eeprom.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include "ath5k.h"
  23. #include "reg.h"
  24. #include "debug.h"
  25. #include "base.h"
  26. /*
  27. * Read from eeprom
  28. */
  29. static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
  30. {
  31. u32 status, timeout;
  32. ATH5K_TRACE(ah->ah_sc);
  33. /*
  34. * Initialize EEPROM access
  35. */
  36. if (ah->ah_version == AR5K_AR5210) {
  37. AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
  38. (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
  39. } else {
  40. ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
  41. AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
  42. AR5K_EEPROM_CMD_READ);
  43. }
  44. for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
  45. status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
  46. if (status & AR5K_EEPROM_STAT_RDDONE) {
  47. if (status & AR5K_EEPROM_STAT_RDERR)
  48. return -EIO;
  49. *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
  50. 0xffff);
  51. return 0;
  52. }
  53. udelay(15);
  54. }
  55. return -ETIMEDOUT;
  56. }
  57. /*
  58. * Translate binary channel representation in EEPROM to frequency
  59. */
  60. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  61. unsigned int mode)
  62. {
  63. u16 val;
  64. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  65. return bin;
  66. if (mode == AR5K_EEPROM_MODE_11A) {
  67. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  68. val = (5 * bin) + 4800;
  69. else
  70. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  71. (bin * 10) + 5100;
  72. } else {
  73. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  74. val = bin + 2300;
  75. else
  76. val = bin + 2400;
  77. }
  78. return val;
  79. }
  80. /*
  81. * Initialize eeprom & capabilities structs
  82. */
  83. static int
  84. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  85. {
  86. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  87. int ret;
  88. u16 val;
  89. /*
  90. * Read values from EEPROM and store them in the capability structure
  91. */
  92. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  93. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  94. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  95. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  96. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  97. /* Return if we have an old EEPROM */
  98. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  99. return 0;
  100. #ifdef notyet
  101. /*
  102. * Validate the checksum of the EEPROM date. There are some
  103. * devices with invalid EEPROMs.
  104. */
  105. for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
  106. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  107. cksum ^= val;
  108. }
  109. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  110. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
  111. return -EIO;
  112. }
  113. #endif
  114. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  115. ee_ant_gain);
  116. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  118. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  119. /* XXX: Don't know which versions include these two */
  120. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  121. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  122. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  123. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  126. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  127. }
  128. }
  129. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  130. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  131. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  132. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  133. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  134. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  135. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  136. }
  137. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  138. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  139. ee->ee_is_hb63 = true;
  140. else
  141. ee->ee_is_hb63 = false;
  142. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  143. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  144. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  145. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  146. * and enable serdes programming if needed.
  147. *
  148. * XXX: Serdes values seem to be fixed so
  149. * no need to read them here, we write them
  150. * during ath5k_hw_attach */
  151. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  152. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  153. true : false;
  154. return 0;
  155. }
  156. /*
  157. * Read antenna infos from eeprom
  158. */
  159. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  160. unsigned int mode)
  161. {
  162. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  163. u32 o = *offset;
  164. u16 val;
  165. int ret, i = 0;
  166. AR5K_EEPROM_READ(o++, val);
  167. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  168. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  169. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  170. AR5K_EEPROM_READ(o++, val);
  171. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  172. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  173. ee->ee_ant_control[mode][i++] = val & 0x3f;
  174. AR5K_EEPROM_READ(o++, val);
  175. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  176. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  177. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  178. AR5K_EEPROM_READ(o++, val);
  179. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  180. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  181. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  182. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  183. AR5K_EEPROM_READ(o++, val);
  184. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  185. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  186. ee->ee_ant_control[mode][i++] = val & 0x3f;
  187. /* Get antenna switch tables */
  188. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  189. (ee->ee_ant_control[mode][0] << 4);
  190. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  191. ee->ee_ant_control[mode][1] |
  192. (ee->ee_ant_control[mode][2] << 6) |
  193. (ee->ee_ant_control[mode][3] << 12) |
  194. (ee->ee_ant_control[mode][4] << 18) |
  195. (ee->ee_ant_control[mode][5] << 24);
  196. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  197. ee->ee_ant_control[mode][6] |
  198. (ee->ee_ant_control[mode][7] << 6) |
  199. (ee->ee_ant_control[mode][8] << 12) |
  200. (ee->ee_ant_control[mode][9] << 18) |
  201. (ee->ee_ant_control[mode][10] << 24);
  202. /* return new offset */
  203. *offset = o;
  204. return 0;
  205. }
  206. /*
  207. * Read supported modes and some mode-specific calibration data
  208. * from eeprom
  209. */
  210. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  211. unsigned int mode)
  212. {
  213. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  214. u32 o = *offset;
  215. u16 val;
  216. int ret;
  217. ee->ee_n_piers[mode] = 0;
  218. AR5K_EEPROM_READ(o++, val);
  219. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  220. switch(mode) {
  221. case AR5K_EEPROM_MODE_11A:
  222. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  223. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  224. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  225. AR5K_EEPROM_READ(o++, val);
  226. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  227. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  228. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  229. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  230. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  231. ee->ee_db[mode][0] = val & 0x7;
  232. break;
  233. case AR5K_EEPROM_MODE_11G:
  234. case AR5K_EEPROM_MODE_11B:
  235. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  236. ee->ee_db[mode][1] = val & 0x7;
  237. break;
  238. }
  239. AR5K_EEPROM_READ(o++, val);
  240. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  241. ee->ee_thr_62[mode] = val & 0xff;
  242. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  243. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  244. AR5K_EEPROM_READ(o++, val);
  245. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  246. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  247. AR5K_EEPROM_READ(o++, val);
  248. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  249. if ((val & 0xff) & 0x80)
  250. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  251. else
  252. ee->ee_noise_floor_thr[mode] = val & 0xff;
  253. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  254. ee->ee_noise_floor_thr[mode] =
  255. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  256. AR5K_EEPROM_READ(o++, val);
  257. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  258. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  259. ee->ee_xpd[mode] = val & 0x1;
  260. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
  261. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  262. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  263. AR5K_EEPROM_READ(o++, val);
  264. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  265. if (mode == AR5K_EEPROM_MODE_11A)
  266. ee->ee_xr_power[mode] = val & 0x3f;
  267. else {
  268. ee->ee_ob[mode][0] = val & 0x7;
  269. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  270. }
  271. }
  272. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  273. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  274. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  275. } else {
  276. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  277. AR5K_EEPROM_READ(o++, val);
  278. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  279. if (mode == AR5K_EEPROM_MODE_11G) {
  280. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  281. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  282. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  283. }
  284. }
  285. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  286. mode == AR5K_EEPROM_MODE_11A) {
  287. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  288. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  289. }
  290. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  291. goto done;
  292. /* Note: >= v5 have bg freq piers on another location
  293. * so these freq piers are ignored for >= v5 (should be 0xff
  294. * anyway) */
  295. switch(mode) {
  296. case AR5K_EEPROM_MODE_11A:
  297. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  298. break;
  299. AR5K_EEPROM_READ(o++, val);
  300. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  301. break;
  302. case AR5K_EEPROM_MODE_11B:
  303. AR5K_EEPROM_READ(o++, val);
  304. ee->ee_pwr_cal_b[0].freq =
  305. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  306. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  307. ee->ee_n_piers[mode]++;
  308. ee->ee_pwr_cal_b[1].freq =
  309. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  310. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  311. ee->ee_n_piers[mode]++;
  312. AR5K_EEPROM_READ(o++, val);
  313. ee->ee_pwr_cal_b[2].freq =
  314. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  315. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  316. ee->ee_n_piers[mode]++;
  317. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  318. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  319. break;
  320. case AR5K_EEPROM_MODE_11G:
  321. AR5K_EEPROM_READ(o++, val);
  322. ee->ee_pwr_cal_g[0].freq =
  323. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  324. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  325. ee->ee_n_piers[mode]++;
  326. ee->ee_pwr_cal_g[1].freq =
  327. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  328. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  329. ee->ee_n_piers[mode]++;
  330. AR5K_EEPROM_READ(o++, val);
  331. ee->ee_turbo_max_power[mode] = val & 0x7f;
  332. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  333. AR5K_EEPROM_READ(o++, val);
  334. ee->ee_pwr_cal_g[2].freq =
  335. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  336. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  337. ee->ee_n_piers[mode]++;
  338. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  339. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  340. AR5K_EEPROM_READ(o++, val);
  341. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  342. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  343. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  344. AR5K_EEPROM_READ(o++, val);
  345. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  346. }
  347. break;
  348. }
  349. /*
  350. * Read turbo mode information on newer EEPROM versions
  351. */
  352. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  353. goto done;
  354. switch (mode){
  355. case AR5K_EEPROM_MODE_11A:
  356. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  357. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  358. AR5K_EEPROM_READ(o++, val);
  359. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  360. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  361. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  362. AR5K_EEPROM_READ(o++, val);
  363. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  364. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  365. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  366. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  367. break;
  368. case AR5K_EEPROM_MODE_11G:
  369. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  370. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  371. AR5K_EEPROM_READ(o++, val);
  372. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  373. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  374. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  375. AR5K_EEPROM_READ(o++, val);
  376. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  377. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  378. break;
  379. }
  380. done:
  381. /* return new offset */
  382. *offset = o;
  383. return 0;
  384. }
  385. /* Read mode-specific data (except power calibration data) */
  386. static int
  387. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  388. {
  389. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  390. u32 mode_offset[3];
  391. unsigned int mode;
  392. u32 offset;
  393. int ret;
  394. /*
  395. * Get values for all modes
  396. */
  397. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  398. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  399. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  400. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  401. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  402. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  403. offset = mode_offset[mode];
  404. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  405. if (ret)
  406. return ret;
  407. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  408. if (ret)
  409. return ret;
  410. }
  411. /* override for older eeprom versions for better performance */
  412. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  413. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  414. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  415. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  416. }
  417. return 0;
  418. }
  419. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  420. * frequency mask) */
  421. static inline int
  422. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  423. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  424. {
  425. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  426. int o = *offset;
  427. int i = 0;
  428. u8 freq1, freq2;
  429. int ret;
  430. u16 val;
  431. ee->ee_n_piers[mode] = 0;
  432. while(i < max) {
  433. AR5K_EEPROM_READ(o++, val);
  434. freq1 = val & 0xff;
  435. if (!freq1)
  436. break;
  437. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  438. freq1, mode);
  439. ee->ee_n_piers[mode]++;
  440. freq2 = (val >> 8) & 0xff;
  441. if (!freq2)
  442. break;
  443. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  444. freq2, mode);
  445. ee->ee_n_piers[mode]++;
  446. }
  447. /* return new offset */
  448. *offset = o;
  449. return 0;
  450. }
  451. /* Read frequency piers for 802.11a */
  452. static int
  453. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  454. {
  455. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  456. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  457. int i, ret;
  458. u16 val;
  459. u8 mask;
  460. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  461. ath5k_eeprom_read_freq_list(ah, &offset,
  462. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  463. AR5K_EEPROM_MODE_11A);
  464. } else {
  465. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  466. AR5K_EEPROM_READ(offset++, val);
  467. pcal[0].freq = (val >> 9) & mask;
  468. pcal[1].freq = (val >> 2) & mask;
  469. pcal[2].freq = (val << 5) & mask;
  470. AR5K_EEPROM_READ(offset++, val);
  471. pcal[2].freq |= (val >> 11) & 0x1f;
  472. pcal[3].freq = (val >> 4) & mask;
  473. pcal[4].freq = (val << 3) & mask;
  474. AR5K_EEPROM_READ(offset++, val);
  475. pcal[4].freq |= (val >> 13) & 0x7;
  476. pcal[5].freq = (val >> 6) & mask;
  477. pcal[6].freq = (val << 1) & mask;
  478. AR5K_EEPROM_READ(offset++, val);
  479. pcal[6].freq |= (val >> 15) & 0x1;
  480. pcal[7].freq = (val >> 8) & mask;
  481. pcal[8].freq = (val >> 1) & mask;
  482. pcal[9].freq = (val << 6) & mask;
  483. AR5K_EEPROM_READ(offset++, val);
  484. pcal[9].freq |= (val >> 10) & 0x3f;
  485. /* Fixed number of piers */
  486. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  487. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  488. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  489. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  490. }
  491. }
  492. return 0;
  493. }
  494. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  495. static inline int
  496. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  497. {
  498. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  499. struct ath5k_chan_pcal_info *pcal;
  500. switch(mode) {
  501. case AR5K_EEPROM_MODE_11B:
  502. pcal = ee->ee_pwr_cal_b;
  503. break;
  504. case AR5K_EEPROM_MODE_11G:
  505. pcal = ee->ee_pwr_cal_g;
  506. break;
  507. default:
  508. return -EINVAL;
  509. }
  510. ath5k_eeprom_read_freq_list(ah, &offset,
  511. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  512. mode);
  513. return 0;
  514. }
  515. /*
  516. * Read power calibration for RF5111 chips
  517. *
  518. * For RF5111 we have an XPD -eXternal Power Detector- curve
  519. * for each calibrated channel. Each curve has 0,5dB Power steps
  520. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  521. * exponential function. To recreate the curve we read 11 points
  522. * here and interpolate later.
  523. */
  524. /* Used to match PCDAC steps with power values on RF5111 chips
  525. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  526. * steps that match with the power values we read from eeprom. On
  527. * older eeprom versions (< 3.2) these steps are equaly spaced at
  528. * 10% of the pcdac curve -until the curve reaches it's maximum-
  529. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  530. * these 11 steps are spaced in a different way. This function returns
  531. * the pcdac steps based on eeprom version and curve min/max so that we
  532. * can have pcdac/pwr points.
  533. */
  534. static inline void
  535. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  536. {
  537. static const u16 intercepts3[] =
  538. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  539. static const u16 intercepts3_2[] =
  540. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  541. const u16 *ip;
  542. int i;
  543. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  544. ip = intercepts3_2;
  545. else
  546. ip = intercepts3;
  547. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  548. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  549. }
  550. /* Convert RF5111 specific data to generic raw data
  551. * used by interpolation code */
  552. static int
  553. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  554. struct ath5k_chan_pcal_info *chinfo)
  555. {
  556. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  557. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  558. struct ath5k_pdgain_info *pd;
  559. u8 pier, point, idx;
  560. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  561. /* Fill raw data for each calibration pier */
  562. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  563. pcinfo = &chinfo[pier].rf5111_info;
  564. /* Allocate pd_curves for this cal pier */
  565. chinfo[pier].pd_curves =
  566. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  567. sizeof(struct ath5k_pdgain_info),
  568. GFP_KERNEL);
  569. if (!chinfo[pier].pd_curves)
  570. return -ENOMEM;
  571. /* Only one curve for RF5111
  572. * find out which one and place
  573. * in in pd_curves.
  574. * Note: ee_x_gain is reversed here */
  575. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  576. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  577. pdgain_idx[0] = idx;
  578. break;
  579. }
  580. }
  581. ee->ee_pd_gains[mode] = 1;
  582. pd = &chinfo[pier].pd_curves[idx];
  583. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  584. /* Allocate pd points for this curve */
  585. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  586. sizeof(u8), GFP_KERNEL);
  587. if (!pd->pd_step)
  588. return -ENOMEM;
  589. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  590. sizeof(s16), GFP_KERNEL);
  591. if (!pd->pd_pwr)
  592. return -ENOMEM;
  593. /* Fill raw dataset
  594. * (convert power to 0.25dB units
  595. * for RF5112 combatibility) */
  596. for (point = 0; point < pd->pd_points; point++) {
  597. /* Absolute values */
  598. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  599. /* Already sorted */
  600. pd->pd_step[point] = pcinfo->pcdac[point];
  601. }
  602. /* Set min/max pwr */
  603. chinfo[pier].min_pwr = pd->pd_pwr[0];
  604. chinfo[pier].max_pwr = pd->pd_pwr[10];
  605. }
  606. return 0;
  607. }
  608. /* Parse EEPROM data */
  609. static int
  610. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  611. {
  612. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  613. struct ath5k_chan_pcal_info *pcal;
  614. int offset, ret;
  615. int i;
  616. u16 val;
  617. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  618. switch(mode) {
  619. case AR5K_EEPROM_MODE_11A:
  620. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  621. return 0;
  622. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  623. offset + AR5K_EEPROM_GROUP1_OFFSET);
  624. if (ret < 0)
  625. return ret;
  626. offset += AR5K_EEPROM_GROUP2_OFFSET;
  627. pcal = ee->ee_pwr_cal_a;
  628. break;
  629. case AR5K_EEPROM_MODE_11B:
  630. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  631. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  632. return 0;
  633. pcal = ee->ee_pwr_cal_b;
  634. offset += AR5K_EEPROM_GROUP3_OFFSET;
  635. /* fixed piers */
  636. pcal[0].freq = 2412;
  637. pcal[1].freq = 2447;
  638. pcal[2].freq = 2484;
  639. ee->ee_n_piers[mode] = 3;
  640. break;
  641. case AR5K_EEPROM_MODE_11G:
  642. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  643. return 0;
  644. pcal = ee->ee_pwr_cal_g;
  645. offset += AR5K_EEPROM_GROUP4_OFFSET;
  646. /* fixed piers */
  647. pcal[0].freq = 2312;
  648. pcal[1].freq = 2412;
  649. pcal[2].freq = 2484;
  650. ee->ee_n_piers[mode] = 3;
  651. break;
  652. default:
  653. return -EINVAL;
  654. }
  655. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  656. struct ath5k_chan_pcal_info_rf5111 *cdata =
  657. &pcal[i].rf5111_info;
  658. AR5K_EEPROM_READ(offset++, val);
  659. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  660. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  661. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  662. AR5K_EEPROM_READ(offset++, val);
  663. cdata->pwr[0] |= ((val >> 14) & 0x3);
  664. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  665. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  666. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  667. AR5K_EEPROM_READ(offset++, val);
  668. cdata->pwr[3] |= ((val >> 12) & 0xf);
  669. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  670. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  671. AR5K_EEPROM_READ(offset++, val);
  672. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  673. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  674. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  675. AR5K_EEPROM_READ(offset++, val);
  676. cdata->pwr[8] |= ((val >> 14) & 0x3);
  677. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  678. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  679. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  680. cdata->pcdac_max, cdata->pcdac);
  681. }
  682. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  683. }
  684. /*
  685. * Read power calibration for RF5112 chips
  686. *
  687. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  688. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  689. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  690. * power steps on x axis and PCDAC steps on y axis and looks like a
  691. * linear function. To recreate the curve and pass the power values
  692. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  693. * and 3 points for xpd 3 (higher gain -> lower power) here and
  694. * interpolate later.
  695. *
  696. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  697. */
  698. /* Convert RF5112 specific data to generic raw data
  699. * used by interpolation code */
  700. static int
  701. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  702. struct ath5k_chan_pcal_info *chinfo)
  703. {
  704. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  705. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  706. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  707. unsigned int pier, pdg, point;
  708. /* Fill raw data for each calibration pier */
  709. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  710. pcinfo = &chinfo[pier].rf5112_info;
  711. /* Allocate pd_curves for this cal pier */
  712. chinfo[pier].pd_curves =
  713. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  714. sizeof(struct ath5k_pdgain_info),
  715. GFP_KERNEL);
  716. if (!chinfo[pier].pd_curves)
  717. return -ENOMEM;
  718. /* Fill pd_curves */
  719. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  720. u8 idx = pdgain_idx[pdg];
  721. struct ath5k_pdgain_info *pd =
  722. &chinfo[pier].pd_curves[idx];
  723. /* Lowest gain curve (max power) */
  724. if (pdg == 0) {
  725. /* One more point for better accuracy */
  726. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  727. /* Allocate pd points for this curve */
  728. pd->pd_step = kcalloc(pd->pd_points,
  729. sizeof(u8), GFP_KERNEL);
  730. if (!pd->pd_step)
  731. return -ENOMEM;
  732. pd->pd_pwr = kcalloc(pd->pd_points,
  733. sizeof(s16), GFP_KERNEL);
  734. if (!pd->pd_pwr)
  735. return -ENOMEM;
  736. /* Fill raw dataset
  737. * (all power levels are in 0.25dB units) */
  738. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  739. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  740. for (point = 1; point < pd->pd_points;
  741. point++) {
  742. /* Absolute values */
  743. pd->pd_pwr[point] =
  744. pcinfo->pwr_x0[point];
  745. /* Deltas */
  746. pd->pd_step[point] =
  747. pd->pd_step[point - 1] +
  748. pcinfo->pcdac_x0[point];
  749. }
  750. /* Set min power for this frequency */
  751. chinfo[pier].min_pwr = pd->pd_pwr[0];
  752. /* Highest gain curve (min power) */
  753. } else if (pdg == 1) {
  754. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  755. /* Allocate pd points for this curve */
  756. pd->pd_step = kcalloc(pd->pd_points,
  757. sizeof(u8), GFP_KERNEL);
  758. if (!pd->pd_step)
  759. return -ENOMEM;
  760. pd->pd_pwr = kcalloc(pd->pd_points,
  761. sizeof(s16), GFP_KERNEL);
  762. if (!pd->pd_pwr)
  763. return -ENOMEM;
  764. /* Fill raw dataset
  765. * (all power levels are in 0.25dB units) */
  766. for (point = 0; point < pd->pd_points;
  767. point++) {
  768. /* Absolute values */
  769. pd->pd_pwr[point] =
  770. pcinfo->pwr_x3[point];
  771. /* Fixed points */
  772. pd->pd_step[point] =
  773. pcinfo->pcdac_x3[point];
  774. }
  775. /* Since we have a higher gain curve
  776. * override min power */
  777. chinfo[pier].min_pwr = pd->pd_pwr[0];
  778. }
  779. }
  780. }
  781. return 0;
  782. }
  783. /* Parse EEPROM data */
  784. static int
  785. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  786. {
  787. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  788. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  789. struct ath5k_chan_pcal_info *gen_chan_info;
  790. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  791. u32 offset;
  792. u8 i, c;
  793. u16 val;
  794. int ret;
  795. u8 pd_gains = 0;
  796. /* Count how many curves we have and
  797. * identify them (which one of the 4
  798. * available curves we have on each count).
  799. * Curves are stored from lower (x0) to
  800. * higher (x3) gain */
  801. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  802. /* ee_x_gain[mode] is x gain mask */
  803. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  804. pdgain_idx[pd_gains++] = i;
  805. }
  806. ee->ee_pd_gains[mode] = pd_gains;
  807. if (pd_gains == 0 || pd_gains > 2)
  808. return -EINVAL;
  809. switch (mode) {
  810. case AR5K_EEPROM_MODE_11A:
  811. /*
  812. * Read 5GHz EEPROM channels
  813. */
  814. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  815. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  816. offset += AR5K_EEPROM_GROUP2_OFFSET;
  817. gen_chan_info = ee->ee_pwr_cal_a;
  818. break;
  819. case AR5K_EEPROM_MODE_11B:
  820. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  821. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  822. offset += AR5K_EEPROM_GROUP3_OFFSET;
  823. /* NB: frequency piers parsed during mode init */
  824. gen_chan_info = ee->ee_pwr_cal_b;
  825. break;
  826. case AR5K_EEPROM_MODE_11G:
  827. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  828. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  829. offset += AR5K_EEPROM_GROUP4_OFFSET;
  830. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  831. offset += AR5K_EEPROM_GROUP2_OFFSET;
  832. /* NB: frequency piers parsed during mode init */
  833. gen_chan_info = ee->ee_pwr_cal_g;
  834. break;
  835. default:
  836. return -EINVAL;
  837. }
  838. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  839. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  840. /* Power values in quarter dB
  841. * for the lower xpd gain curve
  842. * (0 dBm -> higher output power) */
  843. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  844. AR5K_EEPROM_READ(offset++, val);
  845. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  846. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  847. }
  848. /* PCDAC steps
  849. * corresponding to the above power
  850. * measurements */
  851. AR5K_EEPROM_READ(offset++, val);
  852. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  853. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  854. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  855. /* Power values in quarter dB
  856. * for the higher xpd gain curve
  857. * (18 dBm -> lower output power) */
  858. AR5K_EEPROM_READ(offset++, val);
  859. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  860. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  861. AR5K_EEPROM_READ(offset++, val);
  862. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  863. /* PCDAC steps
  864. * corresponding to the above power
  865. * measurements (fixed) */
  866. chan_pcal_info->pcdac_x3[0] = 20;
  867. chan_pcal_info->pcdac_x3[1] = 35;
  868. chan_pcal_info->pcdac_x3[2] = 63;
  869. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  870. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  871. /* Last xpd0 power level is also channel maximum */
  872. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  873. } else {
  874. chan_pcal_info->pcdac_x0[0] = 1;
  875. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  876. }
  877. }
  878. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  879. }
  880. /*
  881. * Read power calibration for RF2413 chips
  882. *
  883. * For RF2413 we have a Power to PDDAC table (Power Detector)
  884. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  885. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  886. * axis and looks like an exponential function like the RF5111 curve.
  887. *
  888. * To recreate the curves we read here the points and interpolate
  889. * later. Note that in most cases only 2 (higher and lower) curves are
  890. * used (like RF5112) but vendors have the oportunity to include all
  891. * 4 curves on eeprom. The final curve (higher power) has an extra
  892. * point for better accuracy like RF5112.
  893. */
  894. /* For RF2413 power calibration data doesn't start on a fixed location and
  895. * if a mode is not supported, it's section is missing -not zeroed-.
  896. * So we need to calculate the starting offset for each section by using
  897. * these two functions */
  898. /* Return the size of each section based on the mode and the number of pd
  899. * gains available (maximum 4). */
  900. static inline unsigned int
  901. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  902. {
  903. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  904. unsigned int sz;
  905. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  906. sz *= ee->ee_n_piers[mode];
  907. return sz;
  908. }
  909. /* Return the starting offset for a section based on the modes supported
  910. * and each section's size. */
  911. static unsigned int
  912. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  913. {
  914. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  915. switch(mode) {
  916. case AR5K_EEPROM_MODE_11G:
  917. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  918. offset += ath5k_pdgains_size_2413(ee,
  919. AR5K_EEPROM_MODE_11B) +
  920. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  921. /* fall through */
  922. case AR5K_EEPROM_MODE_11B:
  923. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  924. offset += ath5k_pdgains_size_2413(ee,
  925. AR5K_EEPROM_MODE_11A) +
  926. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  927. /* fall through */
  928. case AR5K_EEPROM_MODE_11A:
  929. break;
  930. default:
  931. break;
  932. }
  933. return offset;
  934. }
  935. /* Convert RF2413 specific data to generic raw data
  936. * used by interpolation code */
  937. static int
  938. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  939. struct ath5k_chan_pcal_info *chinfo)
  940. {
  941. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  942. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  943. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  944. unsigned int pier, pdg, point;
  945. /* Fill raw data for each calibration pier */
  946. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  947. pcinfo = &chinfo[pier].rf2413_info;
  948. /* Allocate pd_curves for this cal pier */
  949. chinfo[pier].pd_curves =
  950. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  951. sizeof(struct ath5k_pdgain_info),
  952. GFP_KERNEL);
  953. if (!chinfo[pier].pd_curves)
  954. return -ENOMEM;
  955. /* Fill pd_curves */
  956. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  957. u8 idx = pdgain_idx[pdg];
  958. struct ath5k_pdgain_info *pd =
  959. &chinfo[pier].pd_curves[idx];
  960. /* One more point for the highest power
  961. * curve (lowest gain) */
  962. if (pdg == ee->ee_pd_gains[mode] - 1)
  963. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  964. else
  965. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  966. /* Allocate pd points for this curve */
  967. pd->pd_step = kcalloc(pd->pd_points,
  968. sizeof(u8), GFP_KERNEL);
  969. if (!pd->pd_step)
  970. return -ENOMEM;
  971. pd->pd_pwr = kcalloc(pd->pd_points,
  972. sizeof(s16), GFP_KERNEL);
  973. if (!pd->pd_pwr)
  974. return -ENOMEM;
  975. /* Fill raw dataset
  976. * convert all pwr levels to
  977. * quarter dB for RF5112 combatibility */
  978. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  979. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  980. for (point = 1; point < pd->pd_points; point++) {
  981. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  982. 2 * pcinfo->pwr[pdg][point - 1];
  983. pd->pd_step[point] = pd->pd_step[point - 1] +
  984. pcinfo->pddac[pdg][point - 1];
  985. }
  986. /* Highest gain curve -> min power */
  987. if (pdg == 0)
  988. chinfo[pier].min_pwr = pd->pd_pwr[0];
  989. /* Lowest gain curve -> max power */
  990. if (pdg == ee->ee_pd_gains[mode] - 1)
  991. chinfo[pier].max_pwr =
  992. pd->pd_pwr[pd->pd_points - 1];
  993. }
  994. }
  995. return 0;
  996. }
  997. /* Parse EEPROM data */
  998. static int
  999. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1000. {
  1001. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1002. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1003. struct ath5k_chan_pcal_info *chinfo;
  1004. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1005. u32 offset;
  1006. int idx, i, ret;
  1007. u16 val;
  1008. u8 pd_gains = 0;
  1009. /* Count how many curves we have and
  1010. * identify them (which one of the 4
  1011. * available curves we have on each count).
  1012. * Curves are stored from higher to
  1013. * lower gain so we go backwards */
  1014. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1015. /* ee_x_gain[mode] is x gain mask */
  1016. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1017. pdgain_idx[pd_gains++] = idx;
  1018. }
  1019. ee->ee_pd_gains[mode] = pd_gains;
  1020. if (pd_gains == 0)
  1021. return -EINVAL;
  1022. offset = ath5k_cal_data_offset_2413(ee, mode);
  1023. switch (mode) {
  1024. case AR5K_EEPROM_MODE_11A:
  1025. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1026. return 0;
  1027. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1028. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1029. chinfo = ee->ee_pwr_cal_a;
  1030. break;
  1031. case AR5K_EEPROM_MODE_11B:
  1032. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1033. return 0;
  1034. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1035. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1036. chinfo = ee->ee_pwr_cal_b;
  1037. break;
  1038. case AR5K_EEPROM_MODE_11G:
  1039. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1040. return 0;
  1041. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1042. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1043. chinfo = ee->ee_pwr_cal_g;
  1044. break;
  1045. default:
  1046. return -EINVAL;
  1047. }
  1048. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1049. pcinfo = &chinfo[i].rf2413_info;
  1050. /*
  1051. * Read pwr_i, pddac_i and the first
  1052. * 2 pd points (pwr, pddac)
  1053. */
  1054. AR5K_EEPROM_READ(offset++, val);
  1055. pcinfo->pwr_i[0] = val & 0x1f;
  1056. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1057. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1058. AR5K_EEPROM_READ(offset++, val);
  1059. pcinfo->pddac[0][0] = val & 0x3f;
  1060. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1061. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1062. AR5K_EEPROM_READ(offset++, val);
  1063. pcinfo->pwr[0][2] = val & 0xf;
  1064. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1065. pcinfo->pwr[0][3] = 0;
  1066. pcinfo->pddac[0][3] = 0;
  1067. if (pd_gains > 1) {
  1068. /*
  1069. * Pd gain 0 is not the last pd gain
  1070. * so it only has 2 pd points.
  1071. * Continue wih pd gain 1.
  1072. */
  1073. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1074. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1075. AR5K_EEPROM_READ(offset++, val);
  1076. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1077. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1078. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1079. AR5K_EEPROM_READ(offset++, val);
  1080. pcinfo->pwr[1][1] = val & 0xf;
  1081. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1082. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1083. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1084. AR5K_EEPROM_READ(offset++, val);
  1085. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1086. pcinfo->pwr[1][3] = 0;
  1087. pcinfo->pddac[1][3] = 0;
  1088. } else if (pd_gains == 1) {
  1089. /*
  1090. * Pd gain 0 is the last one so
  1091. * read the extra point.
  1092. */
  1093. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1094. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1095. AR5K_EEPROM_READ(offset++, val);
  1096. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1097. }
  1098. /*
  1099. * Proceed with the other pd_gains
  1100. * as above.
  1101. */
  1102. if (pd_gains > 2) {
  1103. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1104. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1105. AR5K_EEPROM_READ(offset++, val);
  1106. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1107. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1108. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1109. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1110. AR5K_EEPROM_READ(offset++, val);
  1111. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1112. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1113. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1114. pcinfo->pwr[2][3] = 0;
  1115. pcinfo->pddac[2][3] = 0;
  1116. } else if (pd_gains == 2) {
  1117. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1118. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1119. }
  1120. if (pd_gains > 3) {
  1121. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1122. AR5K_EEPROM_READ(offset++, val);
  1123. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1124. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1125. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1126. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1127. AR5K_EEPROM_READ(offset++, val);
  1128. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1129. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1130. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1131. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1132. AR5K_EEPROM_READ(offset++, val);
  1133. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1134. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1135. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1136. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1137. AR5K_EEPROM_READ(offset++, val);
  1138. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1139. } else if (pd_gains == 3) {
  1140. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1141. AR5K_EEPROM_READ(offset++, val);
  1142. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1143. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1144. }
  1145. }
  1146. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1147. }
  1148. /*
  1149. * Read per rate target power (this is the maximum tx power
  1150. * supported by the card). This info is used when setting
  1151. * tx power, no matter the channel.
  1152. *
  1153. * This also works for v5 EEPROMs.
  1154. */
  1155. static int
  1156. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1157. {
  1158. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1159. struct ath5k_rate_pcal_info *rate_pcal_info;
  1160. u8 *rate_target_pwr_num;
  1161. u32 offset;
  1162. u16 val;
  1163. int ret, i;
  1164. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1165. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1166. switch (mode) {
  1167. case AR5K_EEPROM_MODE_11A:
  1168. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1169. rate_pcal_info = ee->ee_rate_tpwr_a;
  1170. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1171. break;
  1172. case AR5K_EEPROM_MODE_11B:
  1173. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1174. rate_pcal_info = ee->ee_rate_tpwr_b;
  1175. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1176. break;
  1177. case AR5K_EEPROM_MODE_11G:
  1178. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1179. rate_pcal_info = ee->ee_rate_tpwr_g;
  1180. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1181. break;
  1182. default:
  1183. return -EINVAL;
  1184. }
  1185. /* Different freq mask for older eeproms (<= v3.2) */
  1186. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1187. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1188. AR5K_EEPROM_READ(offset++, val);
  1189. rate_pcal_info[i].freq =
  1190. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1191. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1192. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1193. AR5K_EEPROM_READ(offset++, val);
  1194. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1195. val == 0) {
  1196. (*rate_target_pwr_num) = i;
  1197. break;
  1198. }
  1199. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1200. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1201. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1202. }
  1203. } else {
  1204. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1205. AR5K_EEPROM_READ(offset++, val);
  1206. rate_pcal_info[i].freq =
  1207. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1208. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1209. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1210. AR5K_EEPROM_READ(offset++, val);
  1211. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1212. val == 0) {
  1213. (*rate_target_pwr_num) = i;
  1214. break;
  1215. }
  1216. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1217. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1218. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1219. }
  1220. }
  1221. return 0;
  1222. }
  1223. /*
  1224. * Read per channel calibration info from EEPROM
  1225. *
  1226. * This info is used to calibrate the baseband power table. Imagine
  1227. * that for each channel there is a power curve that's hw specific
  1228. * (depends on amplifier etc) and we try to "correct" this curve using
  1229. * offests we pass on to phy chip (baseband -> before amplifier) so that
  1230. * it can use accurate power values when setting tx power (takes amplifier's
  1231. * performance on each channel into account).
  1232. *
  1233. * EEPROM provides us with the offsets for some pre-calibrated channels
  1234. * and we have to interpolate to create the full table for these channels and
  1235. * also the table for any channel.
  1236. */
  1237. static int
  1238. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1239. {
  1240. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1241. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1242. int mode;
  1243. int err;
  1244. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1245. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1246. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1247. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1248. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1249. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1250. else
  1251. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1252. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1253. mode++) {
  1254. err = read_pcal(ah, mode);
  1255. if (err)
  1256. return err;
  1257. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1258. if (err < 0)
  1259. return err;
  1260. }
  1261. return 0;
  1262. }
  1263. static int
  1264. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1265. {
  1266. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1267. struct ath5k_chan_pcal_info *chinfo;
  1268. u8 pier, pdg;
  1269. switch (mode) {
  1270. case AR5K_EEPROM_MODE_11A:
  1271. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1272. return 0;
  1273. chinfo = ee->ee_pwr_cal_a;
  1274. break;
  1275. case AR5K_EEPROM_MODE_11B:
  1276. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1277. return 0;
  1278. chinfo = ee->ee_pwr_cal_b;
  1279. break;
  1280. case AR5K_EEPROM_MODE_11G:
  1281. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1282. return 0;
  1283. chinfo = ee->ee_pwr_cal_g;
  1284. break;
  1285. default:
  1286. return -EINVAL;
  1287. }
  1288. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1289. if (!chinfo[pier].pd_curves)
  1290. continue;
  1291. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1292. struct ath5k_pdgain_info *pd =
  1293. &chinfo[pier].pd_curves[pdg];
  1294. if (pd != NULL) {
  1295. kfree(pd->pd_step);
  1296. kfree(pd->pd_pwr);
  1297. }
  1298. }
  1299. kfree(chinfo[pier].pd_curves);
  1300. }
  1301. return 0;
  1302. }
  1303. void
  1304. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1305. {
  1306. u8 mode;
  1307. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1308. ath5k_eeprom_free_pcal_info(ah, mode);
  1309. }
  1310. /* Read conformance test limits used for regulatory control */
  1311. static int
  1312. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1313. {
  1314. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1315. struct ath5k_edge_power *rep;
  1316. unsigned int fmask, pmask;
  1317. unsigned int ctl_mode;
  1318. int ret, i, j;
  1319. u32 offset;
  1320. u16 val;
  1321. pmask = AR5K_EEPROM_POWER_M;
  1322. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1323. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1324. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1325. for (i = 0; i < ee->ee_ctls; i += 2) {
  1326. AR5K_EEPROM_READ(offset++, val);
  1327. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1328. ee->ee_ctl[i + 1] = val & 0xff;
  1329. }
  1330. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1331. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1332. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1333. AR5K_EEPROM_GROUP5_OFFSET;
  1334. else
  1335. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1336. rep = ee->ee_ctl_pwr;
  1337. for(i = 0; i < ee->ee_ctls; i++) {
  1338. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1339. case AR5K_CTL_11A:
  1340. case AR5K_CTL_TURBO:
  1341. ctl_mode = AR5K_EEPROM_MODE_11A;
  1342. break;
  1343. default:
  1344. ctl_mode = AR5K_EEPROM_MODE_11G;
  1345. break;
  1346. }
  1347. if (ee->ee_ctl[i] == 0) {
  1348. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1349. offset += 8;
  1350. else
  1351. offset += 7;
  1352. rep += AR5K_EEPROM_N_EDGES;
  1353. continue;
  1354. }
  1355. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1356. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1357. AR5K_EEPROM_READ(offset++, val);
  1358. rep[j].freq = (val >> 8) & fmask;
  1359. rep[j + 1].freq = val & fmask;
  1360. }
  1361. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1362. AR5K_EEPROM_READ(offset++, val);
  1363. rep[j].edge = (val >> 8) & pmask;
  1364. rep[j].flag = (val >> 14) & 1;
  1365. rep[j + 1].edge = val & pmask;
  1366. rep[j + 1].flag = (val >> 6) & 1;
  1367. }
  1368. } else {
  1369. AR5K_EEPROM_READ(offset++, val);
  1370. rep[0].freq = (val >> 9) & fmask;
  1371. rep[1].freq = (val >> 2) & fmask;
  1372. rep[2].freq = (val << 5) & fmask;
  1373. AR5K_EEPROM_READ(offset++, val);
  1374. rep[2].freq |= (val >> 11) & 0x1f;
  1375. rep[3].freq = (val >> 4) & fmask;
  1376. rep[4].freq = (val << 3) & fmask;
  1377. AR5K_EEPROM_READ(offset++, val);
  1378. rep[4].freq |= (val >> 13) & 0x7;
  1379. rep[5].freq = (val >> 6) & fmask;
  1380. rep[6].freq = (val << 1) & fmask;
  1381. AR5K_EEPROM_READ(offset++, val);
  1382. rep[6].freq |= (val >> 15) & 0x1;
  1383. rep[7].freq = (val >> 8) & fmask;
  1384. rep[0].edge = (val >> 2) & pmask;
  1385. rep[1].edge = (val << 4) & pmask;
  1386. AR5K_EEPROM_READ(offset++, val);
  1387. rep[1].edge |= (val >> 12) & 0xf;
  1388. rep[2].edge = (val >> 6) & pmask;
  1389. rep[3].edge = val & pmask;
  1390. AR5K_EEPROM_READ(offset++, val);
  1391. rep[4].edge = (val >> 10) & pmask;
  1392. rep[5].edge = (val >> 4) & pmask;
  1393. rep[6].edge = (val << 2) & pmask;
  1394. AR5K_EEPROM_READ(offset++, val);
  1395. rep[6].edge |= (val >> 14) & 0x3;
  1396. rep[7].edge = (val >> 8) & pmask;
  1397. }
  1398. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1399. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1400. rep[j].freq, ctl_mode);
  1401. }
  1402. rep += AR5K_EEPROM_N_EDGES;
  1403. }
  1404. return 0;
  1405. }
  1406. static int
  1407. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1408. {
  1409. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1410. u32 offset;
  1411. u16 val;
  1412. int ret = 0, i;
  1413. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1414. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1415. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1416. /* No spur info for 5GHz */
  1417. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1418. /* 2 channels for 2GHz (2464/2420) */
  1419. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1420. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1421. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1422. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1423. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1424. AR5K_EEPROM_READ(offset, val);
  1425. ee->ee_spur_chans[i][0] = val;
  1426. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1427. val);
  1428. ee->ee_spur_chans[i][1] = val;
  1429. offset++;
  1430. }
  1431. }
  1432. return ret;
  1433. }
  1434. /*
  1435. * Initialize eeprom data structure
  1436. */
  1437. int
  1438. ath5k_eeprom_init(struct ath5k_hw *ah)
  1439. {
  1440. int err;
  1441. err = ath5k_eeprom_init_header(ah);
  1442. if (err < 0)
  1443. return err;
  1444. err = ath5k_eeprom_init_modes(ah);
  1445. if (err < 0)
  1446. return err;
  1447. err = ath5k_eeprom_read_pcal_info(ah);
  1448. if (err < 0)
  1449. return err;
  1450. err = ath5k_eeprom_read_ctl_info(ah);
  1451. if (err < 0)
  1452. return err;
  1453. err = ath5k_eeprom_read_spur_chans(ah);
  1454. if (err < 0)
  1455. return err;
  1456. return 0;
  1457. }
  1458. /*
  1459. * Read the MAC address from eeprom
  1460. */
  1461. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1462. {
  1463. u8 mac_d[ETH_ALEN] = {};
  1464. u32 total, offset;
  1465. u16 data;
  1466. int octet, ret;
  1467. ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
  1468. if (ret)
  1469. return ret;
  1470. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1471. ret = ath5k_hw_eeprom_read(ah, offset, &data);
  1472. if (ret)
  1473. return ret;
  1474. total += data;
  1475. mac_d[octet + 1] = data & 0xff;
  1476. mac_d[octet] = data >> 8;
  1477. octet += 2;
  1478. }
  1479. if (!total || total == 3 * 0xffff)
  1480. return -EINVAL;
  1481. memcpy(mac, mac_d, ETH_ALEN);
  1482. return 0;
  1483. }