aio.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/uio.h>
  19. #define DEBUG 0
  20. #include <linux/sched.h>
  21. #include <linux/fs.h>
  22. #include <linux/file.h>
  23. #include <linux/mm.h>
  24. #include <linux/mman.h>
  25. #include <linux/mmu_context.h>
  26. #include <linux/slab.h>
  27. #include <linux/timer.h>
  28. #include <linux/aio.h>
  29. #include <linux/highmem.h>
  30. #include <linux/workqueue.h>
  31. #include <linux/security.h>
  32. #include <linux/eventfd.h>
  33. #include <asm/kmap_types.h>
  34. #include <asm/uaccess.h>
  35. #if DEBUG > 1
  36. #define dprintk printk
  37. #else
  38. #define dprintk(x...) do { ; } while (0)
  39. #endif
  40. /*------ sysctl variables----*/
  41. static DEFINE_SPINLOCK(aio_nr_lock);
  42. unsigned long aio_nr; /* current system wide number of aio requests */
  43. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  44. /*----end sysctl variables---*/
  45. static struct kmem_cache *kiocb_cachep;
  46. static struct kmem_cache *kioctx_cachep;
  47. static struct workqueue_struct *aio_wq;
  48. /* Used for rare fput completion. */
  49. static void aio_fput_routine(struct work_struct *);
  50. static DECLARE_WORK(fput_work, aio_fput_routine);
  51. static DEFINE_SPINLOCK(fput_lock);
  52. static LIST_HEAD(fput_head);
  53. static void aio_kick_handler(struct work_struct *);
  54. static void aio_queue_work(struct kioctx *);
  55. /* aio_setup
  56. * Creates the slab caches used by the aio routines, panic on
  57. * failure as this is done early during the boot sequence.
  58. */
  59. static int __init aio_setup(void)
  60. {
  61. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  62. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  63. aio_wq = create_workqueue("aio");
  64. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  65. return 0;
  66. }
  67. static void aio_free_ring(struct kioctx *ctx)
  68. {
  69. struct aio_ring_info *info = &ctx->ring_info;
  70. long i;
  71. for (i=0; i<info->nr_pages; i++)
  72. put_page(info->ring_pages[i]);
  73. if (info->mmap_size) {
  74. down_write(&ctx->mm->mmap_sem);
  75. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  76. up_write(&ctx->mm->mmap_sem);
  77. }
  78. if (info->ring_pages && info->ring_pages != info->internal_pages)
  79. kfree(info->ring_pages);
  80. info->ring_pages = NULL;
  81. info->nr = 0;
  82. }
  83. static int aio_setup_ring(struct kioctx *ctx)
  84. {
  85. struct aio_ring *ring;
  86. struct aio_ring_info *info = &ctx->ring_info;
  87. unsigned nr_events = ctx->max_reqs;
  88. unsigned long size;
  89. int nr_pages;
  90. /* Compensate for the ring buffer's head/tail overlap entry */
  91. nr_events += 2; /* 1 is required, 2 for good luck */
  92. size = sizeof(struct aio_ring);
  93. size += sizeof(struct io_event) * nr_events;
  94. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  95. if (nr_pages < 0)
  96. return -EINVAL;
  97. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  98. info->nr = 0;
  99. info->ring_pages = info->internal_pages;
  100. if (nr_pages > AIO_RING_PAGES) {
  101. info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  102. if (!info->ring_pages)
  103. return -ENOMEM;
  104. }
  105. info->mmap_size = nr_pages * PAGE_SIZE;
  106. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  107. down_write(&ctx->mm->mmap_sem);
  108. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  109. PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
  110. 0);
  111. if (IS_ERR((void *)info->mmap_base)) {
  112. up_write(&ctx->mm->mmap_sem);
  113. info->mmap_size = 0;
  114. aio_free_ring(ctx);
  115. return -EAGAIN;
  116. }
  117. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  118. info->nr_pages = get_user_pages(current, ctx->mm,
  119. info->mmap_base, nr_pages,
  120. 1, 0, info->ring_pages, NULL);
  121. up_write(&ctx->mm->mmap_sem);
  122. if (unlikely(info->nr_pages != nr_pages)) {
  123. aio_free_ring(ctx);
  124. return -EAGAIN;
  125. }
  126. ctx->user_id = info->mmap_base;
  127. info->nr = nr_events; /* trusted copy */
  128. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  129. ring->nr = nr_events; /* user copy */
  130. ring->id = ctx->user_id;
  131. ring->head = ring->tail = 0;
  132. ring->magic = AIO_RING_MAGIC;
  133. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  134. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  135. ring->header_length = sizeof(struct aio_ring);
  136. kunmap_atomic(ring, KM_USER0);
  137. return 0;
  138. }
  139. /* aio_ring_event: returns a pointer to the event at the given index from
  140. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  141. */
  142. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  143. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  144. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  145. #define aio_ring_event(info, nr, km) ({ \
  146. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  147. struct io_event *__event; \
  148. __event = kmap_atomic( \
  149. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  150. __event += pos % AIO_EVENTS_PER_PAGE; \
  151. __event; \
  152. })
  153. #define put_aio_ring_event(event, km) do { \
  154. struct io_event *__event = (event); \
  155. (void)__event; \
  156. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  157. } while(0)
  158. static void ctx_rcu_free(struct rcu_head *head)
  159. {
  160. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  161. unsigned nr_events = ctx->max_reqs;
  162. kmem_cache_free(kioctx_cachep, ctx);
  163. if (nr_events) {
  164. spin_lock(&aio_nr_lock);
  165. BUG_ON(aio_nr - nr_events > aio_nr);
  166. aio_nr -= nr_events;
  167. spin_unlock(&aio_nr_lock);
  168. }
  169. }
  170. /* __put_ioctx
  171. * Called when the last user of an aio context has gone away,
  172. * and the struct needs to be freed.
  173. */
  174. static void __put_ioctx(struct kioctx *ctx)
  175. {
  176. BUG_ON(ctx->reqs_active);
  177. cancel_delayed_work(&ctx->wq);
  178. cancel_work_sync(&ctx->wq.work);
  179. aio_free_ring(ctx);
  180. mmdrop(ctx->mm);
  181. ctx->mm = NULL;
  182. pr_debug("__put_ioctx: freeing %p\n", ctx);
  183. call_rcu(&ctx->rcu_head, ctx_rcu_free);
  184. }
  185. #define get_ioctx(kioctx) do { \
  186. BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
  187. atomic_inc(&(kioctx)->users); \
  188. } while (0)
  189. #define put_ioctx(kioctx) do { \
  190. BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
  191. if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
  192. __put_ioctx(kioctx); \
  193. } while (0)
  194. /* ioctx_alloc
  195. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  196. */
  197. static struct kioctx *ioctx_alloc(unsigned nr_events)
  198. {
  199. struct mm_struct *mm;
  200. struct kioctx *ctx;
  201. int did_sync = 0;
  202. /* Prevent overflows */
  203. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  204. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  205. pr_debug("ENOMEM: nr_events too high\n");
  206. return ERR_PTR(-EINVAL);
  207. }
  208. if ((unsigned long)nr_events > aio_max_nr)
  209. return ERR_PTR(-EAGAIN);
  210. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  211. if (!ctx)
  212. return ERR_PTR(-ENOMEM);
  213. ctx->max_reqs = nr_events;
  214. mm = ctx->mm = current->mm;
  215. atomic_inc(&mm->mm_count);
  216. atomic_set(&ctx->users, 1);
  217. spin_lock_init(&ctx->ctx_lock);
  218. spin_lock_init(&ctx->ring_info.ring_lock);
  219. init_waitqueue_head(&ctx->wait);
  220. INIT_LIST_HEAD(&ctx->active_reqs);
  221. INIT_LIST_HEAD(&ctx->run_list);
  222. INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
  223. if (aio_setup_ring(ctx) < 0)
  224. goto out_freectx;
  225. /* limit the number of system wide aios */
  226. do {
  227. spin_lock_bh(&aio_nr_lock);
  228. if (aio_nr + nr_events > aio_max_nr ||
  229. aio_nr + nr_events < aio_nr)
  230. ctx->max_reqs = 0;
  231. else
  232. aio_nr += ctx->max_reqs;
  233. spin_unlock_bh(&aio_nr_lock);
  234. if (ctx->max_reqs || did_sync)
  235. break;
  236. /* wait for rcu callbacks to have completed before giving up */
  237. synchronize_rcu();
  238. did_sync = 1;
  239. ctx->max_reqs = nr_events;
  240. } while (1);
  241. if (ctx->max_reqs == 0)
  242. goto out_cleanup;
  243. /* now link into global list. */
  244. spin_lock(&mm->ioctx_lock);
  245. hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
  246. spin_unlock(&mm->ioctx_lock);
  247. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  248. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  249. return ctx;
  250. out_cleanup:
  251. __put_ioctx(ctx);
  252. return ERR_PTR(-EAGAIN);
  253. out_freectx:
  254. mmdrop(mm);
  255. kmem_cache_free(kioctx_cachep, ctx);
  256. ctx = ERR_PTR(-ENOMEM);
  257. dprintk("aio: error allocating ioctx %p\n", ctx);
  258. return ctx;
  259. }
  260. /* aio_cancel_all
  261. * Cancels all outstanding aio requests on an aio context. Used
  262. * when the processes owning a context have all exited to encourage
  263. * the rapid destruction of the kioctx.
  264. */
  265. static void aio_cancel_all(struct kioctx *ctx)
  266. {
  267. int (*cancel)(struct kiocb *, struct io_event *);
  268. struct io_event res;
  269. spin_lock_irq(&ctx->ctx_lock);
  270. ctx->dead = 1;
  271. while (!list_empty(&ctx->active_reqs)) {
  272. struct list_head *pos = ctx->active_reqs.next;
  273. struct kiocb *iocb = list_kiocb(pos);
  274. list_del_init(&iocb->ki_list);
  275. cancel = iocb->ki_cancel;
  276. kiocbSetCancelled(iocb);
  277. if (cancel) {
  278. iocb->ki_users++;
  279. spin_unlock_irq(&ctx->ctx_lock);
  280. cancel(iocb, &res);
  281. spin_lock_irq(&ctx->ctx_lock);
  282. }
  283. }
  284. spin_unlock_irq(&ctx->ctx_lock);
  285. }
  286. static void wait_for_all_aios(struct kioctx *ctx)
  287. {
  288. struct task_struct *tsk = current;
  289. DECLARE_WAITQUEUE(wait, tsk);
  290. spin_lock_irq(&ctx->ctx_lock);
  291. if (!ctx->reqs_active)
  292. goto out;
  293. add_wait_queue(&ctx->wait, &wait);
  294. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  295. while (ctx->reqs_active) {
  296. spin_unlock_irq(&ctx->ctx_lock);
  297. io_schedule();
  298. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  299. spin_lock_irq(&ctx->ctx_lock);
  300. }
  301. __set_task_state(tsk, TASK_RUNNING);
  302. remove_wait_queue(&ctx->wait, &wait);
  303. out:
  304. spin_unlock_irq(&ctx->ctx_lock);
  305. }
  306. /* wait_on_sync_kiocb:
  307. * Waits on the given sync kiocb to complete.
  308. */
  309. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  310. {
  311. while (iocb->ki_users) {
  312. set_current_state(TASK_UNINTERRUPTIBLE);
  313. if (!iocb->ki_users)
  314. break;
  315. io_schedule();
  316. }
  317. __set_current_state(TASK_RUNNING);
  318. return iocb->ki_user_data;
  319. }
  320. /* exit_aio: called when the last user of mm goes away. At this point,
  321. * there is no way for any new requests to be submited or any of the
  322. * io_* syscalls to be called on the context. However, there may be
  323. * outstanding requests which hold references to the context; as they
  324. * go away, they will call put_ioctx and release any pinned memory
  325. * associated with the request (held via struct page * references).
  326. */
  327. void exit_aio(struct mm_struct *mm)
  328. {
  329. struct kioctx *ctx;
  330. while (!hlist_empty(&mm->ioctx_list)) {
  331. ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
  332. hlist_del_rcu(&ctx->list);
  333. aio_cancel_all(ctx);
  334. wait_for_all_aios(ctx);
  335. /*
  336. * Ensure we don't leave the ctx on the aio_wq
  337. */
  338. cancel_work_sync(&ctx->wq.work);
  339. if (1 != atomic_read(&ctx->users))
  340. printk(KERN_DEBUG
  341. "exit_aio:ioctx still alive: %d %d %d\n",
  342. atomic_read(&ctx->users), ctx->dead,
  343. ctx->reqs_active);
  344. put_ioctx(ctx);
  345. }
  346. }
  347. /* aio_get_req
  348. * Allocate a slot for an aio request. Increments the users count
  349. * of the kioctx so that the kioctx stays around until all requests are
  350. * complete. Returns NULL if no requests are free.
  351. *
  352. * Returns with kiocb->users set to 2. The io submit code path holds
  353. * an extra reference while submitting the i/o.
  354. * This prevents races between the aio code path referencing the
  355. * req (after submitting it) and aio_complete() freeing the req.
  356. */
  357. static struct kiocb *__aio_get_req(struct kioctx *ctx)
  358. {
  359. struct kiocb *req = NULL;
  360. struct aio_ring *ring;
  361. int okay = 0;
  362. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  363. if (unlikely(!req))
  364. return NULL;
  365. req->ki_flags = 0;
  366. req->ki_users = 2;
  367. req->ki_key = 0;
  368. req->ki_ctx = ctx;
  369. req->ki_cancel = NULL;
  370. req->ki_retry = NULL;
  371. req->ki_dtor = NULL;
  372. req->private = NULL;
  373. req->ki_iovec = NULL;
  374. INIT_LIST_HEAD(&req->ki_run_list);
  375. req->ki_eventfd = NULL;
  376. /* Check if the completion queue has enough free space to
  377. * accept an event from this io.
  378. */
  379. spin_lock_irq(&ctx->ctx_lock);
  380. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  381. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  382. list_add(&req->ki_list, &ctx->active_reqs);
  383. ctx->reqs_active++;
  384. okay = 1;
  385. }
  386. kunmap_atomic(ring, KM_USER0);
  387. spin_unlock_irq(&ctx->ctx_lock);
  388. if (!okay) {
  389. kmem_cache_free(kiocb_cachep, req);
  390. req = NULL;
  391. }
  392. return req;
  393. }
  394. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  395. {
  396. struct kiocb *req;
  397. /* Handle a potential starvation case -- should be exceedingly rare as
  398. * requests will be stuck on fput_head only if the aio_fput_routine is
  399. * delayed and the requests were the last user of the struct file.
  400. */
  401. req = __aio_get_req(ctx);
  402. if (unlikely(NULL == req)) {
  403. aio_fput_routine(NULL);
  404. req = __aio_get_req(ctx);
  405. }
  406. return req;
  407. }
  408. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  409. {
  410. assert_spin_locked(&ctx->ctx_lock);
  411. if (req->ki_eventfd != NULL)
  412. eventfd_ctx_put(req->ki_eventfd);
  413. if (req->ki_dtor)
  414. req->ki_dtor(req);
  415. if (req->ki_iovec != &req->ki_inline_vec)
  416. kfree(req->ki_iovec);
  417. kmem_cache_free(kiocb_cachep, req);
  418. ctx->reqs_active--;
  419. if (unlikely(!ctx->reqs_active && ctx->dead))
  420. wake_up(&ctx->wait);
  421. }
  422. static void aio_fput_routine(struct work_struct *data)
  423. {
  424. spin_lock_irq(&fput_lock);
  425. while (likely(!list_empty(&fput_head))) {
  426. struct kiocb *req = list_kiocb(fput_head.next);
  427. struct kioctx *ctx = req->ki_ctx;
  428. list_del(&req->ki_list);
  429. spin_unlock_irq(&fput_lock);
  430. /* Complete the fput(s) */
  431. if (req->ki_filp != NULL)
  432. __fput(req->ki_filp);
  433. /* Link the iocb into the context's free list */
  434. spin_lock_irq(&ctx->ctx_lock);
  435. really_put_req(ctx, req);
  436. spin_unlock_irq(&ctx->ctx_lock);
  437. put_ioctx(ctx);
  438. spin_lock_irq(&fput_lock);
  439. }
  440. spin_unlock_irq(&fput_lock);
  441. }
  442. /* __aio_put_req
  443. * Returns true if this put was the last user of the request.
  444. */
  445. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  446. {
  447. dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
  448. req, atomic_long_read(&req->ki_filp->f_count));
  449. assert_spin_locked(&ctx->ctx_lock);
  450. req->ki_users--;
  451. BUG_ON(req->ki_users < 0);
  452. if (likely(req->ki_users))
  453. return 0;
  454. list_del(&req->ki_list); /* remove from active_reqs */
  455. req->ki_cancel = NULL;
  456. req->ki_retry = NULL;
  457. /*
  458. * Try to optimize the aio and eventfd file* puts, by avoiding to
  459. * schedule work in case it is not __fput() time. In normal cases,
  460. * we would not be holding the last reference to the file*, so
  461. * this function will be executed w/out any aio kthread wakeup.
  462. */
  463. if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
  464. get_ioctx(ctx);
  465. spin_lock(&fput_lock);
  466. list_add(&req->ki_list, &fput_head);
  467. spin_unlock(&fput_lock);
  468. queue_work(aio_wq, &fput_work);
  469. } else {
  470. req->ki_filp = NULL;
  471. really_put_req(ctx, req);
  472. }
  473. return 1;
  474. }
  475. /* aio_put_req
  476. * Returns true if this put was the last user of the kiocb,
  477. * false if the request is still in use.
  478. */
  479. int aio_put_req(struct kiocb *req)
  480. {
  481. struct kioctx *ctx = req->ki_ctx;
  482. int ret;
  483. spin_lock_irq(&ctx->ctx_lock);
  484. ret = __aio_put_req(ctx, req);
  485. spin_unlock_irq(&ctx->ctx_lock);
  486. return ret;
  487. }
  488. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  489. {
  490. struct mm_struct *mm = current->mm;
  491. struct kioctx *ctx, *ret = NULL;
  492. struct hlist_node *n;
  493. rcu_read_lock();
  494. hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
  495. if (ctx->user_id == ctx_id && !ctx->dead) {
  496. get_ioctx(ctx);
  497. ret = ctx;
  498. break;
  499. }
  500. }
  501. rcu_read_unlock();
  502. return ret;
  503. }
  504. /*
  505. * Queue up a kiocb to be retried. Assumes that the kiocb
  506. * has already been marked as kicked, and places it on
  507. * the retry run list for the corresponding ioctx, if it
  508. * isn't already queued. Returns 1 if it actually queued
  509. * the kiocb (to tell the caller to activate the work
  510. * queue to process it), or 0, if it found that it was
  511. * already queued.
  512. */
  513. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  514. {
  515. struct kioctx *ctx = iocb->ki_ctx;
  516. assert_spin_locked(&ctx->ctx_lock);
  517. if (list_empty(&iocb->ki_run_list)) {
  518. list_add_tail(&iocb->ki_run_list,
  519. &ctx->run_list);
  520. return 1;
  521. }
  522. return 0;
  523. }
  524. /* aio_run_iocb
  525. * This is the core aio execution routine. It is
  526. * invoked both for initial i/o submission and
  527. * subsequent retries via the aio_kick_handler.
  528. * Expects to be invoked with iocb->ki_ctx->lock
  529. * already held. The lock is released and reacquired
  530. * as needed during processing.
  531. *
  532. * Calls the iocb retry method (already setup for the
  533. * iocb on initial submission) for operation specific
  534. * handling, but takes care of most of common retry
  535. * execution details for a given iocb. The retry method
  536. * needs to be non-blocking as far as possible, to avoid
  537. * holding up other iocbs waiting to be serviced by the
  538. * retry kernel thread.
  539. *
  540. * The trickier parts in this code have to do with
  541. * ensuring that only one retry instance is in progress
  542. * for a given iocb at any time. Providing that guarantee
  543. * simplifies the coding of individual aio operations as
  544. * it avoids various potential races.
  545. */
  546. static ssize_t aio_run_iocb(struct kiocb *iocb)
  547. {
  548. struct kioctx *ctx = iocb->ki_ctx;
  549. ssize_t (*retry)(struct kiocb *);
  550. ssize_t ret;
  551. if (!(retry = iocb->ki_retry)) {
  552. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  553. return 0;
  554. }
  555. /*
  556. * We don't want the next retry iteration for this
  557. * operation to start until this one has returned and
  558. * updated the iocb state. However, wait_queue functions
  559. * can trigger a kick_iocb from interrupt context in the
  560. * meantime, indicating that data is available for the next
  561. * iteration. We want to remember that and enable the
  562. * next retry iteration _after_ we are through with
  563. * this one.
  564. *
  565. * So, in order to be able to register a "kick", but
  566. * prevent it from being queued now, we clear the kick
  567. * flag, but make the kick code *think* that the iocb is
  568. * still on the run list until we are actually done.
  569. * When we are done with this iteration, we check if
  570. * the iocb was kicked in the meantime and if so, queue
  571. * it up afresh.
  572. */
  573. kiocbClearKicked(iocb);
  574. /*
  575. * This is so that aio_complete knows it doesn't need to
  576. * pull the iocb off the run list (We can't just call
  577. * INIT_LIST_HEAD because we don't want a kick_iocb to
  578. * queue this on the run list yet)
  579. */
  580. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  581. spin_unlock_irq(&ctx->ctx_lock);
  582. /* Quit retrying if the i/o has been cancelled */
  583. if (kiocbIsCancelled(iocb)) {
  584. ret = -EINTR;
  585. aio_complete(iocb, ret, 0);
  586. /* must not access the iocb after this */
  587. goto out;
  588. }
  589. /*
  590. * Now we are all set to call the retry method in async
  591. * context.
  592. */
  593. ret = retry(iocb);
  594. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
  595. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  596. aio_complete(iocb, ret, 0);
  597. }
  598. out:
  599. spin_lock_irq(&ctx->ctx_lock);
  600. if (-EIOCBRETRY == ret) {
  601. /*
  602. * OK, now that we are done with this iteration
  603. * and know that there is more left to go,
  604. * this is where we let go so that a subsequent
  605. * "kick" can start the next iteration
  606. */
  607. /* will make __queue_kicked_iocb succeed from here on */
  608. INIT_LIST_HEAD(&iocb->ki_run_list);
  609. /* we must queue the next iteration ourselves, if it
  610. * has already been kicked */
  611. if (kiocbIsKicked(iocb)) {
  612. __queue_kicked_iocb(iocb);
  613. /*
  614. * __queue_kicked_iocb will always return 1 here, because
  615. * iocb->ki_run_list is empty at this point so it should
  616. * be safe to unconditionally queue the context into the
  617. * work queue.
  618. */
  619. aio_queue_work(ctx);
  620. }
  621. }
  622. return ret;
  623. }
  624. /*
  625. * __aio_run_iocbs:
  626. * Process all pending retries queued on the ioctx
  627. * run list.
  628. * Assumes it is operating within the aio issuer's mm
  629. * context.
  630. */
  631. static int __aio_run_iocbs(struct kioctx *ctx)
  632. {
  633. struct kiocb *iocb;
  634. struct list_head run_list;
  635. assert_spin_locked(&ctx->ctx_lock);
  636. list_replace_init(&ctx->run_list, &run_list);
  637. while (!list_empty(&run_list)) {
  638. iocb = list_entry(run_list.next, struct kiocb,
  639. ki_run_list);
  640. list_del(&iocb->ki_run_list);
  641. /*
  642. * Hold an extra reference while retrying i/o.
  643. */
  644. iocb->ki_users++; /* grab extra reference */
  645. aio_run_iocb(iocb);
  646. __aio_put_req(ctx, iocb);
  647. }
  648. if (!list_empty(&ctx->run_list))
  649. return 1;
  650. return 0;
  651. }
  652. static void aio_queue_work(struct kioctx * ctx)
  653. {
  654. unsigned long timeout;
  655. /*
  656. * if someone is waiting, get the work started right
  657. * away, otherwise, use a longer delay
  658. */
  659. smp_mb();
  660. if (waitqueue_active(&ctx->wait))
  661. timeout = 1;
  662. else
  663. timeout = HZ/10;
  664. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  665. }
  666. /*
  667. * aio_run_iocbs:
  668. * Process all pending retries queued on the ioctx
  669. * run list.
  670. * Assumes it is operating within the aio issuer's mm
  671. * context.
  672. */
  673. static inline void aio_run_iocbs(struct kioctx *ctx)
  674. {
  675. int requeue;
  676. spin_lock_irq(&ctx->ctx_lock);
  677. requeue = __aio_run_iocbs(ctx);
  678. spin_unlock_irq(&ctx->ctx_lock);
  679. if (requeue)
  680. aio_queue_work(ctx);
  681. }
  682. /*
  683. * just like aio_run_iocbs, but keeps running them until
  684. * the list stays empty
  685. */
  686. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  687. {
  688. spin_lock_irq(&ctx->ctx_lock);
  689. while (__aio_run_iocbs(ctx))
  690. ;
  691. spin_unlock_irq(&ctx->ctx_lock);
  692. }
  693. /*
  694. * aio_kick_handler:
  695. * Work queue handler triggered to process pending
  696. * retries on an ioctx. Takes on the aio issuer's
  697. * mm context before running the iocbs, so that
  698. * copy_xxx_user operates on the issuer's address
  699. * space.
  700. * Run on aiod's context.
  701. */
  702. static void aio_kick_handler(struct work_struct *work)
  703. {
  704. struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
  705. mm_segment_t oldfs = get_fs();
  706. struct mm_struct *mm;
  707. int requeue;
  708. set_fs(USER_DS);
  709. use_mm(ctx->mm);
  710. spin_lock_irq(&ctx->ctx_lock);
  711. requeue =__aio_run_iocbs(ctx);
  712. mm = ctx->mm;
  713. spin_unlock_irq(&ctx->ctx_lock);
  714. unuse_mm(mm);
  715. set_fs(oldfs);
  716. /*
  717. * we're in a worker thread already, don't use queue_delayed_work,
  718. */
  719. if (requeue)
  720. queue_delayed_work(aio_wq, &ctx->wq, 0);
  721. }
  722. /*
  723. * Called by kick_iocb to queue the kiocb for retry
  724. * and if required activate the aio work queue to process
  725. * it
  726. */
  727. static void try_queue_kicked_iocb(struct kiocb *iocb)
  728. {
  729. struct kioctx *ctx = iocb->ki_ctx;
  730. unsigned long flags;
  731. int run = 0;
  732. /* We're supposed to be the only path putting the iocb back on the run
  733. * list. If we find that the iocb is *back* on a wait queue already
  734. * than retry has happened before we could queue the iocb. This also
  735. * means that the retry could have completed and freed our iocb, no
  736. * good. */
  737. BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
  738. spin_lock_irqsave(&ctx->ctx_lock, flags);
  739. /* set this inside the lock so that we can't race with aio_run_iocb()
  740. * testing it and putting the iocb on the run list under the lock */
  741. if (!kiocbTryKick(iocb))
  742. run = __queue_kicked_iocb(iocb);
  743. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  744. if (run)
  745. aio_queue_work(ctx);
  746. }
  747. /*
  748. * kick_iocb:
  749. * Called typically from a wait queue callback context
  750. * (aio_wake_function) to trigger a retry of the iocb.
  751. * The retry is usually executed by aio workqueue
  752. * threads (See aio_kick_handler).
  753. */
  754. void kick_iocb(struct kiocb *iocb)
  755. {
  756. /* sync iocbs are easy: they can only ever be executing from a
  757. * single context. */
  758. if (is_sync_kiocb(iocb)) {
  759. kiocbSetKicked(iocb);
  760. wake_up_process(iocb->ki_obj.tsk);
  761. return;
  762. }
  763. try_queue_kicked_iocb(iocb);
  764. }
  765. EXPORT_SYMBOL(kick_iocb);
  766. /* aio_complete
  767. * Called when the io request on the given iocb is complete.
  768. * Returns true if this is the last user of the request. The
  769. * only other user of the request can be the cancellation code.
  770. */
  771. int aio_complete(struct kiocb *iocb, long res, long res2)
  772. {
  773. struct kioctx *ctx = iocb->ki_ctx;
  774. struct aio_ring_info *info;
  775. struct aio_ring *ring;
  776. struct io_event *event;
  777. unsigned long flags;
  778. unsigned long tail;
  779. int ret;
  780. /*
  781. * Special case handling for sync iocbs:
  782. * - events go directly into the iocb for fast handling
  783. * - the sync task with the iocb in its stack holds the single iocb
  784. * ref, no other paths have a way to get another ref
  785. * - the sync task helpfully left a reference to itself in the iocb
  786. */
  787. if (is_sync_kiocb(iocb)) {
  788. BUG_ON(iocb->ki_users != 1);
  789. iocb->ki_user_data = res;
  790. iocb->ki_users = 0;
  791. wake_up_process(iocb->ki_obj.tsk);
  792. return 1;
  793. }
  794. info = &ctx->ring_info;
  795. /* add a completion event to the ring buffer.
  796. * must be done holding ctx->ctx_lock to prevent
  797. * other code from messing with the tail
  798. * pointer since we might be called from irq
  799. * context.
  800. */
  801. spin_lock_irqsave(&ctx->ctx_lock, flags);
  802. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  803. list_del_init(&iocb->ki_run_list);
  804. /*
  805. * cancelled requests don't get events, userland was given one
  806. * when the event got cancelled.
  807. */
  808. if (kiocbIsCancelled(iocb))
  809. goto put_rq;
  810. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  811. tail = info->tail;
  812. event = aio_ring_event(info, tail, KM_IRQ0);
  813. if (++tail >= info->nr)
  814. tail = 0;
  815. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  816. event->data = iocb->ki_user_data;
  817. event->res = res;
  818. event->res2 = res2;
  819. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  820. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  821. res, res2);
  822. /* after flagging the request as done, we
  823. * must never even look at it again
  824. */
  825. smp_wmb(); /* make event visible before updating tail */
  826. info->tail = tail;
  827. ring->tail = tail;
  828. put_aio_ring_event(event, KM_IRQ0);
  829. kunmap_atomic(ring, KM_IRQ1);
  830. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  831. /*
  832. * Check if the user asked us to deliver the result through an
  833. * eventfd. The eventfd_signal() function is safe to be called
  834. * from IRQ context.
  835. */
  836. if (iocb->ki_eventfd != NULL)
  837. eventfd_signal(iocb->ki_eventfd, 1);
  838. put_rq:
  839. /* everything turned out well, dispose of the aiocb. */
  840. ret = __aio_put_req(ctx, iocb);
  841. /*
  842. * We have to order our ring_info tail store above and test
  843. * of the wait list below outside the wait lock. This is
  844. * like in wake_up_bit() where clearing a bit has to be
  845. * ordered with the unlocked test.
  846. */
  847. smp_mb();
  848. if (waitqueue_active(&ctx->wait))
  849. wake_up(&ctx->wait);
  850. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  851. return ret;
  852. }
  853. /* aio_read_evt
  854. * Pull an event off of the ioctx's event ring. Returns the number of
  855. * events fetched (0 or 1 ;-)
  856. * FIXME: make this use cmpxchg.
  857. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  858. */
  859. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  860. {
  861. struct aio_ring_info *info = &ioctx->ring_info;
  862. struct aio_ring *ring;
  863. unsigned long head;
  864. int ret = 0;
  865. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  866. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  867. (unsigned long)ring->head, (unsigned long)ring->tail,
  868. (unsigned long)ring->nr);
  869. if (ring->head == ring->tail)
  870. goto out;
  871. spin_lock(&info->ring_lock);
  872. head = ring->head % info->nr;
  873. if (head != ring->tail) {
  874. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  875. *ent = *evp;
  876. head = (head + 1) % info->nr;
  877. smp_mb(); /* finish reading the event before updatng the head */
  878. ring->head = head;
  879. ret = 1;
  880. put_aio_ring_event(evp, KM_USER1);
  881. }
  882. spin_unlock(&info->ring_lock);
  883. out:
  884. kunmap_atomic(ring, KM_USER0);
  885. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  886. (unsigned long)ring->head, (unsigned long)ring->tail);
  887. return ret;
  888. }
  889. struct aio_timeout {
  890. struct timer_list timer;
  891. int timed_out;
  892. struct task_struct *p;
  893. };
  894. static void timeout_func(unsigned long data)
  895. {
  896. struct aio_timeout *to = (struct aio_timeout *)data;
  897. to->timed_out = 1;
  898. wake_up_process(to->p);
  899. }
  900. static inline void init_timeout(struct aio_timeout *to)
  901. {
  902. setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
  903. to->timed_out = 0;
  904. to->p = current;
  905. }
  906. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  907. const struct timespec *ts)
  908. {
  909. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  910. if (time_after(to->timer.expires, jiffies))
  911. add_timer(&to->timer);
  912. else
  913. to->timed_out = 1;
  914. }
  915. static inline void clear_timeout(struct aio_timeout *to)
  916. {
  917. del_singleshot_timer_sync(&to->timer);
  918. }
  919. static int read_events(struct kioctx *ctx,
  920. long min_nr, long nr,
  921. struct io_event __user *event,
  922. struct timespec __user *timeout)
  923. {
  924. long start_jiffies = jiffies;
  925. struct task_struct *tsk = current;
  926. DECLARE_WAITQUEUE(wait, tsk);
  927. int ret;
  928. int i = 0;
  929. struct io_event ent;
  930. struct aio_timeout to;
  931. int retry = 0;
  932. /* needed to zero any padding within an entry (there shouldn't be
  933. * any, but C is fun!
  934. */
  935. memset(&ent, 0, sizeof(ent));
  936. retry:
  937. ret = 0;
  938. while (likely(i < nr)) {
  939. ret = aio_read_evt(ctx, &ent);
  940. if (unlikely(ret <= 0))
  941. break;
  942. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  943. ent.data, ent.obj, ent.res, ent.res2);
  944. /* Could we split the check in two? */
  945. ret = -EFAULT;
  946. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  947. dprintk("aio: lost an event due to EFAULT.\n");
  948. break;
  949. }
  950. ret = 0;
  951. /* Good, event copied to userland, update counts. */
  952. event ++;
  953. i ++;
  954. }
  955. if (min_nr <= i)
  956. return i;
  957. if (ret)
  958. return ret;
  959. /* End fast path */
  960. /* racey check, but it gets redone */
  961. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  962. retry = 1;
  963. aio_run_all_iocbs(ctx);
  964. goto retry;
  965. }
  966. init_timeout(&to);
  967. if (timeout) {
  968. struct timespec ts;
  969. ret = -EFAULT;
  970. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  971. goto out;
  972. set_timeout(start_jiffies, &to, &ts);
  973. }
  974. while (likely(i < nr)) {
  975. add_wait_queue_exclusive(&ctx->wait, &wait);
  976. do {
  977. set_task_state(tsk, TASK_INTERRUPTIBLE);
  978. ret = aio_read_evt(ctx, &ent);
  979. if (ret)
  980. break;
  981. if (min_nr <= i)
  982. break;
  983. if (unlikely(ctx->dead)) {
  984. ret = -EINVAL;
  985. break;
  986. }
  987. if (to.timed_out) /* Only check after read evt */
  988. break;
  989. /* Try to only show up in io wait if there are ops
  990. * in flight */
  991. if (ctx->reqs_active)
  992. io_schedule();
  993. else
  994. schedule();
  995. if (signal_pending(tsk)) {
  996. ret = -EINTR;
  997. break;
  998. }
  999. /*ret = aio_read_evt(ctx, &ent);*/
  1000. } while (1) ;
  1001. set_task_state(tsk, TASK_RUNNING);
  1002. remove_wait_queue(&ctx->wait, &wait);
  1003. if (unlikely(ret <= 0))
  1004. break;
  1005. ret = -EFAULT;
  1006. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1007. dprintk("aio: lost an event due to EFAULT.\n");
  1008. break;
  1009. }
  1010. /* Good, event copied to userland, update counts. */
  1011. event ++;
  1012. i ++;
  1013. }
  1014. if (timeout)
  1015. clear_timeout(&to);
  1016. out:
  1017. destroy_timer_on_stack(&to.timer);
  1018. return i ? i : ret;
  1019. }
  1020. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1021. * against races with itself via ->dead.
  1022. */
  1023. static void io_destroy(struct kioctx *ioctx)
  1024. {
  1025. struct mm_struct *mm = current->mm;
  1026. int was_dead;
  1027. /* delete the entry from the list is someone else hasn't already */
  1028. spin_lock(&mm->ioctx_lock);
  1029. was_dead = ioctx->dead;
  1030. ioctx->dead = 1;
  1031. hlist_del_rcu(&ioctx->list);
  1032. spin_unlock(&mm->ioctx_lock);
  1033. dprintk("aio_release(%p)\n", ioctx);
  1034. if (likely(!was_dead))
  1035. put_ioctx(ioctx); /* twice for the list */
  1036. aio_cancel_all(ioctx);
  1037. wait_for_all_aios(ioctx);
  1038. /*
  1039. * Wake up any waiters. The setting of ctx->dead must be seen
  1040. * by other CPUs at this point. Right now, we rely on the
  1041. * locking done by the above calls to ensure this consistency.
  1042. */
  1043. wake_up(&ioctx->wait);
  1044. put_ioctx(ioctx); /* once for the lookup */
  1045. }
  1046. /* sys_io_setup:
  1047. * Create an aio_context capable of receiving at least nr_events.
  1048. * ctxp must not point to an aio_context that already exists, and
  1049. * must be initialized to 0 prior to the call. On successful
  1050. * creation of the aio_context, *ctxp is filled in with the resulting
  1051. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1052. * if the specified nr_events exceeds internal limits. May fail
  1053. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1054. * of available events. May fail with -ENOMEM if insufficient kernel
  1055. * resources are available. May fail with -EFAULT if an invalid
  1056. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1057. * implemented.
  1058. */
  1059. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1060. {
  1061. struct kioctx *ioctx = NULL;
  1062. unsigned long ctx;
  1063. long ret;
  1064. ret = get_user(ctx, ctxp);
  1065. if (unlikely(ret))
  1066. goto out;
  1067. ret = -EINVAL;
  1068. if (unlikely(ctx || nr_events == 0)) {
  1069. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1070. ctx, nr_events);
  1071. goto out;
  1072. }
  1073. ioctx = ioctx_alloc(nr_events);
  1074. ret = PTR_ERR(ioctx);
  1075. if (!IS_ERR(ioctx)) {
  1076. ret = put_user(ioctx->user_id, ctxp);
  1077. if (!ret)
  1078. return 0;
  1079. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1080. io_destroy(ioctx);
  1081. }
  1082. out:
  1083. return ret;
  1084. }
  1085. /* sys_io_destroy:
  1086. * Destroy the aio_context specified. May cancel any outstanding
  1087. * AIOs and block on completion. Will fail with -ENOSYS if not
  1088. * implemented. May fail with -EFAULT if the context pointed to
  1089. * is invalid.
  1090. */
  1091. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1092. {
  1093. struct kioctx *ioctx = lookup_ioctx(ctx);
  1094. if (likely(NULL != ioctx)) {
  1095. io_destroy(ioctx);
  1096. return 0;
  1097. }
  1098. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1099. return -EINVAL;
  1100. }
  1101. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  1102. {
  1103. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  1104. BUG_ON(ret <= 0);
  1105. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  1106. ssize_t this = min((ssize_t)iov->iov_len, ret);
  1107. iov->iov_base += this;
  1108. iov->iov_len -= this;
  1109. iocb->ki_left -= this;
  1110. ret -= this;
  1111. if (iov->iov_len == 0) {
  1112. iocb->ki_cur_seg++;
  1113. iov++;
  1114. }
  1115. }
  1116. /* the caller should not have done more io than what fit in
  1117. * the remaining iovecs */
  1118. BUG_ON(ret > 0 && iocb->ki_left == 0);
  1119. }
  1120. static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
  1121. {
  1122. struct file *file = iocb->ki_filp;
  1123. struct address_space *mapping = file->f_mapping;
  1124. struct inode *inode = mapping->host;
  1125. ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
  1126. unsigned long, loff_t);
  1127. ssize_t ret = 0;
  1128. unsigned short opcode;
  1129. if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
  1130. (iocb->ki_opcode == IOCB_CMD_PREAD)) {
  1131. rw_op = file->f_op->aio_read;
  1132. opcode = IOCB_CMD_PREADV;
  1133. } else {
  1134. rw_op = file->f_op->aio_write;
  1135. opcode = IOCB_CMD_PWRITEV;
  1136. }
  1137. /* This matches the pread()/pwrite() logic */
  1138. if (iocb->ki_pos < 0)
  1139. return -EINVAL;
  1140. do {
  1141. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  1142. iocb->ki_nr_segs - iocb->ki_cur_seg,
  1143. iocb->ki_pos);
  1144. if (ret > 0)
  1145. aio_advance_iovec(iocb, ret);
  1146. /* retry all partial writes. retry partial reads as long as its a
  1147. * regular file. */
  1148. } while (ret > 0 && iocb->ki_left > 0 &&
  1149. (opcode == IOCB_CMD_PWRITEV ||
  1150. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  1151. /* This means we must have transferred all that we could */
  1152. /* No need to retry anymore */
  1153. if ((ret == 0) || (iocb->ki_left == 0))
  1154. ret = iocb->ki_nbytes - iocb->ki_left;
  1155. /* If we managed to write some out we return that, rather than
  1156. * the eventual error. */
  1157. if (opcode == IOCB_CMD_PWRITEV
  1158. && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
  1159. && iocb->ki_nbytes - iocb->ki_left)
  1160. ret = iocb->ki_nbytes - iocb->ki_left;
  1161. return ret;
  1162. }
  1163. static ssize_t aio_fdsync(struct kiocb *iocb)
  1164. {
  1165. struct file *file = iocb->ki_filp;
  1166. ssize_t ret = -EINVAL;
  1167. if (file->f_op->aio_fsync)
  1168. ret = file->f_op->aio_fsync(iocb, 1);
  1169. return ret;
  1170. }
  1171. static ssize_t aio_fsync(struct kiocb *iocb)
  1172. {
  1173. struct file *file = iocb->ki_filp;
  1174. ssize_t ret = -EINVAL;
  1175. if (file->f_op->aio_fsync)
  1176. ret = file->f_op->aio_fsync(iocb, 0);
  1177. return ret;
  1178. }
  1179. static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
  1180. {
  1181. ssize_t ret;
  1182. ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
  1183. kiocb->ki_nbytes, 1,
  1184. &kiocb->ki_inline_vec, &kiocb->ki_iovec);
  1185. if (ret < 0)
  1186. goto out;
  1187. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  1188. kiocb->ki_cur_seg = 0;
  1189. /* ki_nbytes/left now reflect bytes instead of segs */
  1190. kiocb->ki_nbytes = ret;
  1191. kiocb->ki_left = ret;
  1192. ret = 0;
  1193. out:
  1194. return ret;
  1195. }
  1196. static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
  1197. {
  1198. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  1199. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  1200. kiocb->ki_iovec->iov_len = kiocb->ki_left;
  1201. kiocb->ki_nr_segs = 1;
  1202. kiocb->ki_cur_seg = 0;
  1203. return 0;
  1204. }
  1205. /*
  1206. * aio_setup_iocb:
  1207. * Performs the initial checks and aio retry method
  1208. * setup for the kiocb at the time of io submission.
  1209. */
  1210. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1211. {
  1212. struct file *file = kiocb->ki_filp;
  1213. ssize_t ret = 0;
  1214. switch (kiocb->ki_opcode) {
  1215. case IOCB_CMD_PREAD:
  1216. ret = -EBADF;
  1217. if (unlikely(!(file->f_mode & FMODE_READ)))
  1218. break;
  1219. ret = -EFAULT;
  1220. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1221. kiocb->ki_left)))
  1222. break;
  1223. ret = security_file_permission(file, MAY_READ);
  1224. if (unlikely(ret))
  1225. break;
  1226. ret = aio_setup_single_vector(kiocb);
  1227. if (ret)
  1228. break;
  1229. ret = -EINVAL;
  1230. if (file->f_op->aio_read)
  1231. kiocb->ki_retry = aio_rw_vect_retry;
  1232. break;
  1233. case IOCB_CMD_PWRITE:
  1234. ret = -EBADF;
  1235. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1236. break;
  1237. ret = -EFAULT;
  1238. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1239. kiocb->ki_left)))
  1240. break;
  1241. ret = security_file_permission(file, MAY_WRITE);
  1242. if (unlikely(ret))
  1243. break;
  1244. ret = aio_setup_single_vector(kiocb);
  1245. if (ret)
  1246. break;
  1247. ret = -EINVAL;
  1248. if (file->f_op->aio_write)
  1249. kiocb->ki_retry = aio_rw_vect_retry;
  1250. break;
  1251. case IOCB_CMD_PREADV:
  1252. ret = -EBADF;
  1253. if (unlikely(!(file->f_mode & FMODE_READ)))
  1254. break;
  1255. ret = security_file_permission(file, MAY_READ);
  1256. if (unlikely(ret))
  1257. break;
  1258. ret = aio_setup_vectored_rw(READ, kiocb);
  1259. if (ret)
  1260. break;
  1261. ret = -EINVAL;
  1262. if (file->f_op->aio_read)
  1263. kiocb->ki_retry = aio_rw_vect_retry;
  1264. break;
  1265. case IOCB_CMD_PWRITEV:
  1266. ret = -EBADF;
  1267. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1268. break;
  1269. ret = security_file_permission(file, MAY_WRITE);
  1270. if (unlikely(ret))
  1271. break;
  1272. ret = aio_setup_vectored_rw(WRITE, kiocb);
  1273. if (ret)
  1274. break;
  1275. ret = -EINVAL;
  1276. if (file->f_op->aio_write)
  1277. kiocb->ki_retry = aio_rw_vect_retry;
  1278. break;
  1279. case IOCB_CMD_FDSYNC:
  1280. ret = -EINVAL;
  1281. if (file->f_op->aio_fsync)
  1282. kiocb->ki_retry = aio_fdsync;
  1283. break;
  1284. case IOCB_CMD_FSYNC:
  1285. ret = -EINVAL;
  1286. if (file->f_op->aio_fsync)
  1287. kiocb->ki_retry = aio_fsync;
  1288. break;
  1289. default:
  1290. dprintk("EINVAL: io_submit: no operation provided\n");
  1291. ret = -EINVAL;
  1292. }
  1293. if (!kiocb->ki_retry)
  1294. return ret;
  1295. return 0;
  1296. }
  1297. /*
  1298. * aio_wake_function:
  1299. * wait queue callback function for aio notification,
  1300. * Simply triggers a retry of the operation via kick_iocb.
  1301. *
  1302. * This callback is specified in the wait queue entry in
  1303. * a kiocb.
  1304. *
  1305. * Note:
  1306. * This routine is executed with the wait queue lock held.
  1307. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1308. * the ioctx lock inside the wait queue lock. This is safe
  1309. * because this callback isn't used for wait queues which
  1310. * are nested inside ioctx lock (i.e. ctx->wait)
  1311. */
  1312. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1313. int sync, void *key)
  1314. {
  1315. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1316. list_del_init(&wait->task_list);
  1317. kick_iocb(iocb);
  1318. return 1;
  1319. }
  1320. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1321. struct iocb *iocb)
  1322. {
  1323. struct kiocb *req;
  1324. struct file *file;
  1325. ssize_t ret;
  1326. /* enforce forwards compatibility on users */
  1327. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1328. pr_debug("EINVAL: io_submit: reserve field set\n");
  1329. return -EINVAL;
  1330. }
  1331. /* prevent overflows */
  1332. if (unlikely(
  1333. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1334. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1335. ((ssize_t)iocb->aio_nbytes < 0)
  1336. )) {
  1337. pr_debug("EINVAL: io_submit: overflow check\n");
  1338. return -EINVAL;
  1339. }
  1340. file = fget(iocb->aio_fildes);
  1341. if (unlikely(!file))
  1342. return -EBADF;
  1343. req = aio_get_req(ctx); /* returns with 2 references to req */
  1344. if (unlikely(!req)) {
  1345. fput(file);
  1346. return -EAGAIN;
  1347. }
  1348. req->ki_filp = file;
  1349. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1350. /*
  1351. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1352. * instance of the file* now. The file descriptor must be
  1353. * an eventfd() fd, and will be signaled for each completed
  1354. * event using the eventfd_signal() function.
  1355. */
  1356. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1357. if (IS_ERR(req->ki_eventfd)) {
  1358. ret = PTR_ERR(req->ki_eventfd);
  1359. req->ki_eventfd = NULL;
  1360. goto out_put_req;
  1361. }
  1362. }
  1363. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1364. if (unlikely(ret)) {
  1365. dprintk("EFAULT: aio_key\n");
  1366. goto out_put_req;
  1367. }
  1368. req->ki_obj.user = user_iocb;
  1369. req->ki_user_data = iocb->aio_data;
  1370. req->ki_pos = iocb->aio_offset;
  1371. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1372. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1373. req->ki_opcode = iocb->aio_lio_opcode;
  1374. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1375. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1376. ret = aio_setup_iocb(req);
  1377. if (ret)
  1378. goto out_put_req;
  1379. spin_lock_irq(&ctx->ctx_lock);
  1380. aio_run_iocb(req);
  1381. if (!list_empty(&ctx->run_list)) {
  1382. /* drain the run list */
  1383. while (__aio_run_iocbs(ctx))
  1384. ;
  1385. }
  1386. spin_unlock_irq(&ctx->ctx_lock);
  1387. aio_put_req(req); /* drop extra ref to req */
  1388. return 0;
  1389. out_put_req:
  1390. aio_put_req(req); /* drop extra ref to req */
  1391. aio_put_req(req); /* drop i/o ref to req */
  1392. return ret;
  1393. }
  1394. /* sys_io_submit:
  1395. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1396. * the number of iocbs queued. May return -EINVAL if the aio_context
  1397. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1398. * *iocbpp[0] is not properly initialized, if the operation specified
  1399. * is invalid for the file descriptor in the iocb. May fail with
  1400. * -EFAULT if any of the data structures point to invalid data. May
  1401. * fail with -EBADF if the file descriptor specified in the first
  1402. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1403. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1404. * fail with -ENOSYS if not implemented.
  1405. */
  1406. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1407. struct iocb __user * __user *, iocbpp)
  1408. {
  1409. struct kioctx *ctx;
  1410. long ret = 0;
  1411. int i;
  1412. if (unlikely(nr < 0))
  1413. return -EINVAL;
  1414. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1415. return -EFAULT;
  1416. ctx = lookup_ioctx(ctx_id);
  1417. if (unlikely(!ctx)) {
  1418. pr_debug("EINVAL: io_submit: invalid context id\n");
  1419. return -EINVAL;
  1420. }
  1421. /*
  1422. * AKPM: should this return a partial result if some of the IOs were
  1423. * successfully submitted?
  1424. */
  1425. for (i=0; i<nr; i++) {
  1426. struct iocb __user *user_iocb;
  1427. struct iocb tmp;
  1428. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1429. ret = -EFAULT;
  1430. break;
  1431. }
  1432. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1433. ret = -EFAULT;
  1434. break;
  1435. }
  1436. ret = io_submit_one(ctx, user_iocb, &tmp);
  1437. if (ret)
  1438. break;
  1439. }
  1440. put_ioctx(ctx);
  1441. return i ? i : ret;
  1442. }
  1443. /* lookup_kiocb
  1444. * Finds a given iocb for cancellation.
  1445. */
  1446. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1447. u32 key)
  1448. {
  1449. struct list_head *pos;
  1450. assert_spin_locked(&ctx->ctx_lock);
  1451. /* TODO: use a hash or array, this sucks. */
  1452. list_for_each(pos, &ctx->active_reqs) {
  1453. struct kiocb *kiocb = list_kiocb(pos);
  1454. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1455. return kiocb;
  1456. }
  1457. return NULL;
  1458. }
  1459. /* sys_io_cancel:
  1460. * Attempts to cancel an iocb previously passed to io_submit. If
  1461. * the operation is successfully cancelled, the resulting event is
  1462. * copied into the memory pointed to by result without being placed
  1463. * into the completion queue and 0 is returned. May fail with
  1464. * -EFAULT if any of the data structures pointed to are invalid.
  1465. * May fail with -EINVAL if aio_context specified by ctx_id is
  1466. * invalid. May fail with -EAGAIN if the iocb specified was not
  1467. * cancelled. Will fail with -ENOSYS if not implemented.
  1468. */
  1469. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1470. struct io_event __user *, result)
  1471. {
  1472. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1473. struct kioctx *ctx;
  1474. struct kiocb *kiocb;
  1475. u32 key;
  1476. int ret;
  1477. ret = get_user(key, &iocb->aio_key);
  1478. if (unlikely(ret))
  1479. return -EFAULT;
  1480. ctx = lookup_ioctx(ctx_id);
  1481. if (unlikely(!ctx))
  1482. return -EINVAL;
  1483. spin_lock_irq(&ctx->ctx_lock);
  1484. ret = -EAGAIN;
  1485. kiocb = lookup_kiocb(ctx, iocb, key);
  1486. if (kiocb && kiocb->ki_cancel) {
  1487. cancel = kiocb->ki_cancel;
  1488. kiocb->ki_users ++;
  1489. kiocbSetCancelled(kiocb);
  1490. } else
  1491. cancel = NULL;
  1492. spin_unlock_irq(&ctx->ctx_lock);
  1493. if (NULL != cancel) {
  1494. struct io_event tmp;
  1495. pr_debug("calling cancel\n");
  1496. memset(&tmp, 0, sizeof(tmp));
  1497. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1498. tmp.data = kiocb->ki_user_data;
  1499. ret = cancel(kiocb, &tmp);
  1500. if (!ret) {
  1501. /* Cancellation succeeded -- copy the result
  1502. * into the user's buffer.
  1503. */
  1504. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1505. ret = -EFAULT;
  1506. }
  1507. } else
  1508. ret = -EINVAL;
  1509. put_ioctx(ctx);
  1510. return ret;
  1511. }
  1512. /* io_getevents:
  1513. * Attempts to read at least min_nr events and up to nr events from
  1514. * the completion queue for the aio_context specified by ctx_id. May
  1515. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1516. * if nr is out of range, if when is out of range. May fail with
  1517. * -EFAULT if any of the memory specified to is invalid. May return
  1518. * 0 or < min_nr if no events are available and the timeout specified
  1519. * by when has elapsed, where when == NULL specifies an infinite
  1520. * timeout. Note that the timeout pointed to by when is relative and
  1521. * will be updated if not NULL and the operation blocks. Will fail
  1522. * with -ENOSYS if not implemented.
  1523. */
  1524. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1525. long, min_nr,
  1526. long, nr,
  1527. struct io_event __user *, events,
  1528. struct timespec __user *, timeout)
  1529. {
  1530. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1531. long ret = -EINVAL;
  1532. if (likely(ioctx)) {
  1533. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1534. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1535. put_ioctx(ioctx);
  1536. }
  1537. asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
  1538. return ret;
  1539. }
  1540. __initcall(aio_setup);
  1541. EXPORT_SYMBOL(aio_complete);
  1542. EXPORT_SYMBOL(aio_put_req);
  1543. EXPORT_SYMBOL(wait_on_sync_kiocb);