segment.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include "nilfs.h"
  35. #include "btnode.h"
  36. #include "page.h"
  37. #include "segment.h"
  38. #include "sufile.h"
  39. #include "cpfile.h"
  40. #include "ifile.h"
  41. #include "segbuf.h"
  42. /*
  43. * Segment constructor
  44. */
  45. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  46. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  47. appended in collection retry loop */
  48. /* Construction mode */
  49. enum {
  50. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  51. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  52. a logical segment without a super root */
  53. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  54. creating a checkpoint */
  55. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  56. a checkpoint */
  57. };
  58. /* Stage numbers of dirty block collection */
  59. enum {
  60. NILFS_ST_INIT = 0,
  61. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  62. NILFS_ST_FILE,
  63. NILFS_ST_IFILE,
  64. NILFS_ST_CPFILE,
  65. NILFS_ST_SUFILE,
  66. NILFS_ST_DAT,
  67. NILFS_ST_SR, /* Super root */
  68. NILFS_ST_DSYNC, /* Data sync blocks */
  69. NILFS_ST_DONE,
  70. };
  71. /* State flags of collection */
  72. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  73. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  74. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  75. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  76. /* Operations depending on the construction mode and file type */
  77. struct nilfs_sc_operations {
  78. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  79. struct inode *);
  80. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  81. struct inode *);
  82. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  83. struct inode *);
  84. void (*write_data_binfo)(struct nilfs_sc_info *,
  85. struct nilfs_segsum_pointer *,
  86. union nilfs_binfo *);
  87. void (*write_node_binfo)(struct nilfs_sc_info *,
  88. struct nilfs_segsum_pointer *,
  89. union nilfs_binfo *);
  90. };
  91. /*
  92. * Other definitions
  93. */
  94. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  95. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  96. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  97. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  98. int);
  99. #define nilfs_cnt32_gt(a, b) \
  100. (typecheck(__u32, a) && typecheck(__u32, b) && \
  101. ((__s32)(b) - (__s32)(a) < 0))
  102. #define nilfs_cnt32_ge(a, b) \
  103. (typecheck(__u32, a) && typecheck(__u32, b) && \
  104. ((__s32)(a) - (__s32)(b) >= 0))
  105. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  106. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  107. /*
  108. * Transaction
  109. */
  110. static struct kmem_cache *nilfs_transaction_cachep;
  111. /**
  112. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  113. *
  114. * nilfs_init_transaction_cache() creates a slab cache for the struct
  115. * nilfs_transaction_info.
  116. *
  117. * Return Value: On success, it returns 0. On error, one of the following
  118. * negative error code is returned.
  119. *
  120. * %-ENOMEM - Insufficient memory available.
  121. */
  122. int nilfs_init_transaction_cache(void)
  123. {
  124. nilfs_transaction_cachep =
  125. kmem_cache_create("nilfs2_transaction_cache",
  126. sizeof(struct nilfs_transaction_info),
  127. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  128. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  129. }
  130. /**
  131. * nilfs_detroy_transaction_cache - destroy the cache for transaction info
  132. *
  133. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  134. * nilfs_transaction_info.
  135. */
  136. void nilfs_destroy_transaction_cache(void)
  137. {
  138. kmem_cache_destroy(nilfs_transaction_cachep);
  139. }
  140. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  141. {
  142. struct nilfs_transaction_info *cur_ti = current->journal_info;
  143. void *save = NULL;
  144. if (cur_ti) {
  145. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  146. return ++cur_ti->ti_count;
  147. else {
  148. /*
  149. * If journal_info field is occupied by other FS,
  150. * it is saved and will be restored on
  151. * nilfs_transaction_commit().
  152. */
  153. printk(KERN_WARNING
  154. "NILFS warning: journal info from a different "
  155. "FS\n");
  156. save = current->journal_info;
  157. }
  158. }
  159. if (!ti) {
  160. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  161. if (!ti)
  162. return -ENOMEM;
  163. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  164. } else {
  165. ti->ti_flags = 0;
  166. }
  167. ti->ti_count = 0;
  168. ti->ti_save = save;
  169. ti->ti_magic = NILFS_TI_MAGIC;
  170. current->journal_info = ti;
  171. return 0;
  172. }
  173. /**
  174. * nilfs_transaction_begin - start indivisible file operations.
  175. * @sb: super block
  176. * @ti: nilfs_transaction_info
  177. * @vacancy_check: flags for vacancy rate checks
  178. *
  179. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  180. * the segment semaphore, to make a segment construction and write tasks
  181. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  182. * The region enclosed by these two functions can be nested. To avoid a
  183. * deadlock, the semaphore is only acquired or released in the outermost call.
  184. *
  185. * This function allocates a nilfs_transaction_info struct to keep context
  186. * information on it. It is initialized and hooked onto the current task in
  187. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  188. * instead; othewise a new struct is assigned from a slab.
  189. *
  190. * When @vacancy_check flag is set, this function will check the amount of
  191. * free space, and will wait for the GC to reclaim disk space if low capacity.
  192. *
  193. * Return Value: On success, 0 is returned. On error, one of the following
  194. * negative error code is returned.
  195. *
  196. * %-ENOMEM - Insufficient memory available.
  197. *
  198. * %-ENOSPC - No space left on device
  199. */
  200. int nilfs_transaction_begin(struct super_block *sb,
  201. struct nilfs_transaction_info *ti,
  202. int vacancy_check)
  203. {
  204. struct nilfs_sb_info *sbi;
  205. struct the_nilfs *nilfs;
  206. int ret = nilfs_prepare_segment_lock(ti);
  207. if (unlikely(ret < 0))
  208. return ret;
  209. if (ret > 0)
  210. return 0;
  211. sbi = NILFS_SB(sb);
  212. nilfs = sbi->s_nilfs;
  213. down_read(&nilfs->ns_segctor_sem);
  214. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  215. up_read(&nilfs->ns_segctor_sem);
  216. ret = -ENOSPC;
  217. goto failed;
  218. }
  219. return 0;
  220. failed:
  221. ti = current->journal_info;
  222. current->journal_info = ti->ti_save;
  223. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  224. kmem_cache_free(nilfs_transaction_cachep, ti);
  225. return ret;
  226. }
  227. /**
  228. * nilfs_transaction_commit - commit indivisible file operations.
  229. * @sb: super block
  230. *
  231. * nilfs_transaction_commit() releases the read semaphore which is
  232. * acquired by nilfs_transaction_begin(). This is only performed
  233. * in outermost call of this function. If a commit flag is set,
  234. * nilfs_transaction_commit() sets a timer to start the segment
  235. * constructor. If a sync flag is set, it starts construction
  236. * directly.
  237. */
  238. int nilfs_transaction_commit(struct super_block *sb)
  239. {
  240. struct nilfs_transaction_info *ti = current->journal_info;
  241. struct nilfs_sb_info *sbi;
  242. struct nilfs_sc_info *sci;
  243. int err = 0;
  244. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  245. ti->ti_flags |= NILFS_TI_COMMIT;
  246. if (ti->ti_count > 0) {
  247. ti->ti_count--;
  248. return 0;
  249. }
  250. sbi = NILFS_SB(sb);
  251. sci = NILFS_SC(sbi);
  252. if (sci != NULL) {
  253. if (ti->ti_flags & NILFS_TI_COMMIT)
  254. nilfs_segctor_start_timer(sci);
  255. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  256. sci->sc_watermark)
  257. nilfs_segctor_do_flush(sci, 0);
  258. }
  259. up_read(&sbi->s_nilfs->ns_segctor_sem);
  260. current->journal_info = ti->ti_save;
  261. if (ti->ti_flags & NILFS_TI_SYNC)
  262. err = nilfs_construct_segment(sb);
  263. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  264. kmem_cache_free(nilfs_transaction_cachep, ti);
  265. return err;
  266. }
  267. void nilfs_transaction_abort(struct super_block *sb)
  268. {
  269. struct nilfs_transaction_info *ti = current->journal_info;
  270. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  271. if (ti->ti_count > 0) {
  272. ti->ti_count--;
  273. return;
  274. }
  275. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  276. current->journal_info = ti->ti_save;
  277. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  278. kmem_cache_free(nilfs_transaction_cachep, ti);
  279. }
  280. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  281. {
  282. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  283. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  284. struct the_nilfs *nilfs = sbi->s_nilfs;
  285. if (!sci || !sci->sc_flush_request)
  286. return;
  287. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  288. up_read(&nilfs->ns_segctor_sem);
  289. down_write(&nilfs->ns_segctor_sem);
  290. if (sci->sc_flush_request &&
  291. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  292. struct nilfs_transaction_info *ti = current->journal_info;
  293. ti->ti_flags |= NILFS_TI_WRITER;
  294. nilfs_segctor_do_immediate_flush(sci);
  295. ti->ti_flags &= ~NILFS_TI_WRITER;
  296. }
  297. downgrade_write(&nilfs->ns_segctor_sem);
  298. }
  299. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  300. struct nilfs_transaction_info *ti,
  301. int gcflag)
  302. {
  303. struct nilfs_transaction_info *cur_ti = current->journal_info;
  304. WARN_ON(cur_ti);
  305. ti->ti_flags = NILFS_TI_WRITER;
  306. ti->ti_count = 0;
  307. ti->ti_save = cur_ti;
  308. ti->ti_magic = NILFS_TI_MAGIC;
  309. INIT_LIST_HEAD(&ti->ti_garbage);
  310. current->journal_info = ti;
  311. for (;;) {
  312. down_write(&sbi->s_nilfs->ns_segctor_sem);
  313. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  314. break;
  315. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  316. up_write(&sbi->s_nilfs->ns_segctor_sem);
  317. yield();
  318. }
  319. if (gcflag)
  320. ti->ti_flags |= NILFS_TI_GC;
  321. }
  322. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  323. {
  324. struct nilfs_transaction_info *ti = current->journal_info;
  325. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  326. BUG_ON(ti->ti_count > 0);
  327. up_write(&sbi->s_nilfs->ns_segctor_sem);
  328. current->journal_info = ti->ti_save;
  329. if (!list_empty(&ti->ti_garbage))
  330. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  331. }
  332. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  333. struct nilfs_segsum_pointer *ssp,
  334. unsigned bytes)
  335. {
  336. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  337. unsigned blocksize = sci->sc_super->s_blocksize;
  338. void *p;
  339. if (unlikely(ssp->offset + bytes > blocksize)) {
  340. ssp->offset = 0;
  341. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  342. &segbuf->sb_segsum_buffers));
  343. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  344. }
  345. p = ssp->bh->b_data + ssp->offset;
  346. ssp->offset += bytes;
  347. return p;
  348. }
  349. /**
  350. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  351. * @sci: nilfs_sc_info
  352. */
  353. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  354. {
  355. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  356. struct buffer_head *sumbh;
  357. unsigned sumbytes;
  358. unsigned flags = 0;
  359. int err;
  360. if (nilfs_doing_gc())
  361. flags = NILFS_SS_GC;
  362. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  363. if (unlikely(err))
  364. return err;
  365. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  366. sumbytes = segbuf->sb_sum.sumbytes;
  367. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  368. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  369. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  370. return 0;
  371. }
  372. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  373. {
  374. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  375. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  376. return -E2BIG; /* The current segment is filled up
  377. (internal code) */
  378. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  379. return nilfs_segctor_reset_segment_buffer(sci);
  380. }
  381. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  382. {
  383. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  384. int err;
  385. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  386. err = nilfs_segctor_feed_segment(sci);
  387. if (err)
  388. return err;
  389. segbuf = sci->sc_curseg;
  390. }
  391. err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
  392. if (likely(!err))
  393. segbuf->sb_sum.flags |= NILFS_SS_SR;
  394. return err;
  395. }
  396. /*
  397. * Functions for making segment summary and payloads
  398. */
  399. static int nilfs_segctor_segsum_block_required(
  400. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  401. unsigned binfo_size)
  402. {
  403. unsigned blocksize = sci->sc_super->s_blocksize;
  404. /* Size of finfo and binfo is enough small against blocksize */
  405. return ssp->offset + binfo_size +
  406. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  407. blocksize;
  408. }
  409. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  410. struct inode *inode)
  411. {
  412. sci->sc_curseg->sb_sum.nfinfo++;
  413. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  414. nilfs_segctor_map_segsum_entry(
  415. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  416. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  417. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  418. /* skip finfo */
  419. }
  420. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  421. struct inode *inode)
  422. {
  423. struct nilfs_finfo *finfo;
  424. struct nilfs_inode_info *ii;
  425. struct nilfs_segment_buffer *segbuf;
  426. if (sci->sc_blk_cnt == 0)
  427. return;
  428. ii = NILFS_I(inode);
  429. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  430. sizeof(*finfo));
  431. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  432. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  433. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  434. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  435. segbuf = sci->sc_curseg;
  436. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  437. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  438. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  439. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  440. }
  441. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  442. struct buffer_head *bh,
  443. struct inode *inode,
  444. unsigned binfo_size)
  445. {
  446. struct nilfs_segment_buffer *segbuf;
  447. int required, err = 0;
  448. retry:
  449. segbuf = sci->sc_curseg;
  450. required = nilfs_segctor_segsum_block_required(
  451. sci, &sci->sc_binfo_ptr, binfo_size);
  452. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  453. nilfs_segctor_end_finfo(sci, inode);
  454. err = nilfs_segctor_feed_segment(sci);
  455. if (err)
  456. return err;
  457. goto retry;
  458. }
  459. if (unlikely(required)) {
  460. err = nilfs_segbuf_extend_segsum(segbuf);
  461. if (unlikely(err))
  462. goto failed;
  463. }
  464. if (sci->sc_blk_cnt == 0)
  465. nilfs_segctor_begin_finfo(sci, inode);
  466. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  467. /* Substitution to vblocknr is delayed until update_blocknr() */
  468. nilfs_segbuf_add_file_buffer(segbuf, bh);
  469. sci->sc_blk_cnt++;
  470. failed:
  471. return err;
  472. }
  473. static int nilfs_handle_bmap_error(int err, const char *fname,
  474. struct inode *inode, struct super_block *sb)
  475. {
  476. if (err == -EINVAL) {
  477. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  478. inode->i_ino);
  479. err = -EIO;
  480. }
  481. return err;
  482. }
  483. /*
  484. * Callback functions that enumerate, mark, and collect dirty blocks
  485. */
  486. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  487. struct buffer_head *bh, struct inode *inode)
  488. {
  489. int err;
  490. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  491. if (unlikely(err < 0))
  492. return nilfs_handle_bmap_error(err, __func__, inode,
  493. sci->sc_super);
  494. err = nilfs_segctor_add_file_block(sci, bh, inode,
  495. sizeof(struct nilfs_binfo_v));
  496. if (!err)
  497. sci->sc_datablk_cnt++;
  498. return err;
  499. }
  500. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  501. struct buffer_head *bh,
  502. struct inode *inode)
  503. {
  504. int err;
  505. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  506. if (unlikely(err < 0))
  507. return nilfs_handle_bmap_error(err, __func__, inode,
  508. sci->sc_super);
  509. return 0;
  510. }
  511. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  512. struct buffer_head *bh,
  513. struct inode *inode)
  514. {
  515. WARN_ON(!buffer_dirty(bh));
  516. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  517. }
  518. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  519. struct nilfs_segsum_pointer *ssp,
  520. union nilfs_binfo *binfo)
  521. {
  522. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  523. sci, ssp, sizeof(*binfo_v));
  524. *binfo_v = binfo->bi_v;
  525. }
  526. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  527. struct nilfs_segsum_pointer *ssp,
  528. union nilfs_binfo *binfo)
  529. {
  530. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  531. sci, ssp, sizeof(*vblocknr));
  532. *vblocknr = binfo->bi_v.bi_vblocknr;
  533. }
  534. struct nilfs_sc_operations nilfs_sc_file_ops = {
  535. .collect_data = nilfs_collect_file_data,
  536. .collect_node = nilfs_collect_file_node,
  537. .collect_bmap = nilfs_collect_file_bmap,
  538. .write_data_binfo = nilfs_write_file_data_binfo,
  539. .write_node_binfo = nilfs_write_file_node_binfo,
  540. };
  541. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  542. struct buffer_head *bh, struct inode *inode)
  543. {
  544. int err;
  545. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  546. if (unlikely(err < 0))
  547. return nilfs_handle_bmap_error(err, __func__, inode,
  548. sci->sc_super);
  549. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  550. if (!err)
  551. sci->sc_datablk_cnt++;
  552. return err;
  553. }
  554. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  555. struct buffer_head *bh, struct inode *inode)
  556. {
  557. WARN_ON(!buffer_dirty(bh));
  558. return nilfs_segctor_add_file_block(sci, bh, inode,
  559. sizeof(struct nilfs_binfo_dat));
  560. }
  561. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  562. struct nilfs_segsum_pointer *ssp,
  563. union nilfs_binfo *binfo)
  564. {
  565. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  566. sizeof(*blkoff));
  567. *blkoff = binfo->bi_dat.bi_blkoff;
  568. }
  569. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  570. struct nilfs_segsum_pointer *ssp,
  571. union nilfs_binfo *binfo)
  572. {
  573. struct nilfs_binfo_dat *binfo_dat =
  574. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  575. *binfo_dat = binfo->bi_dat;
  576. }
  577. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  578. .collect_data = nilfs_collect_dat_data,
  579. .collect_node = nilfs_collect_file_node,
  580. .collect_bmap = nilfs_collect_dat_bmap,
  581. .write_data_binfo = nilfs_write_dat_data_binfo,
  582. .write_node_binfo = nilfs_write_dat_node_binfo,
  583. };
  584. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  585. .collect_data = nilfs_collect_file_data,
  586. .collect_node = NULL,
  587. .collect_bmap = NULL,
  588. .write_data_binfo = nilfs_write_file_data_binfo,
  589. .write_node_binfo = NULL,
  590. };
  591. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  592. struct list_head *listp,
  593. size_t nlimit,
  594. loff_t start, loff_t end)
  595. {
  596. struct address_space *mapping = inode->i_mapping;
  597. struct pagevec pvec;
  598. pgoff_t index = 0, last = ULONG_MAX;
  599. size_t ndirties = 0;
  600. int i;
  601. if (unlikely(start != 0 || end != LLONG_MAX)) {
  602. /*
  603. * A valid range is given for sync-ing data pages. The
  604. * range is rounded to per-page; extra dirty buffers
  605. * may be included if blocksize < pagesize.
  606. */
  607. index = start >> PAGE_SHIFT;
  608. last = end >> PAGE_SHIFT;
  609. }
  610. pagevec_init(&pvec, 0);
  611. repeat:
  612. if (unlikely(index > last) ||
  613. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  614. min_t(pgoff_t, last - index,
  615. PAGEVEC_SIZE - 1) + 1))
  616. return ndirties;
  617. for (i = 0; i < pagevec_count(&pvec); i++) {
  618. struct buffer_head *bh, *head;
  619. struct page *page = pvec.pages[i];
  620. if (unlikely(page->index > last))
  621. break;
  622. if (mapping->host) {
  623. lock_page(page);
  624. if (!page_has_buffers(page))
  625. create_empty_buffers(page,
  626. 1 << inode->i_blkbits, 0);
  627. unlock_page(page);
  628. }
  629. bh = head = page_buffers(page);
  630. do {
  631. if (!buffer_dirty(bh))
  632. continue;
  633. get_bh(bh);
  634. list_add_tail(&bh->b_assoc_buffers, listp);
  635. ndirties++;
  636. if (unlikely(ndirties >= nlimit)) {
  637. pagevec_release(&pvec);
  638. cond_resched();
  639. return ndirties;
  640. }
  641. } while (bh = bh->b_this_page, bh != head);
  642. }
  643. pagevec_release(&pvec);
  644. cond_resched();
  645. goto repeat;
  646. }
  647. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  648. struct list_head *listp)
  649. {
  650. struct nilfs_inode_info *ii = NILFS_I(inode);
  651. struct address_space *mapping = &ii->i_btnode_cache;
  652. struct pagevec pvec;
  653. struct buffer_head *bh, *head;
  654. unsigned int i;
  655. pgoff_t index = 0;
  656. pagevec_init(&pvec, 0);
  657. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  658. PAGEVEC_SIZE)) {
  659. for (i = 0; i < pagevec_count(&pvec); i++) {
  660. bh = head = page_buffers(pvec.pages[i]);
  661. do {
  662. if (buffer_dirty(bh)) {
  663. get_bh(bh);
  664. list_add_tail(&bh->b_assoc_buffers,
  665. listp);
  666. }
  667. bh = bh->b_this_page;
  668. } while (bh != head);
  669. }
  670. pagevec_release(&pvec);
  671. cond_resched();
  672. }
  673. }
  674. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  675. struct list_head *head, int force)
  676. {
  677. struct nilfs_inode_info *ii, *n;
  678. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  679. unsigned nv = 0;
  680. while (!list_empty(head)) {
  681. spin_lock(&sbi->s_inode_lock);
  682. list_for_each_entry_safe(ii, n, head, i_dirty) {
  683. list_del_init(&ii->i_dirty);
  684. if (force) {
  685. if (unlikely(ii->i_bh)) {
  686. brelse(ii->i_bh);
  687. ii->i_bh = NULL;
  688. }
  689. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  690. set_bit(NILFS_I_QUEUED, &ii->i_state);
  691. list_add_tail(&ii->i_dirty,
  692. &sbi->s_dirty_files);
  693. continue;
  694. }
  695. ivec[nv++] = ii;
  696. if (nv == SC_N_INODEVEC)
  697. break;
  698. }
  699. spin_unlock(&sbi->s_inode_lock);
  700. for (pii = ivec; nv > 0; pii++, nv--)
  701. iput(&(*pii)->vfs_inode);
  702. }
  703. }
  704. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  705. {
  706. struct the_nilfs *nilfs = sbi->s_nilfs;
  707. int ret = 0;
  708. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  709. ret++;
  710. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  711. ret++;
  712. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  713. ret++;
  714. if (ret || nilfs_doing_gc())
  715. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  716. ret++;
  717. return ret;
  718. }
  719. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  720. {
  721. return list_empty(&sci->sc_dirty_files) &&
  722. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  723. sci->sc_nfreesegs == 0 &&
  724. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  725. }
  726. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  727. {
  728. struct nilfs_sb_info *sbi = sci->sc_sbi;
  729. int ret = 0;
  730. if (nilfs_test_metadata_dirty(sbi))
  731. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  732. spin_lock(&sbi->s_inode_lock);
  733. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  734. ret++;
  735. spin_unlock(&sbi->s_inode_lock);
  736. return ret;
  737. }
  738. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  739. {
  740. struct nilfs_sb_info *sbi = sci->sc_sbi;
  741. struct the_nilfs *nilfs = sbi->s_nilfs;
  742. nilfs_mdt_clear_dirty(sbi->s_ifile);
  743. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  744. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  745. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  746. }
  747. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  748. {
  749. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  750. struct buffer_head *bh_cp;
  751. struct nilfs_checkpoint *raw_cp;
  752. int err;
  753. /* XXX: this interface will be changed */
  754. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  755. &raw_cp, &bh_cp);
  756. if (likely(!err)) {
  757. /* The following code is duplicated with cpfile. But, it is
  758. needed to collect the checkpoint even if it was not newly
  759. created */
  760. nilfs_mdt_mark_buffer_dirty(bh_cp);
  761. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  762. nilfs_cpfile_put_checkpoint(
  763. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  764. } else
  765. WARN_ON(err == -EINVAL || err == -ENOENT);
  766. return err;
  767. }
  768. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  769. {
  770. struct nilfs_sb_info *sbi = sci->sc_sbi;
  771. struct the_nilfs *nilfs = sbi->s_nilfs;
  772. struct buffer_head *bh_cp;
  773. struct nilfs_checkpoint *raw_cp;
  774. int err;
  775. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  776. &raw_cp, &bh_cp);
  777. if (unlikely(err)) {
  778. WARN_ON(err == -EINVAL || err == -ENOENT);
  779. goto failed_ibh;
  780. }
  781. raw_cp->cp_snapshot_list.ssl_next = 0;
  782. raw_cp->cp_snapshot_list.ssl_prev = 0;
  783. raw_cp->cp_inodes_count =
  784. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  785. raw_cp->cp_blocks_count =
  786. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  787. raw_cp->cp_nblk_inc =
  788. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  789. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  790. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  791. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  792. nilfs_checkpoint_clear_minor(raw_cp);
  793. else
  794. nilfs_checkpoint_set_minor(raw_cp);
  795. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  796. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  797. return 0;
  798. failed_ibh:
  799. return err;
  800. }
  801. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  802. struct nilfs_inode_info *ii)
  803. {
  804. struct buffer_head *ibh;
  805. struct nilfs_inode *raw_inode;
  806. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  807. ibh = ii->i_bh;
  808. BUG_ON(!ibh);
  809. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  810. ibh);
  811. nilfs_bmap_write(ii->i_bmap, raw_inode);
  812. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  813. }
  814. }
  815. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  816. struct inode *ifile)
  817. {
  818. struct nilfs_inode_info *ii;
  819. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  820. nilfs_fill_in_file_bmap(ifile, ii);
  821. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  822. }
  823. }
  824. /*
  825. * CRC calculation routines
  826. */
  827. static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
  828. {
  829. struct nilfs_super_root *raw_sr =
  830. (struct nilfs_super_root *)bh_sr->b_data;
  831. u32 crc;
  832. crc = crc32_le(seed,
  833. (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
  834. NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
  835. raw_sr->sr_sum = cpu_to_le32(crc);
  836. }
  837. static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
  838. u32 seed)
  839. {
  840. struct nilfs_segment_buffer *segbuf;
  841. if (sci->sc_super_root)
  842. nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
  843. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  844. nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
  845. nilfs_segbuf_fill_in_data_crc(segbuf, seed);
  846. }
  847. }
  848. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  849. struct the_nilfs *nilfs)
  850. {
  851. struct buffer_head *bh_sr = sci->sc_super_root;
  852. struct nilfs_super_root *raw_sr =
  853. (struct nilfs_super_root *)bh_sr->b_data;
  854. unsigned isz = nilfs->ns_inode_size;
  855. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  856. raw_sr->sr_nongc_ctime
  857. = cpu_to_le64(nilfs_doing_gc() ?
  858. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  859. raw_sr->sr_flags = 0;
  860. nilfs_mdt_write_inode_direct(
  861. nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
  862. nilfs_mdt_write_inode_direct(
  863. nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
  864. nilfs_mdt_write_inode_direct(
  865. nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
  866. }
  867. static void nilfs_redirty_inodes(struct list_head *head)
  868. {
  869. struct nilfs_inode_info *ii;
  870. list_for_each_entry(ii, head, i_dirty) {
  871. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  872. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  873. }
  874. }
  875. static void nilfs_drop_collected_inodes(struct list_head *head)
  876. {
  877. struct nilfs_inode_info *ii;
  878. list_for_each_entry(ii, head, i_dirty) {
  879. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  880. continue;
  881. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  882. set_bit(NILFS_I_UPDATED, &ii->i_state);
  883. }
  884. }
  885. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  886. struct inode *inode,
  887. struct list_head *listp,
  888. int (*collect)(struct nilfs_sc_info *,
  889. struct buffer_head *,
  890. struct inode *))
  891. {
  892. struct buffer_head *bh, *n;
  893. int err = 0;
  894. if (collect) {
  895. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  896. list_del_init(&bh->b_assoc_buffers);
  897. err = collect(sci, bh, inode);
  898. brelse(bh);
  899. if (unlikely(err))
  900. goto dispose_buffers;
  901. }
  902. return 0;
  903. }
  904. dispose_buffers:
  905. while (!list_empty(listp)) {
  906. bh = list_entry(listp->next, struct buffer_head,
  907. b_assoc_buffers);
  908. list_del_init(&bh->b_assoc_buffers);
  909. brelse(bh);
  910. }
  911. return err;
  912. }
  913. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  914. {
  915. /* Remaining number of blocks within segment buffer */
  916. return sci->sc_segbuf_nblocks -
  917. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  918. }
  919. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  920. struct inode *inode,
  921. struct nilfs_sc_operations *sc_ops)
  922. {
  923. LIST_HEAD(data_buffers);
  924. LIST_HEAD(node_buffers);
  925. int err;
  926. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  927. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  928. n = nilfs_lookup_dirty_data_buffers(
  929. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  930. if (n > rest) {
  931. err = nilfs_segctor_apply_buffers(
  932. sci, inode, &data_buffers,
  933. sc_ops->collect_data);
  934. BUG_ON(!err); /* always receive -E2BIG or true error */
  935. goto break_or_fail;
  936. }
  937. }
  938. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  939. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  940. err = nilfs_segctor_apply_buffers(
  941. sci, inode, &data_buffers, sc_ops->collect_data);
  942. if (unlikely(err)) {
  943. /* dispose node list */
  944. nilfs_segctor_apply_buffers(
  945. sci, inode, &node_buffers, NULL);
  946. goto break_or_fail;
  947. }
  948. sci->sc_stage.flags |= NILFS_CF_NODE;
  949. }
  950. /* Collect node */
  951. err = nilfs_segctor_apply_buffers(
  952. sci, inode, &node_buffers, sc_ops->collect_node);
  953. if (unlikely(err))
  954. goto break_or_fail;
  955. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  956. err = nilfs_segctor_apply_buffers(
  957. sci, inode, &node_buffers, sc_ops->collect_bmap);
  958. if (unlikely(err))
  959. goto break_or_fail;
  960. nilfs_segctor_end_finfo(sci, inode);
  961. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  962. break_or_fail:
  963. return err;
  964. }
  965. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  966. struct inode *inode)
  967. {
  968. LIST_HEAD(data_buffers);
  969. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  970. int err;
  971. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  972. sci->sc_dsync_start,
  973. sci->sc_dsync_end);
  974. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  975. nilfs_collect_file_data);
  976. if (!err) {
  977. nilfs_segctor_end_finfo(sci, inode);
  978. BUG_ON(n > rest);
  979. /* always receive -E2BIG or true error if n > rest */
  980. }
  981. return err;
  982. }
  983. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  984. {
  985. struct nilfs_sb_info *sbi = sci->sc_sbi;
  986. struct the_nilfs *nilfs = sbi->s_nilfs;
  987. struct list_head *head;
  988. struct nilfs_inode_info *ii;
  989. size_t ndone;
  990. int err = 0;
  991. switch (sci->sc_stage.scnt) {
  992. case NILFS_ST_INIT:
  993. /* Pre-processes */
  994. sci->sc_stage.flags = 0;
  995. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  996. sci->sc_nblk_inc = 0;
  997. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  998. if (mode == SC_LSEG_DSYNC) {
  999. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  1000. goto dsync_mode;
  1001. }
  1002. }
  1003. sci->sc_stage.dirty_file_ptr = NULL;
  1004. sci->sc_stage.gc_inode_ptr = NULL;
  1005. if (mode == SC_FLUSH_DAT) {
  1006. sci->sc_stage.scnt = NILFS_ST_DAT;
  1007. goto dat_stage;
  1008. }
  1009. sci->sc_stage.scnt++; /* Fall through */
  1010. case NILFS_ST_GC:
  1011. if (nilfs_doing_gc()) {
  1012. head = &sci->sc_gc_inodes;
  1013. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1014. head, i_dirty);
  1015. list_for_each_entry_continue(ii, head, i_dirty) {
  1016. err = nilfs_segctor_scan_file(
  1017. sci, &ii->vfs_inode,
  1018. &nilfs_sc_file_ops);
  1019. if (unlikely(err)) {
  1020. sci->sc_stage.gc_inode_ptr = list_entry(
  1021. ii->i_dirty.prev,
  1022. struct nilfs_inode_info,
  1023. i_dirty);
  1024. goto break_or_fail;
  1025. }
  1026. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1027. }
  1028. sci->sc_stage.gc_inode_ptr = NULL;
  1029. }
  1030. sci->sc_stage.scnt++; /* Fall through */
  1031. case NILFS_ST_FILE:
  1032. head = &sci->sc_dirty_files;
  1033. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1034. i_dirty);
  1035. list_for_each_entry_continue(ii, head, i_dirty) {
  1036. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1037. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1038. &nilfs_sc_file_ops);
  1039. if (unlikely(err)) {
  1040. sci->sc_stage.dirty_file_ptr =
  1041. list_entry(ii->i_dirty.prev,
  1042. struct nilfs_inode_info,
  1043. i_dirty);
  1044. goto break_or_fail;
  1045. }
  1046. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1047. /* XXX: required ? */
  1048. }
  1049. sci->sc_stage.dirty_file_ptr = NULL;
  1050. if (mode == SC_FLUSH_FILE) {
  1051. sci->sc_stage.scnt = NILFS_ST_DONE;
  1052. return 0;
  1053. }
  1054. sci->sc_stage.scnt++;
  1055. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1056. /* Fall through */
  1057. case NILFS_ST_IFILE:
  1058. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1059. &nilfs_sc_file_ops);
  1060. if (unlikely(err))
  1061. break;
  1062. sci->sc_stage.scnt++;
  1063. /* Creating a checkpoint */
  1064. err = nilfs_segctor_create_checkpoint(sci);
  1065. if (unlikely(err))
  1066. break;
  1067. /* Fall through */
  1068. case NILFS_ST_CPFILE:
  1069. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1070. &nilfs_sc_file_ops);
  1071. if (unlikely(err))
  1072. break;
  1073. sci->sc_stage.scnt++; /* Fall through */
  1074. case NILFS_ST_SUFILE:
  1075. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1076. sci->sc_nfreesegs, &ndone);
  1077. if (unlikely(err)) {
  1078. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1079. sci->sc_freesegs, ndone,
  1080. NULL);
  1081. break;
  1082. }
  1083. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1084. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1085. &nilfs_sc_file_ops);
  1086. if (unlikely(err))
  1087. break;
  1088. sci->sc_stage.scnt++; /* Fall through */
  1089. case NILFS_ST_DAT:
  1090. dat_stage:
  1091. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1092. &nilfs_sc_dat_ops);
  1093. if (unlikely(err))
  1094. break;
  1095. if (mode == SC_FLUSH_DAT) {
  1096. sci->sc_stage.scnt = NILFS_ST_DONE;
  1097. return 0;
  1098. }
  1099. sci->sc_stage.scnt++; /* Fall through */
  1100. case NILFS_ST_SR:
  1101. if (mode == SC_LSEG_SR) {
  1102. /* Appending a super root */
  1103. err = nilfs_segctor_add_super_root(sci);
  1104. if (unlikely(err))
  1105. break;
  1106. }
  1107. /* End of a logical segment */
  1108. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1109. sci->sc_stage.scnt = NILFS_ST_DONE;
  1110. return 0;
  1111. case NILFS_ST_DSYNC:
  1112. dsync_mode:
  1113. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1114. ii = sci->sc_dsync_inode;
  1115. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1116. break;
  1117. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1118. if (unlikely(err))
  1119. break;
  1120. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1121. sci->sc_stage.scnt = NILFS_ST_DONE;
  1122. return 0;
  1123. case NILFS_ST_DONE:
  1124. return 0;
  1125. default:
  1126. BUG();
  1127. }
  1128. break_or_fail:
  1129. return err;
  1130. }
  1131. static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
  1132. {
  1133. struct buffer_head *bh_su;
  1134. struct nilfs_segment_usage *raw_su;
  1135. int err;
  1136. err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
  1137. if (unlikely(err))
  1138. return err;
  1139. nilfs_mdt_mark_buffer_dirty(bh_su);
  1140. nilfs_mdt_mark_dirty(sufile);
  1141. nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
  1142. return 0;
  1143. }
  1144. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1145. struct the_nilfs *nilfs)
  1146. {
  1147. struct nilfs_segment_buffer *segbuf, *n;
  1148. __u64 nextnum;
  1149. int err;
  1150. if (list_empty(&sci->sc_segbufs)) {
  1151. segbuf = nilfs_segbuf_new(sci->sc_super);
  1152. if (unlikely(!segbuf))
  1153. return -ENOMEM;
  1154. list_add(&segbuf->sb_list, &sci->sc_segbufs);
  1155. } else
  1156. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1157. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, nilfs->ns_pseg_offset,
  1158. nilfs);
  1159. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1160. nilfs_shift_to_next_segment(nilfs);
  1161. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1162. }
  1163. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1164. err = nilfs_touch_segusage(nilfs->ns_sufile, segbuf->sb_segnum);
  1165. if (unlikely(err))
  1166. return err;
  1167. if (nilfs->ns_segnum == nilfs->ns_nextnum) {
  1168. /* Start from the head of a new full segment */
  1169. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1170. if (unlikely(err))
  1171. return err;
  1172. } else
  1173. nextnum = nilfs->ns_nextnum;
  1174. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1175. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1176. /* truncating segment buffers */
  1177. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1178. sb_list) {
  1179. list_del_init(&segbuf->sb_list);
  1180. nilfs_segbuf_free(segbuf);
  1181. }
  1182. return 0;
  1183. }
  1184. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1185. struct the_nilfs *nilfs, int nadd)
  1186. {
  1187. struct nilfs_segment_buffer *segbuf, *prev, *n;
  1188. struct inode *sufile = nilfs->ns_sufile;
  1189. __u64 nextnextnum;
  1190. LIST_HEAD(list);
  1191. int err, ret, i;
  1192. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1193. /*
  1194. * Since the segment specified with nextnum might be allocated during
  1195. * the previous construction, the buffer including its segusage may
  1196. * not be dirty. The following call ensures that the buffer is dirty
  1197. * and will pin the buffer on memory until the sufile is written.
  1198. */
  1199. err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
  1200. if (unlikely(err))
  1201. return err;
  1202. for (i = 0; i < nadd; i++) {
  1203. /* extend segment info */
  1204. err = -ENOMEM;
  1205. segbuf = nilfs_segbuf_new(sci->sc_super);
  1206. if (unlikely(!segbuf))
  1207. goto failed;
  1208. /* map this buffer to region of segment on-disk */
  1209. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1210. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1211. /* allocate the next next full segment */
  1212. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1213. if (unlikely(err))
  1214. goto failed_segbuf;
  1215. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1216. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1217. list_add_tail(&segbuf->sb_list, &list);
  1218. prev = segbuf;
  1219. }
  1220. list_splice(&list, sci->sc_segbufs.prev);
  1221. return 0;
  1222. failed_segbuf:
  1223. nilfs_segbuf_free(segbuf);
  1224. failed:
  1225. list_for_each_entry_safe(segbuf, n, &list, sb_list) {
  1226. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1227. WARN_ON(ret); /* never fails */
  1228. list_del_init(&segbuf->sb_list);
  1229. nilfs_segbuf_free(segbuf);
  1230. }
  1231. return err;
  1232. }
  1233. static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
  1234. struct the_nilfs *nilfs)
  1235. {
  1236. struct nilfs_segment_buffer *segbuf;
  1237. int ret, done = 0;
  1238. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1239. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1240. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1241. WARN_ON(ret); /* never fails */
  1242. }
  1243. if (segbuf->sb_io_error) {
  1244. /* Case 1: The first segment failed */
  1245. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1246. /* Case 1a: Partial segment appended into an existing
  1247. segment */
  1248. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1249. segbuf->sb_fseg_end);
  1250. else /* Case 1b: New full segment */
  1251. set_nilfs_discontinued(nilfs);
  1252. done++;
  1253. }
  1254. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1255. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1256. WARN_ON(ret); /* never fails */
  1257. if (!done && segbuf->sb_io_error) {
  1258. if (segbuf->sb_segnum != nilfs->ns_nextnum)
  1259. /* Case 2: extended segment (!= next) failed */
  1260. nilfs_sufile_set_error(nilfs->ns_sufile,
  1261. segbuf->sb_segnum);
  1262. done++;
  1263. }
  1264. }
  1265. }
  1266. static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
  1267. {
  1268. struct nilfs_segment_buffer *segbuf;
  1269. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
  1270. nilfs_segbuf_clear(segbuf);
  1271. sci->sc_super_root = NULL;
  1272. }
  1273. static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
  1274. {
  1275. struct nilfs_segment_buffer *segbuf;
  1276. while (!list_empty(&sci->sc_segbufs)) {
  1277. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1278. list_del_init(&segbuf->sb_list);
  1279. nilfs_segbuf_free(segbuf);
  1280. }
  1281. /* sci->sc_curseg = NULL; */
  1282. }
  1283. static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
  1284. struct the_nilfs *nilfs, int err)
  1285. {
  1286. if (unlikely(err)) {
  1287. nilfs_segctor_free_incomplete_segments(sci, nilfs);
  1288. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1289. int ret;
  1290. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1291. sci->sc_freesegs,
  1292. sci->sc_nfreesegs,
  1293. NULL);
  1294. WARN_ON(ret); /* do not happen */
  1295. }
  1296. }
  1297. nilfs_segctor_clear_segment_buffers(sci);
  1298. }
  1299. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1300. struct inode *sufile)
  1301. {
  1302. struct nilfs_segment_buffer *segbuf;
  1303. struct buffer_head *bh_su;
  1304. struct nilfs_segment_usage *raw_su;
  1305. unsigned long live_blocks;
  1306. int ret;
  1307. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1308. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1309. &raw_su, &bh_su);
  1310. WARN_ON(ret); /* always succeed because bh_su is dirty */
  1311. live_blocks = segbuf->sb_sum.nblocks +
  1312. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1313. raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
  1314. raw_su->su_nblocks = cpu_to_le32(live_blocks);
  1315. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1316. bh_su);
  1317. }
  1318. }
  1319. static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
  1320. struct inode *sufile)
  1321. {
  1322. struct nilfs_segment_buffer *segbuf;
  1323. struct buffer_head *bh_su;
  1324. struct nilfs_segment_usage *raw_su;
  1325. int ret;
  1326. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1327. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1328. &raw_su, &bh_su);
  1329. WARN_ON(ret); /* always succeed because bh_su is dirty */
  1330. raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
  1331. segbuf->sb_fseg_start);
  1332. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
  1333. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1334. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1335. &raw_su, &bh_su);
  1336. WARN_ON(ret); /* always succeed */
  1337. raw_su->su_nblocks = 0;
  1338. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1339. bh_su);
  1340. }
  1341. }
  1342. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1343. struct nilfs_segment_buffer *last,
  1344. struct inode *sufile)
  1345. {
  1346. struct nilfs_segment_buffer *segbuf = last, *n;
  1347. int ret;
  1348. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1349. sb_list) {
  1350. list_del_init(&segbuf->sb_list);
  1351. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1352. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1353. WARN_ON(ret);
  1354. nilfs_segbuf_free(segbuf);
  1355. }
  1356. }
  1357. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1358. struct the_nilfs *nilfs, int mode)
  1359. {
  1360. struct nilfs_cstage prev_stage = sci->sc_stage;
  1361. int err, nadd = 1;
  1362. /* Collection retry loop */
  1363. for (;;) {
  1364. sci->sc_super_root = NULL;
  1365. sci->sc_nblk_this_inc = 0;
  1366. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1367. err = nilfs_segctor_reset_segment_buffer(sci);
  1368. if (unlikely(err))
  1369. goto failed;
  1370. err = nilfs_segctor_collect_blocks(sci, mode);
  1371. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1372. if (!err)
  1373. break;
  1374. if (unlikely(err != -E2BIG))
  1375. goto failed;
  1376. /* The current segment is filled up */
  1377. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1378. break;
  1379. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1380. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1381. sci->sc_freesegs,
  1382. sci->sc_nfreesegs,
  1383. NULL);
  1384. WARN_ON(err); /* do not happen */
  1385. }
  1386. nilfs_segctor_clear_segment_buffers(sci);
  1387. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1388. if (unlikely(err))
  1389. return err;
  1390. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1391. sci->sc_stage = prev_stage;
  1392. }
  1393. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1394. return 0;
  1395. failed:
  1396. return err;
  1397. }
  1398. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1399. struct buffer_head *new_bh)
  1400. {
  1401. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1402. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1403. /* The caller must release old_bh */
  1404. }
  1405. static int
  1406. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1407. struct nilfs_segment_buffer *segbuf,
  1408. int mode)
  1409. {
  1410. struct inode *inode = NULL;
  1411. sector_t blocknr;
  1412. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1413. unsigned long nblocks = 0, ndatablk = 0;
  1414. struct nilfs_sc_operations *sc_op = NULL;
  1415. struct nilfs_segsum_pointer ssp;
  1416. struct nilfs_finfo *finfo = NULL;
  1417. union nilfs_binfo binfo;
  1418. struct buffer_head *bh, *bh_org;
  1419. ino_t ino = 0;
  1420. int err = 0;
  1421. if (!nfinfo)
  1422. goto out;
  1423. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1424. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1425. ssp.offset = sizeof(struct nilfs_segment_summary);
  1426. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1427. if (bh == sci->sc_super_root)
  1428. break;
  1429. if (!finfo) {
  1430. finfo = nilfs_segctor_map_segsum_entry(
  1431. sci, &ssp, sizeof(*finfo));
  1432. ino = le64_to_cpu(finfo->fi_ino);
  1433. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1434. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1435. if (buffer_nilfs_node(bh))
  1436. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1437. else
  1438. inode = NILFS_AS_I(bh->b_page->mapping);
  1439. if (mode == SC_LSEG_DSYNC)
  1440. sc_op = &nilfs_sc_dsync_ops;
  1441. else if (ino == NILFS_DAT_INO)
  1442. sc_op = &nilfs_sc_dat_ops;
  1443. else /* file blocks */
  1444. sc_op = &nilfs_sc_file_ops;
  1445. }
  1446. bh_org = bh;
  1447. get_bh(bh_org);
  1448. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1449. &binfo);
  1450. if (bh != bh_org)
  1451. nilfs_list_replace_buffer(bh_org, bh);
  1452. brelse(bh_org);
  1453. if (unlikely(err))
  1454. goto failed_bmap;
  1455. if (ndatablk > 0)
  1456. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1457. else
  1458. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1459. blocknr++;
  1460. if (--nblocks == 0) {
  1461. finfo = NULL;
  1462. if (--nfinfo == 0)
  1463. break;
  1464. } else if (ndatablk > 0)
  1465. ndatablk--;
  1466. }
  1467. out:
  1468. return 0;
  1469. failed_bmap:
  1470. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1471. return err;
  1472. }
  1473. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1474. {
  1475. struct nilfs_segment_buffer *segbuf;
  1476. int err;
  1477. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1478. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1479. if (unlikely(err))
  1480. return err;
  1481. nilfs_segbuf_fill_in_segsum(segbuf);
  1482. }
  1483. return 0;
  1484. }
  1485. static int
  1486. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1487. {
  1488. struct page *clone_page;
  1489. struct buffer_head *bh, *head, *bh2;
  1490. void *kaddr;
  1491. bh = head = page_buffers(page);
  1492. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1493. if (unlikely(!clone_page))
  1494. return -ENOMEM;
  1495. bh2 = page_buffers(clone_page);
  1496. kaddr = kmap_atomic(page, KM_USER0);
  1497. do {
  1498. if (list_empty(&bh->b_assoc_buffers))
  1499. continue;
  1500. get_bh(bh2);
  1501. page_cache_get(clone_page); /* for each bh */
  1502. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1503. bh2->b_blocknr = bh->b_blocknr;
  1504. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1505. list_add_tail(&bh->b_assoc_buffers, out);
  1506. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1507. kunmap_atomic(kaddr, KM_USER0);
  1508. if (!TestSetPageWriteback(clone_page))
  1509. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1510. unlock_page(clone_page);
  1511. return 0;
  1512. }
  1513. static int nilfs_test_page_to_be_frozen(struct page *page)
  1514. {
  1515. struct address_space *mapping = page->mapping;
  1516. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1517. return 0;
  1518. if (page_mapped(page)) {
  1519. ClearPageChecked(page);
  1520. return 1;
  1521. }
  1522. return PageChecked(page);
  1523. }
  1524. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1525. {
  1526. if (!page || PageWriteback(page))
  1527. /* For split b-tree node pages, this function may be called
  1528. twice. We ignore the 2nd or later calls by this check. */
  1529. return 0;
  1530. lock_page(page);
  1531. clear_page_dirty_for_io(page);
  1532. set_page_writeback(page);
  1533. unlock_page(page);
  1534. if (nilfs_test_page_to_be_frozen(page)) {
  1535. int err = nilfs_copy_replace_page_buffers(page, out);
  1536. if (unlikely(err))
  1537. return err;
  1538. }
  1539. return 0;
  1540. }
  1541. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1542. struct page **failed_page)
  1543. {
  1544. struct nilfs_segment_buffer *segbuf;
  1545. struct page *bd_page = NULL, *fs_page = NULL;
  1546. struct list_head *list = &sci->sc_copied_buffers;
  1547. int err;
  1548. *failed_page = NULL;
  1549. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1550. struct buffer_head *bh;
  1551. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1552. b_assoc_buffers) {
  1553. if (bh->b_page != bd_page) {
  1554. if (bd_page) {
  1555. lock_page(bd_page);
  1556. clear_page_dirty_for_io(bd_page);
  1557. set_page_writeback(bd_page);
  1558. unlock_page(bd_page);
  1559. }
  1560. bd_page = bh->b_page;
  1561. }
  1562. }
  1563. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1564. b_assoc_buffers) {
  1565. if (bh == sci->sc_super_root) {
  1566. if (bh->b_page != bd_page) {
  1567. lock_page(bd_page);
  1568. clear_page_dirty_for_io(bd_page);
  1569. set_page_writeback(bd_page);
  1570. unlock_page(bd_page);
  1571. bd_page = bh->b_page;
  1572. }
  1573. break;
  1574. }
  1575. if (bh->b_page != fs_page) {
  1576. err = nilfs_begin_page_io(fs_page, list);
  1577. if (unlikely(err)) {
  1578. *failed_page = fs_page;
  1579. goto out;
  1580. }
  1581. fs_page = bh->b_page;
  1582. }
  1583. }
  1584. }
  1585. if (bd_page) {
  1586. lock_page(bd_page);
  1587. clear_page_dirty_for_io(bd_page);
  1588. set_page_writeback(bd_page);
  1589. unlock_page(bd_page);
  1590. }
  1591. err = nilfs_begin_page_io(fs_page, list);
  1592. if (unlikely(err))
  1593. *failed_page = fs_page;
  1594. out:
  1595. return err;
  1596. }
  1597. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1598. struct backing_dev_info *bdi)
  1599. {
  1600. struct nilfs_segment_buffer *segbuf;
  1601. struct nilfs_write_info wi;
  1602. int err, res;
  1603. wi.sb = sci->sc_super;
  1604. wi.bh_sr = sci->sc_super_root;
  1605. wi.bdi = bdi;
  1606. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1607. nilfs_segbuf_prepare_write(segbuf, &wi);
  1608. err = nilfs_segbuf_write(segbuf, &wi);
  1609. res = nilfs_segbuf_wait(segbuf, &wi);
  1610. err = err ? : res;
  1611. if (err)
  1612. return err;
  1613. }
  1614. return 0;
  1615. }
  1616. static void __nilfs_end_page_io(struct page *page, int err)
  1617. {
  1618. if (!err) {
  1619. if (!nilfs_page_buffers_clean(page))
  1620. __set_page_dirty_nobuffers(page);
  1621. ClearPageError(page);
  1622. } else {
  1623. __set_page_dirty_nobuffers(page);
  1624. SetPageError(page);
  1625. }
  1626. if (buffer_nilfs_allocated(page_buffers(page))) {
  1627. if (TestClearPageWriteback(page))
  1628. dec_zone_page_state(page, NR_WRITEBACK);
  1629. } else
  1630. end_page_writeback(page);
  1631. }
  1632. static void nilfs_end_page_io(struct page *page, int err)
  1633. {
  1634. if (!page)
  1635. return;
  1636. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1637. /*
  1638. * For b-tree node pages, this function may be called twice
  1639. * or more because they might be split in a segment.
  1640. */
  1641. if (PageDirty(page)) {
  1642. /*
  1643. * For pages holding split b-tree node buffers, dirty
  1644. * flag on the buffers may be cleared discretely.
  1645. * In that case, the page is once redirtied for
  1646. * remaining buffers, and it must be cancelled if
  1647. * all the buffers get cleaned later.
  1648. */
  1649. lock_page(page);
  1650. if (nilfs_page_buffers_clean(page))
  1651. __nilfs_clear_page_dirty(page);
  1652. unlock_page(page);
  1653. }
  1654. return;
  1655. }
  1656. __nilfs_end_page_io(page, err);
  1657. }
  1658. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1659. {
  1660. struct buffer_head *bh, *head;
  1661. struct page *page;
  1662. while (!list_empty(list)) {
  1663. bh = list_entry(list->next, struct buffer_head,
  1664. b_assoc_buffers);
  1665. page = bh->b_page;
  1666. page_cache_get(page);
  1667. head = bh = page_buffers(page);
  1668. do {
  1669. if (!list_empty(&bh->b_assoc_buffers)) {
  1670. list_del_init(&bh->b_assoc_buffers);
  1671. if (!err) {
  1672. set_buffer_uptodate(bh);
  1673. clear_buffer_dirty(bh);
  1674. clear_buffer_nilfs_volatile(bh);
  1675. }
  1676. brelse(bh); /* for b_assoc_buffers */
  1677. }
  1678. } while ((bh = bh->b_this_page) != head);
  1679. __nilfs_end_page_io(page, err);
  1680. page_cache_release(page);
  1681. }
  1682. }
  1683. static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
  1684. struct page *failed_page, int err)
  1685. {
  1686. struct nilfs_segment_buffer *segbuf;
  1687. struct page *bd_page = NULL, *fs_page = NULL;
  1688. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1689. struct buffer_head *bh;
  1690. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1691. b_assoc_buffers) {
  1692. if (bh->b_page != bd_page) {
  1693. if (bd_page)
  1694. end_page_writeback(bd_page);
  1695. bd_page = bh->b_page;
  1696. }
  1697. }
  1698. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1699. b_assoc_buffers) {
  1700. if (bh == sci->sc_super_root) {
  1701. if (bh->b_page != bd_page) {
  1702. end_page_writeback(bd_page);
  1703. bd_page = bh->b_page;
  1704. }
  1705. break;
  1706. }
  1707. if (bh->b_page != fs_page) {
  1708. nilfs_end_page_io(fs_page, err);
  1709. if (fs_page && fs_page == failed_page)
  1710. goto done;
  1711. fs_page = bh->b_page;
  1712. }
  1713. }
  1714. }
  1715. if (bd_page)
  1716. end_page_writeback(bd_page);
  1717. nilfs_end_page_io(fs_page, err);
  1718. done:
  1719. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1720. }
  1721. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1722. struct nilfs_segment_buffer *segbuf)
  1723. {
  1724. nilfs->ns_segnum = segbuf->sb_segnum;
  1725. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1726. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1727. + segbuf->sb_sum.nblocks;
  1728. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1729. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1730. }
  1731. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1732. {
  1733. struct nilfs_segment_buffer *segbuf;
  1734. struct page *bd_page = NULL, *fs_page = NULL;
  1735. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1736. struct the_nilfs *nilfs = sbi->s_nilfs;
  1737. int update_sr = (sci->sc_super_root != NULL);
  1738. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1739. struct buffer_head *bh;
  1740. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1741. b_assoc_buffers) {
  1742. set_buffer_uptodate(bh);
  1743. clear_buffer_dirty(bh);
  1744. if (bh->b_page != bd_page) {
  1745. if (bd_page)
  1746. end_page_writeback(bd_page);
  1747. bd_page = bh->b_page;
  1748. }
  1749. }
  1750. /*
  1751. * We assume that the buffers which belong to the same page
  1752. * continue over the buffer list.
  1753. * Under this assumption, the last BHs of pages is
  1754. * identifiable by the discontinuity of bh->b_page
  1755. * (page != fs_page).
  1756. *
  1757. * For B-tree node blocks, however, this assumption is not
  1758. * guaranteed. The cleanup code of B-tree node pages needs
  1759. * special care.
  1760. */
  1761. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1762. b_assoc_buffers) {
  1763. set_buffer_uptodate(bh);
  1764. clear_buffer_dirty(bh);
  1765. clear_buffer_nilfs_volatile(bh);
  1766. if (bh == sci->sc_super_root) {
  1767. if (bh->b_page != bd_page) {
  1768. end_page_writeback(bd_page);
  1769. bd_page = bh->b_page;
  1770. }
  1771. break;
  1772. }
  1773. if (bh->b_page != fs_page) {
  1774. nilfs_end_page_io(fs_page, 0);
  1775. fs_page = bh->b_page;
  1776. }
  1777. }
  1778. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1779. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1780. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1781. sci->sc_lseg_stime = jiffies;
  1782. }
  1783. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1784. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1785. }
  1786. }
  1787. /*
  1788. * Since pages may continue over multiple segment buffers,
  1789. * end of the last page must be checked outside of the loop.
  1790. */
  1791. if (bd_page)
  1792. end_page_writeback(bd_page);
  1793. nilfs_end_page_io(fs_page, 0);
  1794. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1795. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1796. if (nilfs_doing_gc()) {
  1797. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1798. if (update_sr)
  1799. nilfs_commit_gcdat_inode(nilfs);
  1800. } else
  1801. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1802. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1803. segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1804. nilfs_set_next_segment(nilfs, segbuf);
  1805. if (update_sr) {
  1806. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1807. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1808. sbi->s_super->s_dirt = 1;
  1809. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1810. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1811. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1812. } else
  1813. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1814. }
  1815. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1816. struct nilfs_sb_info *sbi)
  1817. {
  1818. struct nilfs_inode_info *ii, *n;
  1819. __u64 cno = sbi->s_nilfs->ns_cno;
  1820. spin_lock(&sbi->s_inode_lock);
  1821. retry:
  1822. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1823. if (!ii->i_bh) {
  1824. struct buffer_head *ibh;
  1825. int err;
  1826. spin_unlock(&sbi->s_inode_lock);
  1827. err = nilfs_ifile_get_inode_block(
  1828. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1829. if (unlikely(err)) {
  1830. nilfs_warning(sbi->s_super, __func__,
  1831. "failed to get inode block.\n");
  1832. return err;
  1833. }
  1834. nilfs_mdt_mark_buffer_dirty(ibh);
  1835. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1836. spin_lock(&sbi->s_inode_lock);
  1837. if (likely(!ii->i_bh))
  1838. ii->i_bh = ibh;
  1839. else
  1840. brelse(ibh);
  1841. goto retry;
  1842. }
  1843. ii->i_cno = cno;
  1844. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1845. set_bit(NILFS_I_BUSY, &ii->i_state);
  1846. list_del(&ii->i_dirty);
  1847. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1848. }
  1849. spin_unlock(&sbi->s_inode_lock);
  1850. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1851. return 0;
  1852. }
  1853. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1854. struct nilfs_sb_info *sbi)
  1855. {
  1856. struct nilfs_transaction_info *ti = current->journal_info;
  1857. struct nilfs_inode_info *ii, *n;
  1858. __u64 cno = sbi->s_nilfs->ns_cno;
  1859. spin_lock(&sbi->s_inode_lock);
  1860. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1861. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1862. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1863. /* The current checkpoint number (=nilfs->ns_cno) is
  1864. changed between check-in and check-out only if the
  1865. super root is written out. So, we can update i_cno
  1866. for the inodes that remain in the dirty list. */
  1867. ii->i_cno = cno;
  1868. continue;
  1869. }
  1870. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1871. brelse(ii->i_bh);
  1872. ii->i_bh = NULL;
  1873. list_del(&ii->i_dirty);
  1874. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1875. }
  1876. spin_unlock(&sbi->s_inode_lock);
  1877. }
  1878. /*
  1879. * Main procedure of segment constructor
  1880. */
  1881. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1882. {
  1883. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1884. struct the_nilfs *nilfs = sbi->s_nilfs;
  1885. struct page *failed_page;
  1886. int err, has_sr = 0;
  1887. sci->sc_stage.scnt = NILFS_ST_INIT;
  1888. err = nilfs_segctor_check_in_files(sci, sbi);
  1889. if (unlikely(err))
  1890. goto out;
  1891. if (nilfs_test_metadata_dirty(sbi))
  1892. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1893. if (nilfs_segctor_clean(sci))
  1894. goto out;
  1895. do {
  1896. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1897. err = nilfs_segctor_begin_construction(sci, nilfs);
  1898. if (unlikely(err))
  1899. goto out;
  1900. /* Update time stamp */
  1901. sci->sc_seg_ctime = get_seconds();
  1902. err = nilfs_segctor_collect(sci, nilfs, mode);
  1903. if (unlikely(err))
  1904. goto failed;
  1905. has_sr = (sci->sc_super_root != NULL);
  1906. /* Avoid empty segment */
  1907. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1908. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  1909. nilfs_segctor_end_construction(sci, nilfs, 1);
  1910. goto out;
  1911. }
  1912. err = nilfs_segctor_assign(sci, mode);
  1913. if (unlikely(err))
  1914. goto failed;
  1915. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1916. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  1917. if (has_sr) {
  1918. err = nilfs_segctor_fill_in_checkpoint(sci);
  1919. if (unlikely(err))
  1920. goto failed_to_make_up;
  1921. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1922. }
  1923. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1924. /* Write partial segments */
  1925. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1926. if (unlikely(err))
  1927. goto failed_to_write;
  1928. nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
  1929. err = nilfs_segctor_write(sci, nilfs->ns_bdi);
  1930. if (unlikely(err))
  1931. goto failed_to_write;
  1932. nilfs_segctor_complete_write(sci);
  1933. /* Commit segments */
  1934. if (has_sr)
  1935. nilfs_segctor_clear_metadata_dirty(sci);
  1936. nilfs_segctor_end_construction(sci, nilfs, 0);
  1937. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1938. out:
  1939. nilfs_segctor_destroy_segment_buffers(sci);
  1940. nilfs_segctor_check_out_files(sci, sbi);
  1941. return err;
  1942. failed_to_write:
  1943. nilfs_segctor_abort_write(sci, failed_page, err);
  1944. nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
  1945. failed_to_make_up:
  1946. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1947. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1948. failed:
  1949. if (nilfs_doing_gc())
  1950. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1951. nilfs_segctor_end_construction(sci, nilfs, err);
  1952. goto out;
  1953. }
  1954. /**
  1955. * nilfs_secgtor_start_timer - set timer of background write
  1956. * @sci: nilfs_sc_info
  1957. *
  1958. * If the timer has already been set, it ignores the new request.
  1959. * This function MUST be called within a section locking the segment
  1960. * semaphore.
  1961. */
  1962. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1963. {
  1964. spin_lock(&sci->sc_state_lock);
  1965. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1966. sci->sc_timer->expires = jiffies + sci->sc_interval;
  1967. add_timer(sci->sc_timer);
  1968. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1969. }
  1970. spin_unlock(&sci->sc_state_lock);
  1971. }
  1972. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1973. {
  1974. spin_lock(&sci->sc_state_lock);
  1975. if (!(sci->sc_flush_request & (1 << bn))) {
  1976. unsigned long prev_req = sci->sc_flush_request;
  1977. sci->sc_flush_request |= (1 << bn);
  1978. if (!prev_req)
  1979. wake_up(&sci->sc_wait_daemon);
  1980. }
  1981. spin_unlock(&sci->sc_state_lock);
  1982. }
  1983. /**
  1984. * nilfs_flush_segment - trigger a segment construction for resource control
  1985. * @sb: super block
  1986. * @ino: inode number of the file to be flushed out.
  1987. */
  1988. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1989. {
  1990. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1991. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1992. if (!sci || nilfs_doing_construction())
  1993. return;
  1994. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1995. /* assign bit 0 to data files */
  1996. }
  1997. struct nilfs_segctor_wait_request {
  1998. wait_queue_t wq;
  1999. __u32 seq;
  2000. int err;
  2001. atomic_t done;
  2002. };
  2003. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  2004. {
  2005. struct nilfs_segctor_wait_request wait_req;
  2006. int err = 0;
  2007. spin_lock(&sci->sc_state_lock);
  2008. init_wait(&wait_req.wq);
  2009. wait_req.err = 0;
  2010. atomic_set(&wait_req.done, 0);
  2011. wait_req.seq = ++sci->sc_seq_request;
  2012. spin_unlock(&sci->sc_state_lock);
  2013. init_waitqueue_entry(&wait_req.wq, current);
  2014. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  2015. set_current_state(TASK_INTERRUPTIBLE);
  2016. wake_up(&sci->sc_wait_daemon);
  2017. for (;;) {
  2018. if (atomic_read(&wait_req.done)) {
  2019. err = wait_req.err;
  2020. break;
  2021. }
  2022. if (!signal_pending(current)) {
  2023. schedule();
  2024. continue;
  2025. }
  2026. err = -ERESTARTSYS;
  2027. break;
  2028. }
  2029. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  2030. return err;
  2031. }
  2032. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  2033. {
  2034. struct nilfs_segctor_wait_request *wrq, *n;
  2035. unsigned long flags;
  2036. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  2037. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  2038. wq.task_list) {
  2039. if (!atomic_read(&wrq->done) &&
  2040. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2041. wrq->err = err;
  2042. atomic_set(&wrq->done, 1);
  2043. }
  2044. if (atomic_read(&wrq->done)) {
  2045. wrq->wq.func(&wrq->wq,
  2046. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2047. 0, NULL);
  2048. }
  2049. }
  2050. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2051. }
  2052. /**
  2053. * nilfs_construct_segment - construct a logical segment
  2054. * @sb: super block
  2055. *
  2056. * Return Value: On success, 0 is retured. On errors, one of the following
  2057. * negative error code is returned.
  2058. *
  2059. * %-EROFS - Read only filesystem.
  2060. *
  2061. * %-EIO - I/O error
  2062. *
  2063. * %-ENOSPC - No space left on device (only in a panic state).
  2064. *
  2065. * %-ERESTARTSYS - Interrupted.
  2066. *
  2067. * %-ENOMEM - Insufficient memory available.
  2068. */
  2069. int nilfs_construct_segment(struct super_block *sb)
  2070. {
  2071. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2072. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2073. struct nilfs_transaction_info *ti;
  2074. int err;
  2075. if (!sci)
  2076. return -EROFS;
  2077. /* A call inside transactions causes a deadlock. */
  2078. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2079. err = nilfs_segctor_sync(sci);
  2080. return err;
  2081. }
  2082. /**
  2083. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2084. * @sb: super block
  2085. * @inode: inode whose data blocks should be written out
  2086. * @start: start byte offset
  2087. * @end: end byte offset (inclusive)
  2088. *
  2089. * Return Value: On success, 0 is retured. On errors, one of the following
  2090. * negative error code is returned.
  2091. *
  2092. * %-EROFS - Read only filesystem.
  2093. *
  2094. * %-EIO - I/O error
  2095. *
  2096. * %-ENOSPC - No space left on device (only in a panic state).
  2097. *
  2098. * %-ERESTARTSYS - Interrupted.
  2099. *
  2100. * %-ENOMEM - Insufficient memory available.
  2101. */
  2102. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2103. loff_t start, loff_t end)
  2104. {
  2105. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2106. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2107. struct nilfs_inode_info *ii;
  2108. struct nilfs_transaction_info ti;
  2109. int err = 0;
  2110. if (!sci)
  2111. return -EROFS;
  2112. nilfs_transaction_lock(sbi, &ti, 0);
  2113. ii = NILFS_I(inode);
  2114. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2115. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2116. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2117. nilfs_discontinued(sbi->s_nilfs)) {
  2118. nilfs_transaction_unlock(sbi);
  2119. err = nilfs_segctor_sync(sci);
  2120. return err;
  2121. }
  2122. spin_lock(&sbi->s_inode_lock);
  2123. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2124. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2125. spin_unlock(&sbi->s_inode_lock);
  2126. nilfs_transaction_unlock(sbi);
  2127. return 0;
  2128. }
  2129. spin_unlock(&sbi->s_inode_lock);
  2130. sci->sc_dsync_inode = ii;
  2131. sci->sc_dsync_start = start;
  2132. sci->sc_dsync_end = end;
  2133. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2134. nilfs_transaction_unlock(sbi);
  2135. return err;
  2136. }
  2137. struct nilfs_segctor_req {
  2138. int mode;
  2139. __u32 seq_accepted;
  2140. int sc_err; /* construction failure */
  2141. int sb_err; /* super block writeback failure */
  2142. };
  2143. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2144. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2145. static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
  2146. struct nilfs_segctor_req *req)
  2147. {
  2148. req->sc_err = req->sb_err = 0;
  2149. spin_lock(&sci->sc_state_lock);
  2150. req->seq_accepted = sci->sc_seq_request;
  2151. spin_unlock(&sci->sc_state_lock);
  2152. if (sci->sc_timer)
  2153. del_timer_sync(sci->sc_timer);
  2154. }
  2155. static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
  2156. struct nilfs_segctor_req *req)
  2157. {
  2158. /* Clear requests (even when the construction failed) */
  2159. spin_lock(&sci->sc_state_lock);
  2160. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2161. if (req->mode == SC_LSEG_SR) {
  2162. sci->sc_seq_done = req->seq_accepted;
  2163. nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
  2164. sci->sc_flush_request = 0;
  2165. } else if (req->mode == SC_FLUSH_FILE)
  2166. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2167. else if (req->mode == SC_FLUSH_DAT)
  2168. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2169. spin_unlock(&sci->sc_state_lock);
  2170. }
  2171. static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
  2172. struct nilfs_segctor_req *req)
  2173. {
  2174. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2175. struct the_nilfs *nilfs = sbi->s_nilfs;
  2176. int err = 0;
  2177. if (nilfs_discontinued(nilfs))
  2178. req->mode = SC_LSEG_SR;
  2179. if (!nilfs_segctor_confirm(sci)) {
  2180. err = nilfs_segctor_do_construct(sci, req->mode);
  2181. req->sc_err = err;
  2182. }
  2183. if (likely(!err)) {
  2184. if (req->mode != SC_FLUSH_DAT)
  2185. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2186. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2187. nilfs_discontinued(nilfs)) {
  2188. down_write(&nilfs->ns_sem);
  2189. req->sb_err = nilfs_commit_super(sbi,
  2190. nilfs_altsb_need_update(nilfs));
  2191. up_write(&nilfs->ns_sem);
  2192. }
  2193. }
  2194. return err;
  2195. }
  2196. static void nilfs_construction_timeout(unsigned long data)
  2197. {
  2198. struct task_struct *p = (struct task_struct *)data;
  2199. wake_up_process(p);
  2200. }
  2201. static void
  2202. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2203. {
  2204. struct nilfs_inode_info *ii, *n;
  2205. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2206. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2207. continue;
  2208. hlist_del_init(&ii->vfs_inode.i_hash);
  2209. list_del_init(&ii->i_dirty);
  2210. nilfs_clear_gcinode(&ii->vfs_inode);
  2211. }
  2212. }
  2213. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2214. void **kbufs)
  2215. {
  2216. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2217. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2218. struct the_nilfs *nilfs = sbi->s_nilfs;
  2219. struct nilfs_transaction_info ti;
  2220. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2221. int err;
  2222. if (unlikely(!sci))
  2223. return -EROFS;
  2224. nilfs_transaction_lock(sbi, &ti, 1);
  2225. err = nilfs_init_gcdat_inode(nilfs);
  2226. if (unlikely(err))
  2227. goto out_unlock;
  2228. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2229. if (unlikely(err))
  2230. goto out_unlock;
  2231. sci->sc_freesegs = kbufs[4];
  2232. sci->sc_nfreesegs = argv[4].v_nmembs;
  2233. list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
  2234. for (;;) {
  2235. nilfs_segctor_accept(sci, &req);
  2236. err = nilfs_segctor_construct(sci, &req);
  2237. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2238. nilfs_segctor_notify(sci, &req);
  2239. if (likely(!err))
  2240. break;
  2241. nilfs_warning(sb, __func__,
  2242. "segment construction failed. (err=%d)", err);
  2243. set_current_state(TASK_INTERRUPTIBLE);
  2244. schedule_timeout(sci->sc_interval);
  2245. }
  2246. out_unlock:
  2247. sci->sc_freesegs = NULL;
  2248. sci->sc_nfreesegs = 0;
  2249. nilfs_clear_gcdat_inode(nilfs);
  2250. nilfs_transaction_unlock(sbi);
  2251. return err;
  2252. }
  2253. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2254. {
  2255. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2256. struct nilfs_transaction_info ti;
  2257. struct nilfs_segctor_req req = { .mode = mode };
  2258. nilfs_transaction_lock(sbi, &ti, 0);
  2259. nilfs_segctor_accept(sci, &req);
  2260. nilfs_segctor_construct(sci, &req);
  2261. nilfs_segctor_notify(sci, &req);
  2262. /*
  2263. * Unclosed segment should be retried. We do this using sc_timer.
  2264. * Timeout of sc_timer will invoke complete construction which leads
  2265. * to close the current logical segment.
  2266. */
  2267. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2268. nilfs_segctor_start_timer(sci);
  2269. nilfs_transaction_unlock(sbi);
  2270. }
  2271. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2272. {
  2273. int mode = 0;
  2274. int err;
  2275. spin_lock(&sci->sc_state_lock);
  2276. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2277. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2278. spin_unlock(&sci->sc_state_lock);
  2279. if (mode) {
  2280. err = nilfs_segctor_do_construct(sci, mode);
  2281. spin_lock(&sci->sc_state_lock);
  2282. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2283. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2284. spin_unlock(&sci->sc_state_lock);
  2285. }
  2286. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2287. }
  2288. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2289. {
  2290. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2291. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2292. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2293. return SC_FLUSH_FILE;
  2294. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2295. return SC_FLUSH_DAT;
  2296. }
  2297. return SC_LSEG_SR;
  2298. }
  2299. /**
  2300. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2301. * @arg: pointer to a struct nilfs_sc_info.
  2302. *
  2303. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2304. * to execute segment constructions.
  2305. */
  2306. static int nilfs_segctor_thread(void *arg)
  2307. {
  2308. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2309. struct timer_list timer;
  2310. int timeout = 0;
  2311. init_timer(&timer);
  2312. timer.data = (unsigned long)current;
  2313. timer.function = nilfs_construction_timeout;
  2314. sci->sc_timer = &timer;
  2315. /* start sync. */
  2316. sci->sc_task = current;
  2317. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2318. printk(KERN_INFO
  2319. "segctord starting. Construction interval = %lu seconds, "
  2320. "CP frequency < %lu seconds\n",
  2321. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2322. spin_lock(&sci->sc_state_lock);
  2323. loop:
  2324. for (;;) {
  2325. int mode;
  2326. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2327. goto end_thread;
  2328. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2329. mode = SC_LSEG_SR;
  2330. else if (!sci->sc_flush_request)
  2331. break;
  2332. else
  2333. mode = nilfs_segctor_flush_mode(sci);
  2334. spin_unlock(&sci->sc_state_lock);
  2335. nilfs_segctor_thread_construct(sci, mode);
  2336. spin_lock(&sci->sc_state_lock);
  2337. timeout = 0;
  2338. }
  2339. if (freezing(current)) {
  2340. spin_unlock(&sci->sc_state_lock);
  2341. refrigerator();
  2342. spin_lock(&sci->sc_state_lock);
  2343. } else {
  2344. DEFINE_WAIT(wait);
  2345. int should_sleep = 1;
  2346. struct the_nilfs *nilfs;
  2347. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2348. TASK_INTERRUPTIBLE);
  2349. if (sci->sc_seq_request != sci->sc_seq_done)
  2350. should_sleep = 0;
  2351. else if (sci->sc_flush_request)
  2352. should_sleep = 0;
  2353. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2354. should_sleep = time_before(jiffies,
  2355. sci->sc_timer->expires);
  2356. if (should_sleep) {
  2357. spin_unlock(&sci->sc_state_lock);
  2358. schedule();
  2359. spin_lock(&sci->sc_state_lock);
  2360. }
  2361. finish_wait(&sci->sc_wait_daemon, &wait);
  2362. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2363. time_after_eq(jiffies, sci->sc_timer->expires));
  2364. nilfs = sci->sc_sbi->s_nilfs;
  2365. if (sci->sc_super->s_dirt && nilfs_sb_need_update(nilfs))
  2366. set_nilfs_discontinued(nilfs);
  2367. }
  2368. goto loop;
  2369. end_thread:
  2370. spin_unlock(&sci->sc_state_lock);
  2371. del_timer_sync(sci->sc_timer);
  2372. sci->sc_timer = NULL;
  2373. /* end sync. */
  2374. sci->sc_task = NULL;
  2375. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2376. return 0;
  2377. }
  2378. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2379. {
  2380. struct task_struct *t;
  2381. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2382. if (IS_ERR(t)) {
  2383. int err = PTR_ERR(t);
  2384. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2385. err);
  2386. return err;
  2387. }
  2388. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2389. return 0;
  2390. }
  2391. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2392. {
  2393. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2394. while (sci->sc_task) {
  2395. wake_up(&sci->sc_wait_daemon);
  2396. spin_unlock(&sci->sc_state_lock);
  2397. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2398. spin_lock(&sci->sc_state_lock);
  2399. }
  2400. }
  2401. static int nilfs_segctor_init(struct nilfs_sc_info *sci)
  2402. {
  2403. sci->sc_seq_done = sci->sc_seq_request;
  2404. return nilfs_segctor_start_thread(sci);
  2405. }
  2406. /*
  2407. * Setup & clean-up functions
  2408. */
  2409. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2410. {
  2411. struct nilfs_sc_info *sci;
  2412. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2413. if (!sci)
  2414. return NULL;
  2415. sci->sc_sbi = sbi;
  2416. sci->sc_super = sbi->s_super;
  2417. init_waitqueue_head(&sci->sc_wait_request);
  2418. init_waitqueue_head(&sci->sc_wait_daemon);
  2419. init_waitqueue_head(&sci->sc_wait_task);
  2420. spin_lock_init(&sci->sc_state_lock);
  2421. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2422. INIT_LIST_HEAD(&sci->sc_segbufs);
  2423. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2424. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2425. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2426. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2427. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2428. if (sbi->s_interval)
  2429. sci->sc_interval = sbi->s_interval;
  2430. if (sbi->s_watermark)
  2431. sci->sc_watermark = sbi->s_watermark;
  2432. return sci;
  2433. }
  2434. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2435. {
  2436. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2437. /* The segctord thread was stopped and its timer was removed.
  2438. But some tasks remain. */
  2439. do {
  2440. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2441. struct nilfs_transaction_info ti;
  2442. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2443. nilfs_transaction_lock(sbi, &ti, 0);
  2444. nilfs_segctor_accept(sci, &req);
  2445. ret = nilfs_segctor_construct(sci, &req);
  2446. nilfs_segctor_notify(sci, &req);
  2447. nilfs_transaction_unlock(sbi);
  2448. } while (ret && retrycount-- > 0);
  2449. }
  2450. /**
  2451. * nilfs_segctor_destroy - destroy the segment constructor.
  2452. * @sci: nilfs_sc_info
  2453. *
  2454. * nilfs_segctor_destroy() kills the segctord thread and frees
  2455. * the nilfs_sc_info struct.
  2456. * Caller must hold the segment semaphore.
  2457. */
  2458. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2459. {
  2460. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2461. int flag;
  2462. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2463. spin_lock(&sci->sc_state_lock);
  2464. nilfs_segctor_kill_thread(sci);
  2465. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2466. || sci->sc_seq_request != sci->sc_seq_done);
  2467. spin_unlock(&sci->sc_state_lock);
  2468. if (flag || nilfs_segctor_confirm(sci))
  2469. nilfs_segctor_write_out(sci);
  2470. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2471. if (!list_empty(&sci->sc_dirty_files)) {
  2472. nilfs_warning(sbi->s_super, __func__,
  2473. "dirty file(s) after the final construction\n");
  2474. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2475. }
  2476. WARN_ON(!list_empty(&sci->sc_segbufs));
  2477. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2478. kfree(sci);
  2479. }
  2480. /**
  2481. * nilfs_attach_segment_constructor - attach a segment constructor
  2482. * @sbi: nilfs_sb_info
  2483. *
  2484. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2485. * initilizes it, and starts the segment constructor.
  2486. *
  2487. * Return Value: On success, 0 is returned. On error, one of the following
  2488. * negative error code is returned.
  2489. *
  2490. * %-ENOMEM - Insufficient memory available.
  2491. */
  2492. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
  2493. {
  2494. struct the_nilfs *nilfs = sbi->s_nilfs;
  2495. int err;
  2496. /* Each field of nilfs_segctor is cleared through the initialization
  2497. of super-block info */
  2498. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2499. if (!sbi->s_sc_info)
  2500. return -ENOMEM;
  2501. nilfs_attach_writer(nilfs, sbi);
  2502. err = nilfs_segctor_init(NILFS_SC(sbi));
  2503. if (err) {
  2504. nilfs_detach_writer(nilfs, sbi);
  2505. kfree(sbi->s_sc_info);
  2506. sbi->s_sc_info = NULL;
  2507. }
  2508. return err;
  2509. }
  2510. /**
  2511. * nilfs_detach_segment_constructor - destroy the segment constructor
  2512. * @sbi: nilfs_sb_info
  2513. *
  2514. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2515. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2516. */
  2517. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2518. {
  2519. struct the_nilfs *nilfs = sbi->s_nilfs;
  2520. LIST_HEAD(garbage_list);
  2521. down_write(&nilfs->ns_segctor_sem);
  2522. if (NILFS_SC(sbi)) {
  2523. nilfs_segctor_destroy(NILFS_SC(sbi));
  2524. sbi->s_sc_info = NULL;
  2525. }
  2526. /* Force to free the list of dirty files */
  2527. spin_lock(&sbi->s_inode_lock);
  2528. if (!list_empty(&sbi->s_dirty_files)) {
  2529. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2530. nilfs_warning(sbi->s_super, __func__,
  2531. "Non empty dirty list after the last "
  2532. "segment construction\n");
  2533. }
  2534. spin_unlock(&sbi->s_inode_lock);
  2535. up_write(&nilfs->ns_segctor_sem);
  2536. nilfs_dispose_list(sbi, &garbage_list, 1);
  2537. nilfs_detach_writer(nilfs, sbi);
  2538. }