qlge_main.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. /* NETIF_MSG_TX_QUEUED | */
  58. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int wait_count = 30;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. udelay(100);
  123. } while (--wait_count);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  195. if (status)
  196. return status;
  197. status = ql_wait_cfg(qdev, bit);
  198. if (status) {
  199. QPRINTK(qdev, IFUP, ERR,
  200. "Timed out waiting for CFG to come ready.\n");
  201. goto exit;
  202. }
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. mask = CFG_Q_MASK | (bit << 16);
  206. value = bit | (q_id << CFG_Q_SHIFT);
  207. ql_write32(qdev, CFG, (mask | value));
  208. /*
  209. * Wait for the bit to clear after signaling hw.
  210. */
  211. status = ql_wait_cfg(qdev, bit);
  212. exit:
  213. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. switch (type) {
  224. case MAC_ADDR_TYPE_MULTI_MAC:
  225. case MAC_ADDR_TYPE_CAM_MAC:
  226. {
  227. status =
  228. ql_wait_reg_rdy(qdev,
  229. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  230. if (status)
  231. goto exit;
  232. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  233. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  234. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  235. status =
  236. ql_wait_reg_rdy(qdev,
  237. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  238. if (status)
  239. goto exit;
  240. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  241. status =
  242. ql_wait_reg_rdy(qdev,
  243. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  244. if (status)
  245. goto exit;
  246. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  247. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  248. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  249. status =
  250. ql_wait_reg_rdy(qdev,
  251. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  252. if (status)
  253. goto exit;
  254. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  255. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  256. status =
  257. ql_wait_reg_rdy(qdev,
  258. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  259. if (status)
  260. goto exit;
  261. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  262. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  263. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  264. status =
  265. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  266. MAC_ADDR_MR, 0);
  267. if (status)
  268. goto exit;
  269. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  270. }
  271. break;
  272. }
  273. case MAC_ADDR_TYPE_VLAN:
  274. case MAC_ADDR_TYPE_MULTI_FLTR:
  275. default:
  276. QPRINTK(qdev, IFUP, CRIT,
  277. "Address type %d not yet supported.\n", type);
  278. status = -EPERM;
  279. }
  280. exit:
  281. return status;
  282. }
  283. /* Set up a MAC, multicast or VLAN address for the
  284. * inbound frame matching.
  285. */
  286. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  287. u16 index)
  288. {
  289. u32 offset = 0;
  290. int status = 0;
  291. switch (type) {
  292. case MAC_ADDR_TYPE_MULTI_MAC:
  293. case MAC_ADDR_TYPE_CAM_MAC:
  294. {
  295. u32 cam_output;
  296. u32 upper = (addr[0] << 8) | addr[1];
  297. u32 lower =
  298. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  299. (addr[5]);
  300. QPRINTK(qdev, IFUP, DEBUG,
  301. "Adding %s address %pM"
  302. " at index %d in the CAM.\n",
  303. ((type ==
  304. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  305. "UNICAST"), addr, index);
  306. status =
  307. ql_wait_reg_rdy(qdev,
  308. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  309. if (status)
  310. goto exit;
  311. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  312. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  313. type); /* type */
  314. ql_write32(qdev, MAC_ADDR_DATA, lower);
  315. status =
  316. ql_wait_reg_rdy(qdev,
  317. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  318. if (status)
  319. goto exit;
  320. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  321. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  322. type); /* type */
  323. ql_write32(qdev, MAC_ADDR_DATA, upper);
  324. status =
  325. ql_wait_reg_rdy(qdev,
  326. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  327. if (status)
  328. goto exit;
  329. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  330. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  331. type); /* type */
  332. /* This field should also include the queue id
  333. and possibly the function id. Right now we hardcode
  334. the route field to NIC core.
  335. */
  336. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  337. cam_output = (CAM_OUT_ROUTE_NIC |
  338. (qdev->
  339. func << CAM_OUT_FUNC_SHIFT) |
  340. (0 << CAM_OUT_CQ_ID_SHIFT));
  341. if (qdev->vlgrp)
  342. cam_output |= CAM_OUT_RV;
  343. /* route to NIC core */
  344. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  345. }
  346. break;
  347. }
  348. case MAC_ADDR_TYPE_VLAN:
  349. {
  350. u32 enable_bit = *((u32 *) &addr[0]);
  351. /* For VLAN, the addr actually holds a bit that
  352. * either enables or disables the vlan id we are
  353. * addressing. It's either MAC_ADDR_E on or off.
  354. * That's bit-27 we're talking about.
  355. */
  356. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  357. (enable_bit ? "Adding" : "Removing"),
  358. index, (enable_bit ? "to" : "from"));
  359. status =
  360. ql_wait_reg_rdy(qdev,
  361. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  362. if (status)
  363. goto exit;
  364. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  365. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  366. type | /* type */
  367. enable_bit); /* enable/disable */
  368. break;
  369. }
  370. case MAC_ADDR_TYPE_MULTI_FLTR:
  371. default:
  372. QPRINTK(qdev, IFUP, CRIT,
  373. "Address type %d not yet supported.\n", type);
  374. status = -EPERM;
  375. }
  376. exit:
  377. return status;
  378. }
  379. /* Set or clear MAC address in hardware. We sometimes
  380. * have to clear it to prevent wrong frame routing
  381. * especially in a bonding environment.
  382. */
  383. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  384. {
  385. int status;
  386. char zero_mac_addr[ETH_ALEN];
  387. char *addr;
  388. if (set) {
  389. addr = &qdev->ndev->dev_addr[0];
  390. QPRINTK(qdev, IFUP, DEBUG,
  391. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  392. addr[0], addr[1], addr[2], addr[3],
  393. addr[4], addr[5]);
  394. } else {
  395. memset(zero_mac_addr, 0, ETH_ALEN);
  396. addr = &zero_mac_addr[0];
  397. QPRINTK(qdev, IFUP, DEBUG,
  398. "Clearing MAC address on %s\n",
  399. qdev->ndev->name);
  400. }
  401. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  402. if (status)
  403. return status;
  404. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  405. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  406. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  407. if (status)
  408. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  409. "address.\n");
  410. return status;
  411. }
  412. void ql_link_on(struct ql_adapter *qdev)
  413. {
  414. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  415. qdev->ndev->name);
  416. netif_carrier_on(qdev->ndev);
  417. ql_set_mac_addr(qdev, 1);
  418. }
  419. void ql_link_off(struct ql_adapter *qdev)
  420. {
  421. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  422. qdev->ndev->name);
  423. netif_carrier_off(qdev->ndev);
  424. ql_set_mac_addr(qdev, 0);
  425. }
  426. /* Get a specific frame routing value from the CAM.
  427. * Used for debug and reg dump.
  428. */
  429. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  430. {
  431. int status = 0;
  432. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  433. if (status)
  434. goto exit;
  435. ql_write32(qdev, RT_IDX,
  436. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  437. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  438. if (status)
  439. goto exit;
  440. *value = ql_read32(qdev, RT_DATA);
  441. exit:
  442. return status;
  443. }
  444. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  445. * to route different frame types to various inbound queues. We send broadcast/
  446. * multicast/error frames to the default queue for slow handling,
  447. * and CAM hit/RSS frames to the fast handling queues.
  448. */
  449. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  450. int enable)
  451. {
  452. int status = -EINVAL; /* Return error if no mask match. */
  453. u32 value = 0;
  454. QPRINTK(qdev, IFUP, DEBUG,
  455. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  456. (enable ? "Adding" : "Removing"),
  457. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  458. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  459. ((index ==
  460. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  461. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  462. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  463. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  464. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  465. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  466. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  467. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  468. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  469. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  470. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  471. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  472. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  473. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  474. (enable ? "to" : "from"));
  475. switch (mask) {
  476. case RT_IDX_CAM_HIT:
  477. {
  478. value = RT_IDX_DST_CAM_Q | /* dest */
  479. RT_IDX_TYPE_NICQ | /* type */
  480. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  481. break;
  482. }
  483. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  484. {
  485. value = RT_IDX_DST_DFLT_Q | /* dest */
  486. RT_IDX_TYPE_NICQ | /* type */
  487. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  488. break;
  489. }
  490. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  491. {
  492. value = RT_IDX_DST_DFLT_Q | /* dest */
  493. RT_IDX_TYPE_NICQ | /* type */
  494. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  495. break;
  496. }
  497. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  498. {
  499. value = RT_IDX_DST_DFLT_Q | /* dest */
  500. RT_IDX_TYPE_NICQ | /* type */
  501. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  502. break;
  503. }
  504. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  505. {
  506. value = RT_IDX_DST_CAM_Q | /* dest */
  507. RT_IDX_TYPE_NICQ | /* type */
  508. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  509. break;
  510. }
  511. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  512. {
  513. value = RT_IDX_DST_CAM_Q | /* dest */
  514. RT_IDX_TYPE_NICQ | /* type */
  515. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  516. break;
  517. }
  518. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  519. {
  520. value = RT_IDX_DST_RSS | /* dest */
  521. RT_IDX_TYPE_NICQ | /* type */
  522. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  523. break;
  524. }
  525. case 0: /* Clear the E-bit on an entry. */
  526. {
  527. value = RT_IDX_DST_DFLT_Q | /* dest */
  528. RT_IDX_TYPE_NICQ | /* type */
  529. (index << RT_IDX_IDX_SHIFT);/* index */
  530. break;
  531. }
  532. default:
  533. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  534. mask);
  535. status = -EPERM;
  536. goto exit;
  537. }
  538. if (value) {
  539. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  540. if (status)
  541. goto exit;
  542. value |= (enable ? RT_IDX_E : 0);
  543. ql_write32(qdev, RT_IDX, value);
  544. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  545. }
  546. exit:
  547. return status;
  548. }
  549. static void ql_enable_interrupts(struct ql_adapter *qdev)
  550. {
  551. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  552. }
  553. static void ql_disable_interrupts(struct ql_adapter *qdev)
  554. {
  555. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  556. }
  557. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  558. * Otherwise, we may have multiple outstanding workers and don't want to
  559. * enable until the last one finishes. In this case, the irq_cnt gets
  560. * incremented everytime we queue a worker and decremented everytime
  561. * a worker finishes. Once it hits zero we enable the interrupt.
  562. */
  563. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  564. {
  565. u32 var = 0;
  566. unsigned long hw_flags = 0;
  567. struct intr_context *ctx = qdev->intr_context + intr;
  568. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  569. /* Always enable if we're MSIX multi interrupts and
  570. * it's not the default (zeroeth) interrupt.
  571. */
  572. ql_write32(qdev, INTR_EN,
  573. ctx->intr_en_mask);
  574. var = ql_read32(qdev, STS);
  575. return var;
  576. }
  577. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  578. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  579. ql_write32(qdev, INTR_EN,
  580. ctx->intr_en_mask);
  581. var = ql_read32(qdev, STS);
  582. }
  583. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  584. return var;
  585. }
  586. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  587. {
  588. u32 var = 0;
  589. struct intr_context *ctx;
  590. /* HW disables for us if we're MSIX multi interrupts and
  591. * it's not the default (zeroeth) interrupt.
  592. */
  593. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  594. return 0;
  595. ctx = qdev->intr_context + intr;
  596. spin_lock(&qdev->hw_lock);
  597. if (!atomic_read(&ctx->irq_cnt)) {
  598. ql_write32(qdev, INTR_EN,
  599. ctx->intr_dis_mask);
  600. var = ql_read32(qdev, STS);
  601. }
  602. atomic_inc(&ctx->irq_cnt);
  603. spin_unlock(&qdev->hw_lock);
  604. return var;
  605. }
  606. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  607. {
  608. int i;
  609. for (i = 0; i < qdev->intr_count; i++) {
  610. /* The enable call does a atomic_dec_and_test
  611. * and enables only if the result is zero.
  612. * So we precharge it here.
  613. */
  614. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  615. i == 0))
  616. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  617. ql_enable_completion_interrupt(qdev, i);
  618. }
  619. }
  620. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  621. {
  622. int status, i;
  623. u16 csum = 0;
  624. __le16 *flash = (__le16 *)&qdev->flash;
  625. status = strncmp((char *)&qdev->flash, str, 4);
  626. if (status) {
  627. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  628. return status;
  629. }
  630. for (i = 0; i < size; i++)
  631. csum += le16_to_cpu(*flash++);
  632. if (csum)
  633. QPRINTK(qdev, IFUP, ERR,
  634. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  635. return csum;
  636. }
  637. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  638. {
  639. int status = 0;
  640. /* wait for reg to come ready */
  641. status = ql_wait_reg_rdy(qdev,
  642. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  643. if (status)
  644. goto exit;
  645. /* set up for reg read */
  646. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  647. /* wait for reg to come ready */
  648. status = ql_wait_reg_rdy(qdev,
  649. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  650. if (status)
  651. goto exit;
  652. /* This data is stored on flash as an array of
  653. * __le32. Since ql_read32() returns cpu endian
  654. * we need to swap it back.
  655. */
  656. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  657. exit:
  658. return status;
  659. }
  660. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  661. {
  662. u32 i, size;
  663. int status;
  664. __le32 *p = (__le32 *)&qdev->flash;
  665. u32 offset;
  666. u8 mac_addr[6];
  667. /* Get flash offset for function and adjust
  668. * for dword access.
  669. */
  670. if (!qdev->port)
  671. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  672. else
  673. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  674. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  675. return -ETIMEDOUT;
  676. size = sizeof(struct flash_params_8000) / sizeof(u32);
  677. for (i = 0; i < size; i++, p++) {
  678. status = ql_read_flash_word(qdev, i+offset, p);
  679. if (status) {
  680. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  681. goto exit;
  682. }
  683. }
  684. status = ql_validate_flash(qdev,
  685. sizeof(struct flash_params_8000) / sizeof(u16),
  686. "8000");
  687. if (status) {
  688. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  689. status = -EINVAL;
  690. goto exit;
  691. }
  692. /* Extract either manufacturer or BOFM modified
  693. * MAC address.
  694. */
  695. if (qdev->flash.flash_params_8000.data_type1 == 2)
  696. memcpy(mac_addr,
  697. qdev->flash.flash_params_8000.mac_addr1,
  698. qdev->ndev->addr_len);
  699. else
  700. memcpy(mac_addr,
  701. qdev->flash.flash_params_8000.mac_addr,
  702. qdev->ndev->addr_len);
  703. if (!is_valid_ether_addr(mac_addr)) {
  704. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  705. status = -EINVAL;
  706. goto exit;
  707. }
  708. memcpy(qdev->ndev->dev_addr,
  709. mac_addr,
  710. qdev->ndev->addr_len);
  711. exit:
  712. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  713. return status;
  714. }
  715. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  716. {
  717. int i;
  718. int status;
  719. __le32 *p = (__le32 *)&qdev->flash;
  720. u32 offset = 0;
  721. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  722. /* Second function's parameters follow the first
  723. * function's.
  724. */
  725. if (qdev->port)
  726. offset = size;
  727. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  728. return -ETIMEDOUT;
  729. for (i = 0; i < size; i++, p++) {
  730. status = ql_read_flash_word(qdev, i+offset, p);
  731. if (status) {
  732. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  733. goto exit;
  734. }
  735. }
  736. status = ql_validate_flash(qdev,
  737. sizeof(struct flash_params_8012) / sizeof(u16),
  738. "8012");
  739. if (status) {
  740. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  741. status = -EINVAL;
  742. goto exit;
  743. }
  744. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  745. status = -EINVAL;
  746. goto exit;
  747. }
  748. memcpy(qdev->ndev->dev_addr,
  749. qdev->flash.flash_params_8012.mac_addr,
  750. qdev->ndev->addr_len);
  751. exit:
  752. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  753. return status;
  754. }
  755. /* xgmac register are located behind the xgmac_addr and xgmac_data
  756. * register pair. Each read/write requires us to wait for the ready
  757. * bit before reading/writing the data.
  758. */
  759. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  760. {
  761. int status;
  762. /* wait for reg to come ready */
  763. status = ql_wait_reg_rdy(qdev,
  764. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  765. if (status)
  766. return status;
  767. /* write the data to the data reg */
  768. ql_write32(qdev, XGMAC_DATA, data);
  769. /* trigger the write */
  770. ql_write32(qdev, XGMAC_ADDR, reg);
  771. return status;
  772. }
  773. /* xgmac register are located behind the xgmac_addr and xgmac_data
  774. * register pair. Each read/write requires us to wait for the ready
  775. * bit before reading/writing the data.
  776. */
  777. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  778. {
  779. int status = 0;
  780. /* wait for reg to come ready */
  781. status = ql_wait_reg_rdy(qdev,
  782. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  783. if (status)
  784. goto exit;
  785. /* set up for reg read */
  786. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  787. /* wait for reg to come ready */
  788. status = ql_wait_reg_rdy(qdev,
  789. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  790. if (status)
  791. goto exit;
  792. /* get the data */
  793. *data = ql_read32(qdev, XGMAC_DATA);
  794. exit:
  795. return status;
  796. }
  797. /* This is used for reading the 64-bit statistics regs. */
  798. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  799. {
  800. int status = 0;
  801. u32 hi = 0;
  802. u32 lo = 0;
  803. status = ql_read_xgmac_reg(qdev, reg, &lo);
  804. if (status)
  805. goto exit;
  806. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  807. if (status)
  808. goto exit;
  809. *data = (u64) lo | ((u64) hi << 32);
  810. exit:
  811. return status;
  812. }
  813. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  814. {
  815. int status;
  816. /*
  817. * Get MPI firmware version for driver banner
  818. * and ethool info.
  819. */
  820. status = ql_mb_about_fw(qdev);
  821. if (status)
  822. goto exit;
  823. status = ql_mb_get_fw_state(qdev);
  824. if (status)
  825. goto exit;
  826. /* Wake up a worker to get/set the TX/RX frame sizes. */
  827. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  828. exit:
  829. return status;
  830. }
  831. /* Take the MAC Core out of reset.
  832. * Enable statistics counting.
  833. * Take the transmitter/receiver out of reset.
  834. * This functionality may be done in the MPI firmware at a
  835. * later date.
  836. */
  837. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  838. {
  839. int status = 0;
  840. u32 data;
  841. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  842. /* Another function has the semaphore, so
  843. * wait for the port init bit to come ready.
  844. */
  845. QPRINTK(qdev, LINK, INFO,
  846. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  847. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  848. if (status) {
  849. QPRINTK(qdev, LINK, CRIT,
  850. "Port initialize timed out.\n");
  851. }
  852. return status;
  853. }
  854. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  855. /* Set the core reset. */
  856. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  857. if (status)
  858. goto end;
  859. data |= GLOBAL_CFG_RESET;
  860. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  861. if (status)
  862. goto end;
  863. /* Clear the core reset and turn on jumbo for receiver. */
  864. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  865. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  866. data |= GLOBAL_CFG_TX_STAT_EN;
  867. data |= GLOBAL_CFG_RX_STAT_EN;
  868. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  869. if (status)
  870. goto end;
  871. /* Enable transmitter, and clear it's reset. */
  872. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  873. if (status)
  874. goto end;
  875. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  876. data |= TX_CFG_EN; /* Enable the transmitter. */
  877. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  878. if (status)
  879. goto end;
  880. /* Enable receiver and clear it's reset. */
  881. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  882. if (status)
  883. goto end;
  884. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  885. data |= RX_CFG_EN; /* Enable the receiver. */
  886. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  887. if (status)
  888. goto end;
  889. /* Turn on jumbo. */
  890. status =
  891. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  892. if (status)
  893. goto end;
  894. status =
  895. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  896. if (status)
  897. goto end;
  898. /* Signal to the world that the port is enabled. */
  899. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  900. end:
  901. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  902. return status;
  903. }
  904. /* Get the next large buffer. */
  905. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  906. {
  907. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  908. rx_ring->lbq_curr_idx++;
  909. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  910. rx_ring->lbq_curr_idx = 0;
  911. rx_ring->lbq_free_cnt++;
  912. return lbq_desc;
  913. }
  914. /* Get the next small buffer. */
  915. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  916. {
  917. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  918. rx_ring->sbq_curr_idx++;
  919. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  920. rx_ring->sbq_curr_idx = 0;
  921. rx_ring->sbq_free_cnt++;
  922. return sbq_desc;
  923. }
  924. /* Update an rx ring index. */
  925. static void ql_update_cq(struct rx_ring *rx_ring)
  926. {
  927. rx_ring->cnsmr_idx++;
  928. rx_ring->curr_entry++;
  929. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  930. rx_ring->cnsmr_idx = 0;
  931. rx_ring->curr_entry = rx_ring->cq_base;
  932. }
  933. }
  934. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  935. {
  936. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  937. }
  938. /* Process (refill) a large buffer queue. */
  939. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  940. {
  941. u32 clean_idx = rx_ring->lbq_clean_idx;
  942. u32 start_idx = clean_idx;
  943. struct bq_desc *lbq_desc;
  944. u64 map;
  945. int i;
  946. while (rx_ring->lbq_free_cnt > 16) {
  947. for (i = 0; i < 16; i++) {
  948. QPRINTK(qdev, RX_STATUS, DEBUG,
  949. "lbq: try cleaning clean_idx = %d.\n",
  950. clean_idx);
  951. lbq_desc = &rx_ring->lbq[clean_idx];
  952. if (lbq_desc->p.lbq_page == NULL) {
  953. QPRINTK(qdev, RX_STATUS, DEBUG,
  954. "lbq: getting new page for index %d.\n",
  955. lbq_desc->index);
  956. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  957. if (lbq_desc->p.lbq_page == NULL) {
  958. rx_ring->lbq_clean_idx = clean_idx;
  959. QPRINTK(qdev, RX_STATUS, ERR,
  960. "Couldn't get a page.\n");
  961. return;
  962. }
  963. map = pci_map_page(qdev->pdev,
  964. lbq_desc->p.lbq_page,
  965. 0, PAGE_SIZE,
  966. PCI_DMA_FROMDEVICE);
  967. if (pci_dma_mapping_error(qdev->pdev, map)) {
  968. rx_ring->lbq_clean_idx = clean_idx;
  969. put_page(lbq_desc->p.lbq_page);
  970. lbq_desc->p.lbq_page = NULL;
  971. QPRINTK(qdev, RX_STATUS, ERR,
  972. "PCI mapping failed.\n");
  973. return;
  974. }
  975. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  976. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  977. *lbq_desc->addr = cpu_to_le64(map);
  978. }
  979. clean_idx++;
  980. if (clean_idx == rx_ring->lbq_len)
  981. clean_idx = 0;
  982. }
  983. rx_ring->lbq_clean_idx = clean_idx;
  984. rx_ring->lbq_prod_idx += 16;
  985. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  986. rx_ring->lbq_prod_idx = 0;
  987. rx_ring->lbq_free_cnt -= 16;
  988. }
  989. if (start_idx != clean_idx) {
  990. QPRINTK(qdev, RX_STATUS, DEBUG,
  991. "lbq: updating prod idx = %d.\n",
  992. rx_ring->lbq_prod_idx);
  993. ql_write_db_reg(rx_ring->lbq_prod_idx,
  994. rx_ring->lbq_prod_idx_db_reg);
  995. }
  996. }
  997. /* Process (refill) a small buffer queue. */
  998. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  999. {
  1000. u32 clean_idx = rx_ring->sbq_clean_idx;
  1001. u32 start_idx = clean_idx;
  1002. struct bq_desc *sbq_desc;
  1003. u64 map;
  1004. int i;
  1005. while (rx_ring->sbq_free_cnt > 16) {
  1006. for (i = 0; i < 16; i++) {
  1007. sbq_desc = &rx_ring->sbq[clean_idx];
  1008. QPRINTK(qdev, RX_STATUS, DEBUG,
  1009. "sbq: try cleaning clean_idx = %d.\n",
  1010. clean_idx);
  1011. if (sbq_desc->p.skb == NULL) {
  1012. QPRINTK(qdev, RX_STATUS, DEBUG,
  1013. "sbq: getting new skb for index %d.\n",
  1014. sbq_desc->index);
  1015. sbq_desc->p.skb =
  1016. netdev_alloc_skb(qdev->ndev,
  1017. rx_ring->sbq_buf_size);
  1018. if (sbq_desc->p.skb == NULL) {
  1019. QPRINTK(qdev, PROBE, ERR,
  1020. "Couldn't get an skb.\n");
  1021. rx_ring->sbq_clean_idx = clean_idx;
  1022. return;
  1023. }
  1024. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1025. map = pci_map_single(qdev->pdev,
  1026. sbq_desc->p.skb->data,
  1027. rx_ring->sbq_buf_size /
  1028. 2, PCI_DMA_FROMDEVICE);
  1029. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1030. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1031. rx_ring->sbq_clean_idx = clean_idx;
  1032. dev_kfree_skb_any(sbq_desc->p.skb);
  1033. sbq_desc->p.skb = NULL;
  1034. return;
  1035. }
  1036. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1037. pci_unmap_len_set(sbq_desc, maplen,
  1038. rx_ring->sbq_buf_size / 2);
  1039. *sbq_desc->addr = cpu_to_le64(map);
  1040. }
  1041. clean_idx++;
  1042. if (clean_idx == rx_ring->sbq_len)
  1043. clean_idx = 0;
  1044. }
  1045. rx_ring->sbq_clean_idx = clean_idx;
  1046. rx_ring->sbq_prod_idx += 16;
  1047. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1048. rx_ring->sbq_prod_idx = 0;
  1049. rx_ring->sbq_free_cnt -= 16;
  1050. }
  1051. if (start_idx != clean_idx) {
  1052. QPRINTK(qdev, RX_STATUS, DEBUG,
  1053. "sbq: updating prod idx = %d.\n",
  1054. rx_ring->sbq_prod_idx);
  1055. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1056. rx_ring->sbq_prod_idx_db_reg);
  1057. }
  1058. }
  1059. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1060. struct rx_ring *rx_ring)
  1061. {
  1062. ql_update_sbq(qdev, rx_ring);
  1063. ql_update_lbq(qdev, rx_ring);
  1064. }
  1065. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1066. * fails at some stage, or from the interrupt when a tx completes.
  1067. */
  1068. static void ql_unmap_send(struct ql_adapter *qdev,
  1069. struct tx_ring_desc *tx_ring_desc, int mapped)
  1070. {
  1071. int i;
  1072. for (i = 0; i < mapped; i++) {
  1073. if (i == 0 || (i == 7 && mapped > 7)) {
  1074. /*
  1075. * Unmap the skb->data area, or the
  1076. * external sglist (AKA the Outbound
  1077. * Address List (OAL)).
  1078. * If its the zeroeth element, then it's
  1079. * the skb->data area. If it's the 7th
  1080. * element and there is more than 6 frags,
  1081. * then its an OAL.
  1082. */
  1083. if (i == 7) {
  1084. QPRINTK(qdev, TX_DONE, DEBUG,
  1085. "unmapping OAL area.\n");
  1086. }
  1087. pci_unmap_single(qdev->pdev,
  1088. pci_unmap_addr(&tx_ring_desc->map[i],
  1089. mapaddr),
  1090. pci_unmap_len(&tx_ring_desc->map[i],
  1091. maplen),
  1092. PCI_DMA_TODEVICE);
  1093. } else {
  1094. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1095. i);
  1096. pci_unmap_page(qdev->pdev,
  1097. pci_unmap_addr(&tx_ring_desc->map[i],
  1098. mapaddr),
  1099. pci_unmap_len(&tx_ring_desc->map[i],
  1100. maplen), PCI_DMA_TODEVICE);
  1101. }
  1102. }
  1103. }
  1104. /* Map the buffers for this transmit. This will return
  1105. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1106. */
  1107. static int ql_map_send(struct ql_adapter *qdev,
  1108. struct ob_mac_iocb_req *mac_iocb_ptr,
  1109. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1110. {
  1111. int len = skb_headlen(skb);
  1112. dma_addr_t map;
  1113. int frag_idx, err, map_idx = 0;
  1114. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1115. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1116. if (frag_cnt) {
  1117. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1118. }
  1119. /*
  1120. * Map the skb buffer first.
  1121. */
  1122. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1123. err = pci_dma_mapping_error(qdev->pdev, map);
  1124. if (err) {
  1125. QPRINTK(qdev, TX_QUEUED, ERR,
  1126. "PCI mapping failed with error: %d\n", err);
  1127. return NETDEV_TX_BUSY;
  1128. }
  1129. tbd->len = cpu_to_le32(len);
  1130. tbd->addr = cpu_to_le64(map);
  1131. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1132. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1133. map_idx++;
  1134. /*
  1135. * This loop fills the remainder of the 8 address descriptors
  1136. * in the IOCB. If there are more than 7 fragments, then the
  1137. * eighth address desc will point to an external list (OAL).
  1138. * When this happens, the remainder of the frags will be stored
  1139. * in this list.
  1140. */
  1141. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1142. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1143. tbd++;
  1144. if (frag_idx == 6 && frag_cnt > 7) {
  1145. /* Let's tack on an sglist.
  1146. * Our control block will now
  1147. * look like this:
  1148. * iocb->seg[0] = skb->data
  1149. * iocb->seg[1] = frag[0]
  1150. * iocb->seg[2] = frag[1]
  1151. * iocb->seg[3] = frag[2]
  1152. * iocb->seg[4] = frag[3]
  1153. * iocb->seg[5] = frag[4]
  1154. * iocb->seg[6] = frag[5]
  1155. * iocb->seg[7] = ptr to OAL (external sglist)
  1156. * oal->seg[0] = frag[6]
  1157. * oal->seg[1] = frag[7]
  1158. * oal->seg[2] = frag[8]
  1159. * oal->seg[3] = frag[9]
  1160. * oal->seg[4] = frag[10]
  1161. * etc...
  1162. */
  1163. /* Tack on the OAL in the eighth segment of IOCB. */
  1164. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1165. sizeof(struct oal),
  1166. PCI_DMA_TODEVICE);
  1167. err = pci_dma_mapping_error(qdev->pdev, map);
  1168. if (err) {
  1169. QPRINTK(qdev, TX_QUEUED, ERR,
  1170. "PCI mapping outbound address list with error: %d\n",
  1171. err);
  1172. goto map_error;
  1173. }
  1174. tbd->addr = cpu_to_le64(map);
  1175. /*
  1176. * The length is the number of fragments
  1177. * that remain to be mapped times the length
  1178. * of our sglist (OAL).
  1179. */
  1180. tbd->len =
  1181. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1182. (frag_cnt - frag_idx)) | TX_DESC_C);
  1183. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1184. map);
  1185. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1186. sizeof(struct oal));
  1187. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1188. map_idx++;
  1189. }
  1190. map =
  1191. pci_map_page(qdev->pdev, frag->page,
  1192. frag->page_offset, frag->size,
  1193. PCI_DMA_TODEVICE);
  1194. err = pci_dma_mapping_error(qdev->pdev, map);
  1195. if (err) {
  1196. QPRINTK(qdev, TX_QUEUED, ERR,
  1197. "PCI mapping frags failed with error: %d.\n",
  1198. err);
  1199. goto map_error;
  1200. }
  1201. tbd->addr = cpu_to_le64(map);
  1202. tbd->len = cpu_to_le32(frag->size);
  1203. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1204. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1205. frag->size);
  1206. }
  1207. /* Save the number of segments we've mapped. */
  1208. tx_ring_desc->map_cnt = map_idx;
  1209. /* Terminate the last segment. */
  1210. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1211. return NETDEV_TX_OK;
  1212. map_error:
  1213. /*
  1214. * If the first frag mapping failed, then i will be zero.
  1215. * This causes the unmap of the skb->data area. Otherwise
  1216. * we pass in the number of frags that mapped successfully
  1217. * so they can be umapped.
  1218. */
  1219. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1220. return NETDEV_TX_BUSY;
  1221. }
  1222. static void ql_realign_skb(struct sk_buff *skb, int len)
  1223. {
  1224. void *temp_addr = skb->data;
  1225. /* Undo the skb_reserve(skb,32) we did before
  1226. * giving to hardware, and realign data on
  1227. * a 2-byte boundary.
  1228. */
  1229. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1230. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1231. skb_copy_to_linear_data(skb, temp_addr,
  1232. (unsigned int)len);
  1233. }
  1234. /*
  1235. * This function builds an skb for the given inbound
  1236. * completion. It will be rewritten for readability in the near
  1237. * future, but for not it works well.
  1238. */
  1239. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1240. struct rx_ring *rx_ring,
  1241. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1242. {
  1243. struct bq_desc *lbq_desc;
  1244. struct bq_desc *sbq_desc;
  1245. struct sk_buff *skb = NULL;
  1246. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1247. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1248. /*
  1249. * Handle the header buffer if present.
  1250. */
  1251. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1252. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1253. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1254. /*
  1255. * Headers fit nicely into a small buffer.
  1256. */
  1257. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1258. pci_unmap_single(qdev->pdev,
  1259. pci_unmap_addr(sbq_desc, mapaddr),
  1260. pci_unmap_len(sbq_desc, maplen),
  1261. PCI_DMA_FROMDEVICE);
  1262. skb = sbq_desc->p.skb;
  1263. ql_realign_skb(skb, hdr_len);
  1264. skb_put(skb, hdr_len);
  1265. sbq_desc->p.skb = NULL;
  1266. }
  1267. /*
  1268. * Handle the data buffer(s).
  1269. */
  1270. if (unlikely(!length)) { /* Is there data too? */
  1271. QPRINTK(qdev, RX_STATUS, DEBUG,
  1272. "No Data buffer in this packet.\n");
  1273. return skb;
  1274. }
  1275. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1276. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1277. QPRINTK(qdev, RX_STATUS, DEBUG,
  1278. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1279. /*
  1280. * Data is less than small buffer size so it's
  1281. * stuffed in a small buffer.
  1282. * For this case we append the data
  1283. * from the "data" small buffer to the "header" small
  1284. * buffer.
  1285. */
  1286. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1287. pci_dma_sync_single_for_cpu(qdev->pdev,
  1288. pci_unmap_addr
  1289. (sbq_desc, mapaddr),
  1290. pci_unmap_len
  1291. (sbq_desc, maplen),
  1292. PCI_DMA_FROMDEVICE);
  1293. memcpy(skb_put(skb, length),
  1294. sbq_desc->p.skb->data, length);
  1295. pci_dma_sync_single_for_device(qdev->pdev,
  1296. pci_unmap_addr
  1297. (sbq_desc,
  1298. mapaddr),
  1299. pci_unmap_len
  1300. (sbq_desc,
  1301. maplen),
  1302. PCI_DMA_FROMDEVICE);
  1303. } else {
  1304. QPRINTK(qdev, RX_STATUS, DEBUG,
  1305. "%d bytes in a single small buffer.\n", length);
  1306. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1307. skb = sbq_desc->p.skb;
  1308. ql_realign_skb(skb, length);
  1309. skb_put(skb, length);
  1310. pci_unmap_single(qdev->pdev,
  1311. pci_unmap_addr(sbq_desc,
  1312. mapaddr),
  1313. pci_unmap_len(sbq_desc,
  1314. maplen),
  1315. PCI_DMA_FROMDEVICE);
  1316. sbq_desc->p.skb = NULL;
  1317. }
  1318. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1319. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1320. QPRINTK(qdev, RX_STATUS, DEBUG,
  1321. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1322. /*
  1323. * The data is in a single large buffer. We
  1324. * chain it to the header buffer's skb and let
  1325. * it rip.
  1326. */
  1327. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1328. pci_unmap_page(qdev->pdev,
  1329. pci_unmap_addr(lbq_desc,
  1330. mapaddr),
  1331. pci_unmap_len(lbq_desc, maplen),
  1332. PCI_DMA_FROMDEVICE);
  1333. QPRINTK(qdev, RX_STATUS, DEBUG,
  1334. "Chaining page to skb.\n");
  1335. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1336. 0, length);
  1337. skb->len += length;
  1338. skb->data_len += length;
  1339. skb->truesize += length;
  1340. lbq_desc->p.lbq_page = NULL;
  1341. } else {
  1342. /*
  1343. * The headers and data are in a single large buffer. We
  1344. * copy it to a new skb and let it go. This can happen with
  1345. * jumbo mtu on a non-TCP/UDP frame.
  1346. */
  1347. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1348. skb = netdev_alloc_skb(qdev->ndev, length);
  1349. if (skb == NULL) {
  1350. QPRINTK(qdev, PROBE, DEBUG,
  1351. "No skb available, drop the packet.\n");
  1352. return NULL;
  1353. }
  1354. pci_unmap_page(qdev->pdev,
  1355. pci_unmap_addr(lbq_desc,
  1356. mapaddr),
  1357. pci_unmap_len(lbq_desc, maplen),
  1358. PCI_DMA_FROMDEVICE);
  1359. skb_reserve(skb, NET_IP_ALIGN);
  1360. QPRINTK(qdev, RX_STATUS, DEBUG,
  1361. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1362. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1363. 0, length);
  1364. skb->len += length;
  1365. skb->data_len += length;
  1366. skb->truesize += length;
  1367. length -= length;
  1368. lbq_desc->p.lbq_page = NULL;
  1369. __pskb_pull_tail(skb,
  1370. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1371. VLAN_ETH_HLEN : ETH_HLEN);
  1372. }
  1373. } else {
  1374. /*
  1375. * The data is in a chain of large buffers
  1376. * pointed to by a small buffer. We loop
  1377. * thru and chain them to the our small header
  1378. * buffer's skb.
  1379. * frags: There are 18 max frags and our small
  1380. * buffer will hold 32 of them. The thing is,
  1381. * we'll use 3 max for our 9000 byte jumbo
  1382. * frames. If the MTU goes up we could
  1383. * eventually be in trouble.
  1384. */
  1385. int size, offset, i = 0;
  1386. __le64 *bq, bq_array[8];
  1387. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1388. pci_unmap_single(qdev->pdev,
  1389. pci_unmap_addr(sbq_desc, mapaddr),
  1390. pci_unmap_len(sbq_desc, maplen),
  1391. PCI_DMA_FROMDEVICE);
  1392. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1393. /*
  1394. * This is an non TCP/UDP IP frame, so
  1395. * the headers aren't split into a small
  1396. * buffer. We have to use the small buffer
  1397. * that contains our sg list as our skb to
  1398. * send upstairs. Copy the sg list here to
  1399. * a local buffer and use it to find the
  1400. * pages to chain.
  1401. */
  1402. QPRINTK(qdev, RX_STATUS, DEBUG,
  1403. "%d bytes of headers & data in chain of large.\n", length);
  1404. skb = sbq_desc->p.skb;
  1405. bq = &bq_array[0];
  1406. memcpy(bq, skb->data, sizeof(bq_array));
  1407. sbq_desc->p.skb = NULL;
  1408. skb_reserve(skb, NET_IP_ALIGN);
  1409. } else {
  1410. QPRINTK(qdev, RX_STATUS, DEBUG,
  1411. "Headers in small, %d bytes of data in chain of large.\n", length);
  1412. bq = (__le64 *)sbq_desc->p.skb->data;
  1413. }
  1414. while (length > 0) {
  1415. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1416. pci_unmap_page(qdev->pdev,
  1417. pci_unmap_addr(lbq_desc,
  1418. mapaddr),
  1419. pci_unmap_len(lbq_desc,
  1420. maplen),
  1421. PCI_DMA_FROMDEVICE);
  1422. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1423. offset = 0;
  1424. QPRINTK(qdev, RX_STATUS, DEBUG,
  1425. "Adding page %d to skb for %d bytes.\n",
  1426. i, size);
  1427. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1428. offset, size);
  1429. skb->len += size;
  1430. skb->data_len += size;
  1431. skb->truesize += size;
  1432. length -= size;
  1433. lbq_desc->p.lbq_page = NULL;
  1434. bq++;
  1435. i++;
  1436. }
  1437. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1438. VLAN_ETH_HLEN : ETH_HLEN);
  1439. }
  1440. return skb;
  1441. }
  1442. /* Process an inbound completion from an rx ring. */
  1443. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1444. struct rx_ring *rx_ring,
  1445. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1446. {
  1447. struct net_device *ndev = qdev->ndev;
  1448. struct sk_buff *skb = NULL;
  1449. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1450. IB_MAC_IOCB_RSP_VLAN_MASK)
  1451. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1452. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1453. if (unlikely(!skb)) {
  1454. QPRINTK(qdev, RX_STATUS, DEBUG,
  1455. "No skb available, drop packet.\n");
  1456. return;
  1457. }
  1458. /* Frame error, so drop the packet. */
  1459. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1460. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1461. ib_mac_rsp->flags2);
  1462. dev_kfree_skb_any(skb);
  1463. return;
  1464. }
  1465. /* The max framesize filter on this chip is set higher than
  1466. * MTU since FCoE uses 2k frames.
  1467. */
  1468. if (skb->len > ndev->mtu + ETH_HLEN) {
  1469. dev_kfree_skb_any(skb);
  1470. return;
  1471. }
  1472. prefetch(skb->data);
  1473. skb->dev = ndev;
  1474. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1475. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1476. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1477. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1478. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1479. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1480. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1481. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1482. }
  1483. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1484. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1485. }
  1486. skb->protocol = eth_type_trans(skb, ndev);
  1487. skb->ip_summed = CHECKSUM_NONE;
  1488. /* If rx checksum is on, and there are no
  1489. * csum or frame errors.
  1490. */
  1491. if (qdev->rx_csum &&
  1492. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1493. /* TCP frame. */
  1494. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1495. QPRINTK(qdev, RX_STATUS, DEBUG,
  1496. "TCP checksum done!\n");
  1497. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1498. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1499. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1500. /* Unfragmented ipv4 UDP frame. */
  1501. struct iphdr *iph = (struct iphdr *) skb->data;
  1502. if (!(iph->frag_off &
  1503. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1504. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1505. QPRINTK(qdev, RX_STATUS, DEBUG,
  1506. "TCP checksum done!\n");
  1507. }
  1508. }
  1509. }
  1510. qdev->stats.rx_packets++;
  1511. qdev->stats.rx_bytes += skb->len;
  1512. skb_record_rx_queue(skb, rx_ring->cq_id);
  1513. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1514. if (qdev->vlgrp &&
  1515. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1516. (vlan_id != 0))
  1517. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1518. vlan_id, skb);
  1519. else
  1520. napi_gro_receive(&rx_ring->napi, skb);
  1521. } else {
  1522. if (qdev->vlgrp &&
  1523. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1524. (vlan_id != 0))
  1525. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1526. else
  1527. netif_receive_skb(skb);
  1528. }
  1529. }
  1530. /* Process an outbound completion from an rx ring. */
  1531. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1532. struct ob_mac_iocb_rsp *mac_rsp)
  1533. {
  1534. struct tx_ring *tx_ring;
  1535. struct tx_ring_desc *tx_ring_desc;
  1536. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1537. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1538. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1539. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1540. qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1541. qdev->stats.tx_packets++;
  1542. dev_kfree_skb(tx_ring_desc->skb);
  1543. tx_ring_desc->skb = NULL;
  1544. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1545. OB_MAC_IOCB_RSP_S |
  1546. OB_MAC_IOCB_RSP_L |
  1547. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1548. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1549. QPRINTK(qdev, TX_DONE, WARNING,
  1550. "Total descriptor length did not match transfer length.\n");
  1551. }
  1552. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1553. QPRINTK(qdev, TX_DONE, WARNING,
  1554. "Frame too short to be legal, not sent.\n");
  1555. }
  1556. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1557. QPRINTK(qdev, TX_DONE, WARNING,
  1558. "Frame too long, but sent anyway.\n");
  1559. }
  1560. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1561. QPRINTK(qdev, TX_DONE, WARNING,
  1562. "PCI backplane error. Frame not sent.\n");
  1563. }
  1564. }
  1565. atomic_inc(&tx_ring->tx_count);
  1566. }
  1567. /* Fire up a handler to reset the MPI processor. */
  1568. void ql_queue_fw_error(struct ql_adapter *qdev)
  1569. {
  1570. ql_link_off(qdev);
  1571. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1572. }
  1573. void ql_queue_asic_error(struct ql_adapter *qdev)
  1574. {
  1575. ql_link_off(qdev);
  1576. ql_disable_interrupts(qdev);
  1577. /* Clear adapter up bit to signal the recovery
  1578. * process that it shouldn't kill the reset worker
  1579. * thread
  1580. */
  1581. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1582. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1583. }
  1584. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1585. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1586. {
  1587. switch (ib_ae_rsp->event) {
  1588. case MGMT_ERR_EVENT:
  1589. QPRINTK(qdev, RX_ERR, ERR,
  1590. "Management Processor Fatal Error.\n");
  1591. ql_queue_fw_error(qdev);
  1592. return;
  1593. case CAM_LOOKUP_ERR_EVENT:
  1594. QPRINTK(qdev, LINK, ERR,
  1595. "Multiple CAM hits lookup occurred.\n");
  1596. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1597. ql_queue_asic_error(qdev);
  1598. return;
  1599. case SOFT_ECC_ERROR_EVENT:
  1600. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1601. ql_queue_asic_error(qdev);
  1602. break;
  1603. case PCI_ERR_ANON_BUF_RD:
  1604. QPRINTK(qdev, RX_ERR, ERR,
  1605. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1606. ib_ae_rsp->q_id);
  1607. ql_queue_asic_error(qdev);
  1608. break;
  1609. default:
  1610. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1611. ib_ae_rsp->event);
  1612. ql_queue_asic_error(qdev);
  1613. break;
  1614. }
  1615. }
  1616. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1617. {
  1618. struct ql_adapter *qdev = rx_ring->qdev;
  1619. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1620. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1621. int count = 0;
  1622. struct tx_ring *tx_ring;
  1623. /* While there are entries in the completion queue. */
  1624. while (prod != rx_ring->cnsmr_idx) {
  1625. QPRINTK(qdev, RX_STATUS, DEBUG,
  1626. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1627. prod, rx_ring->cnsmr_idx);
  1628. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1629. rmb();
  1630. switch (net_rsp->opcode) {
  1631. case OPCODE_OB_MAC_TSO_IOCB:
  1632. case OPCODE_OB_MAC_IOCB:
  1633. ql_process_mac_tx_intr(qdev, net_rsp);
  1634. break;
  1635. default:
  1636. QPRINTK(qdev, RX_STATUS, DEBUG,
  1637. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1638. net_rsp->opcode);
  1639. }
  1640. count++;
  1641. ql_update_cq(rx_ring);
  1642. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1643. }
  1644. ql_write_cq_idx(rx_ring);
  1645. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1646. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1647. net_rsp != NULL) {
  1648. if (atomic_read(&tx_ring->queue_stopped) &&
  1649. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1650. /*
  1651. * The queue got stopped because the tx_ring was full.
  1652. * Wake it up, because it's now at least 25% empty.
  1653. */
  1654. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1655. }
  1656. return count;
  1657. }
  1658. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1659. {
  1660. struct ql_adapter *qdev = rx_ring->qdev;
  1661. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1662. struct ql_net_rsp_iocb *net_rsp;
  1663. int count = 0;
  1664. /* While there are entries in the completion queue. */
  1665. while (prod != rx_ring->cnsmr_idx) {
  1666. QPRINTK(qdev, RX_STATUS, DEBUG,
  1667. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1668. prod, rx_ring->cnsmr_idx);
  1669. net_rsp = rx_ring->curr_entry;
  1670. rmb();
  1671. switch (net_rsp->opcode) {
  1672. case OPCODE_IB_MAC_IOCB:
  1673. ql_process_mac_rx_intr(qdev, rx_ring,
  1674. (struct ib_mac_iocb_rsp *)
  1675. net_rsp);
  1676. break;
  1677. case OPCODE_IB_AE_IOCB:
  1678. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1679. net_rsp);
  1680. break;
  1681. default:
  1682. {
  1683. QPRINTK(qdev, RX_STATUS, DEBUG,
  1684. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1685. net_rsp->opcode);
  1686. }
  1687. }
  1688. count++;
  1689. ql_update_cq(rx_ring);
  1690. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1691. if (count == budget)
  1692. break;
  1693. }
  1694. ql_update_buffer_queues(qdev, rx_ring);
  1695. ql_write_cq_idx(rx_ring);
  1696. return count;
  1697. }
  1698. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1699. {
  1700. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1701. struct ql_adapter *qdev = rx_ring->qdev;
  1702. struct rx_ring *trx_ring;
  1703. int i, work_done = 0;
  1704. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  1705. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1706. rx_ring->cq_id);
  1707. /* Service the TX rings first. They start
  1708. * right after the RSS rings. */
  1709. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  1710. trx_ring = &qdev->rx_ring[i];
  1711. /* If this TX completion ring belongs to this vector and
  1712. * it's not empty then service it.
  1713. */
  1714. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  1715. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  1716. trx_ring->cnsmr_idx)) {
  1717. QPRINTK(qdev, INTR, DEBUG,
  1718. "%s: Servicing TX completion ring %d.\n",
  1719. __func__, trx_ring->cq_id);
  1720. ql_clean_outbound_rx_ring(trx_ring);
  1721. }
  1722. }
  1723. /*
  1724. * Now service the RSS ring if it's active.
  1725. */
  1726. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1727. rx_ring->cnsmr_idx) {
  1728. QPRINTK(qdev, INTR, DEBUG,
  1729. "%s: Servicing RX completion ring %d.\n",
  1730. __func__, rx_ring->cq_id);
  1731. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1732. }
  1733. if (work_done < budget) {
  1734. napi_complete(napi);
  1735. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1736. }
  1737. return work_done;
  1738. }
  1739. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1740. {
  1741. struct ql_adapter *qdev = netdev_priv(ndev);
  1742. qdev->vlgrp = grp;
  1743. if (grp) {
  1744. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1745. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1746. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1747. } else {
  1748. QPRINTK(qdev, IFUP, DEBUG,
  1749. "Turning off VLAN in NIC_RCV_CFG.\n");
  1750. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1751. }
  1752. }
  1753. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1754. {
  1755. struct ql_adapter *qdev = netdev_priv(ndev);
  1756. u32 enable_bit = MAC_ADDR_E;
  1757. int status;
  1758. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1759. if (status)
  1760. return;
  1761. spin_lock(&qdev->hw_lock);
  1762. if (ql_set_mac_addr_reg
  1763. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1764. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1765. }
  1766. spin_unlock(&qdev->hw_lock);
  1767. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1768. }
  1769. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1770. {
  1771. struct ql_adapter *qdev = netdev_priv(ndev);
  1772. u32 enable_bit = 0;
  1773. int status;
  1774. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1775. if (status)
  1776. return;
  1777. spin_lock(&qdev->hw_lock);
  1778. if (ql_set_mac_addr_reg
  1779. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1780. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1781. }
  1782. spin_unlock(&qdev->hw_lock);
  1783. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1784. }
  1785. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1786. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1787. {
  1788. struct rx_ring *rx_ring = dev_id;
  1789. napi_schedule(&rx_ring->napi);
  1790. return IRQ_HANDLED;
  1791. }
  1792. /* This handles a fatal error, MPI activity, and the default
  1793. * rx_ring in an MSI-X multiple vector environment.
  1794. * In MSI/Legacy environment it also process the rest of
  1795. * the rx_rings.
  1796. */
  1797. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1798. {
  1799. struct rx_ring *rx_ring = dev_id;
  1800. struct ql_adapter *qdev = rx_ring->qdev;
  1801. struct intr_context *intr_context = &qdev->intr_context[0];
  1802. u32 var;
  1803. int work_done = 0;
  1804. spin_lock(&qdev->hw_lock);
  1805. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1806. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1807. spin_unlock(&qdev->hw_lock);
  1808. return IRQ_NONE;
  1809. }
  1810. spin_unlock(&qdev->hw_lock);
  1811. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1812. /*
  1813. * Check for fatal error.
  1814. */
  1815. if (var & STS_FE) {
  1816. ql_queue_asic_error(qdev);
  1817. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1818. var = ql_read32(qdev, ERR_STS);
  1819. QPRINTK(qdev, INTR, ERR,
  1820. "Resetting chip. Error Status Register = 0x%x\n", var);
  1821. return IRQ_HANDLED;
  1822. }
  1823. /*
  1824. * Check MPI processor activity.
  1825. */
  1826. if (var & STS_PI) {
  1827. /*
  1828. * We've got an async event or mailbox completion.
  1829. * Handle it and clear the source of the interrupt.
  1830. */
  1831. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1832. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1833. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1834. &qdev->mpi_work, 0);
  1835. work_done++;
  1836. }
  1837. /*
  1838. * Get the bit-mask that shows the active queues for this
  1839. * pass. Compare it to the queues that this irq services
  1840. * and call napi if there's a match.
  1841. */
  1842. var = ql_read32(qdev, ISR1);
  1843. if (var & intr_context->irq_mask) {
  1844. QPRINTK(qdev, INTR, INFO,
  1845. "Waking handler for rx_ring[0].\n");
  1846. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1847. napi_schedule(&rx_ring->napi);
  1848. work_done++;
  1849. }
  1850. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1851. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1852. }
  1853. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1854. {
  1855. if (skb_is_gso(skb)) {
  1856. int err;
  1857. if (skb_header_cloned(skb)) {
  1858. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1859. if (err)
  1860. return err;
  1861. }
  1862. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1863. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1864. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1865. mac_iocb_ptr->total_hdrs_len =
  1866. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1867. mac_iocb_ptr->net_trans_offset =
  1868. cpu_to_le16(skb_network_offset(skb) |
  1869. skb_transport_offset(skb)
  1870. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1871. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1872. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1873. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1874. struct iphdr *iph = ip_hdr(skb);
  1875. iph->check = 0;
  1876. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1877. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1878. iph->daddr, 0,
  1879. IPPROTO_TCP,
  1880. 0);
  1881. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1882. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1883. tcp_hdr(skb)->check =
  1884. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1885. &ipv6_hdr(skb)->daddr,
  1886. 0, IPPROTO_TCP, 0);
  1887. }
  1888. return 1;
  1889. }
  1890. return 0;
  1891. }
  1892. static void ql_hw_csum_setup(struct sk_buff *skb,
  1893. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1894. {
  1895. int len;
  1896. struct iphdr *iph = ip_hdr(skb);
  1897. __sum16 *check;
  1898. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1899. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1900. mac_iocb_ptr->net_trans_offset =
  1901. cpu_to_le16(skb_network_offset(skb) |
  1902. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1903. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1904. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1905. if (likely(iph->protocol == IPPROTO_TCP)) {
  1906. check = &(tcp_hdr(skb)->check);
  1907. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1908. mac_iocb_ptr->total_hdrs_len =
  1909. cpu_to_le16(skb_transport_offset(skb) +
  1910. (tcp_hdr(skb)->doff << 2));
  1911. } else {
  1912. check = &(udp_hdr(skb)->check);
  1913. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1914. mac_iocb_ptr->total_hdrs_len =
  1915. cpu_to_le16(skb_transport_offset(skb) +
  1916. sizeof(struct udphdr));
  1917. }
  1918. *check = ~csum_tcpudp_magic(iph->saddr,
  1919. iph->daddr, len, iph->protocol, 0);
  1920. }
  1921. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1922. {
  1923. struct tx_ring_desc *tx_ring_desc;
  1924. struct ob_mac_iocb_req *mac_iocb_ptr;
  1925. struct ql_adapter *qdev = netdev_priv(ndev);
  1926. int tso;
  1927. struct tx_ring *tx_ring;
  1928. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1929. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1930. if (skb_padto(skb, ETH_ZLEN))
  1931. return NETDEV_TX_OK;
  1932. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1933. QPRINTK(qdev, TX_QUEUED, INFO,
  1934. "%s: shutting down tx queue %d du to lack of resources.\n",
  1935. __func__, tx_ring_idx);
  1936. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1937. atomic_inc(&tx_ring->queue_stopped);
  1938. return NETDEV_TX_BUSY;
  1939. }
  1940. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1941. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1942. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  1943. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1944. mac_iocb_ptr->tid = tx_ring_desc->index;
  1945. /* We use the upper 32-bits to store the tx queue for this IO.
  1946. * When we get the completion we can use it to establish the context.
  1947. */
  1948. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1949. tx_ring_desc->skb = skb;
  1950. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1951. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1952. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1953. vlan_tx_tag_get(skb));
  1954. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1955. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1956. }
  1957. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1958. if (tso < 0) {
  1959. dev_kfree_skb_any(skb);
  1960. return NETDEV_TX_OK;
  1961. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1962. ql_hw_csum_setup(skb,
  1963. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1964. }
  1965. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1966. NETDEV_TX_OK) {
  1967. QPRINTK(qdev, TX_QUEUED, ERR,
  1968. "Could not map the segments.\n");
  1969. return NETDEV_TX_BUSY;
  1970. }
  1971. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1972. tx_ring->prod_idx++;
  1973. if (tx_ring->prod_idx == tx_ring->wq_len)
  1974. tx_ring->prod_idx = 0;
  1975. wmb();
  1976. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1977. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1978. tx_ring->prod_idx, skb->len);
  1979. atomic_dec(&tx_ring->tx_count);
  1980. return NETDEV_TX_OK;
  1981. }
  1982. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1983. {
  1984. if (qdev->rx_ring_shadow_reg_area) {
  1985. pci_free_consistent(qdev->pdev,
  1986. PAGE_SIZE,
  1987. qdev->rx_ring_shadow_reg_area,
  1988. qdev->rx_ring_shadow_reg_dma);
  1989. qdev->rx_ring_shadow_reg_area = NULL;
  1990. }
  1991. if (qdev->tx_ring_shadow_reg_area) {
  1992. pci_free_consistent(qdev->pdev,
  1993. PAGE_SIZE,
  1994. qdev->tx_ring_shadow_reg_area,
  1995. qdev->tx_ring_shadow_reg_dma);
  1996. qdev->tx_ring_shadow_reg_area = NULL;
  1997. }
  1998. }
  1999. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2000. {
  2001. qdev->rx_ring_shadow_reg_area =
  2002. pci_alloc_consistent(qdev->pdev,
  2003. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2004. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2005. QPRINTK(qdev, IFUP, ERR,
  2006. "Allocation of RX shadow space failed.\n");
  2007. return -ENOMEM;
  2008. }
  2009. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2010. qdev->tx_ring_shadow_reg_area =
  2011. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2012. &qdev->tx_ring_shadow_reg_dma);
  2013. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2014. QPRINTK(qdev, IFUP, ERR,
  2015. "Allocation of TX shadow space failed.\n");
  2016. goto err_wqp_sh_area;
  2017. }
  2018. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2019. return 0;
  2020. err_wqp_sh_area:
  2021. pci_free_consistent(qdev->pdev,
  2022. PAGE_SIZE,
  2023. qdev->rx_ring_shadow_reg_area,
  2024. qdev->rx_ring_shadow_reg_dma);
  2025. return -ENOMEM;
  2026. }
  2027. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2028. {
  2029. struct tx_ring_desc *tx_ring_desc;
  2030. int i;
  2031. struct ob_mac_iocb_req *mac_iocb_ptr;
  2032. mac_iocb_ptr = tx_ring->wq_base;
  2033. tx_ring_desc = tx_ring->q;
  2034. for (i = 0; i < tx_ring->wq_len; i++) {
  2035. tx_ring_desc->index = i;
  2036. tx_ring_desc->skb = NULL;
  2037. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2038. mac_iocb_ptr++;
  2039. tx_ring_desc++;
  2040. }
  2041. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2042. atomic_set(&tx_ring->queue_stopped, 0);
  2043. }
  2044. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2045. struct tx_ring *tx_ring)
  2046. {
  2047. if (tx_ring->wq_base) {
  2048. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2049. tx_ring->wq_base, tx_ring->wq_base_dma);
  2050. tx_ring->wq_base = NULL;
  2051. }
  2052. kfree(tx_ring->q);
  2053. tx_ring->q = NULL;
  2054. }
  2055. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2056. struct tx_ring *tx_ring)
  2057. {
  2058. tx_ring->wq_base =
  2059. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2060. &tx_ring->wq_base_dma);
  2061. if ((tx_ring->wq_base == NULL)
  2062. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2063. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2064. return -ENOMEM;
  2065. }
  2066. tx_ring->q =
  2067. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2068. if (tx_ring->q == NULL)
  2069. goto err;
  2070. return 0;
  2071. err:
  2072. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2073. tx_ring->wq_base, tx_ring->wq_base_dma);
  2074. return -ENOMEM;
  2075. }
  2076. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2077. {
  2078. int i;
  2079. struct bq_desc *lbq_desc;
  2080. for (i = 0; i < rx_ring->lbq_len; i++) {
  2081. lbq_desc = &rx_ring->lbq[i];
  2082. if (lbq_desc->p.lbq_page) {
  2083. pci_unmap_page(qdev->pdev,
  2084. pci_unmap_addr(lbq_desc, mapaddr),
  2085. pci_unmap_len(lbq_desc, maplen),
  2086. PCI_DMA_FROMDEVICE);
  2087. put_page(lbq_desc->p.lbq_page);
  2088. lbq_desc->p.lbq_page = NULL;
  2089. }
  2090. }
  2091. }
  2092. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2093. {
  2094. int i;
  2095. struct bq_desc *sbq_desc;
  2096. for (i = 0; i < rx_ring->sbq_len; i++) {
  2097. sbq_desc = &rx_ring->sbq[i];
  2098. if (sbq_desc == NULL) {
  2099. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2100. return;
  2101. }
  2102. if (sbq_desc->p.skb) {
  2103. pci_unmap_single(qdev->pdev,
  2104. pci_unmap_addr(sbq_desc, mapaddr),
  2105. pci_unmap_len(sbq_desc, maplen),
  2106. PCI_DMA_FROMDEVICE);
  2107. dev_kfree_skb(sbq_desc->p.skb);
  2108. sbq_desc->p.skb = NULL;
  2109. }
  2110. }
  2111. }
  2112. /* Free all large and small rx buffers associated
  2113. * with the completion queues for this device.
  2114. */
  2115. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2116. {
  2117. int i;
  2118. struct rx_ring *rx_ring;
  2119. for (i = 0; i < qdev->rx_ring_count; i++) {
  2120. rx_ring = &qdev->rx_ring[i];
  2121. if (rx_ring->lbq)
  2122. ql_free_lbq_buffers(qdev, rx_ring);
  2123. if (rx_ring->sbq)
  2124. ql_free_sbq_buffers(qdev, rx_ring);
  2125. }
  2126. }
  2127. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2128. {
  2129. struct rx_ring *rx_ring;
  2130. int i;
  2131. for (i = 0; i < qdev->rx_ring_count; i++) {
  2132. rx_ring = &qdev->rx_ring[i];
  2133. if (rx_ring->type != TX_Q)
  2134. ql_update_buffer_queues(qdev, rx_ring);
  2135. }
  2136. }
  2137. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2138. struct rx_ring *rx_ring)
  2139. {
  2140. int i;
  2141. struct bq_desc *lbq_desc;
  2142. __le64 *bq = rx_ring->lbq_base;
  2143. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2144. for (i = 0; i < rx_ring->lbq_len; i++) {
  2145. lbq_desc = &rx_ring->lbq[i];
  2146. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2147. lbq_desc->index = i;
  2148. lbq_desc->addr = bq;
  2149. bq++;
  2150. }
  2151. }
  2152. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2153. struct rx_ring *rx_ring)
  2154. {
  2155. int i;
  2156. struct bq_desc *sbq_desc;
  2157. __le64 *bq = rx_ring->sbq_base;
  2158. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2159. for (i = 0; i < rx_ring->sbq_len; i++) {
  2160. sbq_desc = &rx_ring->sbq[i];
  2161. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2162. sbq_desc->index = i;
  2163. sbq_desc->addr = bq;
  2164. bq++;
  2165. }
  2166. }
  2167. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2168. struct rx_ring *rx_ring)
  2169. {
  2170. /* Free the small buffer queue. */
  2171. if (rx_ring->sbq_base) {
  2172. pci_free_consistent(qdev->pdev,
  2173. rx_ring->sbq_size,
  2174. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2175. rx_ring->sbq_base = NULL;
  2176. }
  2177. /* Free the small buffer queue control blocks. */
  2178. kfree(rx_ring->sbq);
  2179. rx_ring->sbq = NULL;
  2180. /* Free the large buffer queue. */
  2181. if (rx_ring->lbq_base) {
  2182. pci_free_consistent(qdev->pdev,
  2183. rx_ring->lbq_size,
  2184. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2185. rx_ring->lbq_base = NULL;
  2186. }
  2187. /* Free the large buffer queue control blocks. */
  2188. kfree(rx_ring->lbq);
  2189. rx_ring->lbq = NULL;
  2190. /* Free the rx queue. */
  2191. if (rx_ring->cq_base) {
  2192. pci_free_consistent(qdev->pdev,
  2193. rx_ring->cq_size,
  2194. rx_ring->cq_base, rx_ring->cq_base_dma);
  2195. rx_ring->cq_base = NULL;
  2196. }
  2197. }
  2198. /* Allocate queues and buffers for this completions queue based
  2199. * on the values in the parameter structure. */
  2200. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2201. struct rx_ring *rx_ring)
  2202. {
  2203. /*
  2204. * Allocate the completion queue for this rx_ring.
  2205. */
  2206. rx_ring->cq_base =
  2207. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2208. &rx_ring->cq_base_dma);
  2209. if (rx_ring->cq_base == NULL) {
  2210. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2211. return -ENOMEM;
  2212. }
  2213. if (rx_ring->sbq_len) {
  2214. /*
  2215. * Allocate small buffer queue.
  2216. */
  2217. rx_ring->sbq_base =
  2218. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2219. &rx_ring->sbq_base_dma);
  2220. if (rx_ring->sbq_base == NULL) {
  2221. QPRINTK(qdev, IFUP, ERR,
  2222. "Small buffer queue allocation failed.\n");
  2223. goto err_mem;
  2224. }
  2225. /*
  2226. * Allocate small buffer queue control blocks.
  2227. */
  2228. rx_ring->sbq =
  2229. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2230. GFP_KERNEL);
  2231. if (rx_ring->sbq == NULL) {
  2232. QPRINTK(qdev, IFUP, ERR,
  2233. "Small buffer queue control block allocation failed.\n");
  2234. goto err_mem;
  2235. }
  2236. ql_init_sbq_ring(qdev, rx_ring);
  2237. }
  2238. if (rx_ring->lbq_len) {
  2239. /*
  2240. * Allocate large buffer queue.
  2241. */
  2242. rx_ring->lbq_base =
  2243. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2244. &rx_ring->lbq_base_dma);
  2245. if (rx_ring->lbq_base == NULL) {
  2246. QPRINTK(qdev, IFUP, ERR,
  2247. "Large buffer queue allocation failed.\n");
  2248. goto err_mem;
  2249. }
  2250. /*
  2251. * Allocate large buffer queue control blocks.
  2252. */
  2253. rx_ring->lbq =
  2254. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2255. GFP_KERNEL);
  2256. if (rx_ring->lbq == NULL) {
  2257. QPRINTK(qdev, IFUP, ERR,
  2258. "Large buffer queue control block allocation failed.\n");
  2259. goto err_mem;
  2260. }
  2261. ql_init_lbq_ring(qdev, rx_ring);
  2262. }
  2263. return 0;
  2264. err_mem:
  2265. ql_free_rx_resources(qdev, rx_ring);
  2266. return -ENOMEM;
  2267. }
  2268. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2269. {
  2270. struct tx_ring *tx_ring;
  2271. struct tx_ring_desc *tx_ring_desc;
  2272. int i, j;
  2273. /*
  2274. * Loop through all queues and free
  2275. * any resources.
  2276. */
  2277. for (j = 0; j < qdev->tx_ring_count; j++) {
  2278. tx_ring = &qdev->tx_ring[j];
  2279. for (i = 0; i < tx_ring->wq_len; i++) {
  2280. tx_ring_desc = &tx_ring->q[i];
  2281. if (tx_ring_desc && tx_ring_desc->skb) {
  2282. QPRINTK(qdev, IFDOWN, ERR,
  2283. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2284. tx_ring_desc->skb, j,
  2285. tx_ring_desc->index);
  2286. ql_unmap_send(qdev, tx_ring_desc,
  2287. tx_ring_desc->map_cnt);
  2288. dev_kfree_skb(tx_ring_desc->skb);
  2289. tx_ring_desc->skb = NULL;
  2290. }
  2291. }
  2292. }
  2293. }
  2294. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2295. {
  2296. int i;
  2297. for (i = 0; i < qdev->tx_ring_count; i++)
  2298. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2299. for (i = 0; i < qdev->rx_ring_count; i++)
  2300. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2301. ql_free_shadow_space(qdev);
  2302. }
  2303. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2304. {
  2305. int i;
  2306. /* Allocate space for our shadow registers and such. */
  2307. if (ql_alloc_shadow_space(qdev))
  2308. return -ENOMEM;
  2309. for (i = 0; i < qdev->rx_ring_count; i++) {
  2310. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2311. QPRINTK(qdev, IFUP, ERR,
  2312. "RX resource allocation failed.\n");
  2313. goto err_mem;
  2314. }
  2315. }
  2316. /* Allocate tx queue resources */
  2317. for (i = 0; i < qdev->tx_ring_count; i++) {
  2318. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2319. QPRINTK(qdev, IFUP, ERR,
  2320. "TX resource allocation failed.\n");
  2321. goto err_mem;
  2322. }
  2323. }
  2324. return 0;
  2325. err_mem:
  2326. ql_free_mem_resources(qdev);
  2327. return -ENOMEM;
  2328. }
  2329. /* Set up the rx ring control block and pass it to the chip.
  2330. * The control block is defined as
  2331. * "Completion Queue Initialization Control Block", or cqicb.
  2332. */
  2333. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2334. {
  2335. struct cqicb *cqicb = &rx_ring->cqicb;
  2336. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2337. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2338. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2339. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2340. void __iomem *doorbell_area =
  2341. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2342. int err = 0;
  2343. u16 bq_len;
  2344. u64 tmp;
  2345. __le64 *base_indirect_ptr;
  2346. int page_entries;
  2347. /* Set up the shadow registers for this ring. */
  2348. rx_ring->prod_idx_sh_reg = shadow_reg;
  2349. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2350. shadow_reg += sizeof(u64);
  2351. shadow_reg_dma += sizeof(u64);
  2352. rx_ring->lbq_base_indirect = shadow_reg;
  2353. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2354. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2355. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2356. rx_ring->sbq_base_indirect = shadow_reg;
  2357. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2358. /* PCI doorbell mem area + 0x00 for consumer index register */
  2359. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2360. rx_ring->cnsmr_idx = 0;
  2361. rx_ring->curr_entry = rx_ring->cq_base;
  2362. /* PCI doorbell mem area + 0x04 for valid register */
  2363. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2364. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2365. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2366. /* PCI doorbell mem area + 0x1c */
  2367. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2368. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2369. cqicb->msix_vect = rx_ring->irq;
  2370. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2371. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2372. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2373. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2374. /*
  2375. * Set up the control block load flags.
  2376. */
  2377. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2378. FLAGS_LV | /* Load MSI-X vector */
  2379. FLAGS_LI; /* Load irq delay values */
  2380. if (rx_ring->lbq_len) {
  2381. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2382. tmp = (u64)rx_ring->lbq_base_dma;
  2383. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2384. page_entries = 0;
  2385. do {
  2386. *base_indirect_ptr = cpu_to_le64(tmp);
  2387. tmp += DB_PAGE_SIZE;
  2388. base_indirect_ptr++;
  2389. page_entries++;
  2390. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2391. cqicb->lbq_addr =
  2392. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2393. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2394. (u16) rx_ring->lbq_buf_size;
  2395. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2396. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2397. (u16) rx_ring->lbq_len;
  2398. cqicb->lbq_len = cpu_to_le16(bq_len);
  2399. rx_ring->lbq_prod_idx = 0;
  2400. rx_ring->lbq_curr_idx = 0;
  2401. rx_ring->lbq_clean_idx = 0;
  2402. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2403. }
  2404. if (rx_ring->sbq_len) {
  2405. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2406. tmp = (u64)rx_ring->sbq_base_dma;
  2407. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2408. page_entries = 0;
  2409. do {
  2410. *base_indirect_ptr = cpu_to_le64(tmp);
  2411. tmp += DB_PAGE_SIZE;
  2412. base_indirect_ptr++;
  2413. page_entries++;
  2414. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2415. cqicb->sbq_addr =
  2416. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2417. cqicb->sbq_buf_size =
  2418. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2419. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2420. (u16) rx_ring->sbq_len;
  2421. cqicb->sbq_len = cpu_to_le16(bq_len);
  2422. rx_ring->sbq_prod_idx = 0;
  2423. rx_ring->sbq_curr_idx = 0;
  2424. rx_ring->sbq_clean_idx = 0;
  2425. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2426. }
  2427. switch (rx_ring->type) {
  2428. case TX_Q:
  2429. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2430. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2431. break;
  2432. case RX_Q:
  2433. /* Inbound completion handling rx_rings run in
  2434. * separate NAPI contexts.
  2435. */
  2436. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2437. 64);
  2438. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2439. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2440. break;
  2441. default:
  2442. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2443. rx_ring->type);
  2444. }
  2445. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2446. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2447. CFG_LCQ, rx_ring->cq_id);
  2448. if (err) {
  2449. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2450. return err;
  2451. }
  2452. return err;
  2453. }
  2454. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2455. {
  2456. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2457. void __iomem *doorbell_area =
  2458. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2459. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2460. (tx_ring->wq_id * sizeof(u64));
  2461. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2462. (tx_ring->wq_id * sizeof(u64));
  2463. int err = 0;
  2464. /*
  2465. * Assign doorbell registers for this tx_ring.
  2466. */
  2467. /* TX PCI doorbell mem area for tx producer index */
  2468. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2469. tx_ring->prod_idx = 0;
  2470. /* TX PCI doorbell mem area + 0x04 */
  2471. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2472. /*
  2473. * Assign shadow registers for this tx_ring.
  2474. */
  2475. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2476. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2477. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2478. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2479. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2480. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2481. wqicb->rid = 0;
  2482. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2483. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2484. ql_init_tx_ring(qdev, tx_ring);
  2485. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2486. (u16) tx_ring->wq_id);
  2487. if (err) {
  2488. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2489. return err;
  2490. }
  2491. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2492. return err;
  2493. }
  2494. static void ql_disable_msix(struct ql_adapter *qdev)
  2495. {
  2496. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2497. pci_disable_msix(qdev->pdev);
  2498. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2499. kfree(qdev->msi_x_entry);
  2500. qdev->msi_x_entry = NULL;
  2501. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2502. pci_disable_msi(qdev->pdev);
  2503. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2504. }
  2505. }
  2506. /* We start by trying to get the number of vectors
  2507. * stored in qdev->intr_count. If we don't get that
  2508. * many then we reduce the count and try again.
  2509. */
  2510. static void ql_enable_msix(struct ql_adapter *qdev)
  2511. {
  2512. int i, err;
  2513. /* Get the MSIX vectors. */
  2514. if (irq_type == MSIX_IRQ) {
  2515. /* Try to alloc space for the msix struct,
  2516. * if it fails then go to MSI/legacy.
  2517. */
  2518. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2519. sizeof(struct msix_entry),
  2520. GFP_KERNEL);
  2521. if (!qdev->msi_x_entry) {
  2522. irq_type = MSI_IRQ;
  2523. goto msi;
  2524. }
  2525. for (i = 0; i < qdev->intr_count; i++)
  2526. qdev->msi_x_entry[i].entry = i;
  2527. /* Loop to get our vectors. We start with
  2528. * what we want and settle for what we get.
  2529. */
  2530. do {
  2531. err = pci_enable_msix(qdev->pdev,
  2532. qdev->msi_x_entry, qdev->intr_count);
  2533. if (err > 0)
  2534. qdev->intr_count = err;
  2535. } while (err > 0);
  2536. if (err < 0) {
  2537. kfree(qdev->msi_x_entry);
  2538. qdev->msi_x_entry = NULL;
  2539. QPRINTK(qdev, IFUP, WARNING,
  2540. "MSI-X Enable failed, trying MSI.\n");
  2541. qdev->intr_count = 1;
  2542. irq_type = MSI_IRQ;
  2543. } else if (err == 0) {
  2544. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2545. QPRINTK(qdev, IFUP, INFO,
  2546. "MSI-X Enabled, got %d vectors.\n",
  2547. qdev->intr_count);
  2548. return;
  2549. }
  2550. }
  2551. msi:
  2552. qdev->intr_count = 1;
  2553. if (irq_type == MSI_IRQ) {
  2554. if (!pci_enable_msi(qdev->pdev)) {
  2555. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2556. QPRINTK(qdev, IFUP, INFO,
  2557. "Running with MSI interrupts.\n");
  2558. return;
  2559. }
  2560. }
  2561. irq_type = LEG_IRQ;
  2562. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2563. }
  2564. /* Each vector services 1 RSS ring and and 1 or more
  2565. * TX completion rings. This function loops through
  2566. * the TX completion rings and assigns the vector that
  2567. * will service it. An example would be if there are
  2568. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2569. * This would mean that vector 0 would service RSS ring 0
  2570. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2571. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2572. */
  2573. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2574. {
  2575. int i, j, vect;
  2576. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2577. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2578. /* Assign irq vectors to TX rx_rings.*/
  2579. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2580. i < qdev->rx_ring_count; i++) {
  2581. if (j == tx_rings_per_vector) {
  2582. vect++;
  2583. j = 0;
  2584. }
  2585. qdev->rx_ring[i].irq = vect;
  2586. j++;
  2587. }
  2588. } else {
  2589. /* For single vector all rings have an irq
  2590. * of zero.
  2591. */
  2592. for (i = 0; i < qdev->rx_ring_count; i++)
  2593. qdev->rx_ring[i].irq = 0;
  2594. }
  2595. }
  2596. /* Set the interrupt mask for this vector. Each vector
  2597. * will service 1 RSS ring and 1 or more TX completion
  2598. * rings. This function sets up a bit mask per vector
  2599. * that indicates which rings it services.
  2600. */
  2601. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2602. {
  2603. int j, vect = ctx->intr;
  2604. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2605. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2606. /* Add the RSS ring serviced by this vector
  2607. * to the mask.
  2608. */
  2609. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2610. /* Add the TX ring(s) serviced by this vector
  2611. * to the mask. */
  2612. for (j = 0; j < tx_rings_per_vector; j++) {
  2613. ctx->irq_mask |=
  2614. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2615. (vect * tx_rings_per_vector) + j].cq_id);
  2616. }
  2617. } else {
  2618. /* For single vector we just shift each queue's
  2619. * ID into the mask.
  2620. */
  2621. for (j = 0; j < qdev->rx_ring_count; j++)
  2622. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2623. }
  2624. }
  2625. /*
  2626. * Here we build the intr_context structures based on
  2627. * our rx_ring count and intr vector count.
  2628. * The intr_context structure is used to hook each vector
  2629. * to possibly different handlers.
  2630. */
  2631. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2632. {
  2633. int i = 0;
  2634. struct intr_context *intr_context = &qdev->intr_context[0];
  2635. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2636. /* Each rx_ring has it's
  2637. * own intr_context since we have separate
  2638. * vectors for each queue.
  2639. */
  2640. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2641. qdev->rx_ring[i].irq = i;
  2642. intr_context->intr = i;
  2643. intr_context->qdev = qdev;
  2644. /* Set up this vector's bit-mask that indicates
  2645. * which queues it services.
  2646. */
  2647. ql_set_irq_mask(qdev, intr_context);
  2648. /*
  2649. * We set up each vectors enable/disable/read bits so
  2650. * there's no bit/mask calculations in the critical path.
  2651. */
  2652. intr_context->intr_en_mask =
  2653. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2654. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2655. | i;
  2656. intr_context->intr_dis_mask =
  2657. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2658. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2659. INTR_EN_IHD | i;
  2660. intr_context->intr_read_mask =
  2661. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2662. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2663. i;
  2664. if (i == 0) {
  2665. /* The first vector/queue handles
  2666. * broadcast/multicast, fatal errors,
  2667. * and firmware events. This in addition
  2668. * to normal inbound NAPI processing.
  2669. */
  2670. intr_context->handler = qlge_isr;
  2671. sprintf(intr_context->name, "%s-rx-%d",
  2672. qdev->ndev->name, i);
  2673. } else {
  2674. /*
  2675. * Inbound queues handle unicast frames only.
  2676. */
  2677. intr_context->handler = qlge_msix_rx_isr;
  2678. sprintf(intr_context->name, "%s-rx-%d",
  2679. qdev->ndev->name, i);
  2680. }
  2681. }
  2682. } else {
  2683. /*
  2684. * All rx_rings use the same intr_context since
  2685. * there is only one vector.
  2686. */
  2687. intr_context->intr = 0;
  2688. intr_context->qdev = qdev;
  2689. /*
  2690. * We set up each vectors enable/disable/read bits so
  2691. * there's no bit/mask calculations in the critical path.
  2692. */
  2693. intr_context->intr_en_mask =
  2694. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2695. intr_context->intr_dis_mask =
  2696. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2697. INTR_EN_TYPE_DISABLE;
  2698. intr_context->intr_read_mask =
  2699. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2700. /*
  2701. * Single interrupt means one handler for all rings.
  2702. */
  2703. intr_context->handler = qlge_isr;
  2704. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2705. /* Set up this vector's bit-mask that indicates
  2706. * which queues it services. In this case there is
  2707. * a single vector so it will service all RSS and
  2708. * TX completion rings.
  2709. */
  2710. ql_set_irq_mask(qdev, intr_context);
  2711. }
  2712. /* Tell the TX completion rings which MSIx vector
  2713. * they will be using.
  2714. */
  2715. ql_set_tx_vect(qdev);
  2716. }
  2717. static void ql_free_irq(struct ql_adapter *qdev)
  2718. {
  2719. int i;
  2720. struct intr_context *intr_context = &qdev->intr_context[0];
  2721. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2722. if (intr_context->hooked) {
  2723. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2724. free_irq(qdev->msi_x_entry[i].vector,
  2725. &qdev->rx_ring[i]);
  2726. QPRINTK(qdev, IFDOWN, DEBUG,
  2727. "freeing msix interrupt %d.\n", i);
  2728. } else {
  2729. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2730. QPRINTK(qdev, IFDOWN, DEBUG,
  2731. "freeing msi interrupt %d.\n", i);
  2732. }
  2733. }
  2734. }
  2735. ql_disable_msix(qdev);
  2736. }
  2737. static int ql_request_irq(struct ql_adapter *qdev)
  2738. {
  2739. int i;
  2740. int status = 0;
  2741. struct pci_dev *pdev = qdev->pdev;
  2742. struct intr_context *intr_context = &qdev->intr_context[0];
  2743. ql_resolve_queues_to_irqs(qdev);
  2744. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2745. atomic_set(&intr_context->irq_cnt, 0);
  2746. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2747. status = request_irq(qdev->msi_x_entry[i].vector,
  2748. intr_context->handler,
  2749. 0,
  2750. intr_context->name,
  2751. &qdev->rx_ring[i]);
  2752. if (status) {
  2753. QPRINTK(qdev, IFUP, ERR,
  2754. "Failed request for MSIX interrupt %d.\n",
  2755. i);
  2756. goto err_irq;
  2757. } else {
  2758. QPRINTK(qdev, IFUP, DEBUG,
  2759. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2760. i,
  2761. qdev->rx_ring[i].type ==
  2762. DEFAULT_Q ? "DEFAULT_Q" : "",
  2763. qdev->rx_ring[i].type ==
  2764. TX_Q ? "TX_Q" : "",
  2765. qdev->rx_ring[i].type ==
  2766. RX_Q ? "RX_Q" : "", intr_context->name);
  2767. }
  2768. } else {
  2769. QPRINTK(qdev, IFUP, DEBUG,
  2770. "trying msi or legacy interrupts.\n");
  2771. QPRINTK(qdev, IFUP, DEBUG,
  2772. "%s: irq = %d.\n", __func__, pdev->irq);
  2773. QPRINTK(qdev, IFUP, DEBUG,
  2774. "%s: context->name = %s.\n", __func__,
  2775. intr_context->name);
  2776. QPRINTK(qdev, IFUP, DEBUG,
  2777. "%s: dev_id = 0x%p.\n", __func__,
  2778. &qdev->rx_ring[0]);
  2779. status =
  2780. request_irq(pdev->irq, qlge_isr,
  2781. test_bit(QL_MSI_ENABLED,
  2782. &qdev->
  2783. flags) ? 0 : IRQF_SHARED,
  2784. intr_context->name, &qdev->rx_ring[0]);
  2785. if (status)
  2786. goto err_irq;
  2787. QPRINTK(qdev, IFUP, ERR,
  2788. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2789. i,
  2790. qdev->rx_ring[0].type ==
  2791. DEFAULT_Q ? "DEFAULT_Q" : "",
  2792. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2793. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2794. intr_context->name);
  2795. }
  2796. intr_context->hooked = 1;
  2797. }
  2798. return status;
  2799. err_irq:
  2800. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2801. ql_free_irq(qdev);
  2802. return status;
  2803. }
  2804. static int ql_start_rss(struct ql_adapter *qdev)
  2805. {
  2806. struct ricb *ricb = &qdev->ricb;
  2807. int status = 0;
  2808. int i;
  2809. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2810. memset((void *)ricb, 0, sizeof(*ricb));
  2811. ricb->base_cq = RSS_L4K;
  2812. ricb->flags =
  2813. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2814. RSS_RT6);
  2815. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2816. /*
  2817. * Fill out the Indirection Table.
  2818. */
  2819. for (i = 0; i < 256; i++)
  2820. hash_id[i] = i & (qdev->rss_ring_count - 1);
  2821. /*
  2822. * Random values for the IPv6 and IPv4 Hash Keys.
  2823. */
  2824. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2825. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2826. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2827. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2828. if (status) {
  2829. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2830. return status;
  2831. }
  2832. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2833. return status;
  2834. }
  2835. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2836. {
  2837. int i, status = 0;
  2838. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2839. if (status)
  2840. return status;
  2841. /* Clear all the entries in the routing table. */
  2842. for (i = 0; i < 16; i++) {
  2843. status = ql_set_routing_reg(qdev, i, 0, 0);
  2844. if (status) {
  2845. QPRINTK(qdev, IFUP, ERR,
  2846. "Failed to init routing register for CAM "
  2847. "packets.\n");
  2848. break;
  2849. }
  2850. }
  2851. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2852. return status;
  2853. }
  2854. /* Initialize the frame-to-queue routing. */
  2855. static int ql_route_initialize(struct ql_adapter *qdev)
  2856. {
  2857. int status = 0;
  2858. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2859. if (status)
  2860. return status;
  2861. /* Clear all the entries in the routing table. */
  2862. status = ql_clear_routing_entries(qdev);
  2863. if (status)
  2864. goto exit;
  2865. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2866. if (status) {
  2867. QPRINTK(qdev, IFUP, ERR,
  2868. "Failed to init routing register for error packets.\n");
  2869. goto exit;
  2870. }
  2871. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2872. if (status) {
  2873. QPRINTK(qdev, IFUP, ERR,
  2874. "Failed to init routing register for broadcast packets.\n");
  2875. goto exit;
  2876. }
  2877. /* If we have more than one inbound queue, then turn on RSS in the
  2878. * routing block.
  2879. */
  2880. if (qdev->rss_ring_count > 1) {
  2881. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2882. RT_IDX_RSS_MATCH, 1);
  2883. if (status) {
  2884. QPRINTK(qdev, IFUP, ERR,
  2885. "Failed to init routing register for MATCH RSS packets.\n");
  2886. goto exit;
  2887. }
  2888. }
  2889. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2890. RT_IDX_CAM_HIT, 1);
  2891. if (status)
  2892. QPRINTK(qdev, IFUP, ERR,
  2893. "Failed to init routing register for CAM packets.\n");
  2894. exit:
  2895. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2896. return status;
  2897. }
  2898. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2899. {
  2900. int status, set;
  2901. /* If check if the link is up and use to
  2902. * determine if we are setting or clearing
  2903. * the MAC address in the CAM.
  2904. */
  2905. set = ql_read32(qdev, STS);
  2906. set &= qdev->port_link_up;
  2907. status = ql_set_mac_addr(qdev, set);
  2908. if (status) {
  2909. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2910. return status;
  2911. }
  2912. status = ql_route_initialize(qdev);
  2913. if (status)
  2914. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2915. return status;
  2916. }
  2917. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2918. {
  2919. u32 value, mask;
  2920. int i;
  2921. int status = 0;
  2922. /*
  2923. * Set up the System register to halt on errors.
  2924. */
  2925. value = SYS_EFE | SYS_FAE;
  2926. mask = value << 16;
  2927. ql_write32(qdev, SYS, mask | value);
  2928. /* Set the default queue, and VLAN behavior. */
  2929. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2930. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2931. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2932. /* Set the MPI interrupt to enabled. */
  2933. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2934. /* Enable the function, set pagesize, enable error checking. */
  2935. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2936. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2937. /* Set/clear header splitting. */
  2938. mask = FSC_VM_PAGESIZE_MASK |
  2939. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2940. ql_write32(qdev, FSC, mask | value);
  2941. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2942. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2943. /* Start up the rx queues. */
  2944. for (i = 0; i < qdev->rx_ring_count; i++) {
  2945. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2946. if (status) {
  2947. QPRINTK(qdev, IFUP, ERR,
  2948. "Failed to start rx ring[%d].\n", i);
  2949. return status;
  2950. }
  2951. }
  2952. /* If there is more than one inbound completion queue
  2953. * then download a RICB to configure RSS.
  2954. */
  2955. if (qdev->rss_ring_count > 1) {
  2956. status = ql_start_rss(qdev);
  2957. if (status) {
  2958. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2959. return status;
  2960. }
  2961. }
  2962. /* Start up the tx queues. */
  2963. for (i = 0; i < qdev->tx_ring_count; i++) {
  2964. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2965. if (status) {
  2966. QPRINTK(qdev, IFUP, ERR,
  2967. "Failed to start tx ring[%d].\n", i);
  2968. return status;
  2969. }
  2970. }
  2971. /* Initialize the port and set the max framesize. */
  2972. status = qdev->nic_ops->port_initialize(qdev);
  2973. if (status) {
  2974. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2975. return status;
  2976. }
  2977. /* Set up the MAC address and frame routing filter. */
  2978. status = ql_cam_route_initialize(qdev);
  2979. if (status) {
  2980. QPRINTK(qdev, IFUP, ERR,
  2981. "Failed to init CAM/Routing tables.\n");
  2982. return status;
  2983. }
  2984. /* Start NAPI for the RSS queues. */
  2985. for (i = 0; i < qdev->rss_ring_count; i++) {
  2986. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  2987. i);
  2988. napi_enable(&qdev->rx_ring[i].napi);
  2989. }
  2990. return status;
  2991. }
  2992. /* Issue soft reset to chip. */
  2993. static int ql_adapter_reset(struct ql_adapter *qdev)
  2994. {
  2995. u32 value;
  2996. int status = 0;
  2997. unsigned long end_jiffies;
  2998. /* Clear all the entries in the routing table. */
  2999. status = ql_clear_routing_entries(qdev);
  3000. if (status) {
  3001. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3002. return status;
  3003. }
  3004. end_jiffies = jiffies +
  3005. max((unsigned long)1, usecs_to_jiffies(30));
  3006. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3007. do {
  3008. value = ql_read32(qdev, RST_FO);
  3009. if ((value & RST_FO_FR) == 0)
  3010. break;
  3011. cpu_relax();
  3012. } while (time_before(jiffies, end_jiffies));
  3013. if (value & RST_FO_FR) {
  3014. QPRINTK(qdev, IFDOWN, ERR,
  3015. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3016. status = -ETIMEDOUT;
  3017. }
  3018. return status;
  3019. }
  3020. static void ql_display_dev_info(struct net_device *ndev)
  3021. {
  3022. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3023. QPRINTK(qdev, PROBE, INFO,
  3024. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3025. "XG Roll = %d, XG Rev = %d.\n",
  3026. qdev->func,
  3027. qdev->port,
  3028. qdev->chip_rev_id & 0x0000000f,
  3029. qdev->chip_rev_id >> 4 & 0x0000000f,
  3030. qdev->chip_rev_id >> 8 & 0x0000000f,
  3031. qdev->chip_rev_id >> 12 & 0x0000000f);
  3032. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3033. }
  3034. static int ql_adapter_down(struct ql_adapter *qdev)
  3035. {
  3036. int i, status = 0;
  3037. ql_link_off(qdev);
  3038. /* Don't kill the reset worker thread if we
  3039. * are in the process of recovery.
  3040. */
  3041. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3042. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3043. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3044. cancel_delayed_work_sync(&qdev->mpi_work);
  3045. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3046. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3047. for (i = 0; i < qdev->rss_ring_count; i++)
  3048. napi_disable(&qdev->rx_ring[i].napi);
  3049. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3050. ql_disable_interrupts(qdev);
  3051. ql_tx_ring_clean(qdev);
  3052. /* Call netif_napi_del() from common point.
  3053. */
  3054. for (i = 0; i < qdev->rss_ring_count; i++)
  3055. netif_napi_del(&qdev->rx_ring[i].napi);
  3056. ql_free_rx_buffers(qdev);
  3057. spin_lock(&qdev->hw_lock);
  3058. status = ql_adapter_reset(qdev);
  3059. if (status)
  3060. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3061. qdev->func);
  3062. spin_unlock(&qdev->hw_lock);
  3063. return status;
  3064. }
  3065. static int ql_adapter_up(struct ql_adapter *qdev)
  3066. {
  3067. int err = 0;
  3068. err = ql_adapter_initialize(qdev);
  3069. if (err) {
  3070. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3071. goto err_init;
  3072. }
  3073. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3074. ql_alloc_rx_buffers(qdev);
  3075. /* If the port is initialized and the
  3076. * link is up the turn on the carrier.
  3077. */
  3078. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3079. (ql_read32(qdev, STS) & qdev->port_link_up))
  3080. ql_link_on(qdev);
  3081. ql_enable_interrupts(qdev);
  3082. ql_enable_all_completion_interrupts(qdev);
  3083. netif_tx_start_all_queues(qdev->ndev);
  3084. return 0;
  3085. err_init:
  3086. ql_adapter_reset(qdev);
  3087. return err;
  3088. }
  3089. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3090. {
  3091. ql_free_mem_resources(qdev);
  3092. ql_free_irq(qdev);
  3093. }
  3094. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3095. {
  3096. int status = 0;
  3097. if (ql_alloc_mem_resources(qdev)) {
  3098. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3099. return -ENOMEM;
  3100. }
  3101. status = ql_request_irq(qdev);
  3102. return status;
  3103. }
  3104. static int qlge_close(struct net_device *ndev)
  3105. {
  3106. struct ql_adapter *qdev = netdev_priv(ndev);
  3107. /*
  3108. * Wait for device to recover from a reset.
  3109. * (Rarely happens, but possible.)
  3110. */
  3111. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3112. msleep(1);
  3113. ql_adapter_down(qdev);
  3114. ql_release_adapter_resources(qdev);
  3115. return 0;
  3116. }
  3117. static int ql_configure_rings(struct ql_adapter *qdev)
  3118. {
  3119. int i;
  3120. struct rx_ring *rx_ring;
  3121. struct tx_ring *tx_ring;
  3122. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3123. /* In a perfect world we have one RSS ring for each CPU
  3124. * and each has it's own vector. To do that we ask for
  3125. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3126. * vector count to what we actually get. We then
  3127. * allocate an RSS ring for each.
  3128. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3129. */
  3130. qdev->intr_count = cpu_cnt;
  3131. ql_enable_msix(qdev);
  3132. /* Adjust the RSS ring count to the actual vector count. */
  3133. qdev->rss_ring_count = qdev->intr_count;
  3134. qdev->tx_ring_count = cpu_cnt;
  3135. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3136. for (i = 0; i < qdev->tx_ring_count; i++) {
  3137. tx_ring = &qdev->tx_ring[i];
  3138. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3139. tx_ring->qdev = qdev;
  3140. tx_ring->wq_id = i;
  3141. tx_ring->wq_len = qdev->tx_ring_size;
  3142. tx_ring->wq_size =
  3143. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3144. /*
  3145. * The completion queue ID for the tx rings start
  3146. * immediately after the rss rings.
  3147. */
  3148. tx_ring->cq_id = qdev->rss_ring_count + i;
  3149. }
  3150. for (i = 0; i < qdev->rx_ring_count; i++) {
  3151. rx_ring = &qdev->rx_ring[i];
  3152. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3153. rx_ring->qdev = qdev;
  3154. rx_ring->cq_id = i;
  3155. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3156. if (i < qdev->rss_ring_count) {
  3157. /*
  3158. * Inbound (RSS) queues.
  3159. */
  3160. rx_ring->cq_len = qdev->rx_ring_size;
  3161. rx_ring->cq_size =
  3162. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3163. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3164. rx_ring->lbq_size =
  3165. rx_ring->lbq_len * sizeof(__le64);
  3166. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3167. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3168. rx_ring->sbq_size =
  3169. rx_ring->sbq_len * sizeof(__le64);
  3170. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3171. rx_ring->type = RX_Q;
  3172. } else {
  3173. /*
  3174. * Outbound queue handles outbound completions only.
  3175. */
  3176. /* outbound cq is same size as tx_ring it services. */
  3177. rx_ring->cq_len = qdev->tx_ring_size;
  3178. rx_ring->cq_size =
  3179. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3180. rx_ring->lbq_len = 0;
  3181. rx_ring->lbq_size = 0;
  3182. rx_ring->lbq_buf_size = 0;
  3183. rx_ring->sbq_len = 0;
  3184. rx_ring->sbq_size = 0;
  3185. rx_ring->sbq_buf_size = 0;
  3186. rx_ring->type = TX_Q;
  3187. }
  3188. }
  3189. return 0;
  3190. }
  3191. static int qlge_open(struct net_device *ndev)
  3192. {
  3193. int err = 0;
  3194. struct ql_adapter *qdev = netdev_priv(ndev);
  3195. err = ql_configure_rings(qdev);
  3196. if (err)
  3197. return err;
  3198. err = ql_get_adapter_resources(qdev);
  3199. if (err)
  3200. goto error_up;
  3201. err = ql_adapter_up(qdev);
  3202. if (err)
  3203. goto error_up;
  3204. return err;
  3205. error_up:
  3206. ql_release_adapter_resources(qdev);
  3207. return err;
  3208. }
  3209. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3210. {
  3211. struct ql_adapter *qdev = netdev_priv(ndev);
  3212. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3213. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3214. queue_delayed_work(qdev->workqueue,
  3215. &qdev->mpi_port_cfg_work, 0);
  3216. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3217. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3218. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3219. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3220. return 0;
  3221. } else
  3222. return -EINVAL;
  3223. ndev->mtu = new_mtu;
  3224. return 0;
  3225. }
  3226. static struct net_device_stats *qlge_get_stats(struct net_device
  3227. *ndev)
  3228. {
  3229. struct ql_adapter *qdev = netdev_priv(ndev);
  3230. return &qdev->stats;
  3231. }
  3232. static void qlge_set_multicast_list(struct net_device *ndev)
  3233. {
  3234. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3235. struct dev_mc_list *mc_ptr;
  3236. int i, status;
  3237. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3238. if (status)
  3239. return;
  3240. spin_lock(&qdev->hw_lock);
  3241. /*
  3242. * Set or clear promiscuous mode if a
  3243. * transition is taking place.
  3244. */
  3245. if (ndev->flags & IFF_PROMISC) {
  3246. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3247. if (ql_set_routing_reg
  3248. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3249. QPRINTK(qdev, HW, ERR,
  3250. "Failed to set promiscous mode.\n");
  3251. } else {
  3252. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3253. }
  3254. }
  3255. } else {
  3256. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3257. if (ql_set_routing_reg
  3258. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3259. QPRINTK(qdev, HW, ERR,
  3260. "Failed to clear promiscous mode.\n");
  3261. } else {
  3262. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3263. }
  3264. }
  3265. }
  3266. /*
  3267. * Set or clear all multicast mode if a
  3268. * transition is taking place.
  3269. */
  3270. if ((ndev->flags & IFF_ALLMULTI) ||
  3271. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3272. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3273. if (ql_set_routing_reg
  3274. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3275. QPRINTK(qdev, HW, ERR,
  3276. "Failed to set all-multi mode.\n");
  3277. } else {
  3278. set_bit(QL_ALLMULTI, &qdev->flags);
  3279. }
  3280. }
  3281. } else {
  3282. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3283. if (ql_set_routing_reg
  3284. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3285. QPRINTK(qdev, HW, ERR,
  3286. "Failed to clear all-multi mode.\n");
  3287. } else {
  3288. clear_bit(QL_ALLMULTI, &qdev->flags);
  3289. }
  3290. }
  3291. }
  3292. if (ndev->mc_count) {
  3293. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3294. if (status)
  3295. goto exit;
  3296. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3297. i++, mc_ptr = mc_ptr->next)
  3298. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3299. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3300. QPRINTK(qdev, HW, ERR,
  3301. "Failed to loadmulticast address.\n");
  3302. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3303. goto exit;
  3304. }
  3305. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3306. if (ql_set_routing_reg
  3307. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3308. QPRINTK(qdev, HW, ERR,
  3309. "Failed to set multicast match mode.\n");
  3310. } else {
  3311. set_bit(QL_ALLMULTI, &qdev->flags);
  3312. }
  3313. }
  3314. exit:
  3315. spin_unlock(&qdev->hw_lock);
  3316. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3317. }
  3318. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3319. {
  3320. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3321. struct sockaddr *addr = p;
  3322. int status;
  3323. if (netif_running(ndev))
  3324. return -EBUSY;
  3325. if (!is_valid_ether_addr(addr->sa_data))
  3326. return -EADDRNOTAVAIL;
  3327. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3328. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3329. if (status)
  3330. return status;
  3331. spin_lock(&qdev->hw_lock);
  3332. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3333. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3334. spin_unlock(&qdev->hw_lock);
  3335. if (status)
  3336. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3337. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3338. return status;
  3339. }
  3340. static void qlge_tx_timeout(struct net_device *ndev)
  3341. {
  3342. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3343. ql_queue_asic_error(qdev);
  3344. }
  3345. static void ql_asic_reset_work(struct work_struct *work)
  3346. {
  3347. struct ql_adapter *qdev =
  3348. container_of(work, struct ql_adapter, asic_reset_work.work);
  3349. int status;
  3350. status = ql_adapter_down(qdev);
  3351. if (status)
  3352. goto error;
  3353. status = ql_adapter_up(qdev);
  3354. if (status)
  3355. goto error;
  3356. return;
  3357. error:
  3358. QPRINTK(qdev, IFUP, ALERT,
  3359. "Driver up/down cycle failed, closing device\n");
  3360. rtnl_lock();
  3361. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3362. dev_close(qdev->ndev);
  3363. rtnl_unlock();
  3364. }
  3365. static struct nic_operations qla8012_nic_ops = {
  3366. .get_flash = ql_get_8012_flash_params,
  3367. .port_initialize = ql_8012_port_initialize,
  3368. };
  3369. static struct nic_operations qla8000_nic_ops = {
  3370. .get_flash = ql_get_8000_flash_params,
  3371. .port_initialize = ql_8000_port_initialize,
  3372. };
  3373. /* Find the pcie function number for the other NIC
  3374. * on this chip. Since both NIC functions share a
  3375. * common firmware we have the lowest enabled function
  3376. * do any common work. Examples would be resetting
  3377. * after a fatal firmware error, or doing a firmware
  3378. * coredump.
  3379. */
  3380. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3381. {
  3382. int status = 0;
  3383. u32 temp;
  3384. u32 nic_func1, nic_func2;
  3385. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3386. &temp);
  3387. if (status)
  3388. return status;
  3389. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3390. MPI_TEST_NIC_FUNC_MASK);
  3391. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3392. MPI_TEST_NIC_FUNC_MASK);
  3393. if (qdev->func == nic_func1)
  3394. qdev->alt_func = nic_func2;
  3395. else if (qdev->func == nic_func2)
  3396. qdev->alt_func = nic_func1;
  3397. else
  3398. status = -EIO;
  3399. return status;
  3400. }
  3401. static int ql_get_board_info(struct ql_adapter *qdev)
  3402. {
  3403. int status;
  3404. qdev->func =
  3405. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3406. if (qdev->func > 3)
  3407. return -EIO;
  3408. status = ql_get_alt_pcie_func(qdev);
  3409. if (status)
  3410. return status;
  3411. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3412. if (qdev->port) {
  3413. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3414. qdev->port_link_up = STS_PL1;
  3415. qdev->port_init = STS_PI1;
  3416. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3417. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3418. } else {
  3419. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3420. qdev->port_link_up = STS_PL0;
  3421. qdev->port_init = STS_PI0;
  3422. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3423. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3424. }
  3425. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3426. qdev->device_id = qdev->pdev->device;
  3427. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3428. qdev->nic_ops = &qla8012_nic_ops;
  3429. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3430. qdev->nic_ops = &qla8000_nic_ops;
  3431. return status;
  3432. }
  3433. static void ql_release_all(struct pci_dev *pdev)
  3434. {
  3435. struct net_device *ndev = pci_get_drvdata(pdev);
  3436. struct ql_adapter *qdev = netdev_priv(ndev);
  3437. if (qdev->workqueue) {
  3438. destroy_workqueue(qdev->workqueue);
  3439. qdev->workqueue = NULL;
  3440. }
  3441. if (qdev->reg_base)
  3442. iounmap(qdev->reg_base);
  3443. if (qdev->doorbell_area)
  3444. iounmap(qdev->doorbell_area);
  3445. pci_release_regions(pdev);
  3446. pci_set_drvdata(pdev, NULL);
  3447. }
  3448. static int __devinit ql_init_device(struct pci_dev *pdev,
  3449. struct net_device *ndev, int cards_found)
  3450. {
  3451. struct ql_adapter *qdev = netdev_priv(ndev);
  3452. int pos, err = 0;
  3453. u16 val16;
  3454. memset((void *)qdev, 0, sizeof(*qdev));
  3455. err = pci_enable_device(pdev);
  3456. if (err) {
  3457. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3458. return err;
  3459. }
  3460. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3461. if (pos <= 0) {
  3462. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3463. "aborting.\n");
  3464. goto err_out;
  3465. } else {
  3466. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3467. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3468. val16 |= (PCI_EXP_DEVCTL_CERE |
  3469. PCI_EXP_DEVCTL_NFERE |
  3470. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3471. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3472. }
  3473. err = pci_request_regions(pdev, DRV_NAME);
  3474. if (err) {
  3475. dev_err(&pdev->dev, "PCI region request failed.\n");
  3476. goto err_out;
  3477. }
  3478. pci_set_master(pdev);
  3479. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3480. set_bit(QL_DMA64, &qdev->flags);
  3481. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3482. } else {
  3483. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3484. if (!err)
  3485. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3486. }
  3487. if (err) {
  3488. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3489. goto err_out;
  3490. }
  3491. pci_set_drvdata(pdev, ndev);
  3492. qdev->reg_base =
  3493. ioremap_nocache(pci_resource_start(pdev, 1),
  3494. pci_resource_len(pdev, 1));
  3495. if (!qdev->reg_base) {
  3496. dev_err(&pdev->dev, "Register mapping failed.\n");
  3497. err = -ENOMEM;
  3498. goto err_out;
  3499. }
  3500. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3501. qdev->doorbell_area =
  3502. ioremap_nocache(pci_resource_start(pdev, 3),
  3503. pci_resource_len(pdev, 3));
  3504. if (!qdev->doorbell_area) {
  3505. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3506. err = -ENOMEM;
  3507. goto err_out;
  3508. }
  3509. qdev->ndev = ndev;
  3510. qdev->pdev = pdev;
  3511. err = ql_get_board_info(qdev);
  3512. if (err) {
  3513. dev_err(&pdev->dev, "Register access failed.\n");
  3514. err = -EIO;
  3515. goto err_out;
  3516. }
  3517. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3518. spin_lock_init(&qdev->hw_lock);
  3519. spin_lock_init(&qdev->stats_lock);
  3520. /* make sure the EEPROM is good */
  3521. err = qdev->nic_ops->get_flash(qdev);
  3522. if (err) {
  3523. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3524. goto err_out;
  3525. }
  3526. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3527. /* Set up the default ring sizes. */
  3528. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3529. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3530. /* Set up the coalescing parameters. */
  3531. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3532. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3533. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3534. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3535. /*
  3536. * Set up the operating parameters.
  3537. */
  3538. qdev->rx_csum = 1;
  3539. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3540. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3541. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3542. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3543. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3544. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3545. mutex_init(&qdev->mpi_mutex);
  3546. init_completion(&qdev->ide_completion);
  3547. if (!cards_found) {
  3548. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3549. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3550. DRV_NAME, DRV_VERSION);
  3551. }
  3552. return 0;
  3553. err_out:
  3554. ql_release_all(pdev);
  3555. pci_disable_device(pdev);
  3556. return err;
  3557. }
  3558. static const struct net_device_ops qlge_netdev_ops = {
  3559. .ndo_open = qlge_open,
  3560. .ndo_stop = qlge_close,
  3561. .ndo_start_xmit = qlge_send,
  3562. .ndo_change_mtu = qlge_change_mtu,
  3563. .ndo_get_stats = qlge_get_stats,
  3564. .ndo_set_multicast_list = qlge_set_multicast_list,
  3565. .ndo_set_mac_address = qlge_set_mac_address,
  3566. .ndo_validate_addr = eth_validate_addr,
  3567. .ndo_tx_timeout = qlge_tx_timeout,
  3568. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3569. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3570. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3571. };
  3572. static int __devinit qlge_probe(struct pci_dev *pdev,
  3573. const struct pci_device_id *pci_entry)
  3574. {
  3575. struct net_device *ndev = NULL;
  3576. struct ql_adapter *qdev = NULL;
  3577. static int cards_found = 0;
  3578. int err = 0;
  3579. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3580. min(MAX_CPUS, (int)num_online_cpus()));
  3581. if (!ndev)
  3582. return -ENOMEM;
  3583. err = ql_init_device(pdev, ndev, cards_found);
  3584. if (err < 0) {
  3585. free_netdev(ndev);
  3586. return err;
  3587. }
  3588. qdev = netdev_priv(ndev);
  3589. SET_NETDEV_DEV(ndev, &pdev->dev);
  3590. ndev->features = (0
  3591. | NETIF_F_IP_CSUM
  3592. | NETIF_F_SG
  3593. | NETIF_F_TSO
  3594. | NETIF_F_TSO6
  3595. | NETIF_F_TSO_ECN
  3596. | NETIF_F_HW_VLAN_TX
  3597. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3598. ndev->features |= NETIF_F_GRO;
  3599. if (test_bit(QL_DMA64, &qdev->flags))
  3600. ndev->features |= NETIF_F_HIGHDMA;
  3601. /*
  3602. * Set up net_device structure.
  3603. */
  3604. ndev->tx_queue_len = qdev->tx_ring_size;
  3605. ndev->irq = pdev->irq;
  3606. ndev->netdev_ops = &qlge_netdev_ops;
  3607. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3608. ndev->watchdog_timeo = 10 * HZ;
  3609. err = register_netdev(ndev);
  3610. if (err) {
  3611. dev_err(&pdev->dev, "net device registration failed.\n");
  3612. ql_release_all(pdev);
  3613. pci_disable_device(pdev);
  3614. return err;
  3615. }
  3616. ql_link_off(qdev);
  3617. ql_display_dev_info(ndev);
  3618. cards_found++;
  3619. return 0;
  3620. }
  3621. static void __devexit qlge_remove(struct pci_dev *pdev)
  3622. {
  3623. struct net_device *ndev = pci_get_drvdata(pdev);
  3624. unregister_netdev(ndev);
  3625. ql_release_all(pdev);
  3626. pci_disable_device(pdev);
  3627. free_netdev(ndev);
  3628. }
  3629. /*
  3630. * This callback is called by the PCI subsystem whenever
  3631. * a PCI bus error is detected.
  3632. */
  3633. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3634. enum pci_channel_state state)
  3635. {
  3636. struct net_device *ndev = pci_get_drvdata(pdev);
  3637. struct ql_adapter *qdev = netdev_priv(ndev);
  3638. netif_device_detach(ndev);
  3639. if (state == pci_channel_io_perm_failure)
  3640. return PCI_ERS_RESULT_DISCONNECT;
  3641. if (netif_running(ndev))
  3642. ql_adapter_down(qdev);
  3643. pci_disable_device(pdev);
  3644. /* Request a slot reset. */
  3645. return PCI_ERS_RESULT_NEED_RESET;
  3646. }
  3647. /*
  3648. * This callback is called after the PCI buss has been reset.
  3649. * Basically, this tries to restart the card from scratch.
  3650. * This is a shortened version of the device probe/discovery code,
  3651. * it resembles the first-half of the () routine.
  3652. */
  3653. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3654. {
  3655. struct net_device *ndev = pci_get_drvdata(pdev);
  3656. struct ql_adapter *qdev = netdev_priv(ndev);
  3657. if (pci_enable_device(pdev)) {
  3658. QPRINTK(qdev, IFUP, ERR,
  3659. "Cannot re-enable PCI device after reset.\n");
  3660. return PCI_ERS_RESULT_DISCONNECT;
  3661. }
  3662. pci_set_master(pdev);
  3663. netif_carrier_off(ndev);
  3664. ql_adapter_reset(qdev);
  3665. /* Make sure the EEPROM is good */
  3666. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3667. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3668. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3669. return PCI_ERS_RESULT_DISCONNECT;
  3670. }
  3671. return PCI_ERS_RESULT_RECOVERED;
  3672. }
  3673. static void qlge_io_resume(struct pci_dev *pdev)
  3674. {
  3675. struct net_device *ndev = pci_get_drvdata(pdev);
  3676. struct ql_adapter *qdev = netdev_priv(ndev);
  3677. pci_set_master(pdev);
  3678. if (netif_running(ndev)) {
  3679. if (ql_adapter_up(qdev)) {
  3680. QPRINTK(qdev, IFUP, ERR,
  3681. "Device initialization failed after reset.\n");
  3682. return;
  3683. }
  3684. }
  3685. netif_device_attach(ndev);
  3686. }
  3687. static struct pci_error_handlers qlge_err_handler = {
  3688. .error_detected = qlge_io_error_detected,
  3689. .slot_reset = qlge_io_slot_reset,
  3690. .resume = qlge_io_resume,
  3691. };
  3692. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3693. {
  3694. struct net_device *ndev = pci_get_drvdata(pdev);
  3695. struct ql_adapter *qdev = netdev_priv(ndev);
  3696. int err;
  3697. netif_device_detach(ndev);
  3698. if (netif_running(ndev)) {
  3699. err = ql_adapter_down(qdev);
  3700. if (!err)
  3701. return err;
  3702. }
  3703. err = pci_save_state(pdev);
  3704. if (err)
  3705. return err;
  3706. pci_disable_device(pdev);
  3707. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3708. return 0;
  3709. }
  3710. #ifdef CONFIG_PM
  3711. static int qlge_resume(struct pci_dev *pdev)
  3712. {
  3713. struct net_device *ndev = pci_get_drvdata(pdev);
  3714. struct ql_adapter *qdev = netdev_priv(ndev);
  3715. int err;
  3716. pci_set_power_state(pdev, PCI_D0);
  3717. pci_restore_state(pdev);
  3718. err = pci_enable_device(pdev);
  3719. if (err) {
  3720. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3721. return err;
  3722. }
  3723. pci_set_master(pdev);
  3724. pci_enable_wake(pdev, PCI_D3hot, 0);
  3725. pci_enable_wake(pdev, PCI_D3cold, 0);
  3726. if (netif_running(ndev)) {
  3727. err = ql_adapter_up(qdev);
  3728. if (err)
  3729. return err;
  3730. }
  3731. netif_device_attach(ndev);
  3732. return 0;
  3733. }
  3734. #endif /* CONFIG_PM */
  3735. static void qlge_shutdown(struct pci_dev *pdev)
  3736. {
  3737. qlge_suspend(pdev, PMSG_SUSPEND);
  3738. }
  3739. static struct pci_driver qlge_driver = {
  3740. .name = DRV_NAME,
  3741. .id_table = qlge_pci_tbl,
  3742. .probe = qlge_probe,
  3743. .remove = __devexit_p(qlge_remove),
  3744. #ifdef CONFIG_PM
  3745. .suspend = qlge_suspend,
  3746. .resume = qlge_resume,
  3747. #endif
  3748. .shutdown = qlge_shutdown,
  3749. .err_handler = &qlge_err_handler
  3750. };
  3751. static int __init qlge_init_module(void)
  3752. {
  3753. return pci_register_driver(&qlge_driver);
  3754. }
  3755. static void __exit qlge_exit(void)
  3756. {
  3757. pci_unregister_driver(&qlge_driver);
  3758. }
  3759. module_init(qlge_init_module);
  3760. module_exit(qlge_exit);