. chunk = pcpu_chunk_addr_search(addr);
  1082. off = addr - chunk->base_addr;
  1083. pcpu_free_area(chunk, off);
  1084. /* if there are more than one fully free chunks, wake up grim reaper */
  1085. if (chunk->free_size == pcpu_unit_size) {
  1086. struct pcpu_chunk *pos;
  1087. list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
  1088. if (pos != chunk) {
  1089. schedule_work(&pcpu_reclaim_work);
  1090. break;
  1091. }
  1092. }
  1093. spin_unlock_irqrestore(&pcpu_lock, flags);
  1094. }
  1095. EXPORT_SYMBOL_GPL(free_percpu);
  1096. static inline size_t pcpu_calc_fc_sizes(size_t static_size,
  1097. size_t reserved_size,
  1098. ssize_t *dyn_sizep)
  1099. {
  1100. size_t size_sum;
  1101. size_sum = PFN_ALIGN(static_size + reserved_size +
  1102. (*dyn_sizep >= 0 ? *dyn_sizep : 0));
  1103. if (*dyn_sizep != 0)
  1104. *dyn_sizep = size_sum - static_size - reserved_size;
  1105. return size_sum;
  1106. }
  1107. /**
  1108. * pcpu_alloc_alloc_info - allocate percpu allocation info
  1109. * @nr_groups: the number of groups
  1110. * @nr_units: the number of units
  1111. *
  1112. * Allocate ai which is large enough for @nr_groups groups containing
  1113. * @nr_units units. The returned ai's groups[0].cpu_map points to the
  1114. * cpu_map array which is long enough for @nr_units and filled with
  1115. * NR_CPUS. It's the caller's responsibility to initialize cpu_map
  1116. * pointer of other groups.
  1117. *
  1118. * RETURNS:
  1119. * Pointer to the allocated pcpu_alloc_info on success, NULL on
  1120. * failure.
  1121. */
  1122. struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
  1123. int nr_units)
  1124. {
  1125. struct pcpu_alloc_info *ai;
  1126. size_t base_size, ai_size;
  1127. void *ptr;
  1128. int unit;
  1129. base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
  1130. __alignof__(ai->groups[0].cpu_map[0]));
  1131. ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
  1132. ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
  1133. if (!ptr)
  1134. return NULL;
  1135. ai = ptr;
  1136. ptr += base_size;
  1137. ai->groups[0].cpu_map = ptr;
  1138. for (unit = 0; unit < nr_units; unit++)
  1139. ai->groups[0].cpu_map[unit] = NR_CPUS;
  1140. ai->nr_groups = nr_groups;
  1141. ai->__ai_size = PFN_ALIGN(ai_size);
  1142. return ai;
  1143. }
  1144. /**
  1145. * pcpu_free_alloc_info - free percpu allocation info
  1146. * @ai: pcpu_alloc_info to free
  1147. *
  1148. * Free @ai which was allocated by pcpu_alloc_alloc_info().
  1149. */
  1150. void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
  1151. {
  1152. free_bootmem(__pa(ai), ai->__ai_size);
  1153. }
  1154. /**
  1155. * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
  1156. * @reserved_size: the size of reserved percpu area in bytes
  1157. * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
  1158. * @atom_size: allocation atom size
  1159. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1160. *
  1161. * This function determines grouping of units, their mappings to cpus
  1162. * and other parameters considering needed percpu size, allocation
  1163. * atom size and distances between CPUs.
  1164. *
  1165. * Groups are always mutliples of atom size and CPUs which are of
  1166. * LOCAL_DISTANCE both ways are grouped together and share space for
  1167. * units in the same group. The returned configuration is guaranteed
  1168. * to have CPUs on different nodes on different groups and >=75% usage
  1169. * of allocated virtual address space.
  1170. *
  1171. * RETURNS:
  1172. * On success, pointer to the new allocation_info is returned. On
  1173. * failure, ERR_PTR value is returned.
  1174. */
  1175. struct pcpu_alloc_info * __init pcpu_build_alloc_info(
  1176. size_t reserved_size, ssize_t dyn_size,
  1177. size_t atom_size,
  1178. pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
  1179. {
  1180. static int group_map[NR_CPUS] __initdata;
  1181. static int group_cnt[NR_CPUS] __initdata;
  1182. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1183. int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
  1184. size_t size_sum, min_unit_size, alloc_size;
  1185. int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
  1186. int last_allocs, group, unit;
  1187. unsigned int cpu, tcpu;
  1188. struct pcpu_alloc_info *ai;
  1189. unsigned int *cpu_map;
  1190. /*
  1191. * Determine min_unit_size, alloc_size and max_upa such that
  1192. * alloc_size is multiple of atom_size and is the smallest
  1193. * which can accomodate 4k aligned segments which are equal to
  1194. * or larger than min_unit_size.
  1195. */
  1196. size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
  1197. min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
  1198. alloc_size = roundup(min_unit_size, atom_size);
  1199. upa = alloc_size / min_unit_size;
  1200. while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1201. upa--;
  1202. max_upa = upa;
  1203. /* group cpus according to their proximity */
  1204. for_each_possible_cpu(cpu) {
  1205. group = 0;
  1206. next_group:
  1207. for_each_possible_cpu(tcpu) {
  1208. if (cpu == tcpu)
  1209. break;
  1210. if (group_map[tcpu] == group && cpu_distance_fn &&
  1211. (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
  1212. cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
  1213. group++;
  1214. nr_groups = max(nr_groups, group + 1);
  1215. goto next_group;
  1216. }
  1217. }
  1218. group_map[cpu] = group;
  1219. group_cnt[group]++;
  1220. group_cnt_max = max(group_cnt_max, group_cnt[group]);
  1221. }
  1222. /*
  1223. * Expand unit size until address space usage goes over 75%
  1224. * and then as much as possible without using more address
  1225. * space.
  1226. */
  1227. last_allocs = INT_MAX;
  1228. for (upa = max_upa; upa; upa--) {
  1229. int allocs = 0, wasted = 0;
  1230. if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1231. continue;
  1232. for (group = 0; group < nr_groups; group++) {
  1233. int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
  1234. allocs += this_allocs;
  1235. wasted += this_allocs * upa - group_cnt[group];
  1236. }
  1237. /*
  1238. * Don't accept if wastage is over 25%. The
  1239. * greater-than comparison ensures upa==1 always
  1240. * passes the following check.
  1241. */
  1242. if (wasted > num_possible_cpus() / 3)
  1243. continue;
  1244. /* and then don't consume more memory */
  1245. if (allocs > last_allocs)
  1246. break;
  1247. last_allocs = allocs;
  1248. best_upa = upa;
  1249. }
  1250. upa = best_upa;
  1251. /* allocate and fill alloc_info */
  1252. for (group = 0; group < nr_groups; group++)
  1253. nr_units += roundup(group_cnt[group], upa);
  1254. ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
  1255. if (!ai)
  1256. return ERR_PTR(-ENOMEM);
  1257. cpu_map = ai->groups[0].cpu_map;
  1258. for (group = 0; group < nr_groups; group++) {
  1259. ai->groups[group].cpu_map = cpu_map;
  1260. cpu_map += roundup(group_cnt[group], upa);
  1261. }
  1262. ai->static_size = static_size;
  1263. ai->reserved_size = reserved_size;
  1264. ai->dyn_size = dyn_size;
  1265. ai->unit_size = alloc_size / upa;
  1266. ai->atom_size = atom_size;
  1267. ai->alloc_size = alloc_size;
  1268. for (group = 0, unit = 0; group_cnt[group]; group++) {
  1269. struct pcpu_group_info *gi = &ai->groups[group];
  1270. /*
  1271. * Initialize base_offset as if all groups are located
  1272. * back-to-back. The caller should update this to
  1273. * reflect actual allocation.
  1274. */
  1275. gi->base_offset = unit * ai->unit_size;
  1276. for_each_possible_cpu(cpu)
  1277. if (group_map[cpu] == group)
  1278. gi->cpu_map[gi->nr_units++] = cpu;
  1279. gi->nr_units = roundup(gi->nr_units, upa);
  1280. unit += gi->nr_units;
  1281. }
  1282. BUG_ON(unit != nr_units);
  1283. return ai;
  1284. }
  1285. /**
  1286. * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
  1287. * @lvl: loglevel
  1288. * @ai: allocation info to dump
  1289. *
  1290. * Print out information about @ai using loglevel @lvl.
  1291. */
  1292. static void pcpu_dump_alloc_info(const char *lvl,
  1293. const struct pcpu_alloc_info *ai)
  1294. {
  1295. int group_width = 1, cpu_width = 1, width;
  1296. char empty_str[] = "--------";
  1297. int alloc = 0, alloc_end = 0;
  1298. int group, v;
  1299. int upa, apl; /* units per alloc, allocs per line */
  1300. v = ai->nr_groups;
  1301. while (v /= 10)
  1302. group_width++;
  1303. v = num_possible_cpus();
  1304. while (v /= 10)
  1305. cpu_width++;
  1306. empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
  1307. upa = ai->alloc_size / ai->unit_size;
  1308. width = upa * (cpu_width + 1) + group_width + 3;
  1309. apl = rounddown_pow_of_two(max(60 / width, 1));
  1310. printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
  1311. lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
  1312. ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
  1313. for (group = 0; group < ai->nr_groups; group++) {
  1314. const struct pcpu_group_info *gi = &ai->groups[group];
  1315. int unit = 0, unit_end = 0;
  1316. BUG_ON(gi->nr_units % upa);
  1317. for (alloc_end += gi->nr_units / upa;
  1318. alloc < alloc_end; alloc++) {
  1319. if (!(alloc % apl)) {
  1320. printk("\n");
  1321. printk("%spcpu-alloc: ", lvl);
  1322. }
  1323. printk("[%0*d] ", group_width, group);
  1324. for (unit_end += upa; unit < unit_end; unit++)
  1325. if (gi->cpu_map[unit] != NR_CPUS)
  1326. printk("%0*d ", cpu_width,
  1327. gi->cpu_map[unit]);
  1328. else
  1329. printk("%s ", empty_str);
  1330. }
  1331. }
  1332. printk("\n");
  1333. }
  1334. /**
  1335. * pcpu_setup_first_chunk - initialize the first percpu chunk
  1336. * @ai: pcpu_alloc_info describing how to percpu area is shaped
  1337. * @base_addr: mapped address
  1338. *
  1339. * Initialize the first percpu chunk which contains the kernel static
  1340. * perpcu area. This function is to be called from arch percpu area
  1341. * setup path.
  1342. *
  1343. * @ai contains all information necessary to initialize the first
  1344. * chunk and prime the dynamic percpu allocator.
  1345. *
  1346. * @ai->static_size is the size of static percpu area.
  1347. *
  1348. * @ai->reserved_size, if non-zero, specifies the amount of bytes to
  1349. * reserve after the static area in the first chunk. This reserves
  1350. * the first chunk such that it's available only through reserved
  1351. * percpu allocation. This is primarily used to serve module percpu
  1352. * static areas on architectures where the addressing model has
  1353. * limited offset range for symbol relocations to guarantee module
  1354. * percpu symbols fall inside the relocatable range.
  1355. *
  1356. * @ai->dyn_size determines the number of bytes available for dynamic
  1357. * allocation in the first chunk. The area between @ai->static_size +
  1358. * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
  1359. *
  1360. * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
  1361. * and equal to or larger than @ai->static_size + @ai->reserved_size +
  1362. * @ai->dyn_size.
  1363. *
  1364. * @ai->atom_size is the allocation atom size and used as alignment
  1365. * for vm areas.
  1366. *
  1367. * @ai->alloc_size is the allocation size and always multiple of
  1368. * @ai->atom_size. This is larger than @ai->atom_size if
  1369. * @ai->unit_size is larger than @ai->atom_size.
  1370. *
  1371. * @ai->nr_groups and @ai->groups describe virtual memory layout of
  1372. * percpu areas. Units which should be colocated are put into the
  1373. * same group. Dynamic VM areas will be allocated according to these
  1374. * groupings. If @ai->nr_groups is zero, a single group containing
  1375. * all units is assumed.
  1376. *
  1377. * The caller should have mapped the first chunk at @base_addr and
  1378. * copied static data to each unit.
  1379. *
  1380. * If the first chunk ends up with both reserved and dynamic areas, it
  1381. * is served by two chunks - one to serve the core static and reserved
  1382. * areas and the other for the dynamic area. They share the same vm
  1383. * and page map but uses different area allocation map to stay away
  1384. * from each other. The latter chunk is circulated in the chunk slots
  1385. * and available for dynamic allocation like any other chunks.
  1386. *
  1387. * RETURNS:
  1388. * 0 on success, -errno on failure.
  1389. */
  1390. int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
  1391. void *base_addr)
  1392. {
  1393. static int smap[2], dmap[2];
  1394. size_t dyn_size = ai->dyn_size;
  1395. size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
  1396. struct pcpu_chunk *schunk, *dchunk = NULL;
  1397. unsigned long *group_offsets;
  1398. size_t *group_sizes;
  1399. unsigned long *unit_off;
  1400. unsigned int cpu;
  1401. int *unit_map;
  1402. int group, unit, i;
  1403. /* sanity checks */
  1404. BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
  1405. ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
  1406. BUG_ON(ai->nr_groups <= 0);
  1407. BUG_ON(!ai->static_size);
  1408. BUG_ON(!base_addr);
  1409. BUG_ON(ai->unit_size < size_sum);
  1410. BUG_ON(ai->unit_size & ~PAGE_MASK);
  1411. BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
  1412. pcpu_dump_alloc_info(KERN_DEBUG, ai);
  1413. /* process group information and build config tables accordingly */
  1414. group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
  1415. group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
  1416. unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
  1417. unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
  1418. for (cpu = 0; cpu < nr_cpu_ids; cpu++)
  1419. unit_map[cpu] = NR_CPUS;
  1420. pcpu_first_unit_cpu = NR_CPUS;
  1421. for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
  1422. const struct pcpu_group_info *gi = &ai->groups[group];
  1423. group_offsets[group] = gi->base_offset;
  1424. group_sizes[group] = gi->nr_units * ai->unit_size;
  1425. for (i = 0; i < gi->nr_units; i++) {
  1426. cpu = gi->cpu_map[i];
  1427. if (cpu == NR_CPUS)
  1428. continue;
  1429. BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu));
  1430. BUG_ON(unit_map[cpu] != NR_CPUS);
  1431. unit_map[cpu] = unit + i;
  1432. unit_off[cpu] = gi->base_offset + i * ai->unit_size;
  1433. if (pcpu_first_unit_cpu == NR_CPUS)
  1434. pcpu_first_unit_cpu = cpu;
  1435. }
  1436. }
  1437. pcpu_last_unit_cpu = cpu;
  1438. pcpu_nr_units = unit;
  1439. for_each_possible_cpu(cpu)
  1440. BUG_ON(unit_map[cpu] == NR_CPUS);
  1441. pcpu_nr_groups = ai->nr_groups;
  1442. pcpu_group_offsets = group_offsets;
  1443. pcpu_group_sizes = group_sizes;
  1444. pcpu_unit_map = unit_map;
  1445. pcpu_unit_offsets = unit_off;
  1446. /* determine basic parameters */
  1447. pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
  1448. pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
  1449. pcpu_atom_size = ai->atom_size;
  1450. pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
  1451. BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
  1452. /*
  1453. * Allocate chunk slots. The additional last slot is for
  1454. * empty chunks.
  1455. */
  1456. pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
  1457. pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
  1458. for (i = 0; i < pcpu_nr_slots; i++)
  1459. INIT_LIST_HEAD(&pcpu_slot[i]);
  1460. /*
  1461. * Initialize static chunk. If reserved_size is zero, the
  1462. * static chunk covers static area + dynamic allocation area
  1463. * in the first chunk. If reserved_size is not zero, it
  1464. * covers static area + reserved area (mostly used for module
  1465. * static percpu allocation).
  1466. */
  1467. schunk = alloc_bootmem(pcpu_chunk_struct_size);
  1468. INIT_LIST_HEAD(&schunk->list);
  1469. schunk->base_addr = base_addr;
  1470. schunk->map = smap;
  1471. schunk->map_alloc = ARRAY_SIZE(smap);
  1472. schunk->immutable = true;
  1473. bitmap_fill(schunk->populated, pcpu_unit_pages);
  1474. if (ai->reserved_size) {
  1475. schunk->free_size = ai->reserved_size;
  1476. pcpu_reserved_chunk = schunk;
  1477. pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
  1478. } else {
  1479. schunk->free_size = dyn_size;
  1480. dyn_size = 0; /* dynamic area covered */
  1481. }
  1482. schunk->contig_hint = schunk->free_size;
  1483. schunk->map[schunk->map_used++] = -ai->static_size;
  1484. if (schunk->free_size)
  1485. schunk->map[schunk->map_used++] = schunk->free_size;
  1486. /* init dynamic chunk if necessary */
  1487. if (dyn_size) {
  1488. dchunk = alloc_bootmem(pcpu_chunk_struct_size);
  1489. INIT_LIST_HEAD(&dchunk->list);
  1490. dchunk->base_addr = base_addr;
  1491. dchunk->map = dmap;
  1492. dchunk->map_alloc = ARRAY_SIZE(dmap);
  1493. dchunk->immutable = true;
  1494. bitmap_fill(dchunk->populated, pcpu_unit_pages);
  1495. dchunk->contig_hint = dchunk->free_size = dyn_size;
  1496. dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
  1497. dchunk->map[dchunk->map_used++] = dchunk->free_size;
  1498. }
  1499. /* link the first chunk in */
  1500. pcpu_first_chunk = dchunk ?: schunk;
  1501. pcpu_chunk_relocate(pcpu_first_chunk, -1);
  1502. /* we're done */
  1503. pcpu_base_addr = base_addr;
  1504. return 0;
  1505. }
  1506. const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
  1507. [PCPU_FC_AUTO] = "auto",
  1508. [PCPU_FC_EMBED] = "embed",
  1509. [PCPU_FC_PAGE] = "page",
  1510. };
  1511. enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
  1512. static int __init percpu_alloc_setup(char *str)
  1513. {
  1514. if (0)
  1515. /* nada */;
  1516. #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
  1517. else if (!strcmp(str, "embed"))
  1518. pcpu_chosen_fc = PCPU_FC_EMBED;
  1519. #endif
  1520. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1521. else if (!strcmp(str, "page"))
  1522. pcpu_chosen_fc = PCPU_FC_PAGE;
  1523. #endif
  1524. else
  1525. pr_warning("PERCPU: unknown allocator %s specified\n", str);
  1526. return 0;
  1527. }
  1528. early_param("percpu_alloc", percpu_alloc_setup);
  1529. #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
  1530. !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
  1531. /**
  1532. * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
  1533. * @reserved_size: the size of reserved percpu area in bytes
  1534. * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
  1535. * @atom_size: allocation atom size
  1536. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1537. * @alloc_fn: function to allocate percpu page
  1538. * @free_fn: funtion to free percpu page
  1539. *
  1540. * This is a helper to ease setting up embedded first percpu chunk and
  1541. * can be called where pcpu_setup_first_chunk() is expected.
  1542. *
  1543. * If this function is used to setup the first chunk, it is allocated
  1544. * by calling @alloc_fn and used as-is without being mapped into
  1545. * vmalloc area. Allocations are always whole multiples of @atom_size
  1546. * aligned to @atom_size.
  1547. *
  1548. * This enables the first chunk to piggy back on the linear physical
  1549. * mapping which often uses larger page size. Please note that this
  1550. * can result in very sparse cpu->unit mapping on NUMA machines thus
  1551. * requiring large vmalloc address space. Don't use this allocator if
  1552. * vmalloc space is not orders of magnitude larger than distances
  1553. * between node memory addresses (ie. 32bit NUMA machines).
  1554. *
  1555. * When @dyn_size is positive, dynamic area might be larger than
  1556. * specified to fill page alignment. When @dyn_size is auto,
  1557. * @dyn_size is just big enough to fill page alignment after static
  1558. * and reserved areas.
  1559. *
  1560. * If the needed size is smaller than the minimum or specified unit
  1561. * size, the leftover is returned using @free_fn.
  1562. *
  1563. * RETURNS:
  1564. * 0 on success, -errno on failure.
  1565. */
  1566. int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
  1567. size_t atom_size,
  1568. pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
  1569. pcpu_fc_alloc_fn_t alloc_fn,
  1570. pcpu_fc_free_fn_t free_fn)
  1571. {
  1572. void *base = (void *)ULONG_MAX;
  1573. void **areas = NULL;
  1574. struct pcpu_alloc_info *ai;
  1575. size_t size_sum, areas_size;
  1576. int group, i, rc;
  1577. ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
  1578. cpu_distance_fn);
  1579. if (IS_ERR(ai))
  1580. return PTR_ERR(ai);
  1581. size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
  1582. areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
  1583. areas = alloc_bootmem_nopanic(areas_size);
  1584. if (!areas) {
  1585. rc = -ENOMEM;
  1586. goto out_free;
  1587. }
  1588. /* allocate, copy and determine base address */
  1589. for (group = 0; group < ai->nr_groups; group++) {
  1590. struct pcpu_group_info *gi = &ai->groups[group];
  1591. unsigned int cpu = NR_CPUS;
  1592. void *ptr;
  1593. for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
  1594. cpu = gi->cpu_map[i];
  1595. BUG_ON(cpu == NR_CPUS);
  1596. /* allocate space for the whole group */
  1597. ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
  1598. if (!ptr) {
  1599. rc = -ENOMEM;
  1600. goto out_free_areas;
  1601. }
  1602. areas[group] = ptr;
  1603. base = min(ptr, base);
  1604. for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
  1605. if (gi->cpu_map[i] == NR_CPUS) {
  1606. /* unused unit, free whole */
  1607. free_fn(ptr, ai->unit_size);
  1608. continue;
  1609. }
  1610. /* copy and return the unused part */
  1611. memcpy(ptr, __per_cpu_load, ai->static_size);
  1612. free_fn(ptr + size_sum, ai->unit_size - size_sum);
  1613. }
  1614. }
  1615. /* base address is now known, determine group base offsets */
  1616. for (group = 0; group < ai->nr_groups; group++)
  1617. ai->groups[group].base_offset = areas[group] - base;
  1618. pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
  1619. PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
  1620. ai->dyn_size, ai->unit_size);
  1621. rc = pcpu_setup_first_chunk(ai, base);
  1622. goto out_free;
  1623. out_free_areas:
  1624. for (group = 0; group < ai->nr_groups; group++)
  1625. free_fn(areas[group],
  1626. ai->groups[group].nr_units * ai->unit_size);
  1627. out_free:
  1628. pcpu_free_alloc_info(ai);
  1629. if (areas)
  1630. free_bootmem(__pa(areas), areas_size);
  1631. return rc;
  1632. }
  1633. #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
  1634. !CONFIG_HAVE_SETUP_PER_CPU_AREA */
  1635. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1636. /**
  1637. * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
  1638. * @reserved_size: the size of reserved percpu area in bytes
  1639. * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
  1640. * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
  1641. * @populate_pte_fn: function to populate pte
  1642. *
  1643. * This is a helper to ease setting up page-remapped first percpu
  1644. * chunk and can be called where pcpu_setup_first_chunk() is expected.
  1645. *
  1646. * This is the basic allocator. Static percpu area is allocated
  1647. * page-by-page into vmalloc area.
  1648. *
  1649. * RETURNS:
  1650. * 0 on success, -errno on failure.
  1651. */
  1652. int __init pcpu_page_first_chunk(size_t reserved_size,
  1653. pcpu_fc_alloc_fn_t alloc_fn,
  1654. pcpu_fc_free_fn_t free_fn,
  1655. pcpu_fc_populate_pte_fn_t populate_pte_fn)
  1656. {
  1657. static struct vm_struct vm;
  1658. struct pcpu_alloc_info *ai;
  1659. char psize_str[16];
  1660. int unit_pages;
  1661. size_t pages_size;
  1662. struct page **pages;
  1663. int unit, i, j, rc;
  1664. snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
  1665. ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
  1666. if (IS_ERR(ai))
  1667. return PTR_ERR(ai);
  1668. BUG_ON(ai->nr_groups != 1);
  1669. BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
  1670. unit_pages = ai->unit_size >> PAGE_SHIFT;
  1671. /* unaligned allocations can't be freed, round up to page size */
  1672. pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
  1673. sizeof(pages[0]));
  1674. pages = alloc_bootmem(pages_size);
  1675. /* allocate pages */
  1676. j = 0;
  1677. for (unit = 0; unit < num_possible_cpus(); unit++)
  1678. for (i = 0; i < unit_pages; i++) {
  1679. unsigned int cpu = ai->groups[0].cpu_map[unit];
  1680. void *ptr;
  1681. ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
  1682. if (!ptr) {
  1683. pr_warning("PERCPU: failed to allocate %s page "
  1684. "for cpu%u\n", psize_str, cpu);
  1685. goto enomem;
  1686. }
  1687. pages[j++] = virt_to_page(ptr);
  1688. }
  1689. /* allocate vm area, map the pages and copy static data */
  1690. vm.flags = VM_ALLOC;
  1691. vm.size = num_possible_cpus() * ai->unit_size;
  1692. vm_area_register_early(&vm, PAGE_SIZE);
  1693. for (unit = 0; unit < num_possible_cpus(); unit++) {
  1694. unsigned long unit_addr =
  1695. (unsigned long)vm.addr + unit * ai->unit_size;
  1696. for (i = 0; i < unit_pages; i++)
  1697. populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
  1698. /* pte already populated, the following shouldn't fail */
  1699. rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
  1700. unit_pages);
  1701. if (rc < 0)
  1702. panic("failed to map percpu area, err=%d\n", rc);
  1703. /*
  1704. * FIXME: Archs with virtual cache should flush local
  1705. * cache for the linear mapping here - something
  1706. * equivalent to flush_cache_vmap() on the local cpu.
  1707. * flush_cache_vmap() can't be used as most supporting
  1708. * data structures are not set up yet.
  1709. */
  1710. /* copy static data */
  1711. memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
  1712. }
  1713. /* we're ready, commit */
  1714. pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
  1715. unit_pages, psize_str, vm.addr, ai->static_size,
  1716. ai->reserved_size, ai->dyn_size);
  1717. rc = pcpu_setup_first_chunk(ai, vm.addr);
  1718. goto out_free_ar;
  1719. enomem:
  1720. while (--j >= 0)
  1721. free_fn(page_address(pages[j]), PAGE_SIZE);
  1722. rc = -ENOMEM;
  1723. out_free_ar:
  1724. free_bootmem(__pa(pages), pages_size);
  1725. pcpu_free_alloc_info(ai);
  1726. return rc;
  1727. }
  1728. #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
  1729. /*
  1730. * Generic percpu area setup.
  1731. *
  1732. * The embedding helper is used because its behavior closely resembles
  1733. * the original non-dynamic generic percpu area setup. This is
  1734. * important because many archs have addressing restrictions and might
  1735. * fail if the percpu area is located far away from the previous
  1736. * location. As an added bonus, in non-NUMA cases, embedding is
  1737. * generally a good idea TLB-wise because percpu area can piggy back
  1738. * on the physical linear memory mapping which uses large page
  1739. * mappings on applicable archs.
  1740. */
  1741. #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
  1742. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  1743. EXPORT_SYMBOL(__per_cpu_offset);
  1744. static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
  1745. size_t align)
  1746. {
  1747. return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
  1748. }
  1749. static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
  1750. {
  1751. free_bootmem(__pa(ptr), size);
  1752. }
  1753. void __init setup_per_cpu_areas(void)
  1754. {
  1755. unsigned long delta;
  1756. unsigned int cpu;
  1757. int rc;
  1758. /*
  1759. * Always reserve area for module percpu variables. That's
  1760. * what the legacy allocator did.
  1761. */
  1762. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1763. PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
  1764. pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
  1765. if (rc < 0)
  1766. panic("Failed to initialized percpu areas.");
  1767. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1768. for_each_possible_cpu(cpu)
  1769. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  1770. }
  1771. #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */