disk-io.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include "compat.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "tree-log.h"
  39. #include "free-space-cache.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
  43. /*
  44. * end_io_wq structs are used to do processing in task context when an IO is
  45. * complete. This is used during reads to verify checksums, and it is used
  46. * by writes to insert metadata for new file extents after IO is complete.
  47. */
  48. struct end_io_wq {
  49. struct bio *bio;
  50. bio_end_io_t *end_io;
  51. void *private;
  52. struct btrfs_fs_info *info;
  53. int error;
  54. int metadata;
  55. struct list_head list;
  56. struct btrfs_work work;
  57. };
  58. /*
  59. * async submit bios are used to offload expensive checksumming
  60. * onto the worker threads. They checksum file and metadata bios
  61. * just before they are sent down the IO stack.
  62. */
  63. struct async_submit_bio {
  64. struct inode *inode;
  65. struct bio *bio;
  66. struct list_head list;
  67. extent_submit_bio_hook_t *submit_bio_start;
  68. extent_submit_bio_hook_t *submit_bio_done;
  69. int rw;
  70. int mirror_num;
  71. unsigned long bio_flags;
  72. struct btrfs_work work;
  73. };
  74. /* These are used to set the lockdep class on the extent buffer locks.
  75. * The class is set by the readpage_end_io_hook after the buffer has
  76. * passed csum validation but before the pages are unlocked.
  77. *
  78. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  79. * allocated blocks.
  80. *
  81. * The class is based on the level in the tree block, which allows lockdep
  82. * to know that lower nodes nest inside the locks of higher nodes.
  83. *
  84. * We also add a check to make sure the highest level of the tree is
  85. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  86. * code needs update as well.
  87. */
  88. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  89. # if BTRFS_MAX_LEVEL != 8
  90. # error
  91. # endif
  92. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  93. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  94. /* leaf */
  95. "btrfs-extent-00",
  96. "btrfs-extent-01",
  97. "btrfs-extent-02",
  98. "btrfs-extent-03",
  99. "btrfs-extent-04",
  100. "btrfs-extent-05",
  101. "btrfs-extent-06",
  102. "btrfs-extent-07",
  103. /* highest possible level */
  104. "btrfs-extent-08",
  105. };
  106. #endif
  107. /*
  108. * extents on the btree inode are pretty simple, there's one extent
  109. * that covers the entire device
  110. */
  111. static struct extent_map *btree_get_extent(struct inode *inode,
  112. struct page *page, size_t page_offset, u64 start, u64 len,
  113. int create)
  114. {
  115. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  116. struct extent_map *em;
  117. int ret;
  118. spin_lock(&em_tree->lock);
  119. em = lookup_extent_mapping(em_tree, start, len);
  120. if (em) {
  121. em->bdev =
  122. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  123. spin_unlock(&em_tree->lock);
  124. goto out;
  125. }
  126. spin_unlock(&em_tree->lock);
  127. em = alloc_extent_map(GFP_NOFS);
  128. if (!em) {
  129. em = ERR_PTR(-ENOMEM);
  130. goto out;
  131. }
  132. em->start = 0;
  133. em->len = (u64)-1;
  134. em->block_len = (u64)-1;
  135. em->block_start = 0;
  136. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  137. spin_lock(&em_tree->lock);
  138. ret = add_extent_mapping(em_tree, em);
  139. if (ret == -EEXIST) {
  140. u64 failed_start = em->start;
  141. u64 failed_len = em->len;
  142. free_extent_map(em);
  143. em = lookup_extent_mapping(em_tree, start, len);
  144. if (em) {
  145. ret = 0;
  146. } else {
  147. em = lookup_extent_mapping(em_tree, failed_start,
  148. failed_len);
  149. ret = -EIO;
  150. }
  151. } else if (ret) {
  152. free_extent_map(em);
  153. em = NULL;
  154. }
  155. spin_unlock(&em_tree->lock);
  156. if (ret)
  157. em = ERR_PTR(ret);
  158. out:
  159. return em;
  160. }
  161. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  162. {
  163. return crc32c(seed, data, len);
  164. }
  165. void btrfs_csum_final(u32 crc, char *result)
  166. {
  167. *(__le32 *)result = ~cpu_to_le32(crc);
  168. }
  169. /*
  170. * compute the csum for a btree block, and either verify it or write it
  171. * into the csum field of the block.
  172. */
  173. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  174. int verify)
  175. {
  176. u16 csum_size =
  177. btrfs_super_csum_size(&root->fs_info->super_copy);
  178. char *result = NULL;
  179. unsigned long len;
  180. unsigned long cur_len;
  181. unsigned long offset = BTRFS_CSUM_SIZE;
  182. char *map_token = NULL;
  183. char *kaddr;
  184. unsigned long map_start;
  185. unsigned long map_len;
  186. int err;
  187. u32 crc = ~(u32)0;
  188. unsigned long inline_result;
  189. len = buf->len - offset;
  190. while (len > 0) {
  191. err = map_private_extent_buffer(buf, offset, 32,
  192. &map_token, &kaddr,
  193. &map_start, &map_len, KM_USER0);
  194. if (err)
  195. return 1;
  196. cur_len = min(len, map_len - (offset - map_start));
  197. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  198. crc, cur_len);
  199. len -= cur_len;
  200. offset += cur_len;
  201. unmap_extent_buffer(buf, map_token, KM_USER0);
  202. }
  203. if (csum_size > sizeof(inline_result)) {
  204. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  205. if (!result)
  206. return 1;
  207. } else {
  208. result = (char *)&inline_result;
  209. }
  210. btrfs_csum_final(crc, result);
  211. if (verify) {
  212. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  213. u32 val;
  214. u32 found = 0;
  215. memcpy(&found, result, csum_size);
  216. read_extent_buffer(buf, &val, 0, csum_size);
  217. if (printk_ratelimit()) {
  218. printk(KERN_INFO "btrfs: %s checksum verify "
  219. "failed on %llu wanted %X found %X "
  220. "level %d\n",
  221. root->fs_info->sb->s_id,
  222. (unsigned long long)buf->start, val, found,
  223. btrfs_header_level(buf));
  224. }
  225. if (result != (char *)&inline_result)
  226. kfree(result);
  227. return 1;
  228. }
  229. } else {
  230. write_extent_buffer(buf, result, 0, csum_size);
  231. }
  232. if (result != (char *)&inline_result)
  233. kfree(result);
  234. return 0;
  235. }
  236. /*
  237. * we can't consider a given block up to date unless the transid of the
  238. * block matches the transid in the parent node's pointer. This is how we
  239. * detect blocks that either didn't get written at all or got written
  240. * in the wrong place.
  241. */
  242. static int verify_parent_transid(struct extent_io_tree *io_tree,
  243. struct extent_buffer *eb, u64 parent_transid)
  244. {
  245. int ret;
  246. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  247. return 0;
  248. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  249. if (extent_buffer_uptodate(io_tree, eb) &&
  250. btrfs_header_generation(eb) == parent_transid) {
  251. ret = 0;
  252. goto out;
  253. }
  254. if (printk_ratelimit()) {
  255. printk("parent transid verify failed on %llu wanted %llu "
  256. "found %llu\n",
  257. (unsigned long long)eb->start,
  258. (unsigned long long)parent_transid,
  259. (unsigned long long)btrfs_header_generation(eb));
  260. }
  261. ret = 1;
  262. clear_extent_buffer_uptodate(io_tree, eb);
  263. out:
  264. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  265. GFP_NOFS);
  266. return ret;
  267. }
  268. /*
  269. * helper to read a given tree block, doing retries as required when
  270. * the checksums don't match and we have alternate mirrors to try.
  271. */
  272. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  273. struct extent_buffer *eb,
  274. u64 start, u64 parent_transid)
  275. {
  276. struct extent_io_tree *io_tree;
  277. int ret;
  278. int num_copies = 0;
  279. int mirror_num = 0;
  280. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  281. while (1) {
  282. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  283. btree_get_extent, mirror_num);
  284. if (!ret &&
  285. !verify_parent_transid(io_tree, eb, parent_transid))
  286. return ret;
  287. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  288. eb->start, eb->len);
  289. if (num_copies == 1)
  290. return ret;
  291. mirror_num++;
  292. if (mirror_num > num_copies)
  293. return ret;
  294. }
  295. return -EIO;
  296. }
  297. /*
  298. * checksum a dirty tree block before IO. This has extra checks to make sure
  299. * we only fill in the checksum field in the first page of a multi-page block
  300. */
  301. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  302. {
  303. struct extent_io_tree *tree;
  304. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  305. u64 found_start;
  306. int found_level;
  307. unsigned long len;
  308. struct extent_buffer *eb;
  309. int ret;
  310. tree = &BTRFS_I(page->mapping->host)->io_tree;
  311. if (page->private == EXTENT_PAGE_PRIVATE)
  312. goto out;
  313. if (!page->private)
  314. goto out;
  315. len = page->private >> 2;
  316. WARN_ON(len == 0);
  317. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  318. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  319. btrfs_header_generation(eb));
  320. BUG_ON(ret);
  321. found_start = btrfs_header_bytenr(eb);
  322. if (found_start != start) {
  323. WARN_ON(1);
  324. goto err;
  325. }
  326. if (eb->first_page != page) {
  327. WARN_ON(1);
  328. goto err;
  329. }
  330. if (!PageUptodate(page)) {
  331. WARN_ON(1);
  332. goto err;
  333. }
  334. found_level = btrfs_header_level(eb);
  335. csum_tree_block(root, eb, 0);
  336. err:
  337. free_extent_buffer(eb);
  338. out:
  339. return 0;
  340. }
  341. static int check_tree_block_fsid(struct btrfs_root *root,
  342. struct extent_buffer *eb)
  343. {
  344. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  345. u8 fsid[BTRFS_UUID_SIZE];
  346. int ret = 1;
  347. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  348. BTRFS_FSID_SIZE);
  349. while (fs_devices) {
  350. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  351. ret = 0;
  352. break;
  353. }
  354. fs_devices = fs_devices->seed;
  355. }
  356. return ret;
  357. }
  358. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  359. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  360. {
  361. lockdep_set_class_and_name(&eb->lock,
  362. &btrfs_eb_class[level],
  363. btrfs_eb_name[level]);
  364. }
  365. #endif
  366. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  367. struct extent_state *state)
  368. {
  369. struct extent_io_tree *tree;
  370. u64 found_start;
  371. int found_level;
  372. unsigned long len;
  373. struct extent_buffer *eb;
  374. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  375. int ret = 0;
  376. tree = &BTRFS_I(page->mapping->host)->io_tree;
  377. if (page->private == EXTENT_PAGE_PRIVATE)
  378. goto out;
  379. if (!page->private)
  380. goto out;
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  384. found_start = btrfs_header_bytenr(eb);
  385. if (found_start != start) {
  386. if (printk_ratelimit()) {
  387. printk(KERN_INFO "btrfs bad tree block start "
  388. "%llu %llu\n",
  389. (unsigned long long)found_start,
  390. (unsigned long long)eb->start);
  391. }
  392. ret = -EIO;
  393. goto err;
  394. }
  395. if (eb->first_page != page) {
  396. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  397. eb->first_page->index, page->index);
  398. WARN_ON(1);
  399. ret = -EIO;
  400. goto err;
  401. }
  402. if (check_tree_block_fsid(root, eb)) {
  403. if (printk_ratelimit()) {
  404. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  405. (unsigned long long)eb->start);
  406. }
  407. ret = -EIO;
  408. goto err;
  409. }
  410. found_level = btrfs_header_level(eb);
  411. btrfs_set_buffer_lockdep_class(eb, found_level);
  412. ret = csum_tree_block(root, eb, 1);
  413. if (ret)
  414. ret = -EIO;
  415. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  416. end = eb->start + end - 1;
  417. err:
  418. free_extent_buffer(eb);
  419. out:
  420. return ret;
  421. }
  422. static void end_workqueue_bio(struct bio *bio, int err)
  423. {
  424. struct end_io_wq *end_io_wq = bio->bi_private;
  425. struct btrfs_fs_info *fs_info;
  426. fs_info = end_io_wq->info;
  427. end_io_wq->error = err;
  428. end_io_wq->work.func = end_workqueue_fn;
  429. end_io_wq->work.flags = 0;
  430. if (bio->bi_rw & (1 << BIO_RW)) {
  431. if (end_io_wq->metadata)
  432. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  433. &end_io_wq->work);
  434. else
  435. btrfs_queue_worker(&fs_info->endio_write_workers,
  436. &end_io_wq->work);
  437. } else {
  438. if (end_io_wq->metadata)
  439. btrfs_queue_worker(&fs_info->endio_meta_workers,
  440. &end_io_wq->work);
  441. else
  442. btrfs_queue_worker(&fs_info->endio_workers,
  443. &end_io_wq->work);
  444. }
  445. }
  446. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  447. int metadata)
  448. {
  449. struct end_io_wq *end_io_wq;
  450. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  451. if (!end_io_wq)
  452. return -ENOMEM;
  453. end_io_wq->private = bio->bi_private;
  454. end_io_wq->end_io = bio->bi_end_io;
  455. end_io_wq->info = info;
  456. end_io_wq->error = 0;
  457. end_io_wq->bio = bio;
  458. end_io_wq->metadata = metadata;
  459. bio->bi_private = end_io_wq;
  460. bio->bi_end_io = end_workqueue_bio;
  461. return 0;
  462. }
  463. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  464. {
  465. unsigned long limit = min_t(unsigned long,
  466. info->workers.max_workers,
  467. info->fs_devices->open_devices);
  468. return 256 * limit;
  469. }
  470. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  471. {
  472. return atomic_read(&info->nr_async_bios) >
  473. btrfs_async_submit_limit(info);
  474. }
  475. static void run_one_async_start(struct btrfs_work *work)
  476. {
  477. struct btrfs_fs_info *fs_info;
  478. struct async_submit_bio *async;
  479. async = container_of(work, struct async_submit_bio, work);
  480. fs_info = BTRFS_I(async->inode)->root->fs_info;
  481. async->submit_bio_start(async->inode, async->rw, async->bio,
  482. async->mirror_num, async->bio_flags);
  483. }
  484. static void run_one_async_done(struct btrfs_work *work)
  485. {
  486. struct btrfs_fs_info *fs_info;
  487. struct async_submit_bio *async;
  488. int limit;
  489. async = container_of(work, struct async_submit_bio, work);
  490. fs_info = BTRFS_I(async->inode)->root->fs_info;
  491. limit = btrfs_async_submit_limit(fs_info);
  492. limit = limit * 2 / 3;
  493. atomic_dec(&fs_info->nr_async_submits);
  494. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  495. waitqueue_active(&fs_info->async_submit_wait))
  496. wake_up(&fs_info->async_submit_wait);
  497. async->submit_bio_done(async->inode, async->rw, async->bio,
  498. async->mirror_num, async->bio_flags);
  499. }
  500. static void run_one_async_free(struct btrfs_work *work)
  501. {
  502. struct async_submit_bio *async;
  503. async = container_of(work, struct async_submit_bio, work);
  504. kfree(async);
  505. }
  506. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  507. int rw, struct bio *bio, int mirror_num,
  508. unsigned long bio_flags,
  509. extent_submit_bio_hook_t *submit_bio_start,
  510. extent_submit_bio_hook_t *submit_bio_done)
  511. {
  512. struct async_submit_bio *async;
  513. async = kmalloc(sizeof(*async), GFP_NOFS);
  514. if (!async)
  515. return -ENOMEM;
  516. async->inode = inode;
  517. async->rw = rw;
  518. async->bio = bio;
  519. async->mirror_num = mirror_num;
  520. async->submit_bio_start = submit_bio_start;
  521. async->submit_bio_done = submit_bio_done;
  522. async->work.func = run_one_async_start;
  523. async->work.ordered_func = run_one_async_done;
  524. async->work.ordered_free = run_one_async_free;
  525. async->work.flags = 0;
  526. async->bio_flags = bio_flags;
  527. atomic_inc(&fs_info->nr_async_submits);
  528. if (rw & (1 << BIO_RW_SYNCIO))
  529. btrfs_set_work_high_prio(&async->work);
  530. btrfs_queue_worker(&fs_info->workers, &async->work);
  531. while (atomic_read(&fs_info->async_submit_draining) &&
  532. atomic_read(&fs_info->nr_async_submits)) {
  533. wait_event(fs_info->async_submit_wait,
  534. (atomic_read(&fs_info->nr_async_submits) == 0));
  535. }
  536. return 0;
  537. }
  538. static int btree_csum_one_bio(struct bio *bio)
  539. {
  540. struct bio_vec *bvec = bio->bi_io_vec;
  541. int bio_index = 0;
  542. struct btrfs_root *root;
  543. WARN_ON(bio->bi_vcnt <= 0);
  544. while (bio_index < bio->bi_vcnt) {
  545. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  546. csum_dirty_buffer(root, bvec->bv_page);
  547. bio_index++;
  548. bvec++;
  549. }
  550. return 0;
  551. }
  552. static int __btree_submit_bio_start(struct inode *inode, int rw,
  553. struct bio *bio, int mirror_num,
  554. unsigned long bio_flags)
  555. {
  556. /*
  557. * when we're called for a write, we're already in the async
  558. * submission context. Just jump into btrfs_map_bio
  559. */
  560. btree_csum_one_bio(bio);
  561. return 0;
  562. }
  563. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  564. int mirror_num, unsigned long bio_flags)
  565. {
  566. /*
  567. * when we're called for a write, we're already in the async
  568. * submission context. Just jump into btrfs_map_bio
  569. */
  570. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  571. }
  572. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  573. int mirror_num, unsigned long bio_flags)
  574. {
  575. int ret;
  576. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  577. bio, 1);
  578. BUG_ON(ret);
  579. if (!(rw & (1 << BIO_RW))) {
  580. /*
  581. * called for a read, do the setup so that checksum validation
  582. * can happen in the async kernel threads
  583. */
  584. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  585. mirror_num, 0);
  586. }
  587. /*
  588. * kthread helpers are used to submit writes so that checksumming
  589. * can happen in parallel across all CPUs
  590. */
  591. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  592. inode, rw, bio, mirror_num, 0,
  593. __btree_submit_bio_start,
  594. __btree_submit_bio_done);
  595. }
  596. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  597. {
  598. struct extent_io_tree *tree;
  599. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  600. struct extent_buffer *eb;
  601. int was_dirty;
  602. tree = &BTRFS_I(page->mapping->host)->io_tree;
  603. if (!(current->flags & PF_MEMALLOC)) {
  604. return extent_write_full_page(tree, page,
  605. btree_get_extent, wbc);
  606. }
  607. redirty_page_for_writepage(wbc, page);
  608. eb = btrfs_find_tree_block(root, page_offset(page),
  609. PAGE_CACHE_SIZE);
  610. WARN_ON(!eb);
  611. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  612. if (!was_dirty) {
  613. spin_lock(&root->fs_info->delalloc_lock);
  614. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  615. spin_unlock(&root->fs_info->delalloc_lock);
  616. }
  617. free_extent_buffer(eb);
  618. unlock_page(page);
  619. return 0;
  620. }
  621. static int btree_writepages(struct address_space *mapping,
  622. struct writeback_control *wbc)
  623. {
  624. struct extent_io_tree *tree;
  625. tree = &BTRFS_I(mapping->host)->io_tree;
  626. if (wbc->sync_mode == WB_SYNC_NONE) {
  627. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  628. u64 num_dirty;
  629. unsigned long thresh = 32 * 1024 * 1024;
  630. if (wbc->for_kupdate)
  631. return 0;
  632. /* this is a bit racy, but that's ok */
  633. num_dirty = root->fs_info->dirty_metadata_bytes;
  634. if (num_dirty < thresh)
  635. return 0;
  636. }
  637. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  638. }
  639. static int btree_readpage(struct file *file, struct page *page)
  640. {
  641. struct extent_io_tree *tree;
  642. tree = &BTRFS_I(page->mapping->host)->io_tree;
  643. return extent_read_full_page(tree, page, btree_get_extent);
  644. }
  645. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  646. {
  647. struct extent_io_tree *tree;
  648. struct extent_map_tree *map;
  649. int ret;
  650. if (PageWriteback(page) || PageDirty(page))
  651. return 0;
  652. tree = &BTRFS_I(page->mapping->host)->io_tree;
  653. map = &BTRFS_I(page->mapping->host)->extent_tree;
  654. ret = try_release_extent_state(map, tree, page, gfp_flags);
  655. if (!ret)
  656. return 0;
  657. ret = try_release_extent_buffer(tree, page);
  658. if (ret == 1) {
  659. ClearPagePrivate(page);
  660. set_page_private(page, 0);
  661. page_cache_release(page);
  662. }
  663. return ret;
  664. }
  665. static void btree_invalidatepage(struct page *page, unsigned long offset)
  666. {
  667. struct extent_io_tree *tree;
  668. tree = &BTRFS_I(page->mapping->host)->io_tree;
  669. extent_invalidatepage(tree, page, offset);
  670. btree_releasepage(page, GFP_NOFS);
  671. if (PagePrivate(page)) {
  672. printk(KERN_WARNING "btrfs warning page private not zero "
  673. "on page %llu\n", (unsigned long long)page_offset(page));
  674. ClearPagePrivate(page);
  675. set_page_private(page, 0);
  676. page_cache_release(page);
  677. }
  678. }
  679. static const struct address_space_operations btree_aops = {
  680. .readpage = btree_readpage,
  681. .writepage = btree_writepage,
  682. .writepages = btree_writepages,
  683. .releasepage = btree_releasepage,
  684. .invalidatepage = btree_invalidatepage,
  685. .sync_page = block_sync_page,
  686. };
  687. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  688. u64 parent_transid)
  689. {
  690. struct extent_buffer *buf = NULL;
  691. struct inode *btree_inode = root->fs_info->btree_inode;
  692. int ret = 0;
  693. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  694. if (!buf)
  695. return 0;
  696. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  697. buf, 0, 0, btree_get_extent, 0);
  698. free_extent_buffer(buf);
  699. return ret;
  700. }
  701. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  702. u64 bytenr, u32 blocksize)
  703. {
  704. struct inode *btree_inode = root->fs_info->btree_inode;
  705. struct extent_buffer *eb;
  706. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  707. bytenr, blocksize, GFP_NOFS);
  708. return eb;
  709. }
  710. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  711. u64 bytenr, u32 blocksize)
  712. {
  713. struct inode *btree_inode = root->fs_info->btree_inode;
  714. struct extent_buffer *eb;
  715. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  716. bytenr, blocksize, NULL, GFP_NOFS);
  717. return eb;
  718. }
  719. int btrfs_write_tree_block(struct extent_buffer *buf)
  720. {
  721. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  722. buf->start + buf->len - 1, WB_SYNC_ALL);
  723. }
  724. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  725. {
  726. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  727. buf->start, buf->start + buf->len - 1);
  728. }
  729. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  730. u32 blocksize, u64 parent_transid)
  731. {
  732. struct extent_buffer *buf = NULL;
  733. struct inode *btree_inode = root->fs_info->btree_inode;
  734. struct extent_io_tree *io_tree;
  735. int ret;
  736. io_tree = &BTRFS_I(btree_inode)->io_tree;
  737. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  738. if (!buf)
  739. return NULL;
  740. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  741. if (ret == 0)
  742. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  743. return buf;
  744. }
  745. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  746. struct extent_buffer *buf)
  747. {
  748. struct inode *btree_inode = root->fs_info->btree_inode;
  749. if (btrfs_header_generation(buf) ==
  750. root->fs_info->running_transaction->transid) {
  751. btrfs_assert_tree_locked(buf);
  752. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  753. spin_lock(&root->fs_info->delalloc_lock);
  754. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  755. root->fs_info->dirty_metadata_bytes -= buf->len;
  756. else
  757. WARN_ON(1);
  758. spin_unlock(&root->fs_info->delalloc_lock);
  759. }
  760. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  761. btrfs_set_lock_blocking(buf);
  762. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  763. buf);
  764. }
  765. return 0;
  766. }
  767. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  768. u32 stripesize, struct btrfs_root *root,
  769. struct btrfs_fs_info *fs_info,
  770. u64 objectid)
  771. {
  772. root->node = NULL;
  773. root->commit_root = NULL;
  774. root->sectorsize = sectorsize;
  775. root->nodesize = nodesize;
  776. root->leafsize = leafsize;
  777. root->stripesize = stripesize;
  778. root->ref_cows = 0;
  779. root->track_dirty = 0;
  780. root->fs_info = fs_info;
  781. root->objectid = objectid;
  782. root->last_trans = 0;
  783. root->highest_inode = 0;
  784. root->last_inode_alloc = 0;
  785. root->name = NULL;
  786. root->in_sysfs = 0;
  787. root->inode_tree.rb_node = NULL;
  788. INIT_LIST_HEAD(&root->dirty_list);
  789. INIT_LIST_HEAD(&root->orphan_list);
  790. INIT_LIST_HEAD(&root->root_list);
  791. spin_lock_init(&root->node_lock);
  792. spin_lock_init(&root->list_lock);
  793. spin_lock_init(&root->inode_lock);
  794. mutex_init(&root->objectid_mutex);
  795. mutex_init(&root->log_mutex);
  796. init_waitqueue_head(&root->log_writer_wait);
  797. init_waitqueue_head(&root->log_commit_wait[0]);
  798. init_waitqueue_head(&root->log_commit_wait[1]);
  799. atomic_set(&root->log_commit[0], 0);
  800. atomic_set(&root->log_commit[1], 0);
  801. atomic_set(&root->log_writers, 0);
  802. root->log_batch = 0;
  803. root->log_transid = 0;
  804. extent_io_tree_init(&root->dirty_log_pages,
  805. fs_info->btree_inode->i_mapping, GFP_NOFS);
  806. memset(&root->root_key, 0, sizeof(root->root_key));
  807. memset(&root->root_item, 0, sizeof(root->root_item));
  808. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  809. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  810. root->defrag_trans_start = fs_info->generation;
  811. init_completion(&root->kobj_unregister);
  812. root->defrag_running = 0;
  813. root->defrag_level = 0;
  814. root->root_key.objectid = objectid;
  815. root->anon_super.s_root = NULL;
  816. root->anon_super.s_dev = 0;
  817. INIT_LIST_HEAD(&root->anon_super.s_list);
  818. INIT_LIST_HEAD(&root->anon_super.s_instances);
  819. init_rwsem(&root->anon_super.s_umount);
  820. return 0;
  821. }
  822. static int find_and_setup_root(struct btrfs_root *tree_root,
  823. struct btrfs_fs_info *fs_info,
  824. u64 objectid,
  825. struct btrfs_root *root)
  826. {
  827. int ret;
  828. u32 blocksize;
  829. u64 generation;
  830. __setup_root(tree_root->nodesize, tree_root->leafsize,
  831. tree_root->sectorsize, tree_root->stripesize,
  832. root, fs_info, objectid);
  833. ret = btrfs_find_last_root(tree_root, objectid,
  834. &root->root_item, &root->root_key);
  835. BUG_ON(ret);
  836. generation = btrfs_root_generation(&root->root_item);
  837. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  838. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  839. blocksize, generation);
  840. root->commit_root = btrfs_root_node(root);
  841. BUG_ON(!root->node);
  842. return 0;
  843. }
  844. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  845. struct btrfs_fs_info *fs_info)
  846. {
  847. struct extent_buffer *eb;
  848. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  849. u64 start = 0;
  850. u64 end = 0;
  851. int ret;
  852. if (!log_root_tree)
  853. return 0;
  854. while (1) {
  855. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  856. 0, &start, &end, EXTENT_DIRTY);
  857. if (ret)
  858. break;
  859. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  860. start, end, GFP_NOFS);
  861. }
  862. eb = fs_info->log_root_tree->node;
  863. WARN_ON(btrfs_header_level(eb) != 0);
  864. WARN_ON(btrfs_header_nritems(eb) != 0);
  865. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  866. eb->start, eb->len);
  867. BUG_ON(ret);
  868. free_extent_buffer(eb);
  869. kfree(fs_info->log_root_tree);
  870. fs_info->log_root_tree = NULL;
  871. return 0;
  872. }
  873. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  874. struct btrfs_fs_info *fs_info)
  875. {
  876. struct btrfs_root *root;
  877. struct btrfs_root *tree_root = fs_info->tree_root;
  878. struct extent_buffer *leaf;
  879. root = kzalloc(sizeof(*root), GFP_NOFS);
  880. if (!root)
  881. return ERR_PTR(-ENOMEM);
  882. __setup_root(tree_root->nodesize, tree_root->leafsize,
  883. tree_root->sectorsize, tree_root->stripesize,
  884. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  885. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  886. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  887. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  888. /*
  889. * log trees do not get reference counted because they go away
  890. * before a real commit is actually done. They do store pointers
  891. * to file data extents, and those reference counts still get
  892. * updated (along with back refs to the log tree).
  893. */
  894. root->ref_cows = 0;
  895. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  896. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  897. if (IS_ERR(leaf)) {
  898. kfree(root);
  899. return ERR_CAST(leaf);
  900. }
  901. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  902. btrfs_set_header_bytenr(leaf, leaf->start);
  903. btrfs_set_header_generation(leaf, trans->transid);
  904. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  905. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  906. root->node = leaf;
  907. write_extent_buffer(root->node, root->fs_info->fsid,
  908. (unsigned long)btrfs_header_fsid(root->node),
  909. BTRFS_FSID_SIZE);
  910. btrfs_mark_buffer_dirty(root->node);
  911. btrfs_tree_unlock(root->node);
  912. return root;
  913. }
  914. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  915. struct btrfs_fs_info *fs_info)
  916. {
  917. struct btrfs_root *log_root;
  918. log_root = alloc_log_tree(trans, fs_info);
  919. if (IS_ERR(log_root))
  920. return PTR_ERR(log_root);
  921. WARN_ON(fs_info->log_root_tree);
  922. fs_info->log_root_tree = log_root;
  923. return 0;
  924. }
  925. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  926. struct btrfs_root *root)
  927. {
  928. struct btrfs_root *log_root;
  929. struct btrfs_inode_item *inode_item;
  930. log_root = alloc_log_tree(trans, root->fs_info);
  931. if (IS_ERR(log_root))
  932. return PTR_ERR(log_root);
  933. log_root->last_trans = trans->transid;
  934. log_root->root_key.offset = root->root_key.objectid;
  935. inode_item = &log_root->root_item.inode;
  936. inode_item->generation = cpu_to_le64(1);
  937. inode_item->size = cpu_to_le64(3);
  938. inode_item->nlink = cpu_to_le32(1);
  939. inode_item->nbytes = cpu_to_le64(root->leafsize);
  940. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  941. btrfs_set_root_node(&log_root->root_item, log_root->node);
  942. WARN_ON(root->log_root);
  943. root->log_root = log_root;
  944. root->log_transid = 0;
  945. return 0;
  946. }
  947. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  948. struct btrfs_key *location)
  949. {
  950. struct btrfs_root *root;
  951. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  952. struct btrfs_path *path;
  953. struct extent_buffer *l;
  954. u64 highest_inode;
  955. u64 generation;
  956. u32 blocksize;
  957. int ret = 0;
  958. root = kzalloc(sizeof(*root), GFP_NOFS);
  959. if (!root)
  960. return ERR_PTR(-ENOMEM);
  961. if (location->offset == (u64)-1) {
  962. ret = find_and_setup_root(tree_root, fs_info,
  963. location->objectid, root);
  964. if (ret) {
  965. kfree(root);
  966. return ERR_PTR(ret);
  967. }
  968. goto insert;
  969. }
  970. __setup_root(tree_root->nodesize, tree_root->leafsize,
  971. tree_root->sectorsize, tree_root->stripesize,
  972. root, fs_info, location->objectid);
  973. path = btrfs_alloc_path();
  974. BUG_ON(!path);
  975. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  976. if (ret != 0) {
  977. if (ret > 0)
  978. ret = -ENOENT;
  979. goto out;
  980. }
  981. l = path->nodes[0];
  982. read_extent_buffer(l, &root->root_item,
  983. btrfs_item_ptr_offset(l, path->slots[0]),
  984. sizeof(root->root_item));
  985. memcpy(&root->root_key, location, sizeof(*location));
  986. ret = 0;
  987. out:
  988. btrfs_release_path(root, path);
  989. btrfs_free_path(path);
  990. if (ret) {
  991. kfree(root);
  992. return ERR_PTR(ret);
  993. }
  994. generation = btrfs_root_generation(&root->root_item);
  995. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  996. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  997. blocksize, generation);
  998. root->commit_root = btrfs_root_node(root);
  999. BUG_ON(!root->node);
  1000. insert:
  1001. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1002. root->ref_cows = 1;
  1003. ret = btrfs_find_highest_inode(root, &highest_inode);
  1004. if (ret == 0) {
  1005. root->highest_inode = highest_inode;
  1006. root->last_inode_alloc = highest_inode;
  1007. }
  1008. }
  1009. return root;
  1010. }
  1011. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1012. u64 root_objectid)
  1013. {
  1014. struct btrfs_root *root;
  1015. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1016. return fs_info->tree_root;
  1017. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1018. return fs_info->extent_root;
  1019. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1020. (unsigned long)root_objectid);
  1021. return root;
  1022. }
  1023. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1024. struct btrfs_key *location)
  1025. {
  1026. struct btrfs_root *root;
  1027. int ret;
  1028. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1029. return fs_info->tree_root;
  1030. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1031. return fs_info->extent_root;
  1032. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1033. return fs_info->chunk_root;
  1034. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1035. return fs_info->dev_root;
  1036. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1037. return fs_info->csum_root;
  1038. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1039. (unsigned long)location->objectid);
  1040. if (root)
  1041. return root;
  1042. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1043. if (IS_ERR(root))
  1044. return root;
  1045. set_anon_super(&root->anon_super, NULL);
  1046. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1047. (unsigned long)root->root_key.objectid,
  1048. root);
  1049. if (ret) {
  1050. free_extent_buffer(root->node);
  1051. kfree(root);
  1052. return ERR_PTR(ret);
  1053. }
  1054. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1055. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1056. root->root_key.objectid);
  1057. BUG_ON(ret);
  1058. btrfs_orphan_cleanup(root);
  1059. }
  1060. return root;
  1061. }
  1062. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1063. struct btrfs_key *location,
  1064. const char *name, int namelen)
  1065. {
  1066. struct btrfs_root *root;
  1067. int ret;
  1068. root = btrfs_read_fs_root_no_name(fs_info, location);
  1069. if (!root)
  1070. return NULL;
  1071. if (root->in_sysfs)
  1072. return root;
  1073. ret = btrfs_set_root_name(root, name, namelen);
  1074. if (ret) {
  1075. free_extent_buffer(root->node);
  1076. kfree(root);
  1077. return ERR_PTR(ret);
  1078. }
  1079. #if 0
  1080. ret = btrfs_sysfs_add_root(root);
  1081. if (ret) {
  1082. free_extent_buffer(root->node);
  1083. kfree(root->name);
  1084. kfree(root);
  1085. return ERR_PTR(ret);
  1086. }
  1087. #endif
  1088. root->in_sysfs = 1;
  1089. return root;
  1090. }
  1091. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1092. {
  1093. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1094. int ret = 0;
  1095. struct btrfs_device *device;
  1096. struct backing_dev_info *bdi;
  1097. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1098. if (!device->bdev)
  1099. continue;
  1100. bdi = blk_get_backing_dev_info(device->bdev);
  1101. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1102. ret = 1;
  1103. break;
  1104. }
  1105. }
  1106. return ret;
  1107. }
  1108. /*
  1109. * this unplugs every device on the box, and it is only used when page
  1110. * is null
  1111. */
  1112. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1113. {
  1114. struct btrfs_device *device;
  1115. struct btrfs_fs_info *info;
  1116. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1117. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1118. if (!device->bdev)
  1119. continue;
  1120. bdi = blk_get_backing_dev_info(device->bdev);
  1121. if (bdi->unplug_io_fn)
  1122. bdi->unplug_io_fn(bdi, page);
  1123. }
  1124. }
  1125. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1126. {
  1127. struct inode *inode;
  1128. struct extent_map_tree *em_tree;
  1129. struct extent_map *em;
  1130. struct address_space *mapping;
  1131. u64 offset;
  1132. /* the generic O_DIRECT read code does this */
  1133. if (1 || !page) {
  1134. __unplug_io_fn(bdi, page);
  1135. return;
  1136. }
  1137. /*
  1138. * page->mapping may change at any time. Get a consistent copy
  1139. * and use that for everything below
  1140. */
  1141. smp_mb();
  1142. mapping = page->mapping;
  1143. if (!mapping)
  1144. return;
  1145. inode = mapping->host;
  1146. /*
  1147. * don't do the expensive searching for a small number of
  1148. * devices
  1149. */
  1150. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1151. __unplug_io_fn(bdi, page);
  1152. return;
  1153. }
  1154. offset = page_offset(page);
  1155. em_tree = &BTRFS_I(inode)->extent_tree;
  1156. spin_lock(&em_tree->lock);
  1157. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1158. spin_unlock(&em_tree->lock);
  1159. if (!em) {
  1160. __unplug_io_fn(bdi, page);
  1161. return;
  1162. }
  1163. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1164. free_extent_map(em);
  1165. __unplug_io_fn(bdi, page);
  1166. return;
  1167. }
  1168. offset = offset - em->start;
  1169. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1170. em->block_start + offset, page);
  1171. free_extent_map(em);
  1172. }
  1173. /*
  1174. * If this fails, caller must call bdi_destroy() to get rid of the
  1175. * bdi again.
  1176. */
  1177. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1178. {
  1179. int err;
  1180. bdi->name = "btrfs";
  1181. bdi->capabilities = BDI_CAP_MAP_COPY;
  1182. err = bdi_init(bdi);
  1183. if (err)
  1184. return err;
  1185. err = bdi_register(bdi, NULL, "btrfs-%d",
  1186. atomic_inc_return(&btrfs_bdi_num));
  1187. if (err)
  1188. return err;
  1189. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1190. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1191. bdi->unplug_io_data = info;
  1192. bdi->congested_fn = btrfs_congested_fn;
  1193. bdi->congested_data = info;
  1194. return 0;
  1195. }
  1196. static int bio_ready_for_csum(struct bio *bio)
  1197. {
  1198. u64 length = 0;
  1199. u64 buf_len = 0;
  1200. u64 start = 0;
  1201. struct page *page;
  1202. struct extent_io_tree *io_tree = NULL;
  1203. struct btrfs_fs_info *info = NULL;
  1204. struct bio_vec *bvec;
  1205. int i;
  1206. int ret;
  1207. bio_for_each_segment(bvec, bio, i) {
  1208. page = bvec->bv_page;
  1209. if (page->private == EXTENT_PAGE_PRIVATE) {
  1210. length += bvec->bv_len;
  1211. continue;
  1212. }
  1213. if (!page->private) {
  1214. length += bvec->bv_len;
  1215. continue;
  1216. }
  1217. length = bvec->bv_len;
  1218. buf_len = page->private >> 2;
  1219. start = page_offset(page) + bvec->bv_offset;
  1220. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1221. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1222. }
  1223. /* are we fully contained in this bio? */
  1224. if (buf_len <= length)
  1225. return 1;
  1226. ret = extent_range_uptodate(io_tree, start + length,
  1227. start + buf_len - 1);
  1228. return ret;
  1229. }
  1230. /*
  1231. * called by the kthread helper functions to finally call the bio end_io
  1232. * functions. This is where read checksum verification actually happens
  1233. */
  1234. static void end_workqueue_fn(struct btrfs_work *work)
  1235. {
  1236. struct bio *bio;
  1237. struct end_io_wq *end_io_wq;
  1238. struct btrfs_fs_info *fs_info;
  1239. int error;
  1240. end_io_wq = container_of(work, struct end_io_wq, work);
  1241. bio = end_io_wq->bio;
  1242. fs_info = end_io_wq->info;
  1243. /* metadata bio reads are special because the whole tree block must
  1244. * be checksummed at once. This makes sure the entire block is in
  1245. * ram and up to date before trying to verify things. For
  1246. * blocksize <= pagesize, it is basically a noop
  1247. */
  1248. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1249. !bio_ready_for_csum(bio)) {
  1250. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1251. &end_io_wq->work);
  1252. return;
  1253. }
  1254. error = end_io_wq->error;
  1255. bio->bi_private = end_io_wq->private;
  1256. bio->bi_end_io = end_io_wq->end_io;
  1257. kfree(end_io_wq);
  1258. bio_endio(bio, error);
  1259. }
  1260. static int cleaner_kthread(void *arg)
  1261. {
  1262. struct btrfs_root *root = arg;
  1263. do {
  1264. smp_mb();
  1265. if (root->fs_info->closing)
  1266. break;
  1267. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1268. mutex_lock(&root->fs_info->cleaner_mutex);
  1269. btrfs_clean_old_snapshots(root);
  1270. mutex_unlock(&root->fs_info->cleaner_mutex);
  1271. if (freezing(current)) {
  1272. refrigerator();
  1273. } else {
  1274. smp_mb();
  1275. if (root->fs_info->closing)
  1276. break;
  1277. set_current_state(TASK_INTERRUPTIBLE);
  1278. schedule();
  1279. __set_current_state(TASK_RUNNING);
  1280. }
  1281. } while (!kthread_should_stop());
  1282. return 0;
  1283. }
  1284. static int transaction_kthread(void *arg)
  1285. {
  1286. struct btrfs_root *root = arg;
  1287. struct btrfs_trans_handle *trans;
  1288. struct btrfs_transaction *cur;
  1289. unsigned long now;
  1290. unsigned long delay;
  1291. int ret;
  1292. do {
  1293. smp_mb();
  1294. if (root->fs_info->closing)
  1295. break;
  1296. delay = HZ * 30;
  1297. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1298. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1299. mutex_lock(&root->fs_info->trans_mutex);
  1300. cur = root->fs_info->running_transaction;
  1301. if (!cur) {
  1302. mutex_unlock(&root->fs_info->trans_mutex);
  1303. goto sleep;
  1304. }
  1305. now = get_seconds();
  1306. if (now < cur->start_time || now - cur->start_time < 30) {
  1307. mutex_unlock(&root->fs_info->trans_mutex);
  1308. delay = HZ * 5;
  1309. goto sleep;
  1310. }
  1311. mutex_unlock(&root->fs_info->trans_mutex);
  1312. trans = btrfs_start_transaction(root, 1);
  1313. ret = btrfs_commit_transaction(trans, root);
  1314. sleep:
  1315. wake_up_process(root->fs_info->cleaner_kthread);
  1316. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1317. if (freezing(current)) {
  1318. refrigerator();
  1319. } else {
  1320. if (root->fs_info->closing)
  1321. break;
  1322. set_current_state(TASK_INTERRUPTIBLE);
  1323. schedule_timeout(delay);
  1324. __set_current_state(TASK_RUNNING);
  1325. }
  1326. } while (!kthread_should_stop());
  1327. return 0;
  1328. }
  1329. struct btrfs_root *open_ctree(struct super_block *sb,
  1330. struct btrfs_fs_devices *fs_devices,
  1331. char *options)
  1332. {
  1333. u32 sectorsize;
  1334. u32 nodesize;
  1335. u32 leafsize;
  1336. u32 blocksize;
  1337. u32 stripesize;
  1338. u64 generation;
  1339. u64 features;
  1340. struct btrfs_key location;
  1341. struct buffer_head *bh;
  1342. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1343. GFP_NOFS);
  1344. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1345. GFP_NOFS);
  1346. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1347. GFP_NOFS);
  1348. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1349. GFP_NOFS);
  1350. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1351. GFP_NOFS);
  1352. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1353. GFP_NOFS);
  1354. struct btrfs_root *log_tree_root;
  1355. int ret;
  1356. int err = -EINVAL;
  1357. struct btrfs_super_block *disk_super;
  1358. if (!extent_root || !tree_root || !fs_info ||
  1359. !chunk_root || !dev_root || !csum_root) {
  1360. err = -ENOMEM;
  1361. goto fail;
  1362. }
  1363. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1364. INIT_LIST_HEAD(&fs_info->trans_list);
  1365. INIT_LIST_HEAD(&fs_info->dead_roots);
  1366. INIT_LIST_HEAD(&fs_info->hashers);
  1367. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1368. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1369. spin_lock_init(&fs_info->delalloc_lock);
  1370. spin_lock_init(&fs_info->new_trans_lock);
  1371. spin_lock_init(&fs_info->ref_cache_lock);
  1372. init_completion(&fs_info->kobj_unregister);
  1373. fs_info->tree_root = tree_root;
  1374. fs_info->extent_root = extent_root;
  1375. fs_info->csum_root = csum_root;
  1376. fs_info->chunk_root = chunk_root;
  1377. fs_info->dev_root = dev_root;
  1378. fs_info->fs_devices = fs_devices;
  1379. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1380. INIT_LIST_HEAD(&fs_info->space_info);
  1381. btrfs_mapping_init(&fs_info->mapping_tree);
  1382. atomic_set(&fs_info->nr_async_submits, 0);
  1383. atomic_set(&fs_info->async_delalloc_pages, 0);
  1384. atomic_set(&fs_info->async_submit_draining, 0);
  1385. atomic_set(&fs_info->nr_async_bios, 0);
  1386. fs_info->sb = sb;
  1387. fs_info->max_extent = (u64)-1;
  1388. fs_info->max_inline = 8192 * 1024;
  1389. if (setup_bdi(fs_info, &fs_info->bdi))
  1390. goto fail_bdi;
  1391. fs_info->btree_inode = new_inode(sb);
  1392. fs_info->btree_inode->i_ino = 1;
  1393. fs_info->btree_inode->i_nlink = 1;
  1394. fs_info->metadata_ratio = 8;
  1395. fs_info->thread_pool_size = min_t(unsigned long,
  1396. num_online_cpus() + 2, 8);
  1397. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1398. spin_lock_init(&fs_info->ordered_extent_lock);
  1399. sb->s_blocksize = 4096;
  1400. sb->s_blocksize_bits = blksize_bits(4096);
  1401. sb->s_bdi = &fs_info->bdi;
  1402. /*
  1403. * we set the i_size on the btree inode to the max possible int.
  1404. * the real end of the address space is determined by all of
  1405. * the devices in the system
  1406. */
  1407. fs_info->btree_inode->i_size = OFFSET_MAX;
  1408. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1409. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1410. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1411. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1412. fs_info->btree_inode->i_mapping,
  1413. GFP_NOFS);
  1414. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1415. GFP_NOFS);
  1416. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1417. spin_lock_init(&fs_info->block_group_cache_lock);
  1418. fs_info->block_group_cache_tree.rb_node = NULL;
  1419. extent_io_tree_init(&fs_info->pinned_extents,
  1420. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1421. fs_info->do_barriers = 1;
  1422. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1423. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1424. sizeof(struct btrfs_key));
  1425. insert_inode_hash(fs_info->btree_inode);
  1426. mutex_init(&fs_info->trans_mutex);
  1427. mutex_init(&fs_info->ordered_operations_mutex);
  1428. mutex_init(&fs_info->tree_log_mutex);
  1429. mutex_init(&fs_info->drop_mutex);
  1430. mutex_init(&fs_info->chunk_mutex);
  1431. mutex_init(&fs_info->transaction_kthread_mutex);
  1432. mutex_init(&fs_info->cleaner_mutex);
  1433. mutex_init(&fs_info->volume_mutex);
  1434. mutex_init(&fs_info->tree_reloc_mutex);
  1435. init_rwsem(&fs_info->extent_commit_sem);
  1436. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1437. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1438. init_waitqueue_head(&fs_info->transaction_throttle);
  1439. init_waitqueue_head(&fs_info->transaction_wait);
  1440. init_waitqueue_head(&fs_info->async_submit_wait);
  1441. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1442. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1443. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1444. if (!bh)
  1445. goto fail_iput;
  1446. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1447. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1448. sizeof(fs_info->super_for_commit));
  1449. brelse(bh);
  1450. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1451. disk_super = &fs_info->super_copy;
  1452. if (!btrfs_super_root(disk_super))
  1453. goto fail_iput;
  1454. ret = btrfs_parse_options(tree_root, options);
  1455. if (ret) {
  1456. err = ret;
  1457. goto fail_iput;
  1458. }
  1459. features = btrfs_super_incompat_flags(disk_super) &
  1460. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1461. if (features) {
  1462. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1463. "unsupported optional features (%Lx).\n",
  1464. (unsigned long long)features);
  1465. err = -EINVAL;
  1466. goto fail_iput;
  1467. }
  1468. features = btrfs_super_incompat_flags(disk_super);
  1469. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1470. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1471. btrfs_set_super_incompat_flags(disk_super, features);
  1472. }
  1473. features = btrfs_super_compat_ro_flags(disk_super) &
  1474. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1475. if (!(sb->s_flags & MS_RDONLY) && features) {
  1476. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1477. "unsupported option features (%Lx).\n",
  1478. (unsigned long long)features);
  1479. err = -EINVAL;
  1480. goto fail_iput;
  1481. }
  1482. /*
  1483. * we need to start all the end_io workers up front because the
  1484. * queue work function gets called at interrupt time, and so it
  1485. * cannot dynamically grow.
  1486. */
  1487. btrfs_init_workers(&fs_info->workers, "worker",
  1488. fs_info->thread_pool_size);
  1489. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1490. fs_info->thread_pool_size);
  1491. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1492. min_t(u64, fs_devices->num_devices,
  1493. fs_info->thread_pool_size));
  1494. /* a higher idle thresh on the submit workers makes it much more
  1495. * likely that bios will be send down in a sane order to the
  1496. * devices
  1497. */
  1498. fs_info->submit_workers.idle_thresh = 64;
  1499. fs_info->workers.idle_thresh = 16;
  1500. fs_info->workers.ordered = 1;
  1501. fs_info->delalloc_workers.idle_thresh = 2;
  1502. fs_info->delalloc_workers.ordered = 1;
  1503. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1504. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1505. fs_info->thread_pool_size);
  1506. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1507. fs_info->thread_pool_size);
  1508. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1509. "endio-meta-write", fs_info->thread_pool_size);
  1510. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1511. fs_info->thread_pool_size);
  1512. /*
  1513. * endios are largely parallel and should have a very
  1514. * low idle thresh
  1515. */
  1516. fs_info->endio_workers.idle_thresh = 4;
  1517. fs_info->endio_meta_workers.idle_thresh = 4;
  1518. fs_info->endio_write_workers.idle_thresh = 64;
  1519. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1520. btrfs_start_workers(&fs_info->workers, 1);
  1521. btrfs_start_workers(&fs_info->submit_workers, 1);
  1522. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1523. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1524. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1525. btrfs_start_workers(&fs_info->endio_meta_workers,
  1526. fs_info->thread_pool_size);
  1527. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1528. fs_info->thread_pool_size);
  1529. btrfs_start_workers(&fs_info->endio_write_workers,
  1530. fs_info->thread_pool_size);
  1531. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1532. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1533. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1534. nodesize = btrfs_super_nodesize(disk_super);
  1535. leafsize = btrfs_super_leafsize(disk_super);
  1536. sectorsize = btrfs_super_sectorsize(disk_super);
  1537. stripesize = btrfs_super_stripesize(disk_super);
  1538. tree_root->nodesize = nodesize;
  1539. tree_root->leafsize = leafsize;
  1540. tree_root->sectorsize = sectorsize;
  1541. tree_root->stripesize = stripesize;
  1542. sb->s_blocksize = sectorsize;
  1543. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1544. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1545. sizeof(disk_super->magic))) {
  1546. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1547. goto fail_sb_buffer;
  1548. }
  1549. mutex_lock(&fs_info->chunk_mutex);
  1550. ret = btrfs_read_sys_array(tree_root);
  1551. mutex_unlock(&fs_info->chunk_mutex);
  1552. if (ret) {
  1553. printk(KERN_WARNING "btrfs: failed to read the system "
  1554. "array on %s\n", sb->s_id);
  1555. goto fail_sb_buffer;
  1556. }
  1557. blocksize = btrfs_level_size(tree_root,
  1558. btrfs_super_chunk_root_level(disk_super));
  1559. generation = btrfs_super_chunk_root_generation(disk_super);
  1560. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1561. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1562. chunk_root->node = read_tree_block(chunk_root,
  1563. btrfs_super_chunk_root(disk_super),
  1564. blocksize, generation);
  1565. BUG_ON(!chunk_root->node);
  1566. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1567. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1568. sb->s_id);
  1569. goto fail_chunk_root;
  1570. }
  1571. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1572. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1573. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1574. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1575. BTRFS_UUID_SIZE);
  1576. mutex_lock(&fs_info->chunk_mutex);
  1577. ret = btrfs_read_chunk_tree(chunk_root);
  1578. mutex_unlock(&fs_info->chunk_mutex);
  1579. if (ret) {
  1580. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1581. sb->s_id);
  1582. goto fail_chunk_root;
  1583. }
  1584. btrfs_close_extra_devices(fs_devices);
  1585. blocksize = btrfs_level_size(tree_root,
  1586. btrfs_super_root_level(disk_super));
  1587. generation = btrfs_super_generation(disk_super);
  1588. tree_root->node = read_tree_block(tree_root,
  1589. btrfs_super_root(disk_super),
  1590. blocksize, generation);
  1591. if (!tree_root->node)
  1592. goto fail_chunk_root;
  1593. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1594. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1595. sb->s_id);
  1596. goto fail_tree_root;
  1597. }
  1598. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1599. tree_root->commit_root = btrfs_root_node(tree_root);
  1600. ret = find_and_setup_root(tree_root, fs_info,
  1601. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1602. if (ret)
  1603. goto fail_tree_root;
  1604. extent_root->track_dirty = 1;
  1605. ret = find_and_setup_root(tree_root, fs_info,
  1606. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1607. if (ret)
  1608. goto fail_extent_root;
  1609. dev_root->track_dirty = 1;
  1610. ret = find_and_setup_root(tree_root, fs_info,
  1611. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1612. if (ret)
  1613. goto fail_dev_root;
  1614. csum_root->track_dirty = 1;
  1615. btrfs_read_block_groups(extent_root);
  1616. fs_info->generation = generation;
  1617. fs_info->last_trans_committed = generation;
  1618. fs_info->data_alloc_profile = (u64)-1;
  1619. fs_info->metadata_alloc_profile = (u64)-1;
  1620. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1621. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1622. "btrfs-cleaner");
  1623. if (IS_ERR(fs_info->cleaner_kthread))
  1624. goto fail_csum_root;
  1625. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1626. tree_root,
  1627. "btrfs-transaction");
  1628. if (IS_ERR(fs_info->transaction_kthread))
  1629. goto fail_cleaner;
  1630. if (!btrfs_test_opt(tree_root, SSD) &&
  1631. !btrfs_test_opt(tree_root, NOSSD) &&
  1632. !fs_info->fs_devices->rotating) {
  1633. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1634. "mode\n");
  1635. btrfs_set_opt(fs_info->mount_opt, SSD);
  1636. }
  1637. if (btrfs_super_log_root(disk_super) != 0) {
  1638. u64 bytenr = btrfs_super_log_root(disk_super);
  1639. if (fs_devices->rw_devices == 0) {
  1640. printk(KERN_WARNING "Btrfs log replay required "
  1641. "on RO media\n");
  1642. err = -EIO;
  1643. goto fail_trans_kthread;
  1644. }
  1645. blocksize =
  1646. btrfs_level_size(tree_root,
  1647. btrfs_super_log_root_level(disk_super));
  1648. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1649. GFP_NOFS);
  1650. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1651. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1652. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1653. blocksize,
  1654. generation + 1);
  1655. ret = btrfs_recover_log_trees(log_tree_root);
  1656. BUG_ON(ret);
  1657. if (sb->s_flags & MS_RDONLY) {
  1658. ret = btrfs_commit_super(tree_root);
  1659. BUG_ON(ret);
  1660. }
  1661. }
  1662. if (!(sb->s_flags & MS_RDONLY)) {
  1663. ret = btrfs_recover_relocation(tree_root);
  1664. BUG_ON(ret);
  1665. }
  1666. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1667. location.type = BTRFS_ROOT_ITEM_KEY;
  1668. location.offset = (u64)-1;
  1669. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1670. if (!fs_info->fs_root)
  1671. goto fail_trans_kthread;
  1672. return tree_root;
  1673. fail_trans_kthread:
  1674. kthread_stop(fs_info->transaction_kthread);
  1675. fail_cleaner:
  1676. kthread_stop(fs_info->cleaner_kthread);
  1677. /*
  1678. * make sure we're done with the btree inode before we stop our
  1679. * kthreads
  1680. */
  1681. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1682. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1683. fail_csum_root:
  1684. free_extent_buffer(csum_root->node);
  1685. free_extent_buffer(csum_root->commit_root);
  1686. fail_dev_root:
  1687. free_extent_buffer(dev_root->node);
  1688. free_extent_buffer(dev_root->commit_root);
  1689. fail_extent_root:
  1690. free_extent_buffer(extent_root->node);
  1691. free_extent_buffer(extent_root->commit_root);
  1692. fail_tree_root:
  1693. free_extent_buffer(tree_root->node);
  1694. free_extent_buffer(tree_root->commit_root);
  1695. fail_chunk_root:
  1696. free_extent_buffer(chunk_root->node);
  1697. free_extent_buffer(chunk_root->commit_root);
  1698. fail_sb_buffer:
  1699. btrfs_stop_workers(&fs_info->fixup_workers);
  1700. btrfs_stop_workers(&fs_info->delalloc_workers);
  1701. btrfs_stop_workers(&fs_info->workers);
  1702. btrfs_stop_workers(&fs_info->endio_workers);
  1703. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1704. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1705. btrfs_stop_workers(&fs_info->endio_write_workers);
  1706. btrfs_stop_workers(&fs_info->submit_workers);
  1707. fail_iput:
  1708. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1709. iput(fs_info->btree_inode);
  1710. btrfs_close_devices(fs_info->fs_devices);
  1711. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1712. fail_bdi:
  1713. bdi_destroy(&fs_info->bdi);
  1714. fail:
  1715. kfree(extent_root);
  1716. kfree(tree_root);
  1717. kfree(fs_info);
  1718. kfree(chunk_root);
  1719. kfree(dev_root);
  1720. kfree(csum_root);
  1721. return ERR_PTR(err);
  1722. }
  1723. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1724. {
  1725. char b[BDEVNAME_SIZE];
  1726. if (uptodate) {
  1727. set_buffer_uptodate(bh);
  1728. } else {
  1729. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1730. printk(KERN_WARNING "lost page write due to "
  1731. "I/O error on %s\n",
  1732. bdevname(bh->b_bdev, b));
  1733. }
  1734. /* note, we dont' set_buffer_write_io_error because we have
  1735. * our own ways of dealing with the IO errors
  1736. */
  1737. clear_buffer_uptodate(bh);
  1738. }
  1739. unlock_buffer(bh);
  1740. put_bh(bh);
  1741. }
  1742. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1743. {
  1744. struct buffer_head *bh;
  1745. struct buffer_head *latest = NULL;
  1746. struct btrfs_super_block *super;
  1747. int i;
  1748. u64 transid = 0;
  1749. u64 bytenr;
  1750. /* we would like to check all the supers, but that would make
  1751. * a btrfs mount succeed after a mkfs from a different FS.
  1752. * So, we need to add a special mount option to scan for
  1753. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1754. */
  1755. for (i = 0; i < 1; i++) {
  1756. bytenr = btrfs_sb_offset(i);
  1757. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1758. break;
  1759. bh = __bread(bdev, bytenr / 4096, 4096);
  1760. if (!bh)
  1761. continue;
  1762. super = (struct btrfs_super_block *)bh->b_data;
  1763. if (btrfs_super_bytenr(super) != bytenr ||
  1764. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1765. sizeof(super->magic))) {
  1766. brelse(bh);
  1767. continue;
  1768. }
  1769. if (!latest || btrfs_super_generation(super) > transid) {
  1770. brelse(latest);
  1771. latest = bh;
  1772. transid = btrfs_super_generation(super);
  1773. } else {
  1774. brelse(bh);
  1775. }
  1776. }
  1777. return latest;
  1778. }
  1779. /*
  1780. * this should be called twice, once with wait == 0 and
  1781. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1782. * we write are pinned.
  1783. *
  1784. * They are released when wait == 1 is done.
  1785. * max_mirrors must be the same for both runs, and it indicates how
  1786. * many supers on this one device should be written.
  1787. *
  1788. * max_mirrors == 0 means to write them all.
  1789. */
  1790. static int write_dev_supers(struct btrfs_device *device,
  1791. struct btrfs_super_block *sb,
  1792. int do_barriers, int wait, int max_mirrors)
  1793. {
  1794. struct buffer_head *bh;
  1795. int i;
  1796. int ret;
  1797. int errors = 0;
  1798. u32 crc;
  1799. u64 bytenr;
  1800. int last_barrier = 0;
  1801. if (max_mirrors == 0)
  1802. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1803. /* make sure only the last submit_bh does a barrier */
  1804. if (do_barriers) {
  1805. for (i = 0; i < max_mirrors; i++) {
  1806. bytenr = btrfs_sb_offset(i);
  1807. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1808. device->total_bytes)
  1809. break;
  1810. last_barrier = i;
  1811. }
  1812. }
  1813. for (i = 0; i < max_mirrors; i++) {
  1814. bytenr = btrfs_sb_offset(i);
  1815. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1816. break;
  1817. if (wait) {
  1818. bh = __find_get_block(device->bdev, bytenr / 4096,
  1819. BTRFS_SUPER_INFO_SIZE);
  1820. BUG_ON(!bh);
  1821. wait_on_buffer(bh);
  1822. if (!buffer_uptodate(bh))
  1823. errors++;
  1824. /* drop our reference */
  1825. brelse(bh);
  1826. /* drop the reference from the wait == 0 run */
  1827. brelse(bh);
  1828. continue;
  1829. } else {
  1830. btrfs_set_super_bytenr(sb, bytenr);
  1831. crc = ~(u32)0;
  1832. crc = btrfs_csum_data(NULL, (char *)sb +
  1833. BTRFS_CSUM_SIZE, crc,
  1834. BTRFS_SUPER_INFO_SIZE -
  1835. BTRFS_CSUM_SIZE);
  1836. btrfs_csum_final(crc, sb->csum);
  1837. /*
  1838. * one reference for us, and we leave it for the
  1839. * caller
  1840. */
  1841. bh = __getblk(device->bdev, bytenr / 4096,
  1842. BTRFS_SUPER_INFO_SIZE);
  1843. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1844. /* one reference for submit_bh */
  1845. get_bh(bh);
  1846. set_buffer_uptodate(bh);
  1847. lock_buffer(bh);
  1848. bh->b_end_io = btrfs_end_buffer_write_sync;
  1849. }
  1850. if (i == last_barrier && do_barriers && device->barriers) {
  1851. ret = submit_bh(WRITE_BARRIER, bh);
  1852. if (ret == -EOPNOTSUPP) {
  1853. printk("btrfs: disabling barriers on dev %s\n",
  1854. device->name);
  1855. set_buffer_uptodate(bh);
  1856. device->barriers = 0;
  1857. /* one reference for submit_bh */
  1858. get_bh(bh);
  1859. lock_buffer(bh);
  1860. ret = submit_bh(WRITE_SYNC, bh);
  1861. }
  1862. } else {
  1863. ret = submit_bh(WRITE_SYNC, bh);
  1864. }
  1865. if (ret)
  1866. errors++;
  1867. }
  1868. return errors < i ? 0 : -1;
  1869. }
  1870. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1871. {
  1872. struct list_head *head;
  1873. struct btrfs_device *dev;
  1874. struct btrfs_super_block *sb;
  1875. struct btrfs_dev_item *dev_item;
  1876. int ret;
  1877. int do_barriers;
  1878. int max_errors;
  1879. int total_errors = 0;
  1880. u64 flags;
  1881. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1882. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1883. sb = &root->fs_info->super_for_commit;
  1884. dev_item = &sb->dev_item;
  1885. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1886. head = &root->fs_info->fs_devices->devices;
  1887. list_for_each_entry(dev, head, dev_list) {
  1888. if (!dev->bdev) {
  1889. total_errors++;
  1890. continue;
  1891. }
  1892. if (!dev->in_fs_metadata || !dev->writeable)
  1893. continue;
  1894. btrfs_set_stack_device_generation(dev_item, 0);
  1895. btrfs_set_stack_device_type(dev_item, dev->type);
  1896. btrfs_set_stack_device_id(dev_item, dev->devid);
  1897. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1898. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1899. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1900. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1901. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1902. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1903. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1904. flags = btrfs_super_flags(sb);
  1905. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1906. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1907. if (ret)
  1908. total_errors++;
  1909. }
  1910. if (total_errors > max_errors) {
  1911. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1912. total_errors);
  1913. BUG();
  1914. }
  1915. total_errors = 0;
  1916. list_for_each_entry(dev, head, dev_list) {
  1917. if (!dev->bdev)
  1918. continue;
  1919. if (!dev->in_fs_metadata || !dev->writeable)
  1920. continue;
  1921. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1922. if (ret)
  1923. total_errors++;
  1924. }
  1925. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1926. if (total_errors > max_errors) {
  1927. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1928. total_errors);
  1929. BUG();
  1930. }
  1931. return 0;
  1932. }
  1933. int write_ctree_super(struct btrfs_trans_handle *trans,
  1934. struct btrfs_root *root, int max_mirrors)
  1935. {
  1936. int ret;
  1937. ret = write_all_supers(root, max_mirrors);
  1938. return ret;
  1939. }
  1940. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1941. {
  1942. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  1943. radix_tree_delete(&fs_info->fs_roots_radix,
  1944. (unsigned long)root->root_key.objectid);
  1945. if (root->anon_super.s_dev) {
  1946. down_write(&root->anon_super.s_umount);
  1947. kill_anon_super(&root->anon_super);
  1948. }
  1949. if (root->node)
  1950. free_extent_buffer(root->node);
  1951. if (root->commit_root)
  1952. free_extent_buffer(root->commit_root);
  1953. kfree(root->name);
  1954. kfree(root);
  1955. return 0;
  1956. }
  1957. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1958. {
  1959. int ret;
  1960. struct btrfs_root *gang[8];
  1961. int i;
  1962. while (1) {
  1963. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1964. (void **)gang, 0,
  1965. ARRAY_SIZE(gang));
  1966. if (!ret)
  1967. break;
  1968. for (i = 0; i < ret; i++)
  1969. btrfs_free_fs_root(fs_info, gang[i]);
  1970. }
  1971. return 0;
  1972. }
  1973. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1974. {
  1975. u64 root_objectid = 0;
  1976. struct btrfs_root *gang[8];
  1977. int i;
  1978. int ret;
  1979. while (1) {
  1980. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1981. (void **)gang, root_objectid,
  1982. ARRAY_SIZE(gang));
  1983. if (!ret)
  1984. break;
  1985. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  1986. for (i = 0; i < ret; i++) {
  1987. root_objectid = gang[i]->root_key.objectid;
  1988. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1989. root_objectid);
  1990. BUG_ON(ret);
  1991. btrfs_orphan_cleanup(gang[i]);
  1992. }
  1993. root_objectid++;
  1994. }
  1995. return 0;
  1996. }
  1997. int btrfs_commit_super(struct btrfs_root *root)
  1998. {
  1999. struct btrfs_trans_handle *trans;
  2000. int ret;
  2001. mutex_lock(&root->fs_info->cleaner_mutex);
  2002. btrfs_clean_old_snapshots(root);
  2003. mutex_unlock(&root->fs_info->cleaner_mutex);
  2004. trans = btrfs_start_transaction(root, 1);
  2005. ret = btrfs_commit_transaction(trans, root);
  2006. BUG_ON(ret);
  2007. /* run commit again to drop the original snapshot */
  2008. trans = btrfs_start_transaction(root, 1);
  2009. btrfs_commit_transaction(trans, root);
  2010. ret = btrfs_write_and_wait_transaction(NULL, root);
  2011. BUG_ON(ret);
  2012. ret = write_ctree_super(NULL, root, 0);
  2013. return ret;
  2014. }
  2015. int close_ctree(struct btrfs_root *root)
  2016. {
  2017. struct btrfs_fs_info *fs_info = root->fs_info;
  2018. int ret;
  2019. fs_info->closing = 1;
  2020. smp_mb();
  2021. kthread_stop(root->fs_info->transaction_kthread);
  2022. kthread_stop(root->fs_info->cleaner_kthread);
  2023. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2024. ret = btrfs_commit_super(root);
  2025. if (ret)
  2026. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2027. }
  2028. fs_info->closing = 2;
  2029. smp_mb();
  2030. if (fs_info->delalloc_bytes) {
  2031. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2032. (unsigned long long)fs_info->delalloc_bytes);
  2033. }
  2034. if (fs_info->total_ref_cache_size) {
  2035. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2036. (unsigned long long)fs_info->total_ref_cache_size);
  2037. }
  2038. free_extent_buffer(fs_info->extent_root->node);
  2039. free_extent_buffer(fs_info->extent_root->commit_root);
  2040. free_extent_buffer(fs_info->tree_root->node);
  2041. free_extent_buffer(fs_info->tree_root->commit_root);
  2042. free_extent_buffer(root->fs_info->chunk_root->node);
  2043. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2044. free_extent_buffer(root->fs_info->dev_root->node);
  2045. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2046. free_extent_buffer(root->fs_info->csum_root->node);
  2047. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2048. btrfs_free_block_groups(root->fs_info);
  2049. btrfs_free_pinned_extents(root->fs_info);
  2050. del_fs_roots(fs_info);
  2051. iput(fs_info->btree_inode);
  2052. btrfs_stop_workers(&fs_info->fixup_workers);
  2053. btrfs_stop_workers(&fs_info->delalloc_workers);
  2054. btrfs_stop_workers(&fs_info->workers);
  2055. btrfs_stop_workers(&fs_info->endio_workers);
  2056. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2057. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2058. btrfs_stop_workers(&fs_info->endio_write_workers);
  2059. btrfs_stop_workers(&fs_info->submit_workers);
  2060. btrfs_close_devices(fs_info->fs_devices);
  2061. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2062. bdi_destroy(&fs_info->bdi);
  2063. kfree(fs_info->extent_root);
  2064. kfree(fs_info->tree_root);
  2065. kfree(fs_info->chunk_root);
  2066. kfree(fs_info->dev_root);
  2067. kfree(fs_info->csum_root);
  2068. return 0;
  2069. }
  2070. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2071. {
  2072. int ret;
  2073. struct inode *btree_inode = buf->first_page->mapping->host;
  2074. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2075. if (!ret)
  2076. return ret;
  2077. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2078. parent_transid);
  2079. return !ret;
  2080. }
  2081. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2082. {
  2083. struct inode *btree_inode = buf->first_page->mapping->host;
  2084. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2085. buf);
  2086. }
  2087. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2088. {
  2089. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2090. u64 transid = btrfs_header_generation(buf);
  2091. struct inode *btree_inode = root->fs_info->btree_inode;
  2092. int was_dirty;
  2093. btrfs_assert_tree_locked(buf);
  2094. if (transid != root->fs_info->generation) {
  2095. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2096. "found %llu running %llu\n",
  2097. (unsigned long long)buf->start,
  2098. (unsigned long long)transid,
  2099. (unsigned long long)root->fs_info->generation);
  2100. WARN_ON(1);
  2101. }
  2102. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2103. buf);
  2104. if (!was_dirty) {
  2105. spin_lock(&root->fs_info->delalloc_lock);
  2106. root->fs_info->dirty_metadata_bytes += buf->len;
  2107. spin_unlock(&root->fs_info->delalloc_lock);
  2108. }
  2109. }
  2110. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2111. {
  2112. /*
  2113. * looks as though older kernels can get into trouble with
  2114. * this code, they end up stuck in balance_dirty_pages forever
  2115. */
  2116. u64 num_dirty;
  2117. unsigned long thresh = 32 * 1024 * 1024;
  2118. if (current->flags & PF_MEMALLOC)
  2119. return;
  2120. num_dirty = root->fs_info->dirty_metadata_bytes;
  2121. if (num_dirty > thresh) {
  2122. balance_dirty_pages_ratelimited_nr(
  2123. root->fs_info->btree_inode->i_mapping, 1);
  2124. }
  2125. return;
  2126. }
  2127. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2128. {
  2129. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2130. int ret;
  2131. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2132. if (ret == 0)
  2133. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2134. return ret;
  2135. }
  2136. int btree_lock_page_hook(struct page *page)
  2137. {
  2138. struct inode *inode = page->mapping->host;
  2139. struct btrfs_root *root = BTRFS_I(inode)->root;
  2140. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2141. struct extent_buffer *eb;
  2142. unsigned long len;
  2143. u64 bytenr = page_offset(page);
  2144. if (page->private == EXTENT_PAGE_PRIVATE)
  2145. goto out;
  2146. len = page->private >> 2;
  2147. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2148. if (!eb)
  2149. goto out;
  2150. btrfs_tree_lock(eb);
  2151. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2152. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2153. spin_lock(&root->fs_info->delalloc_lock);
  2154. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2155. root->fs_info->dirty_metadata_bytes -= eb->len;
  2156. else
  2157. WARN_ON(1);
  2158. spin_unlock(&root->fs_info->delalloc_lock);
  2159. }
  2160. btrfs_tree_unlock(eb);
  2161. free_extent_buffer(eb);
  2162. out:
  2163. lock_page(page);
  2164. return 0;
  2165. }
  2166. static struct extent_io_ops btree_extent_io_ops = {
  2167. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2168. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2169. .submit_bio_hook = btree_submit_bio_hook,
  2170. /* note we're sharing with inode.c for the merge bio hook */
  2171. .merge_bio_hook = btrfs_merge_bio_hook,
  2172. };