ctree.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. #include "locking.h"
  24. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  25. *root, struct btrfs_path *path, int level);
  26. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct btrfs_key *ins_key,
  28. struct btrfs_path *path, int data_size, int extend);
  29. static int push_node_left(struct btrfs_trans_handle *trans,
  30. struct btrfs_root *root, struct extent_buffer *dst,
  31. struct extent_buffer *src, int empty);
  32. static int balance_node_right(struct btrfs_trans_handle *trans,
  33. struct btrfs_root *root,
  34. struct extent_buffer *dst_buf,
  35. struct extent_buffer *src_buf);
  36. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  37. struct btrfs_path *path, int level, int slot);
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. path->reada = 1;
  44. return path;
  45. }
  46. /*
  47. * set all locked nodes in the path to blocking locks. This should
  48. * be done before scheduling
  49. */
  50. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  51. {
  52. int i;
  53. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  54. if (p->nodes[i] && p->locks[i])
  55. btrfs_set_lock_blocking(p->nodes[i]);
  56. }
  57. }
  58. /*
  59. * reset all the locked nodes in the patch to spinning locks.
  60. *
  61. * held is used to keep lockdep happy, when lockdep is enabled
  62. * we set held to a blocking lock before we go around and
  63. * retake all the spinlocks in the path. You can safely use NULL
  64. * for held
  65. */
  66. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  67. struct extent_buffer *held)
  68. {
  69. int i;
  70. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  71. /* lockdep really cares that we take all of these spinlocks
  72. * in the right order. If any of the locks in the path are not
  73. * currently blocking, it is going to complain. So, make really
  74. * really sure by forcing the path to blocking before we clear
  75. * the path blocking.
  76. */
  77. if (held)
  78. btrfs_set_lock_blocking(held);
  79. btrfs_set_path_blocking(p);
  80. #endif
  81. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  82. if (p->nodes[i] && p->locks[i])
  83. btrfs_clear_lock_blocking(p->nodes[i]);
  84. }
  85. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  86. if (held)
  87. btrfs_clear_lock_blocking(held);
  88. #endif
  89. }
  90. /* this also releases the path */
  91. void btrfs_free_path(struct btrfs_path *p)
  92. {
  93. btrfs_release_path(NULL, p);
  94. kmem_cache_free(btrfs_path_cachep, p);
  95. }
  96. /*
  97. * path release drops references on the extent buffers in the path
  98. * and it drops any locks held by this path
  99. *
  100. * It is safe to call this on paths that no locks or extent buffers held.
  101. */
  102. noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  103. {
  104. int i;
  105. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  106. p->slots[i] = 0;
  107. if (!p->nodes[i])
  108. continue;
  109. if (p->locks[i]) {
  110. btrfs_tree_unlock(p->nodes[i]);
  111. p->locks[i] = 0;
  112. }
  113. free_extent_buffer(p->nodes[i]);
  114. p->nodes[i] = NULL;
  115. }
  116. }
  117. /*
  118. * safely gets a reference on the root node of a tree. A lock
  119. * is not taken, so a concurrent writer may put a different node
  120. * at the root of the tree. See btrfs_lock_root_node for the
  121. * looping required.
  122. *
  123. * The extent buffer returned by this has a reference taken, so
  124. * it won't disappear. It may stop being the root of the tree
  125. * at any time because there are no locks held.
  126. */
  127. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  128. {
  129. struct extent_buffer *eb;
  130. spin_lock(&root->node_lock);
  131. eb = root->node;
  132. extent_buffer_get(eb);
  133. spin_unlock(&root->node_lock);
  134. return eb;
  135. }
  136. /* loop around taking references on and locking the root node of the
  137. * tree until you end up with a lock on the root. A locked buffer
  138. * is returned, with a reference held.
  139. */
  140. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  141. {
  142. struct extent_buffer *eb;
  143. while (1) {
  144. eb = btrfs_root_node(root);
  145. btrfs_tree_lock(eb);
  146. spin_lock(&root->node_lock);
  147. if (eb == root->node) {
  148. spin_unlock(&root->node_lock);
  149. break;
  150. }
  151. spin_unlock(&root->node_lock);
  152. btrfs_tree_unlock(eb);
  153. free_extent_buffer(eb);
  154. }
  155. return eb;
  156. }
  157. /* cowonly root (everything not a reference counted cow subvolume), just get
  158. * put onto a simple dirty list. transaction.c walks this to make sure they
  159. * get properly updated on disk.
  160. */
  161. static void add_root_to_dirty_list(struct btrfs_root *root)
  162. {
  163. if (root->track_dirty && list_empty(&root->dirty_list)) {
  164. list_add(&root->dirty_list,
  165. &root->fs_info->dirty_cowonly_roots);
  166. }
  167. }
  168. /*
  169. * used by snapshot creation to make a copy of a root for a tree with
  170. * a given objectid. The buffer with the new root node is returned in
  171. * cow_ret, and this func returns zero on success or a negative error code.
  172. */
  173. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  174. struct btrfs_root *root,
  175. struct extent_buffer *buf,
  176. struct extent_buffer **cow_ret, u64 new_root_objectid)
  177. {
  178. struct extent_buffer *cow;
  179. u32 nritems;
  180. int ret = 0;
  181. int level;
  182. struct btrfs_disk_key disk_key;
  183. WARN_ON(root->ref_cows && trans->transid !=
  184. root->fs_info->running_transaction->transid);
  185. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  186. level = btrfs_header_level(buf);
  187. nritems = btrfs_header_nritems(buf);
  188. if (level == 0)
  189. btrfs_item_key(buf, &disk_key, 0);
  190. else
  191. btrfs_node_key(buf, &disk_key, 0);
  192. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  193. new_root_objectid, &disk_key, level,
  194. buf->start, 0);
  195. if (IS_ERR(cow))
  196. return PTR_ERR(cow);
  197. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  198. btrfs_set_header_bytenr(cow, cow->start);
  199. btrfs_set_header_generation(cow, trans->transid);
  200. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  201. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  202. BTRFS_HEADER_FLAG_RELOC);
  203. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  204. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  205. else
  206. btrfs_set_header_owner(cow, new_root_objectid);
  207. write_extent_buffer(cow, root->fs_info->fsid,
  208. (unsigned long)btrfs_header_fsid(cow),
  209. BTRFS_FSID_SIZE);
  210. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  211. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  212. ret = btrfs_inc_ref(trans, root, cow, 1);
  213. else
  214. ret = btrfs_inc_ref(trans, root, cow, 0);
  215. if (ret)
  216. return ret;
  217. btrfs_mark_buffer_dirty(cow);
  218. *cow_ret = cow;
  219. return 0;
  220. }
  221. /*
  222. * check if the tree block can be shared by multiple trees
  223. */
  224. int btrfs_block_can_be_shared(struct btrfs_root *root,
  225. struct extent_buffer *buf)
  226. {
  227. /*
  228. * Tree blocks not in refernece counted trees and tree roots
  229. * are never shared. If a block was allocated after the last
  230. * snapshot and the block was not allocated by tree relocation,
  231. * we know the block is not shared.
  232. */
  233. if (root->ref_cows &&
  234. buf != root->node && buf != root->commit_root &&
  235. (btrfs_header_generation(buf) <=
  236. btrfs_root_last_snapshot(&root->root_item) ||
  237. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  238. return 1;
  239. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  240. if (root->ref_cows &&
  241. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  242. return 1;
  243. #endif
  244. return 0;
  245. }
  246. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  247. struct btrfs_root *root,
  248. struct extent_buffer *buf,
  249. struct extent_buffer *cow)
  250. {
  251. u64 refs;
  252. u64 owner;
  253. u64 flags;
  254. u64 new_flags = 0;
  255. int ret;
  256. /*
  257. * Backrefs update rules:
  258. *
  259. * Always use full backrefs for extent pointers in tree block
  260. * allocated by tree relocation.
  261. *
  262. * If a shared tree block is no longer referenced by its owner
  263. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  264. * use full backrefs for extent pointers in tree block.
  265. *
  266. * If a tree block is been relocating
  267. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  268. * use full backrefs for extent pointers in tree block.
  269. * The reason for this is some operations (such as drop tree)
  270. * are only allowed for blocks use full backrefs.
  271. */
  272. if (btrfs_block_can_be_shared(root, buf)) {
  273. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  274. buf->len, &refs, &flags);
  275. BUG_ON(ret);
  276. BUG_ON(refs == 0);
  277. } else {
  278. refs = 1;
  279. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  280. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  281. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  282. else
  283. flags = 0;
  284. }
  285. owner = btrfs_header_owner(buf);
  286. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  287. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  288. if (refs > 1) {
  289. if ((owner == root->root_key.objectid ||
  290. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  291. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  292. ret = btrfs_inc_ref(trans, root, buf, 1);
  293. BUG_ON(ret);
  294. if (root->root_key.objectid ==
  295. BTRFS_TREE_RELOC_OBJECTID) {
  296. ret = btrfs_dec_ref(trans, root, buf, 0);
  297. BUG_ON(ret);
  298. ret = btrfs_inc_ref(trans, root, cow, 1);
  299. BUG_ON(ret);
  300. }
  301. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  302. } else {
  303. if (root->root_key.objectid ==
  304. BTRFS_TREE_RELOC_OBJECTID)
  305. ret = btrfs_inc_ref(trans, root, cow, 1);
  306. else
  307. ret = btrfs_inc_ref(trans, root, cow, 0);
  308. BUG_ON(ret);
  309. }
  310. if (new_flags != 0) {
  311. ret = btrfs_set_disk_extent_flags(trans, root,
  312. buf->start,
  313. buf->len,
  314. new_flags, 0);
  315. BUG_ON(ret);
  316. }
  317. } else {
  318. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  319. if (root->root_key.objectid ==
  320. BTRFS_TREE_RELOC_OBJECTID)
  321. ret = btrfs_inc_ref(trans, root, cow, 1);
  322. else
  323. ret = btrfs_inc_ref(trans, root, cow, 0);
  324. BUG_ON(ret);
  325. ret = btrfs_dec_ref(trans, root, buf, 1);
  326. BUG_ON(ret);
  327. }
  328. clean_tree_block(trans, root, buf);
  329. }
  330. return 0;
  331. }
  332. /*
  333. * does the dirty work in cow of a single block. The parent block (if
  334. * supplied) is updated to point to the new cow copy. The new buffer is marked
  335. * dirty and returned locked. If you modify the block it needs to be marked
  336. * dirty again.
  337. *
  338. * search_start -- an allocation hint for the new block
  339. *
  340. * empty_size -- a hint that you plan on doing more cow. This is the size in
  341. * bytes the allocator should try to find free next to the block it returns.
  342. * This is just a hint and may be ignored by the allocator.
  343. */
  344. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  345. struct btrfs_root *root,
  346. struct extent_buffer *buf,
  347. struct extent_buffer *parent, int parent_slot,
  348. struct extent_buffer **cow_ret,
  349. u64 search_start, u64 empty_size)
  350. {
  351. struct btrfs_disk_key disk_key;
  352. struct extent_buffer *cow;
  353. int level;
  354. int unlock_orig = 0;
  355. u64 parent_start;
  356. if (*cow_ret == buf)
  357. unlock_orig = 1;
  358. btrfs_assert_tree_locked(buf);
  359. WARN_ON(root->ref_cows && trans->transid !=
  360. root->fs_info->running_transaction->transid);
  361. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  362. level = btrfs_header_level(buf);
  363. if (level == 0)
  364. btrfs_item_key(buf, &disk_key, 0);
  365. else
  366. btrfs_node_key(buf, &disk_key, 0);
  367. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  368. if (parent)
  369. parent_start = parent->start;
  370. else
  371. parent_start = 0;
  372. } else
  373. parent_start = 0;
  374. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  375. root->root_key.objectid, &disk_key,
  376. level, search_start, empty_size);
  377. if (IS_ERR(cow))
  378. return PTR_ERR(cow);
  379. /* cow is set to blocking by btrfs_init_new_buffer */
  380. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  381. btrfs_set_header_bytenr(cow, cow->start);
  382. btrfs_set_header_generation(cow, trans->transid);
  383. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  384. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  385. BTRFS_HEADER_FLAG_RELOC);
  386. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  387. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  388. else
  389. btrfs_set_header_owner(cow, root->root_key.objectid);
  390. write_extent_buffer(cow, root->fs_info->fsid,
  391. (unsigned long)btrfs_header_fsid(cow),
  392. BTRFS_FSID_SIZE);
  393. update_ref_for_cow(trans, root, buf, cow);
  394. if (buf == root->node) {
  395. WARN_ON(parent && parent != buf);
  396. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  397. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  398. parent_start = buf->start;
  399. else
  400. parent_start = 0;
  401. spin_lock(&root->node_lock);
  402. root->node = cow;
  403. extent_buffer_get(cow);
  404. spin_unlock(&root->node_lock);
  405. btrfs_free_extent(trans, root, buf->start, buf->len,
  406. parent_start, root->root_key.objectid,
  407. level, 0);
  408. free_extent_buffer(buf);
  409. add_root_to_dirty_list(root);
  410. } else {
  411. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  412. parent_start = parent->start;
  413. else
  414. parent_start = 0;
  415. WARN_ON(trans->transid != btrfs_header_generation(parent));
  416. btrfs_set_node_blockptr(parent, parent_slot,
  417. cow->start);
  418. btrfs_set_node_ptr_generation(parent, parent_slot,
  419. trans->transid);
  420. btrfs_mark_buffer_dirty(parent);
  421. btrfs_free_extent(trans, root, buf->start, buf->len,
  422. parent_start, root->root_key.objectid,
  423. level, 0);
  424. }
  425. if (unlock_orig)
  426. btrfs_tree_unlock(buf);
  427. free_extent_buffer(buf);
  428. btrfs_mark_buffer_dirty(cow);
  429. *cow_ret = cow;
  430. return 0;
  431. }
  432. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  433. struct btrfs_root *root,
  434. struct extent_buffer *buf)
  435. {
  436. if (btrfs_header_generation(buf) == trans->transid &&
  437. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  438. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  439. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  440. return 0;
  441. return 1;
  442. }
  443. /*
  444. * cows a single block, see __btrfs_cow_block for the real work.
  445. * This version of it has extra checks so that a block isn't cow'd more than
  446. * once per transaction, as long as it hasn't been written yet
  447. */
  448. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  449. struct btrfs_root *root, struct extent_buffer *buf,
  450. struct extent_buffer *parent, int parent_slot,
  451. struct extent_buffer **cow_ret)
  452. {
  453. u64 search_start;
  454. int ret;
  455. if (trans->transaction != root->fs_info->running_transaction) {
  456. printk(KERN_CRIT "trans %llu running %llu\n",
  457. (unsigned long long)trans->transid,
  458. (unsigned long long)
  459. root->fs_info->running_transaction->transid);
  460. WARN_ON(1);
  461. }
  462. if (trans->transid != root->fs_info->generation) {
  463. printk(KERN_CRIT "trans %llu running %llu\n",
  464. (unsigned long long)trans->transid,
  465. (unsigned long long)root->fs_info->generation);
  466. WARN_ON(1);
  467. }
  468. if (!should_cow_block(trans, root, buf)) {
  469. *cow_ret = buf;
  470. return 0;
  471. }
  472. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  473. if (parent)
  474. btrfs_set_lock_blocking(parent);
  475. btrfs_set_lock_blocking(buf);
  476. ret = __btrfs_cow_block(trans, root, buf, parent,
  477. parent_slot, cow_ret, search_start, 0);
  478. return ret;
  479. }
  480. /*
  481. * helper function for defrag to decide if two blocks pointed to by a
  482. * node are actually close by
  483. */
  484. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  485. {
  486. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  487. return 1;
  488. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  489. return 1;
  490. return 0;
  491. }
  492. /*
  493. * compare two keys in a memcmp fashion
  494. */
  495. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  496. {
  497. struct btrfs_key k1;
  498. btrfs_disk_key_to_cpu(&k1, disk);
  499. return btrfs_comp_cpu_keys(&k1, k2);
  500. }
  501. /*
  502. * same as comp_keys only with two btrfs_key's
  503. */
  504. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  505. {
  506. if (k1->objectid > k2->objectid)
  507. return 1;
  508. if (k1->objectid < k2->objectid)
  509. return -1;
  510. if (k1->type > k2->type)
  511. return 1;
  512. if (k1->type < k2->type)
  513. return -1;
  514. if (k1->offset > k2->offset)
  515. return 1;
  516. if (k1->offset < k2->offset)
  517. return -1;
  518. return 0;
  519. }
  520. /*
  521. * this is used by the defrag code to go through all the
  522. * leaves pointed to by a node and reallocate them so that
  523. * disk order is close to key order
  524. */
  525. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  526. struct btrfs_root *root, struct extent_buffer *parent,
  527. int start_slot, int cache_only, u64 *last_ret,
  528. struct btrfs_key *progress)
  529. {
  530. struct extent_buffer *cur;
  531. u64 blocknr;
  532. u64 gen;
  533. u64 search_start = *last_ret;
  534. u64 last_block = 0;
  535. u64 other;
  536. u32 parent_nritems;
  537. int end_slot;
  538. int i;
  539. int err = 0;
  540. int parent_level;
  541. int uptodate;
  542. u32 blocksize;
  543. int progress_passed = 0;
  544. struct btrfs_disk_key disk_key;
  545. parent_level = btrfs_header_level(parent);
  546. if (cache_only && parent_level != 1)
  547. return 0;
  548. if (trans->transaction != root->fs_info->running_transaction)
  549. WARN_ON(1);
  550. if (trans->transid != root->fs_info->generation)
  551. WARN_ON(1);
  552. parent_nritems = btrfs_header_nritems(parent);
  553. blocksize = btrfs_level_size(root, parent_level - 1);
  554. end_slot = parent_nritems;
  555. if (parent_nritems == 1)
  556. return 0;
  557. btrfs_set_lock_blocking(parent);
  558. for (i = start_slot; i < end_slot; i++) {
  559. int close = 1;
  560. if (!parent->map_token) {
  561. map_extent_buffer(parent,
  562. btrfs_node_key_ptr_offset(i),
  563. sizeof(struct btrfs_key_ptr),
  564. &parent->map_token, &parent->kaddr,
  565. &parent->map_start, &parent->map_len,
  566. KM_USER1);
  567. }
  568. btrfs_node_key(parent, &disk_key, i);
  569. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  570. continue;
  571. progress_passed = 1;
  572. blocknr = btrfs_node_blockptr(parent, i);
  573. gen = btrfs_node_ptr_generation(parent, i);
  574. if (last_block == 0)
  575. last_block = blocknr;
  576. if (i > 0) {
  577. other = btrfs_node_blockptr(parent, i - 1);
  578. close = close_blocks(blocknr, other, blocksize);
  579. }
  580. if (!close && i < end_slot - 2) {
  581. other = btrfs_node_blockptr(parent, i + 1);
  582. close = close_blocks(blocknr, other, blocksize);
  583. }
  584. if (close) {
  585. last_block = blocknr;
  586. continue;
  587. }
  588. if (parent->map_token) {
  589. unmap_extent_buffer(parent, parent->map_token,
  590. KM_USER1);
  591. parent->map_token = NULL;
  592. }
  593. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  594. if (cur)
  595. uptodate = btrfs_buffer_uptodate(cur, gen);
  596. else
  597. uptodate = 0;
  598. if (!cur || !uptodate) {
  599. if (cache_only) {
  600. free_extent_buffer(cur);
  601. continue;
  602. }
  603. if (!cur) {
  604. cur = read_tree_block(root, blocknr,
  605. blocksize, gen);
  606. } else if (!uptodate) {
  607. btrfs_read_buffer(cur, gen);
  608. }
  609. }
  610. if (search_start == 0)
  611. search_start = last_block;
  612. btrfs_tree_lock(cur);
  613. btrfs_set_lock_blocking(cur);
  614. err = __btrfs_cow_block(trans, root, cur, parent, i,
  615. &cur, search_start,
  616. min(16 * blocksize,
  617. (end_slot - i) * blocksize));
  618. if (err) {
  619. btrfs_tree_unlock(cur);
  620. free_extent_buffer(cur);
  621. break;
  622. }
  623. search_start = cur->start;
  624. last_block = cur->start;
  625. *last_ret = search_start;
  626. btrfs_tree_unlock(cur);
  627. free_extent_buffer(cur);
  628. }
  629. if (parent->map_token) {
  630. unmap_extent_buffer(parent, parent->map_token,
  631. KM_USER1);
  632. parent->map_token = NULL;
  633. }
  634. return err;
  635. }
  636. /*
  637. * The leaf data grows from end-to-front in the node.
  638. * this returns the address of the start of the last item,
  639. * which is the stop of the leaf data stack
  640. */
  641. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  642. struct extent_buffer *leaf)
  643. {
  644. u32 nr = btrfs_header_nritems(leaf);
  645. if (nr == 0)
  646. return BTRFS_LEAF_DATA_SIZE(root);
  647. return btrfs_item_offset_nr(leaf, nr - 1);
  648. }
  649. /*
  650. * extra debugging checks to make sure all the items in a key are
  651. * well formed and in the proper order
  652. */
  653. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  654. int level)
  655. {
  656. struct extent_buffer *parent = NULL;
  657. struct extent_buffer *node = path->nodes[level];
  658. struct btrfs_disk_key parent_key;
  659. struct btrfs_disk_key node_key;
  660. int parent_slot;
  661. int slot;
  662. struct btrfs_key cpukey;
  663. u32 nritems = btrfs_header_nritems(node);
  664. if (path->nodes[level + 1])
  665. parent = path->nodes[level + 1];
  666. slot = path->slots[level];
  667. BUG_ON(nritems == 0);
  668. if (parent) {
  669. parent_slot = path->slots[level + 1];
  670. btrfs_node_key(parent, &parent_key, parent_slot);
  671. btrfs_node_key(node, &node_key, 0);
  672. BUG_ON(memcmp(&parent_key, &node_key,
  673. sizeof(struct btrfs_disk_key)));
  674. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  675. btrfs_header_bytenr(node));
  676. }
  677. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  678. if (slot != 0) {
  679. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  680. btrfs_node_key(node, &node_key, slot);
  681. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  682. }
  683. if (slot < nritems - 1) {
  684. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  685. btrfs_node_key(node, &node_key, slot);
  686. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  687. }
  688. return 0;
  689. }
  690. /*
  691. * extra checking to make sure all the items in a leaf are
  692. * well formed and in the proper order
  693. */
  694. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  695. int level)
  696. {
  697. struct extent_buffer *leaf = path->nodes[level];
  698. struct extent_buffer *parent = NULL;
  699. int parent_slot;
  700. struct btrfs_key cpukey;
  701. struct btrfs_disk_key parent_key;
  702. struct btrfs_disk_key leaf_key;
  703. int slot = path->slots[0];
  704. u32 nritems = btrfs_header_nritems(leaf);
  705. if (path->nodes[level + 1])
  706. parent = path->nodes[level + 1];
  707. if (nritems == 0)
  708. return 0;
  709. if (parent) {
  710. parent_slot = path->slots[level + 1];
  711. btrfs_node_key(parent, &parent_key, parent_slot);
  712. btrfs_item_key(leaf, &leaf_key, 0);
  713. BUG_ON(memcmp(&parent_key, &leaf_key,
  714. sizeof(struct btrfs_disk_key)));
  715. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  716. btrfs_header_bytenr(leaf));
  717. }
  718. if (slot != 0 && slot < nritems - 1) {
  719. btrfs_item_key(leaf, &leaf_key, slot);
  720. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  721. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  722. btrfs_print_leaf(root, leaf);
  723. printk(KERN_CRIT "slot %d offset bad key\n", slot);
  724. BUG_ON(1);
  725. }
  726. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  727. btrfs_item_end_nr(leaf, slot)) {
  728. btrfs_print_leaf(root, leaf);
  729. printk(KERN_CRIT "slot %d offset bad\n", slot);
  730. BUG_ON(1);
  731. }
  732. }
  733. if (slot < nritems - 1) {
  734. btrfs_item_key(leaf, &leaf_key, slot);
  735. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  736. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  737. if (btrfs_item_offset_nr(leaf, slot) !=
  738. btrfs_item_end_nr(leaf, slot + 1)) {
  739. btrfs_print_leaf(root, leaf);
  740. printk(KERN_CRIT "slot %d offset bad\n", slot);
  741. BUG_ON(1);
  742. }
  743. }
  744. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  745. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  746. return 0;
  747. }
  748. static noinline int check_block(struct btrfs_root *root,
  749. struct btrfs_path *path, int level)
  750. {
  751. return 0;
  752. if (level == 0)
  753. return check_leaf(root, path, level);
  754. return check_node(root, path, level);
  755. }
  756. /*
  757. * search for key in the extent_buffer. The items start at offset p,
  758. * and they are item_size apart. There are 'max' items in p.
  759. *
  760. * the slot in the array is returned via slot, and it points to
  761. * the place where you would insert key if it is not found in
  762. * the array.
  763. *
  764. * slot may point to max if the key is bigger than all of the keys
  765. */
  766. static noinline int generic_bin_search(struct extent_buffer *eb,
  767. unsigned long p,
  768. int item_size, struct btrfs_key *key,
  769. int max, int *slot)
  770. {
  771. int low = 0;
  772. int high = max;
  773. int mid;
  774. int ret;
  775. struct btrfs_disk_key *tmp = NULL;
  776. struct btrfs_disk_key unaligned;
  777. unsigned long offset;
  778. char *map_token = NULL;
  779. char *kaddr = NULL;
  780. unsigned long map_start = 0;
  781. unsigned long map_len = 0;
  782. int err;
  783. while (low < high) {
  784. mid = (low + high) / 2;
  785. offset = p + mid * item_size;
  786. if (!map_token || offset < map_start ||
  787. (offset + sizeof(struct btrfs_disk_key)) >
  788. map_start + map_len) {
  789. if (map_token) {
  790. unmap_extent_buffer(eb, map_token, KM_USER0);
  791. map_token = NULL;
  792. }
  793. err = map_private_extent_buffer(eb, offset,
  794. sizeof(struct btrfs_disk_key),
  795. &map_token, &kaddr,
  796. &map_start, &map_len, KM_USER0);
  797. if (!err) {
  798. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  799. map_start);
  800. } else {
  801. read_extent_buffer(eb, &unaligned,
  802. offset, sizeof(unaligned));
  803. tmp = &unaligned;
  804. }
  805. } else {
  806. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  807. map_start);
  808. }
  809. ret = comp_keys(tmp, key);
  810. if (ret < 0)
  811. low = mid + 1;
  812. else if (ret > 0)
  813. high = mid;
  814. else {
  815. *slot = mid;
  816. if (map_token)
  817. unmap_extent_buffer(eb, map_token, KM_USER0);
  818. return 0;
  819. }
  820. }
  821. *slot = low;
  822. if (map_token)
  823. unmap_extent_buffer(eb, map_token, KM_USER0);
  824. return 1;
  825. }
  826. /*
  827. * simple bin_search frontend that does the right thing for
  828. * leaves vs nodes
  829. */
  830. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  831. int level, int *slot)
  832. {
  833. if (level == 0) {
  834. return generic_bin_search(eb,
  835. offsetof(struct btrfs_leaf, items),
  836. sizeof(struct btrfs_item),
  837. key, btrfs_header_nritems(eb),
  838. slot);
  839. } else {
  840. return generic_bin_search(eb,
  841. offsetof(struct btrfs_node, ptrs),
  842. sizeof(struct btrfs_key_ptr),
  843. key, btrfs_header_nritems(eb),
  844. slot);
  845. }
  846. return -1;
  847. }
  848. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  849. int level, int *slot)
  850. {
  851. return bin_search(eb, key, level, slot);
  852. }
  853. /* given a node and slot number, this reads the blocks it points to. The
  854. * extent buffer is returned with a reference taken (but unlocked).
  855. * NULL is returned on error.
  856. */
  857. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  858. struct extent_buffer *parent, int slot)
  859. {
  860. int level = btrfs_header_level(parent);
  861. if (slot < 0)
  862. return NULL;
  863. if (slot >= btrfs_header_nritems(parent))
  864. return NULL;
  865. BUG_ON(level == 0);
  866. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  867. btrfs_level_size(root, level - 1),
  868. btrfs_node_ptr_generation(parent, slot));
  869. }
  870. /*
  871. * node level balancing, used to make sure nodes are in proper order for
  872. * item deletion. We balance from the top down, so we have to make sure
  873. * that a deletion won't leave an node completely empty later on.
  874. */
  875. static noinline int balance_level(struct btrfs_trans_handle *trans,
  876. struct btrfs_root *root,
  877. struct btrfs_path *path, int level)
  878. {
  879. struct extent_buffer *right = NULL;
  880. struct extent_buffer *mid;
  881. struct extent_buffer *left = NULL;
  882. struct extent_buffer *parent = NULL;
  883. int ret = 0;
  884. int wret;
  885. int pslot;
  886. int orig_slot = path->slots[level];
  887. int err_on_enospc = 0;
  888. u64 orig_ptr;
  889. if (level == 0)
  890. return 0;
  891. mid = path->nodes[level];
  892. WARN_ON(!path->locks[level]);
  893. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  894. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  895. if (level < BTRFS_MAX_LEVEL - 1)
  896. parent = path->nodes[level + 1];
  897. pslot = path->slots[level + 1];
  898. /*
  899. * deal with the case where there is only one pointer in the root
  900. * by promoting the node below to a root
  901. */
  902. if (!parent) {
  903. struct extent_buffer *child;
  904. if (btrfs_header_nritems(mid) != 1)
  905. return 0;
  906. /* promote the child to a root */
  907. child = read_node_slot(root, mid, 0);
  908. BUG_ON(!child);
  909. btrfs_tree_lock(child);
  910. btrfs_set_lock_blocking(child);
  911. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  912. BUG_ON(ret);
  913. spin_lock(&root->node_lock);
  914. root->node = child;
  915. spin_unlock(&root->node_lock);
  916. add_root_to_dirty_list(root);
  917. btrfs_tree_unlock(child);
  918. path->locks[level] = 0;
  919. path->nodes[level] = NULL;
  920. clean_tree_block(trans, root, mid);
  921. btrfs_tree_unlock(mid);
  922. /* once for the path */
  923. free_extent_buffer(mid);
  924. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  925. 0, root->root_key.objectid, level, 1);
  926. /* once for the root ptr */
  927. free_extent_buffer(mid);
  928. return ret;
  929. }
  930. if (btrfs_header_nritems(mid) >
  931. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  932. return 0;
  933. if (btrfs_header_nritems(mid) < 2)
  934. err_on_enospc = 1;
  935. left = read_node_slot(root, parent, pslot - 1);
  936. if (left) {
  937. btrfs_tree_lock(left);
  938. btrfs_set_lock_blocking(left);
  939. wret = btrfs_cow_block(trans, root, left,
  940. parent, pslot - 1, &left);
  941. if (wret) {
  942. ret = wret;
  943. goto enospc;
  944. }
  945. }
  946. right = read_node_slot(root, parent, pslot + 1);
  947. if (right) {
  948. btrfs_tree_lock(right);
  949. btrfs_set_lock_blocking(right);
  950. wret = btrfs_cow_block(trans, root, right,
  951. parent, pslot + 1, &right);
  952. if (wret) {
  953. ret = wret;
  954. goto enospc;
  955. }
  956. }
  957. /* first, try to make some room in the middle buffer */
  958. if (left) {
  959. orig_slot += btrfs_header_nritems(left);
  960. wret = push_node_left(trans, root, left, mid, 1);
  961. if (wret < 0)
  962. ret = wret;
  963. if (btrfs_header_nritems(mid) < 2)
  964. err_on_enospc = 1;
  965. }
  966. /*
  967. * then try to empty the right most buffer into the middle
  968. */
  969. if (right) {
  970. wret = push_node_left(trans, root, mid, right, 1);
  971. if (wret < 0 && wret != -ENOSPC)
  972. ret = wret;
  973. if (btrfs_header_nritems(right) == 0) {
  974. u64 bytenr = right->start;
  975. u32 blocksize = right->len;
  976. clean_tree_block(trans, root, right);
  977. btrfs_tree_unlock(right);
  978. free_extent_buffer(right);
  979. right = NULL;
  980. wret = del_ptr(trans, root, path, level + 1, pslot +
  981. 1);
  982. if (wret)
  983. ret = wret;
  984. wret = btrfs_free_extent(trans, root, bytenr,
  985. blocksize, 0,
  986. root->root_key.objectid,
  987. level, 0);
  988. if (wret)
  989. ret = wret;
  990. } else {
  991. struct btrfs_disk_key right_key;
  992. btrfs_node_key(right, &right_key, 0);
  993. btrfs_set_node_key(parent, &right_key, pslot + 1);
  994. btrfs_mark_buffer_dirty(parent);
  995. }
  996. }
  997. if (btrfs_header_nritems(mid) == 1) {
  998. /*
  999. * we're not allowed to leave a node with one item in the
  1000. * tree during a delete. A deletion from lower in the tree
  1001. * could try to delete the only pointer in this node.
  1002. * So, pull some keys from the left.
  1003. * There has to be a left pointer at this point because
  1004. * otherwise we would have pulled some pointers from the
  1005. * right
  1006. */
  1007. BUG_ON(!left);
  1008. wret = balance_node_right(trans, root, mid, left);
  1009. if (wret < 0) {
  1010. ret = wret;
  1011. goto enospc;
  1012. }
  1013. if (wret == 1) {
  1014. wret = push_node_left(trans, root, left, mid, 1);
  1015. if (wret < 0)
  1016. ret = wret;
  1017. }
  1018. BUG_ON(wret == 1);
  1019. }
  1020. if (btrfs_header_nritems(mid) == 0) {
  1021. /* we've managed to empty the middle node, drop it */
  1022. u64 bytenr = mid->start;
  1023. u32 blocksize = mid->len;
  1024. clean_tree_block(trans, root, mid);
  1025. btrfs_tree_unlock(mid);
  1026. free_extent_buffer(mid);
  1027. mid = NULL;
  1028. wret = del_ptr(trans, root, path, level + 1, pslot);
  1029. if (wret)
  1030. ret = wret;
  1031. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  1032. 0, root->root_key.objectid,
  1033. level, 0);
  1034. if (wret)
  1035. ret = wret;
  1036. } else {
  1037. /* update the parent key to reflect our changes */
  1038. struct btrfs_disk_key mid_key;
  1039. btrfs_node_key(mid, &mid_key, 0);
  1040. btrfs_set_node_key(parent, &mid_key, pslot);
  1041. btrfs_mark_buffer_dirty(parent);
  1042. }
  1043. /* update the path */
  1044. if (left) {
  1045. if (btrfs_header_nritems(left) > orig_slot) {
  1046. extent_buffer_get(left);
  1047. /* left was locked after cow */
  1048. path->nodes[level] = left;
  1049. path->slots[level + 1] -= 1;
  1050. path->slots[level] = orig_slot;
  1051. if (mid) {
  1052. btrfs_tree_unlock(mid);
  1053. free_extent_buffer(mid);
  1054. }
  1055. } else {
  1056. orig_slot -= btrfs_header_nritems(left);
  1057. path->slots[level] = orig_slot;
  1058. }
  1059. }
  1060. /* double check we haven't messed things up */
  1061. check_block(root, path, level);
  1062. if (orig_ptr !=
  1063. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1064. BUG();
  1065. enospc:
  1066. if (right) {
  1067. btrfs_tree_unlock(right);
  1068. free_extent_buffer(right);
  1069. }
  1070. if (left) {
  1071. if (path->nodes[level] != left)
  1072. btrfs_tree_unlock(left);
  1073. free_extent_buffer(left);
  1074. }
  1075. return ret;
  1076. }
  1077. /* Node balancing for insertion. Here we only split or push nodes around
  1078. * when they are completely full. This is also done top down, so we
  1079. * have to be pessimistic.
  1080. */
  1081. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1082. struct btrfs_root *root,
  1083. struct btrfs_path *path, int level)
  1084. {
  1085. struct extent_buffer *right = NULL;
  1086. struct extent_buffer *mid;
  1087. struct extent_buffer *left = NULL;
  1088. struct extent_buffer *parent = NULL;
  1089. int ret = 0;
  1090. int wret;
  1091. int pslot;
  1092. int orig_slot = path->slots[level];
  1093. u64 orig_ptr;
  1094. if (level == 0)
  1095. return 1;
  1096. mid = path->nodes[level];
  1097. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1098. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  1099. if (level < BTRFS_MAX_LEVEL - 1)
  1100. parent = path->nodes[level + 1];
  1101. pslot = path->slots[level + 1];
  1102. if (!parent)
  1103. return 1;
  1104. left = read_node_slot(root, parent, pslot - 1);
  1105. /* first, try to make some room in the middle buffer */
  1106. if (left) {
  1107. u32 left_nr;
  1108. btrfs_tree_lock(left);
  1109. btrfs_set_lock_blocking(left);
  1110. left_nr = btrfs_header_nritems(left);
  1111. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1112. wret = 1;
  1113. } else {
  1114. ret = btrfs_cow_block(trans, root, left, parent,
  1115. pslot - 1, &left);
  1116. if (ret)
  1117. wret = 1;
  1118. else {
  1119. wret = push_node_left(trans, root,
  1120. left, mid, 0);
  1121. }
  1122. }
  1123. if (wret < 0)
  1124. ret = wret;
  1125. if (wret == 0) {
  1126. struct btrfs_disk_key disk_key;
  1127. orig_slot += left_nr;
  1128. btrfs_node_key(mid, &disk_key, 0);
  1129. btrfs_set_node_key(parent, &disk_key, pslot);
  1130. btrfs_mark_buffer_dirty(parent);
  1131. if (btrfs_header_nritems(left) > orig_slot) {
  1132. path->nodes[level] = left;
  1133. path->slots[level + 1] -= 1;
  1134. path->slots[level] = orig_slot;
  1135. btrfs_tree_unlock(mid);
  1136. free_extent_buffer(mid);
  1137. } else {
  1138. orig_slot -=
  1139. btrfs_header_nritems(left);
  1140. path->slots[level] = orig_slot;
  1141. btrfs_tree_unlock(left);
  1142. free_extent_buffer(left);
  1143. }
  1144. return 0;
  1145. }
  1146. btrfs_tree_unlock(left);
  1147. free_extent_buffer(left);
  1148. }
  1149. right = read_node_slot(root, parent, pslot + 1);
  1150. /*
  1151. * then try to empty the right most buffer into the middle
  1152. */
  1153. if (right) {
  1154. u32 right_nr;
  1155. btrfs_tree_lock(right);
  1156. btrfs_set_lock_blocking(right);
  1157. right_nr = btrfs_header_nritems(right);
  1158. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1159. wret = 1;
  1160. } else {
  1161. ret = btrfs_cow_block(trans, root, right,
  1162. parent, pslot + 1,
  1163. &right);
  1164. if (ret)
  1165. wret = 1;
  1166. else {
  1167. wret = balance_node_right(trans, root,
  1168. right, mid);
  1169. }
  1170. }
  1171. if (wret < 0)
  1172. ret = wret;
  1173. if (wret == 0) {
  1174. struct btrfs_disk_key disk_key;
  1175. btrfs_node_key(right, &disk_key, 0);
  1176. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1177. btrfs_mark_buffer_dirty(parent);
  1178. if (btrfs_header_nritems(mid) <= orig_slot) {
  1179. path->nodes[level] = right;
  1180. path->slots[level + 1] += 1;
  1181. path->slots[level] = orig_slot -
  1182. btrfs_header_nritems(mid);
  1183. btrfs_tree_unlock(mid);
  1184. free_extent_buffer(mid);
  1185. } else {
  1186. btrfs_tree_unlock(right);
  1187. free_extent_buffer(right);
  1188. }
  1189. return 0;
  1190. }
  1191. btrfs_tree_unlock(right);
  1192. free_extent_buffer(right);
  1193. }
  1194. return 1;
  1195. }
  1196. /*
  1197. * readahead one full node of leaves, finding things that are close
  1198. * to the block in 'slot', and triggering ra on them.
  1199. */
  1200. static void reada_for_search(struct btrfs_root *root,
  1201. struct btrfs_path *path,
  1202. int level, int slot, u64 objectid)
  1203. {
  1204. struct extent_buffer *node;
  1205. struct btrfs_disk_key disk_key;
  1206. u32 nritems;
  1207. u64 search;
  1208. u64 target;
  1209. u64 nread = 0;
  1210. int direction = path->reada;
  1211. struct extent_buffer *eb;
  1212. u32 nr;
  1213. u32 blocksize;
  1214. u32 nscan = 0;
  1215. if (level != 1)
  1216. return;
  1217. if (!path->nodes[level])
  1218. return;
  1219. node = path->nodes[level];
  1220. search = btrfs_node_blockptr(node, slot);
  1221. blocksize = btrfs_level_size(root, level - 1);
  1222. eb = btrfs_find_tree_block(root, search, blocksize);
  1223. if (eb) {
  1224. free_extent_buffer(eb);
  1225. return;
  1226. }
  1227. target = search;
  1228. nritems = btrfs_header_nritems(node);
  1229. nr = slot;
  1230. while (1) {
  1231. if (direction < 0) {
  1232. if (nr == 0)
  1233. break;
  1234. nr--;
  1235. } else if (direction > 0) {
  1236. nr++;
  1237. if (nr >= nritems)
  1238. break;
  1239. }
  1240. if (path->reada < 0 && objectid) {
  1241. btrfs_node_key(node, &disk_key, nr);
  1242. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1243. break;
  1244. }
  1245. search = btrfs_node_blockptr(node, nr);
  1246. if ((search <= target && target - search <= 65536) ||
  1247. (search > target && search - target <= 65536)) {
  1248. readahead_tree_block(root, search, blocksize,
  1249. btrfs_node_ptr_generation(node, nr));
  1250. nread += blocksize;
  1251. }
  1252. nscan++;
  1253. if ((nread > 65536 || nscan > 32))
  1254. break;
  1255. }
  1256. }
  1257. /*
  1258. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1259. * cache
  1260. */
  1261. static noinline int reada_for_balance(struct btrfs_root *root,
  1262. struct btrfs_path *path, int level)
  1263. {
  1264. int slot;
  1265. int nritems;
  1266. struct extent_buffer *parent;
  1267. struct extent_buffer *eb;
  1268. u64 gen;
  1269. u64 block1 = 0;
  1270. u64 block2 = 0;
  1271. int ret = 0;
  1272. int blocksize;
  1273. parent = path->nodes[level + 1];
  1274. if (!parent)
  1275. return 0;
  1276. nritems = btrfs_header_nritems(parent);
  1277. slot = path->slots[level + 1];
  1278. blocksize = btrfs_level_size(root, level);
  1279. if (slot > 0) {
  1280. block1 = btrfs_node_blockptr(parent, slot - 1);
  1281. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1282. eb = btrfs_find_tree_block(root, block1, blocksize);
  1283. if (eb && btrfs_buffer_uptodate(eb, gen))
  1284. block1 = 0;
  1285. free_extent_buffer(eb);
  1286. }
  1287. if (slot + 1 < nritems) {
  1288. block2 = btrfs_node_blockptr(parent, slot + 1);
  1289. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1290. eb = btrfs_find_tree_block(root, block2, blocksize);
  1291. if (eb && btrfs_buffer_uptodate(eb, gen))
  1292. block2 = 0;
  1293. free_extent_buffer(eb);
  1294. }
  1295. if (block1 || block2) {
  1296. ret = -EAGAIN;
  1297. /* release the whole path */
  1298. btrfs_release_path(root, path);
  1299. /* read the blocks */
  1300. if (block1)
  1301. readahead_tree_block(root, block1, blocksize, 0);
  1302. if (block2)
  1303. readahead_tree_block(root, block2, blocksize, 0);
  1304. if (block1) {
  1305. eb = read_tree_block(root, block1, blocksize, 0);
  1306. free_extent_buffer(eb);
  1307. }
  1308. if (block2) {
  1309. eb = read_tree_block(root, block2, blocksize, 0);
  1310. free_extent_buffer(eb);
  1311. }
  1312. }
  1313. return ret;
  1314. }
  1315. /*
  1316. * when we walk down the tree, it is usually safe to unlock the higher layers
  1317. * in the tree. The exceptions are when our path goes through slot 0, because
  1318. * operations on the tree might require changing key pointers higher up in the
  1319. * tree.
  1320. *
  1321. * callers might also have set path->keep_locks, which tells this code to keep
  1322. * the lock if the path points to the last slot in the block. This is part of
  1323. * walking through the tree, and selecting the next slot in the higher block.
  1324. *
  1325. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1326. * if lowest_unlock is 1, level 0 won't be unlocked
  1327. */
  1328. static noinline void unlock_up(struct btrfs_path *path, int level,
  1329. int lowest_unlock)
  1330. {
  1331. int i;
  1332. int skip_level = level;
  1333. int no_skips = 0;
  1334. struct extent_buffer *t;
  1335. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1336. if (!path->nodes[i])
  1337. break;
  1338. if (!path->locks[i])
  1339. break;
  1340. if (!no_skips && path->slots[i] == 0) {
  1341. skip_level = i + 1;
  1342. continue;
  1343. }
  1344. if (!no_skips && path->keep_locks) {
  1345. u32 nritems;
  1346. t = path->nodes[i];
  1347. nritems = btrfs_header_nritems(t);
  1348. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1349. skip_level = i + 1;
  1350. continue;
  1351. }
  1352. }
  1353. if (skip_level < i && i >= lowest_unlock)
  1354. no_skips = 1;
  1355. t = path->nodes[i];
  1356. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1357. btrfs_tree_unlock(t);
  1358. path->locks[i] = 0;
  1359. }
  1360. }
  1361. }
  1362. /*
  1363. * This releases any locks held in the path starting at level and
  1364. * going all the way up to the root.
  1365. *
  1366. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1367. * corner cases, such as COW of the block at slot zero in the node. This
  1368. * ignores those rules, and it should only be called when there are no
  1369. * more updates to be done higher up in the tree.
  1370. */
  1371. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1372. {
  1373. int i;
  1374. if (path->keep_locks)
  1375. return;
  1376. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1377. if (!path->nodes[i])
  1378. continue;
  1379. if (!path->locks[i])
  1380. continue;
  1381. btrfs_tree_unlock(path->nodes[i]);
  1382. path->locks[i] = 0;
  1383. }
  1384. }
  1385. /*
  1386. * helper function for btrfs_search_slot. The goal is to find a block
  1387. * in cache without setting the path to blocking. If we find the block
  1388. * we return zero and the path is unchanged.
  1389. *
  1390. * If we can't find the block, we set the path blocking and do some
  1391. * reada. -EAGAIN is returned and the search must be repeated.
  1392. */
  1393. static int
  1394. read_block_for_search(struct btrfs_trans_handle *trans,
  1395. struct btrfs_root *root, struct btrfs_path *p,
  1396. struct extent_buffer **eb_ret, int level, int slot,
  1397. struct btrfs_key *key)
  1398. {
  1399. u64 blocknr;
  1400. u64 gen;
  1401. u32 blocksize;
  1402. struct extent_buffer *b = *eb_ret;
  1403. struct extent_buffer *tmp;
  1404. int ret;
  1405. blocknr = btrfs_node_blockptr(b, slot);
  1406. gen = btrfs_node_ptr_generation(b, slot);
  1407. blocksize = btrfs_level_size(root, level - 1);
  1408. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1409. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1410. /*
  1411. * we found an up to date block without sleeping, return
  1412. * right away
  1413. */
  1414. *eb_ret = tmp;
  1415. return 0;
  1416. }
  1417. /*
  1418. * reduce lock contention at high levels
  1419. * of the btree by dropping locks before
  1420. * we read. Don't release the lock on the current
  1421. * level because we need to walk this node to figure
  1422. * out which blocks to read.
  1423. */
  1424. btrfs_unlock_up_safe(p, level + 1);
  1425. btrfs_set_path_blocking(p);
  1426. if (tmp)
  1427. free_extent_buffer(tmp);
  1428. if (p->reada)
  1429. reada_for_search(root, p, level, slot, key->objectid);
  1430. btrfs_release_path(NULL, p);
  1431. ret = -EAGAIN;
  1432. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1433. if (tmp) {
  1434. /*
  1435. * If the read above didn't mark this buffer up to date,
  1436. * it will never end up being up to date. Set ret to EIO now
  1437. * and give up so that our caller doesn't loop forever
  1438. * on our EAGAINs.
  1439. */
  1440. if (!btrfs_buffer_uptodate(tmp, 0))
  1441. ret = -EIO;
  1442. free_extent_buffer(tmp);
  1443. }
  1444. return ret;
  1445. }
  1446. /*
  1447. * helper function for btrfs_search_slot. This does all of the checks
  1448. * for node-level blocks and does any balancing required based on
  1449. * the ins_len.
  1450. *
  1451. * If no extra work was required, zero is returned. If we had to
  1452. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1453. * start over
  1454. */
  1455. static int
  1456. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1457. struct btrfs_root *root, struct btrfs_path *p,
  1458. struct extent_buffer *b, int level, int ins_len)
  1459. {
  1460. int ret;
  1461. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1462. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1463. int sret;
  1464. sret = reada_for_balance(root, p, level);
  1465. if (sret)
  1466. goto again;
  1467. btrfs_set_path_blocking(p);
  1468. sret = split_node(trans, root, p, level);
  1469. btrfs_clear_path_blocking(p, NULL);
  1470. BUG_ON(sret > 0);
  1471. if (sret) {
  1472. ret = sret;
  1473. goto done;
  1474. }
  1475. b = p->nodes[level];
  1476. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1477. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1478. int sret;
  1479. sret = reada_for_balance(root, p, level);
  1480. if (sret)
  1481. goto again;
  1482. btrfs_set_path_blocking(p);
  1483. sret = balance_level(trans, root, p, level);
  1484. btrfs_clear_path_blocking(p, NULL);
  1485. if (sret) {
  1486. ret = sret;
  1487. goto done;
  1488. }
  1489. b = p->nodes[level];
  1490. if (!b) {
  1491. btrfs_release_path(NULL, p);
  1492. goto again;
  1493. }
  1494. BUG_ON(btrfs_header_nritems(b) == 1);
  1495. }
  1496. return 0;
  1497. again:
  1498. ret = -EAGAIN;
  1499. done:
  1500. return ret;
  1501. }
  1502. /*
  1503. * look for key in the tree. path is filled in with nodes along the way
  1504. * if key is found, we return zero and you can find the item in the leaf
  1505. * level of the path (level 0)
  1506. *
  1507. * If the key isn't found, the path points to the slot where it should
  1508. * be inserted, and 1 is returned. If there are other errors during the
  1509. * search a negative error number is returned.
  1510. *
  1511. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1512. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1513. * possible)
  1514. */
  1515. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1516. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1517. ins_len, int cow)
  1518. {
  1519. struct extent_buffer *b;
  1520. int slot;
  1521. int ret;
  1522. int err;
  1523. int level;
  1524. int lowest_unlock = 1;
  1525. u8 lowest_level = 0;
  1526. lowest_level = p->lowest_level;
  1527. WARN_ON(lowest_level && ins_len > 0);
  1528. WARN_ON(p->nodes[0] != NULL);
  1529. if (ins_len < 0)
  1530. lowest_unlock = 2;
  1531. again:
  1532. if (p->search_commit_root) {
  1533. b = root->commit_root;
  1534. extent_buffer_get(b);
  1535. if (!p->skip_locking)
  1536. btrfs_tree_lock(b);
  1537. } else {
  1538. if (p->skip_locking)
  1539. b = btrfs_root_node(root);
  1540. else
  1541. b = btrfs_lock_root_node(root);
  1542. }
  1543. while (b) {
  1544. level = btrfs_header_level(b);
  1545. /*
  1546. * setup the path here so we can release it under lock
  1547. * contention with the cow code
  1548. */
  1549. p->nodes[level] = b;
  1550. if (!p->skip_locking)
  1551. p->locks[level] = 1;
  1552. if (cow) {
  1553. /*
  1554. * if we don't really need to cow this block
  1555. * then we don't want to set the path blocking,
  1556. * so we test it here
  1557. */
  1558. if (!should_cow_block(trans, root, b))
  1559. goto cow_done;
  1560. btrfs_set_path_blocking(p);
  1561. err = btrfs_cow_block(trans, root, b,
  1562. p->nodes[level + 1],
  1563. p->slots[level + 1], &b);
  1564. if (err) {
  1565. free_extent_buffer(b);
  1566. ret = err;
  1567. goto done;
  1568. }
  1569. }
  1570. cow_done:
  1571. BUG_ON(!cow && ins_len);
  1572. if (level != btrfs_header_level(b))
  1573. WARN_ON(1);
  1574. level = btrfs_header_level(b);
  1575. p->nodes[level] = b;
  1576. if (!p->skip_locking)
  1577. p->locks[level] = 1;
  1578. btrfs_clear_path_blocking(p, NULL);
  1579. /*
  1580. * we have a lock on b and as long as we aren't changing
  1581. * the tree, there is no way to for the items in b to change.
  1582. * It is safe to drop the lock on our parent before we
  1583. * go through the expensive btree search on b.
  1584. *
  1585. * If cow is true, then we might be changing slot zero,
  1586. * which may require changing the parent. So, we can't
  1587. * drop the lock until after we know which slot we're
  1588. * operating on.
  1589. */
  1590. if (!cow)
  1591. btrfs_unlock_up_safe(p, level + 1);
  1592. ret = check_block(root, p, level);
  1593. if (ret) {
  1594. ret = -1;
  1595. goto done;
  1596. }
  1597. ret = bin_search(b, key, level, &slot);
  1598. if (level != 0) {
  1599. int dec = 0;
  1600. if (ret && slot > 0) {
  1601. dec = 1;
  1602. slot -= 1;
  1603. }
  1604. p->slots[level] = slot;
  1605. err = setup_nodes_for_search(trans, root, p, b, level,
  1606. ins_len);
  1607. if (err == -EAGAIN)
  1608. goto again;
  1609. if (err) {
  1610. ret = err;
  1611. goto done;
  1612. }
  1613. b = p->nodes[level];
  1614. slot = p->slots[level];
  1615. unlock_up(p, level, lowest_unlock);
  1616. if (level == lowest_level) {
  1617. if (dec)
  1618. p->slots[level]++;
  1619. goto done;
  1620. }
  1621. err = read_block_for_search(trans, root, p,
  1622. &b, level, slot, key);
  1623. if (err == -EAGAIN)
  1624. goto again;
  1625. if (err) {
  1626. ret = err;
  1627. goto done;
  1628. }
  1629. if (!p->skip_locking) {
  1630. btrfs_clear_path_blocking(p, NULL);
  1631. err = btrfs_try_spin_lock(b);
  1632. if (!err) {
  1633. btrfs_set_path_blocking(p);
  1634. btrfs_tree_lock(b);
  1635. btrfs_clear_path_blocking(p, b);
  1636. }
  1637. }
  1638. } else {
  1639. p->slots[level] = slot;
  1640. if (ins_len > 0 &&
  1641. btrfs_leaf_free_space(root, b) < ins_len) {
  1642. btrfs_set_path_blocking(p);
  1643. err = split_leaf(trans, root, key,
  1644. p, ins_len, ret == 0);
  1645. btrfs_clear_path_blocking(p, NULL);
  1646. BUG_ON(err > 0);
  1647. if (err) {
  1648. ret = err;
  1649. goto done;
  1650. }
  1651. }
  1652. if (!p->search_for_split)
  1653. unlock_up(p, level, lowest_unlock);
  1654. goto done;
  1655. }
  1656. }
  1657. ret = 1;
  1658. done:
  1659. /*
  1660. * we don't really know what they plan on doing with the path
  1661. * from here on, so for now just mark it as blocking
  1662. */
  1663. if (!p->leave_spinning)
  1664. btrfs_set_path_blocking(p);
  1665. if (ret < 0)
  1666. btrfs_release_path(root, p);
  1667. return ret;
  1668. }
  1669. /*
  1670. * adjust the pointers going up the tree, starting at level
  1671. * making sure the right key of each node is points to 'key'.
  1672. * This is used after shifting pointers to the left, so it stops
  1673. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1674. * higher levels
  1675. *
  1676. * If this fails to write a tree block, it returns -1, but continues
  1677. * fixing up the blocks in ram so the tree is consistent.
  1678. */
  1679. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1680. struct btrfs_root *root, struct btrfs_path *path,
  1681. struct btrfs_disk_key *key, int level)
  1682. {
  1683. int i;
  1684. int ret = 0;
  1685. struct extent_buffer *t;
  1686. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1687. int tslot = path->slots[i];
  1688. if (!path->nodes[i])
  1689. break;
  1690. t = path->nodes[i];
  1691. btrfs_set_node_key(t, key, tslot);
  1692. btrfs_mark_buffer_dirty(path->nodes[i]);
  1693. if (tslot != 0)
  1694. break;
  1695. }
  1696. return ret;
  1697. }
  1698. /*
  1699. * update item key.
  1700. *
  1701. * This function isn't completely safe. It's the caller's responsibility
  1702. * that the new key won't break the order
  1703. */
  1704. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1705. struct btrfs_root *root, struct btrfs_path *path,
  1706. struct btrfs_key *new_key)
  1707. {
  1708. struct btrfs_disk_key disk_key;
  1709. struct extent_buffer *eb;
  1710. int slot;
  1711. eb = path->nodes[0];
  1712. slot = path->slots[0];
  1713. if (slot > 0) {
  1714. btrfs_item_key(eb, &disk_key, slot - 1);
  1715. if (comp_keys(&disk_key, new_key) >= 0)
  1716. return -1;
  1717. }
  1718. if (slot < btrfs_header_nritems(eb) - 1) {
  1719. btrfs_item_key(eb, &disk_key, slot + 1);
  1720. if (comp_keys(&disk_key, new_key) <= 0)
  1721. return -1;
  1722. }
  1723. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1724. btrfs_set_item_key(eb, &disk_key, slot);
  1725. btrfs_mark_buffer_dirty(eb);
  1726. if (slot == 0)
  1727. fixup_low_keys(trans, root, path, &disk_key, 1);
  1728. return 0;
  1729. }
  1730. /*
  1731. * try to push data from one node into the next node left in the
  1732. * tree.
  1733. *
  1734. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1735. * error, and > 0 if there was no room in the left hand block.
  1736. */
  1737. static int push_node_left(struct btrfs_trans_handle *trans,
  1738. struct btrfs_root *root, struct extent_buffer *dst,
  1739. struct extent_buffer *src, int empty)
  1740. {
  1741. int push_items = 0;
  1742. int src_nritems;
  1743. int dst_nritems;
  1744. int ret = 0;
  1745. src_nritems = btrfs_header_nritems(src);
  1746. dst_nritems = btrfs_header_nritems(dst);
  1747. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1748. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1749. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1750. if (!empty && src_nritems <= 8)
  1751. return 1;
  1752. if (push_items <= 0)
  1753. return 1;
  1754. if (empty) {
  1755. push_items = min(src_nritems, push_items);
  1756. if (push_items < src_nritems) {
  1757. /* leave at least 8 pointers in the node if
  1758. * we aren't going to empty it
  1759. */
  1760. if (src_nritems - push_items < 8) {
  1761. if (push_items <= 8)
  1762. return 1;
  1763. push_items -= 8;
  1764. }
  1765. }
  1766. } else
  1767. push_items = min(src_nritems - 8, push_items);
  1768. copy_extent_buffer(dst, src,
  1769. btrfs_node_key_ptr_offset(dst_nritems),
  1770. btrfs_node_key_ptr_offset(0),
  1771. push_items * sizeof(struct btrfs_key_ptr));
  1772. if (push_items < src_nritems) {
  1773. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1774. btrfs_node_key_ptr_offset(push_items),
  1775. (src_nritems - push_items) *
  1776. sizeof(struct btrfs_key_ptr));
  1777. }
  1778. btrfs_set_header_nritems(src, src_nritems - push_items);
  1779. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1780. btrfs_mark_buffer_dirty(src);
  1781. btrfs_mark_buffer_dirty(dst);
  1782. return ret;
  1783. }
  1784. /*
  1785. * try to push data from one node into the next node right in the
  1786. * tree.
  1787. *
  1788. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1789. * error, and > 0 if there was no room in the right hand block.
  1790. *
  1791. * this will only push up to 1/2 the contents of the left node over
  1792. */
  1793. static int balance_node_right(struct btrfs_trans_handle *trans,
  1794. struct btrfs_root *root,
  1795. struct extent_buffer *dst,
  1796. struct extent_buffer *src)
  1797. {
  1798. int push_items = 0;
  1799. int max_push;
  1800. int src_nritems;
  1801. int dst_nritems;
  1802. int ret = 0;
  1803. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1804. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1805. src_nritems = btrfs_header_nritems(src);
  1806. dst_nritems = btrfs_header_nritems(dst);
  1807. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1808. if (push_items <= 0)
  1809. return 1;
  1810. if (src_nritems < 4)
  1811. return 1;
  1812. max_push = src_nritems / 2 + 1;
  1813. /* don't try to empty the node */
  1814. if (max_push >= src_nritems)
  1815. return 1;
  1816. if (max_push < push_items)
  1817. push_items = max_push;
  1818. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1819. btrfs_node_key_ptr_offset(0),
  1820. (dst_nritems) *
  1821. sizeof(struct btrfs_key_ptr));
  1822. copy_extent_buffer(dst, src,
  1823. btrfs_node_key_ptr_offset(0),
  1824. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1825. push_items * sizeof(struct btrfs_key_ptr));
  1826. btrfs_set_header_nritems(src, src_nritems - push_items);
  1827. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1828. btrfs_mark_buffer_dirty(src);
  1829. btrfs_mark_buffer_dirty(dst);
  1830. return ret;
  1831. }
  1832. /*
  1833. * helper function to insert a new root level in the tree.
  1834. * A new node is allocated, and a single item is inserted to
  1835. * point to the existing root
  1836. *
  1837. * returns zero on success or < 0 on failure.
  1838. */
  1839. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1840. struct btrfs_root *root,
  1841. struct btrfs_path *path, int level)
  1842. {
  1843. u64 lower_gen;
  1844. struct extent_buffer *lower;
  1845. struct extent_buffer *c;
  1846. struct extent_buffer *old;
  1847. struct btrfs_disk_key lower_key;
  1848. BUG_ON(path->nodes[level]);
  1849. BUG_ON(path->nodes[level-1] != root->node);
  1850. lower = path->nodes[level-1];
  1851. if (level == 1)
  1852. btrfs_item_key(lower, &lower_key, 0);
  1853. else
  1854. btrfs_node_key(lower, &lower_key, 0);
  1855. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1856. root->root_key.objectid, &lower_key,
  1857. level, root->node->start, 0);
  1858. if (IS_ERR(c))
  1859. return PTR_ERR(c);
  1860. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1861. btrfs_set_header_nritems(c, 1);
  1862. btrfs_set_header_level(c, level);
  1863. btrfs_set_header_bytenr(c, c->start);
  1864. btrfs_set_header_generation(c, trans->transid);
  1865. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1866. btrfs_set_header_owner(c, root->root_key.objectid);
  1867. write_extent_buffer(c, root->fs_info->fsid,
  1868. (unsigned long)btrfs_header_fsid(c),
  1869. BTRFS_FSID_SIZE);
  1870. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1871. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1872. BTRFS_UUID_SIZE);
  1873. btrfs_set_node_key(c, &lower_key, 0);
  1874. btrfs_set_node_blockptr(c, 0, lower->start);
  1875. lower_gen = btrfs_header_generation(lower);
  1876. WARN_ON(lower_gen != trans->transid);
  1877. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1878. btrfs_mark_buffer_dirty(c);
  1879. spin_lock(&root->node_lock);
  1880. old = root->node;
  1881. root->node = c;
  1882. spin_unlock(&root->node_lock);
  1883. /* the super has an extra ref to root->node */
  1884. free_extent_buffer(old);
  1885. add_root_to_dirty_list(root);
  1886. extent_buffer_get(c);
  1887. path->nodes[level] = c;
  1888. path->locks[level] = 1;
  1889. path->slots[level] = 0;
  1890. return 0;
  1891. }
  1892. /*
  1893. * worker function to insert a single pointer in a node.
  1894. * the node should have enough room for the pointer already
  1895. *
  1896. * slot and level indicate where you want the key to go, and
  1897. * blocknr is the block the key points to.
  1898. *
  1899. * returns zero on success and < 0 on any error
  1900. */
  1901. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1902. *root, struct btrfs_path *path, struct btrfs_disk_key
  1903. *key, u64 bytenr, int slot, int level)
  1904. {
  1905. struct extent_buffer *lower;
  1906. int nritems;
  1907. BUG_ON(!path->nodes[level]);
  1908. lower = path->nodes[level];
  1909. nritems = btrfs_header_nritems(lower);
  1910. BUG_ON(slot > nritems);
  1911. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1912. BUG();
  1913. if (slot != nritems) {
  1914. memmove_extent_buffer(lower,
  1915. btrfs_node_key_ptr_offset(slot + 1),
  1916. btrfs_node_key_ptr_offset(slot),
  1917. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1918. }
  1919. btrfs_set_node_key(lower, key, slot);
  1920. btrfs_set_node_blockptr(lower, slot, bytenr);
  1921. WARN_ON(trans->transid == 0);
  1922. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1923. btrfs_set_header_nritems(lower, nritems + 1);
  1924. btrfs_mark_buffer_dirty(lower);
  1925. return 0;
  1926. }
  1927. /*
  1928. * split the node at the specified level in path in two.
  1929. * The path is corrected to point to the appropriate node after the split
  1930. *
  1931. * Before splitting this tries to make some room in the node by pushing
  1932. * left and right, if either one works, it returns right away.
  1933. *
  1934. * returns 0 on success and < 0 on failure
  1935. */
  1936. static noinline int split_node(struct btrfs_trans_handle *trans,
  1937. struct btrfs_root *root,
  1938. struct btrfs_path *path, int level)
  1939. {
  1940. struct extent_buffer *c;
  1941. struct extent_buffer *split;
  1942. struct btrfs_disk_key disk_key;
  1943. int mid;
  1944. int ret;
  1945. int wret;
  1946. u32 c_nritems;
  1947. c = path->nodes[level];
  1948. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1949. if (c == root->node) {
  1950. /* trying to split the root, lets make a new one */
  1951. ret = insert_new_root(trans, root, path, level + 1);
  1952. if (ret)
  1953. return ret;
  1954. } else {
  1955. ret = push_nodes_for_insert(trans, root, path, level);
  1956. c = path->nodes[level];
  1957. if (!ret && btrfs_header_nritems(c) <
  1958. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1959. return 0;
  1960. if (ret < 0)
  1961. return ret;
  1962. }
  1963. c_nritems = btrfs_header_nritems(c);
  1964. mid = (c_nritems + 1) / 2;
  1965. btrfs_node_key(c, &disk_key, mid);
  1966. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1967. root->root_key.objectid,
  1968. &disk_key, level, c->start, 0);
  1969. if (IS_ERR(split))
  1970. return PTR_ERR(split);
  1971. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1972. btrfs_set_header_level(split, btrfs_header_level(c));
  1973. btrfs_set_header_bytenr(split, split->start);
  1974. btrfs_set_header_generation(split, trans->transid);
  1975. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1976. btrfs_set_header_owner(split, root->root_key.objectid);
  1977. write_extent_buffer(split, root->fs_info->fsid,
  1978. (unsigned long)btrfs_header_fsid(split),
  1979. BTRFS_FSID_SIZE);
  1980. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1981. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1982. BTRFS_UUID_SIZE);
  1983. copy_extent_buffer(split, c,
  1984. btrfs_node_key_ptr_offset(0),
  1985. btrfs_node_key_ptr_offset(mid),
  1986. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1987. btrfs_set_header_nritems(split, c_nritems - mid);
  1988. btrfs_set_header_nritems(c, mid);
  1989. ret = 0;
  1990. btrfs_mark_buffer_dirty(c);
  1991. btrfs_mark_buffer_dirty(split);
  1992. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1993. path->slots[level + 1] + 1,
  1994. level + 1);
  1995. if (wret)
  1996. ret = wret;
  1997. if (path->slots[level] >= mid) {
  1998. path->slots[level] -= mid;
  1999. btrfs_tree_unlock(c);
  2000. free_extent_buffer(c);
  2001. path->nodes[level] = split;
  2002. path->slots[level + 1] += 1;
  2003. } else {
  2004. btrfs_tree_unlock(split);
  2005. free_extent_buffer(split);
  2006. }
  2007. return ret;
  2008. }
  2009. /*
  2010. * how many bytes are required to store the items in a leaf. start
  2011. * and nr indicate which items in the leaf to check. This totals up the
  2012. * space used both by the item structs and the item data
  2013. */
  2014. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2015. {
  2016. int data_len;
  2017. int nritems = btrfs_header_nritems(l);
  2018. int end = min(nritems, start + nr) - 1;
  2019. if (!nr)
  2020. return 0;
  2021. data_len = btrfs_item_end_nr(l, start);
  2022. data_len = data_len - btrfs_item_offset_nr(l, end);
  2023. data_len += sizeof(struct btrfs_item) * nr;
  2024. WARN_ON(data_len < 0);
  2025. return data_len;
  2026. }
  2027. /*
  2028. * The space between the end of the leaf items and
  2029. * the start of the leaf data. IOW, how much room
  2030. * the leaf has left for both items and data
  2031. */
  2032. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2033. struct extent_buffer *leaf)
  2034. {
  2035. int nritems = btrfs_header_nritems(leaf);
  2036. int ret;
  2037. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2038. if (ret < 0) {
  2039. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2040. "used %d nritems %d\n",
  2041. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2042. leaf_space_used(leaf, 0, nritems), nritems);
  2043. }
  2044. return ret;
  2045. }
  2046. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2047. struct btrfs_root *root,
  2048. struct btrfs_path *path,
  2049. int data_size, int empty,
  2050. struct extent_buffer *right,
  2051. int free_space, u32 left_nritems)
  2052. {
  2053. struct extent_buffer *left = path->nodes[0];
  2054. struct extent_buffer *upper = path->nodes[1];
  2055. struct btrfs_disk_key disk_key;
  2056. int slot;
  2057. u32 i;
  2058. int push_space = 0;
  2059. int push_items = 0;
  2060. struct btrfs_item *item;
  2061. u32 nr;
  2062. u32 right_nritems;
  2063. u32 data_end;
  2064. u32 this_item_size;
  2065. if (empty)
  2066. nr = 0;
  2067. else
  2068. nr = 1;
  2069. if (path->slots[0] >= left_nritems)
  2070. push_space += data_size;
  2071. slot = path->slots[1];
  2072. i = left_nritems - 1;
  2073. while (i >= nr) {
  2074. item = btrfs_item_nr(left, i);
  2075. if (!empty && push_items > 0) {
  2076. if (path->slots[0] > i)
  2077. break;
  2078. if (path->slots[0] == i) {
  2079. int space = btrfs_leaf_free_space(root, left);
  2080. if (space + push_space * 2 > free_space)
  2081. break;
  2082. }
  2083. }
  2084. if (path->slots[0] == i)
  2085. push_space += data_size;
  2086. if (!left->map_token) {
  2087. map_extent_buffer(left, (unsigned long)item,
  2088. sizeof(struct btrfs_item),
  2089. &left->map_token, &left->kaddr,
  2090. &left->map_start, &left->map_len,
  2091. KM_USER1);
  2092. }
  2093. this_item_size = btrfs_item_size(left, item);
  2094. if (this_item_size + sizeof(*item) + push_space > free_space)
  2095. break;
  2096. push_items++;
  2097. push_space += this_item_size + sizeof(*item);
  2098. if (i == 0)
  2099. break;
  2100. i--;
  2101. }
  2102. if (left->map_token) {
  2103. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2104. left->map_token = NULL;
  2105. }
  2106. if (push_items == 0)
  2107. goto out_unlock;
  2108. if (!empty && push_items == left_nritems)
  2109. WARN_ON(1);
  2110. /* push left to right */
  2111. right_nritems = btrfs_header_nritems(right);
  2112. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2113. push_space -= leaf_data_end(root, left);
  2114. /* make room in the right data area */
  2115. data_end = leaf_data_end(root, right);
  2116. memmove_extent_buffer(right,
  2117. btrfs_leaf_data(right) + data_end - push_space,
  2118. btrfs_leaf_data(right) + data_end,
  2119. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2120. /* copy from the left data area */
  2121. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2122. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2123. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2124. push_space);
  2125. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2126. btrfs_item_nr_offset(0),
  2127. right_nritems * sizeof(struct btrfs_item));
  2128. /* copy the items from left to right */
  2129. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2130. btrfs_item_nr_offset(left_nritems - push_items),
  2131. push_items * sizeof(struct btrfs_item));
  2132. /* update the item pointers */
  2133. right_nritems += push_items;
  2134. btrfs_set_header_nritems(right, right_nritems);
  2135. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2136. for (i = 0; i < right_nritems; i++) {
  2137. item = btrfs_item_nr(right, i);
  2138. if (!right->map_token) {
  2139. map_extent_buffer(right, (unsigned long)item,
  2140. sizeof(struct btrfs_item),
  2141. &right->map_token, &right->kaddr,
  2142. &right->map_start, &right->map_len,
  2143. KM_USER1);
  2144. }
  2145. push_space -= btrfs_item_size(right, item);
  2146. btrfs_set_item_offset(right, item, push_space);
  2147. }
  2148. if (right->map_token) {
  2149. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2150. right->map_token = NULL;
  2151. }
  2152. left_nritems -= push_items;
  2153. btrfs_set_header_nritems(left, left_nritems);
  2154. if (left_nritems)
  2155. btrfs_mark_buffer_dirty(left);
  2156. btrfs_mark_buffer_dirty(right);
  2157. btrfs_item_key(right, &disk_key, 0);
  2158. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2159. btrfs_mark_buffer_dirty(upper);
  2160. /* then fixup the leaf pointer in the path */
  2161. if (path->slots[0] >= left_nritems) {
  2162. path->slots[0] -= left_nritems;
  2163. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2164. clean_tree_block(trans, root, path->nodes[0]);
  2165. btrfs_tree_unlock(path->nodes[0]);
  2166. free_extent_buffer(path->nodes[0]);
  2167. path->nodes[0] = right;
  2168. path->slots[1] += 1;
  2169. } else {
  2170. btrfs_tree_unlock(right);
  2171. free_extent_buffer(right);
  2172. }
  2173. return 0;
  2174. out_unlock:
  2175. btrfs_tree_unlock(right);
  2176. free_extent_buffer(right);
  2177. return 1;
  2178. }
  2179. /*
  2180. * push some data in the path leaf to the right, trying to free up at
  2181. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2182. *
  2183. * returns 1 if the push failed because the other node didn't have enough
  2184. * room, 0 if everything worked out and < 0 if there were major errors.
  2185. */
  2186. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2187. *root, struct btrfs_path *path, int data_size,
  2188. int empty)
  2189. {
  2190. struct extent_buffer *left = path->nodes[0];
  2191. struct extent_buffer *right;
  2192. struct extent_buffer *upper;
  2193. int slot;
  2194. int free_space;
  2195. u32 left_nritems;
  2196. int ret;
  2197. if (!path->nodes[1])
  2198. return 1;
  2199. slot = path->slots[1];
  2200. upper = path->nodes[1];
  2201. if (slot >= btrfs_header_nritems(upper) - 1)
  2202. return 1;
  2203. btrfs_assert_tree_locked(path->nodes[1]);
  2204. right = read_node_slot(root, upper, slot + 1);
  2205. btrfs_tree_lock(right);
  2206. btrfs_set_lock_blocking(right);
  2207. free_space = btrfs_leaf_free_space(root, right);
  2208. if (free_space < data_size)
  2209. goto out_unlock;
  2210. /* cow and double check */
  2211. ret = btrfs_cow_block(trans, root, right, upper,
  2212. slot + 1, &right);
  2213. if (ret)
  2214. goto out_unlock;
  2215. free_space = btrfs_leaf_free_space(root, right);
  2216. if (free_space < data_size)
  2217. goto out_unlock;
  2218. left_nritems = btrfs_header_nritems(left);
  2219. if (left_nritems == 0)
  2220. goto out_unlock;
  2221. return __push_leaf_right(trans, root, path, data_size, empty,
  2222. right, free_space, left_nritems);
  2223. out_unlock:
  2224. btrfs_tree_unlock(right);
  2225. free_extent_buffer(right);
  2226. return 1;
  2227. }
  2228. /*
  2229. * push some data in the path leaf to the left, trying to free up at
  2230. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2231. */
  2232. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2233. struct btrfs_root *root,
  2234. struct btrfs_path *path, int data_size,
  2235. int empty, struct extent_buffer *left,
  2236. int free_space, int right_nritems)
  2237. {
  2238. struct btrfs_disk_key disk_key;
  2239. struct extent_buffer *right = path->nodes[0];
  2240. int slot;
  2241. int i;
  2242. int push_space = 0;
  2243. int push_items = 0;
  2244. struct btrfs_item *item;
  2245. u32 old_left_nritems;
  2246. u32 nr;
  2247. int ret = 0;
  2248. int wret;
  2249. u32 this_item_size;
  2250. u32 old_left_item_size;
  2251. slot = path->slots[1];
  2252. if (empty)
  2253. nr = right_nritems;
  2254. else
  2255. nr = right_nritems - 1;
  2256. for (i = 0; i < nr; i++) {
  2257. item = btrfs_item_nr(right, i);
  2258. if (!right->map_token) {
  2259. map_extent_buffer(right, (unsigned long)item,
  2260. sizeof(struct btrfs_item),
  2261. &right->map_token, &right->kaddr,
  2262. &right->map_start, &right->map_len,
  2263. KM_USER1);
  2264. }
  2265. if (!empty && push_items > 0) {
  2266. if (path->slots[0] < i)
  2267. break;
  2268. if (path->slots[0] == i) {
  2269. int space = btrfs_leaf_free_space(root, right);
  2270. if (space + push_space * 2 > free_space)
  2271. break;
  2272. }
  2273. }
  2274. if (path->slots[0] == i)
  2275. push_space += data_size;
  2276. this_item_size = btrfs_item_size(right, item);
  2277. if (this_item_size + sizeof(*item) + push_space > free_space)
  2278. break;
  2279. push_items++;
  2280. push_space += this_item_size + sizeof(*item);
  2281. }
  2282. if (right->map_token) {
  2283. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2284. right->map_token = NULL;
  2285. }
  2286. if (push_items == 0) {
  2287. ret = 1;
  2288. goto out;
  2289. }
  2290. if (!empty && push_items == btrfs_header_nritems(right))
  2291. WARN_ON(1);
  2292. /* push data from right to left */
  2293. copy_extent_buffer(left, right,
  2294. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2295. btrfs_item_nr_offset(0),
  2296. push_items * sizeof(struct btrfs_item));
  2297. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2298. btrfs_item_offset_nr(right, push_items - 1);
  2299. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2300. leaf_data_end(root, left) - push_space,
  2301. btrfs_leaf_data(right) +
  2302. btrfs_item_offset_nr(right, push_items - 1),
  2303. push_space);
  2304. old_left_nritems = btrfs_header_nritems(left);
  2305. BUG_ON(old_left_nritems <= 0);
  2306. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2307. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2308. u32 ioff;
  2309. item = btrfs_item_nr(left, i);
  2310. if (!left->map_token) {
  2311. map_extent_buffer(left, (unsigned long)item,
  2312. sizeof(struct btrfs_item),
  2313. &left->map_token, &left->kaddr,
  2314. &left->map_start, &left->map_len,
  2315. KM_USER1);
  2316. }
  2317. ioff = btrfs_item_offset(left, item);
  2318. btrfs_set_item_offset(left, item,
  2319. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2320. }
  2321. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2322. if (left->map_token) {
  2323. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2324. left->map_token = NULL;
  2325. }
  2326. /* fixup right node */
  2327. if (push_items > right_nritems) {
  2328. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2329. right_nritems);
  2330. WARN_ON(1);
  2331. }
  2332. if (push_items < right_nritems) {
  2333. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2334. leaf_data_end(root, right);
  2335. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2336. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2337. btrfs_leaf_data(right) +
  2338. leaf_data_end(root, right), push_space);
  2339. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2340. btrfs_item_nr_offset(push_items),
  2341. (btrfs_header_nritems(right) - push_items) *
  2342. sizeof(struct btrfs_item));
  2343. }
  2344. right_nritems -= push_items;
  2345. btrfs_set_header_nritems(right, right_nritems);
  2346. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2347. for (i = 0; i < right_nritems; i++) {
  2348. item = btrfs_item_nr(right, i);
  2349. if (!right->map_token) {
  2350. map_extent_buffer(right, (unsigned long)item,
  2351. sizeof(struct btrfs_item),
  2352. &right->map_token, &right->kaddr,
  2353. &right->map_start, &right->map_len,
  2354. KM_USER1);
  2355. }
  2356. push_space = push_space - btrfs_item_size(right, item);
  2357. btrfs_set_item_offset(right, item, push_space);
  2358. }
  2359. if (right->map_token) {
  2360. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2361. right->map_token = NULL;
  2362. }
  2363. btrfs_mark_buffer_dirty(left);
  2364. if (right_nritems)
  2365. btrfs_mark_buffer_dirty(right);
  2366. btrfs_item_key(right, &disk_key, 0);
  2367. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2368. if (wret)
  2369. ret = wret;
  2370. /* then fixup the leaf pointer in the path */
  2371. if (path->slots[0] < push_items) {
  2372. path->slots[0] += old_left_nritems;
  2373. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2374. clean_tree_block(trans, root, path->nodes[0]);
  2375. btrfs_tree_unlock(path->nodes[0]);
  2376. free_extent_buffer(path->nodes[0]);
  2377. path->nodes[0] = left;
  2378. path->slots[1] -= 1;
  2379. } else {
  2380. btrfs_tree_unlock(left);
  2381. free_extent_buffer(left);
  2382. path->slots[0] -= push_items;
  2383. }
  2384. BUG_ON(path->slots[0] < 0);
  2385. return ret;
  2386. out:
  2387. btrfs_tree_unlock(left);
  2388. free_extent_buffer(left);
  2389. return ret;
  2390. }
  2391. /*
  2392. * push some data in the path leaf to the left, trying to free up at
  2393. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2394. */
  2395. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2396. *root, struct btrfs_path *path, int data_size,
  2397. int empty)
  2398. {
  2399. struct extent_buffer *right = path->nodes[0];
  2400. struct extent_buffer *left;
  2401. int slot;
  2402. int free_space;
  2403. u32 right_nritems;
  2404. int ret = 0;
  2405. slot = path->slots[1];
  2406. if (slot == 0)
  2407. return 1;
  2408. if (!path->nodes[1])
  2409. return 1;
  2410. right_nritems = btrfs_header_nritems(right);
  2411. if (right_nritems == 0)
  2412. return 1;
  2413. btrfs_assert_tree_locked(path->nodes[1]);
  2414. left = read_node_slot(root, path->nodes[1], slot - 1);
  2415. btrfs_tree_lock(left);
  2416. btrfs_set_lock_blocking(left);
  2417. free_space = btrfs_leaf_free_space(root, left);
  2418. if (free_space < data_size) {
  2419. ret = 1;
  2420. goto out;
  2421. }
  2422. /* cow and double check */
  2423. ret = btrfs_cow_block(trans, root, left,
  2424. path->nodes[1], slot - 1, &left);
  2425. if (ret) {
  2426. /* we hit -ENOSPC, but it isn't fatal here */
  2427. ret = 1;
  2428. goto out;
  2429. }
  2430. free_space = btrfs_leaf_free_space(root, left);
  2431. if (free_space < data_size) {
  2432. ret = 1;
  2433. goto out;
  2434. }
  2435. return __push_leaf_left(trans, root, path, data_size,
  2436. empty, left, free_space, right_nritems);
  2437. out:
  2438. btrfs_tree_unlock(left);
  2439. free_extent_buffer(left);
  2440. return ret;
  2441. }
  2442. /*
  2443. * split the path's leaf in two, making sure there is at least data_size
  2444. * available for the resulting leaf level of the path.
  2445. *
  2446. * returns 0 if all went well and < 0 on failure.
  2447. */
  2448. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2449. struct btrfs_root *root,
  2450. struct btrfs_path *path,
  2451. struct extent_buffer *l,
  2452. struct extent_buffer *right,
  2453. int slot, int mid, int nritems)
  2454. {
  2455. int data_copy_size;
  2456. int rt_data_off;
  2457. int i;
  2458. int ret = 0;
  2459. int wret;
  2460. struct btrfs_disk_key disk_key;
  2461. nritems = nritems - mid;
  2462. btrfs_set_header_nritems(right, nritems);
  2463. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2464. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2465. btrfs_item_nr_offset(mid),
  2466. nritems * sizeof(struct btrfs_item));
  2467. copy_extent_buffer(right, l,
  2468. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2469. data_copy_size, btrfs_leaf_data(l) +
  2470. leaf_data_end(root, l), data_copy_size);
  2471. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2472. btrfs_item_end_nr(l, mid);
  2473. for (i = 0; i < nritems; i++) {
  2474. struct btrfs_item *item = btrfs_item_nr(right, i);
  2475. u32 ioff;
  2476. if (!right->map_token) {
  2477. map_extent_buffer(right, (unsigned long)item,
  2478. sizeof(struct btrfs_item),
  2479. &right->map_token, &right->kaddr,
  2480. &right->map_start, &right->map_len,
  2481. KM_USER1);
  2482. }
  2483. ioff = btrfs_item_offset(right, item);
  2484. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2485. }
  2486. if (right->map_token) {
  2487. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2488. right->map_token = NULL;
  2489. }
  2490. btrfs_set_header_nritems(l, mid);
  2491. ret = 0;
  2492. btrfs_item_key(right, &disk_key, 0);
  2493. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2494. path->slots[1] + 1, 1);
  2495. if (wret)
  2496. ret = wret;
  2497. btrfs_mark_buffer_dirty(right);
  2498. btrfs_mark_buffer_dirty(l);
  2499. BUG_ON(path->slots[0] != slot);
  2500. if (mid <= slot) {
  2501. btrfs_tree_unlock(path->nodes[0]);
  2502. free_extent_buffer(path->nodes[0]);
  2503. path->nodes[0] = right;
  2504. path->slots[0] -= mid;
  2505. path->slots[1] += 1;
  2506. } else {
  2507. btrfs_tree_unlock(right);
  2508. free_extent_buffer(right);
  2509. }
  2510. BUG_ON(path->slots[0] < 0);
  2511. return ret;
  2512. }
  2513. /*
  2514. * split the path's leaf in two, making sure there is at least data_size
  2515. * available for the resulting leaf level of the path.
  2516. *
  2517. * returns 0 if all went well and < 0 on failure.
  2518. */
  2519. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2520. struct btrfs_root *root,
  2521. struct btrfs_key *ins_key,
  2522. struct btrfs_path *path, int data_size,
  2523. int extend)
  2524. {
  2525. struct btrfs_disk_key disk_key;
  2526. struct extent_buffer *l;
  2527. u32 nritems;
  2528. int mid;
  2529. int slot;
  2530. struct extent_buffer *right;
  2531. int ret = 0;
  2532. int wret;
  2533. int split;
  2534. int num_doubles = 0;
  2535. /* first try to make some room by pushing left and right */
  2536. if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
  2537. wret = push_leaf_right(trans, root, path, data_size, 0);
  2538. if (wret < 0)
  2539. return wret;
  2540. if (wret) {
  2541. wret = push_leaf_left(trans, root, path, data_size, 0);
  2542. if (wret < 0)
  2543. return wret;
  2544. }
  2545. l = path->nodes[0];
  2546. /* did the pushes work? */
  2547. if (btrfs_leaf_free_space(root, l) >= data_size)
  2548. return 0;
  2549. }
  2550. if (!path->nodes[1]) {
  2551. ret = insert_new_root(trans, root, path, 1);
  2552. if (ret)
  2553. return ret;
  2554. }
  2555. again:
  2556. split = 1;
  2557. l = path->nodes[0];
  2558. slot = path->slots[0];
  2559. nritems = btrfs_header_nritems(l);
  2560. mid = (nritems + 1) / 2;
  2561. if (mid <= slot) {
  2562. if (nritems == 1 ||
  2563. leaf_space_used(l, mid, nritems - mid) + data_size >
  2564. BTRFS_LEAF_DATA_SIZE(root)) {
  2565. if (slot >= nritems) {
  2566. split = 0;
  2567. } else {
  2568. mid = slot;
  2569. if (mid != nritems &&
  2570. leaf_space_used(l, mid, nritems - mid) +
  2571. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2572. split = 2;
  2573. }
  2574. }
  2575. }
  2576. } else {
  2577. if (leaf_space_used(l, 0, mid) + data_size >
  2578. BTRFS_LEAF_DATA_SIZE(root)) {
  2579. if (!extend && data_size && slot == 0) {
  2580. split = 0;
  2581. } else if ((extend || !data_size) && slot == 0) {
  2582. mid = 1;
  2583. } else {
  2584. mid = slot;
  2585. if (mid != nritems &&
  2586. leaf_space_used(l, mid, nritems - mid) +
  2587. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2588. split = 2 ;
  2589. }
  2590. }
  2591. }
  2592. }
  2593. if (split == 0)
  2594. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2595. else
  2596. btrfs_item_key(l, &disk_key, mid);
  2597. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2598. root->root_key.objectid,
  2599. &disk_key, 0, l->start, 0);
  2600. if (IS_ERR(right)) {
  2601. BUG_ON(1);
  2602. return PTR_ERR(right);
  2603. }
  2604. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2605. btrfs_set_header_bytenr(right, right->start);
  2606. btrfs_set_header_generation(right, trans->transid);
  2607. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2608. btrfs_set_header_owner(right, root->root_key.objectid);
  2609. btrfs_set_header_level(right, 0);
  2610. write_extent_buffer(right, root->fs_info->fsid,
  2611. (unsigned long)btrfs_header_fsid(right),
  2612. BTRFS_FSID_SIZE);
  2613. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2614. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2615. BTRFS_UUID_SIZE);
  2616. if (split == 0) {
  2617. if (mid <= slot) {
  2618. btrfs_set_header_nritems(right, 0);
  2619. wret = insert_ptr(trans, root, path,
  2620. &disk_key, right->start,
  2621. path->slots[1] + 1, 1);
  2622. if (wret)
  2623. ret = wret;
  2624. btrfs_tree_unlock(path->nodes[0]);
  2625. free_extent_buffer(path->nodes[0]);
  2626. path->nodes[0] = right;
  2627. path->slots[0] = 0;
  2628. path->slots[1] += 1;
  2629. } else {
  2630. btrfs_set_header_nritems(right, 0);
  2631. wret = insert_ptr(trans, root, path,
  2632. &disk_key,
  2633. right->start,
  2634. path->slots[1], 1);
  2635. if (wret)
  2636. ret = wret;
  2637. btrfs_tree_unlock(path->nodes[0]);
  2638. free_extent_buffer(path->nodes[0]);
  2639. path->nodes[0] = right;
  2640. path->slots[0] = 0;
  2641. if (path->slots[1] == 0) {
  2642. wret = fixup_low_keys(trans, root,
  2643. path, &disk_key, 1);
  2644. if (wret)
  2645. ret = wret;
  2646. }
  2647. }
  2648. btrfs_mark_buffer_dirty(right);
  2649. return ret;
  2650. }
  2651. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2652. BUG_ON(ret);
  2653. if (split == 2) {
  2654. BUG_ON(num_doubles != 0);
  2655. num_doubles++;
  2656. goto again;
  2657. }
  2658. return ret;
  2659. }
  2660. /*
  2661. * This function splits a single item into two items,
  2662. * giving 'new_key' to the new item and splitting the
  2663. * old one at split_offset (from the start of the item).
  2664. *
  2665. * The path may be released by this operation. After
  2666. * the split, the path is pointing to the old item. The
  2667. * new item is going to be in the same node as the old one.
  2668. *
  2669. * Note, the item being split must be smaller enough to live alone on
  2670. * a tree block with room for one extra struct btrfs_item
  2671. *
  2672. * This allows us to split the item in place, keeping a lock on the
  2673. * leaf the entire time.
  2674. */
  2675. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2676. struct btrfs_root *root,
  2677. struct btrfs_path *path,
  2678. struct btrfs_key *new_key,
  2679. unsigned long split_offset)
  2680. {
  2681. u32 item_size;
  2682. struct extent_buffer *leaf;
  2683. struct btrfs_key orig_key;
  2684. struct btrfs_item *item;
  2685. struct btrfs_item *new_item;
  2686. int ret = 0;
  2687. int slot;
  2688. u32 nritems;
  2689. u32 orig_offset;
  2690. struct btrfs_disk_key disk_key;
  2691. char *buf;
  2692. leaf = path->nodes[0];
  2693. btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
  2694. if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
  2695. goto split;
  2696. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2697. btrfs_release_path(root, path);
  2698. path->search_for_split = 1;
  2699. path->keep_locks = 1;
  2700. ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
  2701. path->search_for_split = 0;
  2702. /* if our item isn't there or got smaller, return now */
  2703. if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
  2704. path->slots[0])) {
  2705. path->keep_locks = 0;
  2706. return -EAGAIN;
  2707. }
  2708. btrfs_set_path_blocking(path);
  2709. ret = split_leaf(trans, root, &orig_key, path,
  2710. sizeof(struct btrfs_item), 1);
  2711. path->keep_locks = 0;
  2712. BUG_ON(ret);
  2713. btrfs_unlock_up_safe(path, 1);
  2714. leaf = path->nodes[0];
  2715. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2716. split:
  2717. /*
  2718. * make sure any changes to the path from split_leaf leave it
  2719. * in a blocking state
  2720. */
  2721. btrfs_set_path_blocking(path);
  2722. item = btrfs_item_nr(leaf, path->slots[0]);
  2723. orig_offset = btrfs_item_offset(leaf, item);
  2724. item_size = btrfs_item_size(leaf, item);
  2725. buf = kmalloc(item_size, GFP_NOFS);
  2726. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2727. path->slots[0]), item_size);
  2728. slot = path->slots[0] + 1;
  2729. leaf = path->nodes[0];
  2730. nritems = btrfs_header_nritems(leaf);
  2731. if (slot != nritems) {
  2732. /* shift the items */
  2733. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2734. btrfs_item_nr_offset(slot),
  2735. (nritems - slot) * sizeof(struct btrfs_item));
  2736. }
  2737. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2738. btrfs_set_item_key(leaf, &disk_key, slot);
  2739. new_item = btrfs_item_nr(leaf, slot);
  2740. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2741. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2742. btrfs_set_item_offset(leaf, item,
  2743. orig_offset + item_size - split_offset);
  2744. btrfs_set_item_size(leaf, item, split_offset);
  2745. btrfs_set_header_nritems(leaf, nritems + 1);
  2746. /* write the data for the start of the original item */
  2747. write_extent_buffer(leaf, buf,
  2748. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2749. split_offset);
  2750. /* write the data for the new item */
  2751. write_extent_buffer(leaf, buf + split_offset,
  2752. btrfs_item_ptr_offset(leaf, slot),
  2753. item_size - split_offset);
  2754. btrfs_mark_buffer_dirty(leaf);
  2755. ret = 0;
  2756. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2757. btrfs_print_leaf(root, leaf);
  2758. BUG();
  2759. }
  2760. kfree(buf);
  2761. return ret;
  2762. }
  2763. /*
  2764. * make the item pointed to by the path smaller. new_size indicates
  2765. * how small to make it, and from_end tells us if we just chop bytes
  2766. * off the end of the item or if we shift the item to chop bytes off
  2767. * the front.
  2768. */
  2769. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2770. struct btrfs_root *root,
  2771. struct btrfs_path *path,
  2772. u32 new_size, int from_end)
  2773. {
  2774. int ret = 0;
  2775. int slot;
  2776. int slot_orig;
  2777. struct extent_buffer *leaf;
  2778. struct btrfs_item *item;
  2779. u32 nritems;
  2780. unsigned int data_end;
  2781. unsigned int old_data_start;
  2782. unsigned int old_size;
  2783. unsigned int size_diff;
  2784. int i;
  2785. slot_orig = path->slots[0];
  2786. leaf = path->nodes[0];
  2787. slot = path->slots[0];
  2788. old_size = btrfs_item_size_nr(leaf, slot);
  2789. if (old_size == new_size)
  2790. return 0;
  2791. nritems = btrfs_header_nritems(leaf);
  2792. data_end = leaf_data_end(root, leaf);
  2793. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2794. size_diff = old_size - new_size;
  2795. BUG_ON(slot < 0);
  2796. BUG_ON(slot >= nritems);
  2797. /*
  2798. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2799. */
  2800. /* first correct the data pointers */
  2801. for (i = slot; i < nritems; i++) {
  2802. u32 ioff;
  2803. item = btrfs_item_nr(leaf, i);
  2804. if (!leaf->map_token) {
  2805. map_extent_buffer(leaf, (unsigned long)item,
  2806. sizeof(struct btrfs_item),
  2807. &leaf->map_token, &leaf->kaddr,
  2808. &leaf->map_start, &leaf->map_len,
  2809. KM_USER1);
  2810. }
  2811. ioff = btrfs_item_offset(leaf, item);
  2812. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2813. }
  2814. if (leaf->map_token) {
  2815. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2816. leaf->map_token = NULL;
  2817. }
  2818. /* shift the data */
  2819. if (from_end) {
  2820. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2821. data_end + size_diff, btrfs_leaf_data(leaf) +
  2822. data_end, old_data_start + new_size - data_end);
  2823. } else {
  2824. struct btrfs_disk_key disk_key;
  2825. u64 offset;
  2826. btrfs_item_key(leaf, &disk_key, slot);
  2827. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2828. unsigned long ptr;
  2829. struct btrfs_file_extent_item *fi;
  2830. fi = btrfs_item_ptr(leaf, slot,
  2831. struct btrfs_file_extent_item);
  2832. fi = (struct btrfs_file_extent_item *)(
  2833. (unsigned long)fi - size_diff);
  2834. if (btrfs_file_extent_type(leaf, fi) ==
  2835. BTRFS_FILE_EXTENT_INLINE) {
  2836. ptr = btrfs_item_ptr_offset(leaf, slot);
  2837. memmove_extent_buffer(leaf, ptr,
  2838. (unsigned long)fi,
  2839. offsetof(struct btrfs_file_extent_item,
  2840. disk_bytenr));
  2841. }
  2842. }
  2843. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2844. data_end + size_diff, btrfs_leaf_data(leaf) +
  2845. data_end, old_data_start - data_end);
  2846. offset = btrfs_disk_key_offset(&disk_key);
  2847. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2848. btrfs_set_item_key(leaf, &disk_key, slot);
  2849. if (slot == 0)
  2850. fixup_low_keys(trans, root, path, &disk_key, 1);
  2851. }
  2852. item = btrfs_item_nr(leaf, slot);
  2853. btrfs_set_item_size(leaf, item, new_size);
  2854. btrfs_mark_buffer_dirty(leaf);
  2855. ret = 0;
  2856. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2857. btrfs_print_leaf(root, leaf);
  2858. BUG();
  2859. }
  2860. return ret;
  2861. }
  2862. /*
  2863. * make the item pointed to by the path bigger, data_size is the new size.
  2864. */
  2865. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2866. struct btrfs_root *root, struct btrfs_path *path,
  2867. u32 data_size)
  2868. {
  2869. int ret = 0;
  2870. int slot;
  2871. int slot_orig;
  2872. struct extent_buffer *leaf;
  2873. struct btrfs_item *item;
  2874. u32 nritems;
  2875. unsigned int data_end;
  2876. unsigned int old_data;
  2877. unsigned int old_size;
  2878. int i;
  2879. slot_orig = path->slots[0];
  2880. leaf = path->nodes[0];
  2881. nritems = btrfs_header_nritems(leaf);
  2882. data_end = leaf_data_end(root, leaf);
  2883. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2884. btrfs_print_leaf(root, leaf);
  2885. BUG();
  2886. }
  2887. slot = path->slots[0];
  2888. old_data = btrfs_item_end_nr(leaf, slot);
  2889. BUG_ON(slot < 0);
  2890. if (slot >= nritems) {
  2891. btrfs_print_leaf(root, leaf);
  2892. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2893. slot, nritems);
  2894. BUG_ON(1);
  2895. }
  2896. /*
  2897. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2898. */
  2899. /* first correct the data pointers */
  2900. for (i = slot; i < nritems; i++) {
  2901. u32 ioff;
  2902. item = btrfs_item_nr(leaf, i);
  2903. if (!leaf->map_token) {
  2904. map_extent_buffer(leaf, (unsigned long)item,
  2905. sizeof(struct btrfs_item),
  2906. &leaf->map_token, &leaf->kaddr,
  2907. &leaf->map_start, &leaf->map_len,
  2908. KM_USER1);
  2909. }
  2910. ioff = btrfs_item_offset(leaf, item);
  2911. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2912. }
  2913. if (leaf->map_token) {
  2914. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2915. leaf->map_token = NULL;
  2916. }
  2917. /* shift the data */
  2918. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2919. data_end - data_size, btrfs_leaf_data(leaf) +
  2920. data_end, old_data - data_end);
  2921. data_end = old_data;
  2922. old_size = btrfs_item_size_nr(leaf, slot);
  2923. item = btrfs_item_nr(leaf, slot);
  2924. btrfs_set_item_size(leaf, item, old_size + data_size);
  2925. btrfs_mark_buffer_dirty(leaf);
  2926. ret = 0;
  2927. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2928. btrfs_print_leaf(root, leaf);
  2929. BUG();
  2930. }
  2931. return ret;
  2932. }
  2933. /*
  2934. * Given a key and some data, insert items into the tree.
  2935. * This does all the path init required, making room in the tree if needed.
  2936. * Returns the number of keys that were inserted.
  2937. */
  2938. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2939. struct btrfs_root *root,
  2940. struct btrfs_path *path,
  2941. struct btrfs_key *cpu_key, u32 *data_size,
  2942. int nr)
  2943. {
  2944. struct extent_buffer *leaf;
  2945. struct btrfs_item *item;
  2946. int ret = 0;
  2947. int slot;
  2948. int i;
  2949. u32 nritems;
  2950. u32 total_data = 0;
  2951. u32 total_size = 0;
  2952. unsigned int data_end;
  2953. struct btrfs_disk_key disk_key;
  2954. struct btrfs_key found_key;
  2955. for (i = 0; i < nr; i++) {
  2956. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  2957. BTRFS_LEAF_DATA_SIZE(root)) {
  2958. break;
  2959. nr = i;
  2960. }
  2961. total_data += data_size[i];
  2962. total_size += data_size[i] + sizeof(struct btrfs_item);
  2963. }
  2964. BUG_ON(nr == 0);
  2965. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  2966. if (ret == 0)
  2967. return -EEXIST;
  2968. if (ret < 0)
  2969. goto out;
  2970. leaf = path->nodes[0];
  2971. nritems = btrfs_header_nritems(leaf);
  2972. data_end = leaf_data_end(root, leaf);
  2973. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  2974. for (i = nr; i >= 0; i--) {
  2975. total_data -= data_size[i];
  2976. total_size -= data_size[i] + sizeof(struct btrfs_item);
  2977. if (total_size < btrfs_leaf_free_space(root, leaf))
  2978. break;
  2979. }
  2980. nr = i;
  2981. }
  2982. slot = path->slots[0];
  2983. BUG_ON(slot < 0);
  2984. if (slot != nritems) {
  2985. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2986. item = btrfs_item_nr(leaf, slot);
  2987. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  2988. /* figure out how many keys we can insert in here */
  2989. total_data = data_size[0];
  2990. for (i = 1; i < nr; i++) {
  2991. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  2992. break;
  2993. total_data += data_size[i];
  2994. }
  2995. nr = i;
  2996. if (old_data < data_end) {
  2997. btrfs_print_leaf(root, leaf);
  2998. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  2999. slot, old_data, data_end);
  3000. BUG_ON(1);
  3001. }
  3002. /*
  3003. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3004. */
  3005. /* first correct the data pointers */
  3006. WARN_ON(leaf->map_token);
  3007. for (i = slot; i < nritems; i++) {
  3008. u32 ioff;
  3009. item = btrfs_item_nr(leaf, i);
  3010. if (!leaf->map_token) {
  3011. map_extent_buffer(leaf, (unsigned long)item,
  3012. sizeof(struct btrfs_item),
  3013. &leaf->map_token, &leaf->kaddr,
  3014. &leaf->map_start, &leaf->map_len,
  3015. KM_USER1);
  3016. }
  3017. ioff = btrfs_item_offset(leaf, item);
  3018. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3019. }
  3020. if (leaf->map_token) {
  3021. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3022. leaf->map_token = NULL;
  3023. }
  3024. /* shift the items */
  3025. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3026. btrfs_item_nr_offset(slot),
  3027. (nritems - slot) * sizeof(struct btrfs_item));
  3028. /* shift the data */
  3029. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3030. data_end - total_data, btrfs_leaf_data(leaf) +
  3031. data_end, old_data - data_end);
  3032. data_end = old_data;
  3033. } else {
  3034. /*
  3035. * this sucks but it has to be done, if we are inserting at
  3036. * the end of the leaf only insert 1 of the items, since we
  3037. * have no way of knowing whats on the next leaf and we'd have
  3038. * to drop our current locks to figure it out
  3039. */
  3040. nr = 1;
  3041. }
  3042. /* setup the item for the new data */
  3043. for (i = 0; i < nr; i++) {
  3044. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3045. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3046. item = btrfs_item_nr(leaf, slot + i);
  3047. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3048. data_end -= data_size[i];
  3049. btrfs_set_item_size(leaf, item, data_size[i]);
  3050. }
  3051. btrfs_set_header_nritems(leaf, nritems + nr);
  3052. btrfs_mark_buffer_dirty(leaf);
  3053. ret = 0;
  3054. if (slot == 0) {
  3055. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3056. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3057. }
  3058. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3059. btrfs_print_leaf(root, leaf);
  3060. BUG();
  3061. }
  3062. out:
  3063. if (!ret)
  3064. ret = nr;
  3065. return ret;
  3066. }
  3067. /*
  3068. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3069. * to save stack depth by doing the bulk of the work in a function
  3070. * that doesn't call btrfs_search_slot
  3071. */
  3072. static noinline_for_stack int
  3073. setup_items_for_insert(struct btrfs_trans_handle *trans,
  3074. struct btrfs_root *root, struct btrfs_path *path,
  3075. struct btrfs_key *cpu_key, u32 *data_size,
  3076. u32 total_data, u32 total_size, int nr)
  3077. {
  3078. struct btrfs_item *item;
  3079. int i;
  3080. u32 nritems;
  3081. unsigned int data_end;
  3082. struct btrfs_disk_key disk_key;
  3083. int ret;
  3084. struct extent_buffer *leaf;
  3085. int slot;
  3086. leaf = path->nodes[0];
  3087. slot = path->slots[0];
  3088. nritems = btrfs_header_nritems(leaf);
  3089. data_end = leaf_data_end(root, leaf);
  3090. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3091. btrfs_print_leaf(root, leaf);
  3092. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3093. total_size, btrfs_leaf_free_space(root, leaf));
  3094. BUG();
  3095. }
  3096. if (slot != nritems) {
  3097. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3098. if (old_data < data_end) {
  3099. btrfs_print_leaf(root, leaf);
  3100. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3101. slot, old_data, data_end);
  3102. BUG_ON(1);
  3103. }
  3104. /*
  3105. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3106. */
  3107. /* first correct the data pointers */
  3108. WARN_ON(leaf->map_token);
  3109. for (i = slot; i < nritems; i++) {
  3110. u32 ioff;
  3111. item = btrfs_item_nr(leaf, i);
  3112. if (!leaf->map_token) {
  3113. map_extent_buffer(leaf, (unsigned long)item,
  3114. sizeof(struct btrfs_item),
  3115. &leaf->map_token, &leaf->kaddr,
  3116. &leaf->map_start, &leaf->map_len,
  3117. KM_USER1);
  3118. }
  3119. ioff = btrfs_item_offset(leaf, item);
  3120. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3121. }
  3122. if (leaf->map_token) {
  3123. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3124. leaf->map_token = NULL;
  3125. }
  3126. /* shift the items */
  3127. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3128. btrfs_item_nr_offset(slot),
  3129. (nritems - slot) * sizeof(struct btrfs_item));
  3130. /* shift the data */
  3131. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3132. data_end - total_data, btrfs_leaf_data(leaf) +
  3133. data_end, old_data - data_end);
  3134. data_end = old_data;
  3135. }
  3136. /* setup the item for the new data */
  3137. for (i = 0; i < nr; i++) {
  3138. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3139. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3140. item = btrfs_item_nr(leaf, slot + i);
  3141. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3142. data_end -= data_size[i];
  3143. btrfs_set_item_size(leaf, item, data_size[i]);
  3144. }
  3145. btrfs_set_header_nritems(leaf, nritems + nr);
  3146. ret = 0;
  3147. if (slot == 0) {
  3148. struct btrfs_disk_key disk_key;
  3149. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3150. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3151. }
  3152. btrfs_unlock_up_safe(path, 1);
  3153. btrfs_mark_buffer_dirty(leaf);
  3154. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3155. btrfs_print_leaf(root, leaf);
  3156. BUG();
  3157. }
  3158. return ret;
  3159. }
  3160. /*
  3161. * Given a key and some data, insert items into the tree.
  3162. * This does all the path init required, making room in the tree if needed.
  3163. */
  3164. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3165. struct btrfs_root *root,
  3166. struct btrfs_path *path,
  3167. struct btrfs_key *cpu_key, u32 *data_size,
  3168. int nr)
  3169. {
  3170. struct extent_buffer *leaf;
  3171. int ret = 0;
  3172. int slot;
  3173. int i;
  3174. u32 total_size = 0;
  3175. u32 total_data = 0;
  3176. for (i = 0; i < nr; i++)
  3177. total_data += data_size[i];
  3178. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3179. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3180. if (ret == 0)
  3181. return -EEXIST;
  3182. if (ret < 0)
  3183. goto out;
  3184. leaf = path->nodes[0];
  3185. slot = path->slots[0];
  3186. BUG_ON(slot < 0);
  3187. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3188. total_data, total_size, nr);
  3189. out:
  3190. return ret;
  3191. }
  3192. /*
  3193. * Given a key and some data, insert an item into the tree.
  3194. * This does all the path init required, making room in the tree if needed.
  3195. */
  3196. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3197. *root, struct btrfs_key *cpu_key, void *data, u32
  3198. data_size)
  3199. {
  3200. int ret = 0;
  3201. struct btrfs_path *path;
  3202. struct extent_buffer *leaf;
  3203. unsigned long ptr;
  3204. path = btrfs_alloc_path();
  3205. BUG_ON(!path);
  3206. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3207. if (!ret) {
  3208. leaf = path->nodes[0];
  3209. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3210. write_extent_buffer(leaf, data, ptr, data_size);
  3211. btrfs_mark_buffer_dirty(leaf);
  3212. }
  3213. btrfs_free_path(path);
  3214. return ret;
  3215. }
  3216. /*
  3217. * delete the pointer from a given node.
  3218. *
  3219. * the tree should have been previously balanced so the deletion does not
  3220. * empty a node.
  3221. */
  3222. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3223. struct btrfs_path *path, int level, int slot)
  3224. {
  3225. struct extent_buffer *parent = path->nodes[level];
  3226. u32 nritems;
  3227. int ret = 0;
  3228. int wret;
  3229. nritems = btrfs_header_nritems(parent);
  3230. if (slot != nritems - 1) {
  3231. memmove_extent_buffer(parent,
  3232. btrfs_node_key_ptr_offset(slot),
  3233. btrfs_node_key_ptr_offset(slot + 1),
  3234. sizeof(struct btrfs_key_ptr) *
  3235. (nritems - slot - 1));
  3236. }
  3237. nritems--;
  3238. btrfs_set_header_nritems(parent, nritems);
  3239. if (nritems == 0 && parent == root->node) {
  3240. BUG_ON(btrfs_header_level(root->node) != 1);
  3241. /* just turn the root into a leaf and break */
  3242. btrfs_set_header_level(root->node, 0);
  3243. } else if (slot == 0) {
  3244. struct btrfs_disk_key disk_key;
  3245. btrfs_node_key(parent, &disk_key, 0);
  3246. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3247. if (wret)
  3248. ret = wret;
  3249. }
  3250. btrfs_mark_buffer_dirty(parent);
  3251. return ret;
  3252. }
  3253. /*
  3254. * a helper function to delete the leaf pointed to by path->slots[1] and
  3255. * path->nodes[1].
  3256. *
  3257. * This deletes the pointer in path->nodes[1] and frees the leaf
  3258. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3259. *
  3260. * The path must have already been setup for deleting the leaf, including
  3261. * all the proper balancing. path->nodes[1] must be locked.
  3262. */
  3263. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3264. struct btrfs_root *root,
  3265. struct btrfs_path *path,
  3266. struct extent_buffer *leaf)
  3267. {
  3268. int ret;
  3269. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3270. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3271. if (ret)
  3272. return ret;
  3273. /*
  3274. * btrfs_free_extent is expensive, we want to make sure we
  3275. * aren't holding any locks when we call it
  3276. */
  3277. btrfs_unlock_up_safe(path, 0);
  3278. ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
  3279. 0, root->root_key.objectid, 0, 0);
  3280. return ret;
  3281. }
  3282. /*
  3283. * delete the item at the leaf level in path. If that empties
  3284. * the leaf, remove it from the tree
  3285. */
  3286. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3287. struct btrfs_path *path, int slot, int nr)
  3288. {
  3289. struct extent_buffer *leaf;
  3290. struct btrfs_item *item;
  3291. int last_off;
  3292. int dsize = 0;
  3293. int ret = 0;
  3294. int wret;
  3295. int i;
  3296. u32 nritems;
  3297. leaf = path->nodes[0];
  3298. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3299. for (i = 0; i < nr; i++)
  3300. dsize += btrfs_item_size_nr(leaf, slot + i);
  3301. nritems = btrfs_header_nritems(leaf);
  3302. if (slot + nr != nritems) {
  3303. int data_end = leaf_data_end(root, leaf);
  3304. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3305. data_end + dsize,
  3306. btrfs_leaf_data(leaf) + data_end,
  3307. last_off - data_end);
  3308. for (i = slot + nr; i < nritems; i++) {
  3309. u32 ioff;
  3310. item = btrfs_item_nr(leaf, i);
  3311. if (!leaf->map_token) {
  3312. map_extent_buffer(leaf, (unsigned long)item,
  3313. sizeof(struct btrfs_item),
  3314. &leaf->map_token, &leaf->kaddr,
  3315. &leaf->map_start, &leaf->map_len,
  3316. KM_USER1);
  3317. }
  3318. ioff = btrfs_item_offset(leaf, item);
  3319. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3320. }
  3321. if (leaf->map_token) {
  3322. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3323. leaf->map_token = NULL;
  3324. }
  3325. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3326. btrfs_item_nr_offset(slot + nr),
  3327. sizeof(struct btrfs_item) *
  3328. (nritems - slot - nr));
  3329. }
  3330. btrfs_set_header_nritems(leaf, nritems - nr);
  3331. nritems -= nr;
  3332. /* delete the leaf if we've emptied it */
  3333. if (nritems == 0) {
  3334. if (leaf == root->node) {
  3335. btrfs_set_header_level(leaf, 0);
  3336. } else {
  3337. ret = btrfs_del_leaf(trans, root, path, leaf);
  3338. BUG_ON(ret);
  3339. }
  3340. } else {
  3341. int used = leaf_space_used(leaf, 0, nritems);
  3342. if (slot == 0) {
  3343. struct btrfs_disk_key disk_key;
  3344. btrfs_item_key(leaf, &disk_key, 0);
  3345. wret = fixup_low_keys(trans, root, path,
  3346. &disk_key, 1);
  3347. if (wret)
  3348. ret = wret;
  3349. }
  3350. /* delete the leaf if it is mostly empty */
  3351. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3352. /* push_leaf_left fixes the path.
  3353. * make sure the path still points to our leaf
  3354. * for possible call to del_ptr below
  3355. */
  3356. slot = path->slots[1];
  3357. extent_buffer_get(leaf);
  3358. btrfs_set_path_blocking(path);
  3359. wret = push_leaf_left(trans, root, path, 1, 1);
  3360. if (wret < 0 && wret != -ENOSPC)
  3361. ret = wret;
  3362. if (path->nodes[0] == leaf &&
  3363. btrfs_header_nritems(leaf)) {
  3364. wret = push_leaf_right(trans, root, path, 1, 1);
  3365. if (wret < 0 && wret != -ENOSPC)
  3366. ret = wret;
  3367. }
  3368. if (btrfs_header_nritems(leaf) == 0) {
  3369. path->slots[1] = slot;
  3370. ret = btrfs_del_leaf(trans, root, path, leaf);
  3371. BUG_ON(ret);
  3372. free_extent_buffer(leaf);
  3373. } else {
  3374. /* if we're still in the path, make sure
  3375. * we're dirty. Otherwise, one of the
  3376. * push_leaf functions must have already
  3377. * dirtied this buffer
  3378. */
  3379. if (path->nodes[0] == leaf)
  3380. btrfs_mark_buffer_dirty(leaf);
  3381. free_extent_buffer(leaf);
  3382. }
  3383. } else {
  3384. btrfs_mark_buffer_dirty(leaf);
  3385. }
  3386. }
  3387. return ret;
  3388. }
  3389. /*
  3390. * search the tree again to find a leaf with lesser keys
  3391. * returns 0 if it found something or 1 if there are no lesser leaves.
  3392. * returns < 0 on io errors.
  3393. *
  3394. * This may release the path, and so you may lose any locks held at the
  3395. * time you call it.
  3396. */
  3397. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3398. {
  3399. struct btrfs_key key;
  3400. struct btrfs_disk_key found_key;
  3401. int ret;
  3402. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3403. if (key.offset > 0)
  3404. key.offset--;
  3405. else if (key.type > 0)
  3406. key.type--;
  3407. else if (key.objectid > 0)
  3408. key.objectid--;
  3409. else
  3410. return 1;
  3411. btrfs_release_path(root, path);
  3412. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3413. if (ret < 0)
  3414. return ret;
  3415. btrfs_item_key(path->nodes[0], &found_key, 0);
  3416. ret = comp_keys(&found_key, &key);
  3417. if (ret < 0)
  3418. return 0;
  3419. return 1;
  3420. }
  3421. /*
  3422. * A helper function to walk down the tree starting at min_key, and looking
  3423. * for nodes or leaves that are either in cache or have a minimum
  3424. * transaction id. This is used by the btree defrag code, and tree logging
  3425. *
  3426. * This does not cow, but it does stuff the starting key it finds back
  3427. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3428. * key and get a writable path.
  3429. *
  3430. * This does lock as it descends, and path->keep_locks should be set
  3431. * to 1 by the caller.
  3432. *
  3433. * This honors path->lowest_level to prevent descent past a given level
  3434. * of the tree.
  3435. *
  3436. * min_trans indicates the oldest transaction that you are interested
  3437. * in walking through. Any nodes or leaves older than min_trans are
  3438. * skipped over (without reading them).
  3439. *
  3440. * returns zero if something useful was found, < 0 on error and 1 if there
  3441. * was nothing in the tree that matched the search criteria.
  3442. */
  3443. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3444. struct btrfs_key *max_key,
  3445. struct btrfs_path *path, int cache_only,
  3446. u64 min_trans)
  3447. {
  3448. struct extent_buffer *cur;
  3449. struct btrfs_key found_key;
  3450. int slot;
  3451. int sret;
  3452. u32 nritems;
  3453. int level;
  3454. int ret = 1;
  3455. WARN_ON(!path->keep_locks);
  3456. again:
  3457. cur = btrfs_lock_root_node(root);
  3458. level = btrfs_header_level(cur);
  3459. WARN_ON(path->nodes[level]);
  3460. path->nodes[level] = cur;
  3461. path->locks[level] = 1;
  3462. if (btrfs_header_generation(cur) < min_trans) {
  3463. ret = 1;
  3464. goto out;
  3465. }
  3466. while (1) {
  3467. nritems = btrfs_header_nritems(cur);
  3468. level = btrfs_header_level(cur);
  3469. sret = bin_search(cur, min_key, level, &slot);
  3470. /* at the lowest level, we're done, setup the path and exit */
  3471. if (level == path->lowest_level) {
  3472. if (slot >= nritems)
  3473. goto find_next_key;
  3474. ret = 0;
  3475. path->slots[level] = slot;
  3476. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3477. goto out;
  3478. }
  3479. if (sret && slot > 0)
  3480. slot--;
  3481. /*
  3482. * check this node pointer against the cache_only and
  3483. * min_trans parameters. If it isn't in cache or is too
  3484. * old, skip to the next one.
  3485. */
  3486. while (slot < nritems) {
  3487. u64 blockptr;
  3488. u64 gen;
  3489. struct extent_buffer *tmp;
  3490. struct btrfs_disk_key disk_key;
  3491. blockptr = btrfs_node_blockptr(cur, slot);
  3492. gen = btrfs_node_ptr_generation(cur, slot);
  3493. if (gen < min_trans) {
  3494. slot++;
  3495. continue;
  3496. }
  3497. if (!cache_only)
  3498. break;
  3499. if (max_key) {
  3500. btrfs_node_key(cur, &disk_key, slot);
  3501. if (comp_keys(&disk_key, max_key) >= 0) {
  3502. ret = 1;
  3503. goto out;
  3504. }
  3505. }
  3506. tmp = btrfs_find_tree_block(root, blockptr,
  3507. btrfs_level_size(root, level - 1));
  3508. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3509. free_extent_buffer(tmp);
  3510. break;
  3511. }
  3512. if (tmp)
  3513. free_extent_buffer(tmp);
  3514. slot++;
  3515. }
  3516. find_next_key:
  3517. /*
  3518. * we didn't find a candidate key in this node, walk forward
  3519. * and find another one
  3520. */
  3521. if (slot >= nritems) {
  3522. path->slots[level] = slot;
  3523. btrfs_set_path_blocking(path);
  3524. sret = btrfs_find_next_key(root, path, min_key, level,
  3525. cache_only, min_trans);
  3526. if (sret == 0) {
  3527. btrfs_release_path(root, path);
  3528. goto again;
  3529. } else {
  3530. goto out;
  3531. }
  3532. }
  3533. /* save our key for returning back */
  3534. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3535. path->slots[level] = slot;
  3536. if (level == path->lowest_level) {
  3537. ret = 0;
  3538. unlock_up(path, level, 1);
  3539. goto out;
  3540. }
  3541. btrfs_set_path_blocking(path);
  3542. cur = read_node_slot(root, cur, slot);
  3543. btrfs_tree_lock(cur);
  3544. path->locks[level - 1] = 1;
  3545. path->nodes[level - 1] = cur;
  3546. unlock_up(path, level, 1);
  3547. btrfs_clear_path_blocking(path, NULL);
  3548. }
  3549. out:
  3550. if (ret == 0)
  3551. memcpy(min_key, &found_key, sizeof(found_key));
  3552. btrfs_set_path_blocking(path);
  3553. return ret;
  3554. }
  3555. /*
  3556. * this is similar to btrfs_next_leaf, but does not try to preserve
  3557. * and fixup the path. It looks for and returns the next key in the
  3558. * tree based on the current path and the cache_only and min_trans
  3559. * parameters.
  3560. *
  3561. * 0 is returned if another key is found, < 0 if there are any errors
  3562. * and 1 is returned if there are no higher keys in the tree
  3563. *
  3564. * path->keep_locks should be set to 1 on the search made before
  3565. * calling this function.
  3566. */
  3567. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3568. struct btrfs_key *key, int level,
  3569. int cache_only, u64 min_trans)
  3570. {
  3571. int slot;
  3572. struct extent_buffer *c;
  3573. WARN_ON(!path->keep_locks);
  3574. while (level < BTRFS_MAX_LEVEL) {
  3575. if (!path->nodes[level])
  3576. return 1;
  3577. slot = path->slots[level] + 1;
  3578. c = path->nodes[level];
  3579. next:
  3580. if (slot >= btrfs_header_nritems(c)) {
  3581. int ret;
  3582. int orig_lowest;
  3583. struct btrfs_key cur_key;
  3584. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3585. !path->nodes[level + 1])
  3586. return 1;
  3587. if (path->locks[level + 1]) {
  3588. level++;
  3589. continue;
  3590. }
  3591. slot = btrfs_header_nritems(c) - 1;
  3592. if (level == 0)
  3593. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3594. else
  3595. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3596. orig_lowest = path->lowest_level;
  3597. btrfs_release_path(root, path);
  3598. path->lowest_level = level;
  3599. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3600. 0, 0);
  3601. path->lowest_level = orig_lowest;
  3602. if (ret < 0)
  3603. return ret;
  3604. c = path->nodes[level];
  3605. slot = path->slots[level];
  3606. if (ret == 0)
  3607. slot++;
  3608. goto next;
  3609. }
  3610. if (level == 0)
  3611. btrfs_item_key_to_cpu(c, key, slot);
  3612. else {
  3613. u64 blockptr = btrfs_node_blockptr(c, slot);
  3614. u64 gen = btrfs_node_ptr_generation(c, slot);
  3615. if (cache_only) {
  3616. struct extent_buffer *cur;
  3617. cur = btrfs_find_tree_block(root, blockptr,
  3618. btrfs_level_size(root, level - 1));
  3619. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3620. slot++;
  3621. if (cur)
  3622. free_extent_buffer(cur);
  3623. goto next;
  3624. }
  3625. free_extent_buffer(cur);
  3626. }
  3627. if (gen < min_trans) {
  3628. slot++;
  3629. goto next;
  3630. }
  3631. btrfs_node_key_to_cpu(c, key, slot);
  3632. }
  3633. return 0;
  3634. }
  3635. return 1;
  3636. }
  3637. /*
  3638. * search the tree again to find a leaf with greater keys
  3639. * returns 0 if it found something or 1 if there are no greater leaves.
  3640. * returns < 0 on io errors.
  3641. */
  3642. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3643. {
  3644. int slot;
  3645. int level;
  3646. struct extent_buffer *c;
  3647. struct extent_buffer *next;
  3648. struct btrfs_key key;
  3649. u32 nritems;
  3650. int ret;
  3651. int old_spinning = path->leave_spinning;
  3652. int force_blocking = 0;
  3653. nritems = btrfs_header_nritems(path->nodes[0]);
  3654. if (nritems == 0)
  3655. return 1;
  3656. /*
  3657. * we take the blocks in an order that upsets lockdep. Using
  3658. * blocking mode is the only way around it.
  3659. */
  3660. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3661. force_blocking = 1;
  3662. #endif
  3663. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3664. again:
  3665. level = 1;
  3666. next = NULL;
  3667. btrfs_release_path(root, path);
  3668. path->keep_locks = 1;
  3669. if (!force_blocking)
  3670. path->leave_spinning = 1;
  3671. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3672. path->keep_locks = 0;
  3673. if (ret < 0)
  3674. return ret;
  3675. nritems = btrfs_header_nritems(path->nodes[0]);
  3676. /*
  3677. * by releasing the path above we dropped all our locks. A balance
  3678. * could have added more items next to the key that used to be
  3679. * at the very end of the block. So, check again here and
  3680. * advance the path if there are now more items available.
  3681. */
  3682. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3683. if (ret == 0)
  3684. path->slots[0]++;
  3685. ret = 0;
  3686. goto done;
  3687. }
  3688. while (level < BTRFS_MAX_LEVEL) {
  3689. if (!path->nodes[level]) {
  3690. ret = 1;
  3691. goto done;
  3692. }
  3693. slot = path->slots[level] + 1;
  3694. c = path->nodes[level];
  3695. if (slot >= btrfs_header_nritems(c)) {
  3696. level++;
  3697. if (level == BTRFS_MAX_LEVEL) {
  3698. ret = 1;
  3699. goto done;
  3700. }
  3701. continue;
  3702. }
  3703. if (next) {
  3704. btrfs_tree_unlock(next);
  3705. free_extent_buffer(next);
  3706. }
  3707. next = c;
  3708. ret = read_block_for_search(NULL, root, path, &next, level,
  3709. slot, &key);
  3710. if (ret == -EAGAIN)
  3711. goto again;
  3712. if (ret < 0) {
  3713. btrfs_release_path(root, path);
  3714. goto done;
  3715. }
  3716. if (!path->skip_locking) {
  3717. ret = btrfs_try_spin_lock(next);
  3718. if (!ret) {
  3719. btrfs_set_path_blocking(path);
  3720. btrfs_tree_lock(next);
  3721. if (!force_blocking)
  3722. btrfs_clear_path_blocking(path, next);
  3723. }
  3724. if (force_blocking)
  3725. btrfs_set_lock_blocking(next);
  3726. }
  3727. break;
  3728. }
  3729. path->slots[level] = slot;
  3730. while (1) {
  3731. level--;
  3732. c = path->nodes[level];
  3733. if (path->locks[level])
  3734. btrfs_tree_unlock(c);
  3735. free_extent_buffer(c);
  3736. path->nodes[level] = next;
  3737. path->slots[level] = 0;
  3738. if (!path->skip_locking)
  3739. path->locks[level] = 1;
  3740. if (!level)
  3741. break;
  3742. ret = read_block_for_search(NULL, root, path, &next, level,
  3743. 0, &key);
  3744. if (ret == -EAGAIN)
  3745. goto again;
  3746. if (ret < 0) {
  3747. btrfs_release_path(root, path);
  3748. goto done;
  3749. }
  3750. if (!path->skip_locking) {
  3751. btrfs_assert_tree_locked(path->nodes[level]);
  3752. ret = btrfs_try_spin_lock(next);
  3753. if (!ret) {
  3754. btrfs_set_path_blocking(path);
  3755. btrfs_tree_lock(next);
  3756. if (!force_blocking)
  3757. btrfs_clear_path_blocking(path, next);
  3758. }
  3759. if (force_blocking)
  3760. btrfs_set_lock_blocking(next);
  3761. }
  3762. }
  3763. ret = 0;
  3764. done:
  3765. unlock_up(path, 0, 1);
  3766. path->leave_spinning = old_spinning;
  3767. if (!old_spinning)
  3768. btrfs_set_path_blocking(path);
  3769. return ret;
  3770. }
  3771. /*
  3772. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3773. * searching until it gets past min_objectid or finds an item of 'type'
  3774. *
  3775. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3776. */
  3777. int btrfs_previous_item(struct btrfs_root *root,
  3778. struct btrfs_path *path, u64 min_objectid,
  3779. int type)
  3780. {
  3781. struct btrfs_key found_key;
  3782. struct extent_buffer *leaf;
  3783. u32 nritems;
  3784. int ret;
  3785. while (1) {
  3786. if (path->slots[0] == 0) {
  3787. btrfs_set_path_blocking(path);
  3788. ret = btrfs_prev_leaf(root, path);
  3789. if (ret != 0)
  3790. return ret;
  3791. } else {
  3792. path->slots[0]--;
  3793. }
  3794. leaf = path->nodes[0];
  3795. nritems = btrfs_header_nritems(leaf);
  3796. if (nritems == 0)
  3797. return 1;
  3798. if (path->slots[0] == nritems)
  3799. path->slots[0]--;
  3800. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3801. if (found_key.objectid < min_objectid)
  3802. break;
  3803. if (found_key.type == type)
  3804. return 0;
  3805. if (found_key.objectid == min_objectid &&
  3806. found_key.type < type)
  3807. break;
  3808. }
  3809. return 1;
  3810. }