sa1100_ir.c 22 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039
  1. /*
  2. * linux/drivers/net/irda/sa1100_ir.c
  3. *
  4. * Copyright (C) 2000-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * Infra-red driver for the StrongARM SA1100 embedded microprocessor
  11. *
  12. * Note that we don't have to worry about the SA1111's DMA bugs in here,
  13. * so we use the straight forward dma_map_* functions with a null pointer.
  14. *
  15. * This driver takes one kernel command line parameter, sa1100ir=, with
  16. * the following options:
  17. * max_rate:baudrate - set the maximum baud rate
  18. * power_leve:level - set the transmitter power level
  19. * tx_lpm:0|1 - set transmit low power mode
  20. */
  21. #include <linux/module.h>
  22. #include <linux/moduleparam.h>
  23. #include <linux/types.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/slab.h>
  28. #include <linux/rtnetlink.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/delay.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/dma-mapping.h>
  33. #include <net/irda/irda.h>
  34. #include <net/irda/wrapper.h>
  35. #include <net/irda/irda_device.h>
  36. #include <asm/irq.h>
  37. #include <mach/dma.h>
  38. #include <mach/hardware.h>
  39. #include <asm/mach/irda.h>
  40. static int power_level = 3;
  41. static int tx_lpm;
  42. static int max_rate = 4000000;
  43. struct sa1100_irda {
  44. unsigned char hscr0;
  45. unsigned char utcr4;
  46. unsigned char power;
  47. unsigned char open;
  48. int speed;
  49. int newspeed;
  50. struct sk_buff *txskb;
  51. struct sk_buff *rxskb;
  52. dma_addr_t txbuf_dma;
  53. dma_addr_t rxbuf_dma;
  54. dma_regs_t *txdma;
  55. dma_regs_t *rxdma;
  56. struct device *dev;
  57. struct irda_platform_data *pdata;
  58. struct irlap_cb *irlap;
  59. struct qos_info qos;
  60. iobuff_t tx_buff;
  61. iobuff_t rx_buff;
  62. };
  63. #define IS_FIR(si) ((si)->speed >= 4000000)
  64. #define HPSIR_MAX_RXLEN 2047
  65. /*
  66. * Allocate and map the receive buffer, unless it is already allocated.
  67. */
  68. static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
  69. {
  70. if (si->rxskb)
  71. return 0;
  72. si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
  73. if (!si->rxskb) {
  74. printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
  75. return -ENOMEM;
  76. }
  77. /*
  78. * Align any IP headers that may be contained
  79. * within the frame.
  80. */
  81. skb_reserve(si->rxskb, 1);
  82. si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
  83. HPSIR_MAX_RXLEN,
  84. DMA_FROM_DEVICE);
  85. return 0;
  86. }
  87. /*
  88. * We want to get here as soon as possible, and get the receiver setup.
  89. * We use the existing buffer.
  90. */
  91. static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
  92. {
  93. if (!si->rxskb) {
  94. printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
  95. return;
  96. }
  97. /*
  98. * First empty receive FIFO
  99. */
  100. Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
  101. /*
  102. * Enable the DMA, receiver and receive interrupt.
  103. */
  104. sa1100_clear_dma(si->rxdma);
  105. sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN);
  106. Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE;
  107. }
  108. /*
  109. * Set the IrDA communications speed.
  110. */
  111. static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
  112. {
  113. unsigned long flags;
  114. int brd, ret = -EINVAL;
  115. switch (speed) {
  116. case 9600: case 19200: case 38400:
  117. case 57600: case 115200:
  118. brd = 3686400 / (16 * speed) - 1;
  119. /*
  120. * Stop the receive DMA.
  121. */
  122. if (IS_FIR(si))
  123. sa1100_stop_dma(si->rxdma);
  124. local_irq_save(flags);
  125. Ser2UTCR3 = 0;
  126. Ser2HSCR0 = HSCR0_UART;
  127. Ser2UTCR1 = brd >> 8;
  128. Ser2UTCR2 = brd;
  129. /*
  130. * Clear status register
  131. */
  132. Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
  133. Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
  134. if (si->pdata->set_speed)
  135. si->pdata->set_speed(si->dev, speed);
  136. si->speed = speed;
  137. local_irq_restore(flags);
  138. ret = 0;
  139. break;
  140. case 4000000:
  141. local_irq_save(flags);
  142. si->hscr0 = 0;
  143. Ser2HSSR0 = 0xff;
  144. Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
  145. Ser2UTCR3 = 0;
  146. si->speed = speed;
  147. if (si->pdata->set_speed)
  148. si->pdata->set_speed(si->dev, speed);
  149. sa1100_irda_rx_alloc(si);
  150. sa1100_irda_rx_dma_start(si);
  151. local_irq_restore(flags);
  152. break;
  153. default:
  154. break;
  155. }
  156. return ret;
  157. }
  158. /*
  159. * Control the power state of the IrDA transmitter.
  160. * State:
  161. * 0 - off
  162. * 1 - short range, lowest power
  163. * 2 - medium range, medium power
  164. * 3 - maximum range, high power
  165. *
  166. * Currently, only assabet is known to support this.
  167. */
  168. static int
  169. __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
  170. {
  171. int ret = 0;
  172. if (si->pdata->set_power)
  173. ret = si->pdata->set_power(si->dev, state);
  174. return ret;
  175. }
  176. static inline int
  177. sa1100_set_power(struct sa1100_irda *si, unsigned int state)
  178. {
  179. int ret;
  180. ret = __sa1100_irda_set_power(si, state);
  181. if (ret == 0)
  182. si->power = state;
  183. return ret;
  184. }
  185. static int sa1100_irda_startup(struct sa1100_irda *si)
  186. {
  187. int ret;
  188. /*
  189. * Ensure that the ports for this device are setup correctly.
  190. */
  191. if (si->pdata->startup)
  192. si->pdata->startup(si->dev);
  193. /*
  194. * Configure PPC for IRDA - we want to drive TXD2 low.
  195. * We also want to drive this pin low during sleep.
  196. */
  197. PPSR &= ~PPC_TXD2;
  198. PSDR &= ~PPC_TXD2;
  199. PPDR |= PPC_TXD2;
  200. /*
  201. * Enable HP-SIR modulation, and ensure that the port is disabled.
  202. */
  203. Ser2UTCR3 = 0;
  204. Ser2HSCR0 = HSCR0_UART;
  205. Ser2UTCR4 = si->utcr4;
  206. Ser2UTCR0 = UTCR0_8BitData;
  207. Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
  208. /*
  209. * Clear status register
  210. */
  211. Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
  212. ret = sa1100_irda_set_speed(si, si->speed = 9600);
  213. if (ret) {
  214. Ser2UTCR3 = 0;
  215. Ser2HSCR0 = 0;
  216. if (si->pdata->shutdown)
  217. si->pdata->shutdown(si->dev);
  218. }
  219. return ret;
  220. }
  221. static void sa1100_irda_shutdown(struct sa1100_irda *si)
  222. {
  223. /*
  224. * Stop all DMA activity.
  225. */
  226. sa1100_stop_dma(si->rxdma);
  227. sa1100_stop_dma(si->txdma);
  228. /* Disable the port. */
  229. Ser2UTCR3 = 0;
  230. Ser2HSCR0 = 0;
  231. if (si->pdata->shutdown)
  232. si->pdata->shutdown(si->dev);
  233. }
  234. #ifdef CONFIG_PM
  235. /*
  236. * Suspend the IrDA interface.
  237. */
  238. static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
  239. {
  240. struct net_device *dev = platform_get_drvdata(pdev);
  241. struct sa1100_irda *si;
  242. if (!dev)
  243. return 0;
  244. si = netdev_priv(dev);
  245. if (si->open) {
  246. /*
  247. * Stop the transmit queue
  248. */
  249. netif_device_detach(dev);
  250. disable_irq(dev->irq);
  251. sa1100_irda_shutdown(si);
  252. __sa1100_irda_set_power(si, 0);
  253. }
  254. return 0;
  255. }
  256. /*
  257. * Resume the IrDA interface.
  258. */
  259. static int sa1100_irda_resume(struct platform_device *pdev)
  260. {
  261. struct net_device *dev = platform_get_drvdata(pdev);
  262. struct sa1100_irda *si;
  263. if (!dev)
  264. return 0;
  265. si = netdev_priv(dev);
  266. if (si->open) {
  267. /*
  268. * If we missed a speed change, initialise at the new speed
  269. * directly. It is debatable whether this is actually
  270. * required, but in the interests of continuing from where
  271. * we left off it is desireable. The converse argument is
  272. * that we should re-negotiate at 9600 baud again.
  273. */
  274. if (si->newspeed) {
  275. si->speed = si->newspeed;
  276. si->newspeed = 0;
  277. }
  278. sa1100_irda_startup(si);
  279. __sa1100_irda_set_power(si, si->power);
  280. enable_irq(dev->irq);
  281. /*
  282. * This automatically wakes up the queue
  283. */
  284. netif_device_attach(dev);
  285. }
  286. return 0;
  287. }
  288. #else
  289. #define sa1100_irda_suspend NULL
  290. #define sa1100_irda_resume NULL
  291. #endif
  292. /*
  293. * HP-SIR format interrupt service routines.
  294. */
  295. static void sa1100_irda_hpsir_irq(struct net_device *dev)
  296. {
  297. struct sa1100_irda *si = netdev_priv(dev);
  298. int status;
  299. status = Ser2UTSR0;
  300. /*
  301. * Deal with any receive errors first. The bytes in error may be
  302. * the only bytes in the receive FIFO, so we do this first.
  303. */
  304. while (status & UTSR0_EIF) {
  305. int stat, data;
  306. stat = Ser2UTSR1;
  307. data = Ser2UTDR;
  308. if (stat & (UTSR1_FRE | UTSR1_ROR)) {
  309. dev->stats.rx_errors++;
  310. if (stat & UTSR1_FRE)
  311. dev->stats.rx_frame_errors++;
  312. if (stat & UTSR1_ROR)
  313. dev->stats.rx_fifo_errors++;
  314. } else
  315. async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
  316. status = Ser2UTSR0;
  317. }
  318. /*
  319. * We must clear certain bits.
  320. */
  321. Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
  322. if (status & UTSR0_RFS) {
  323. /*
  324. * There are at least 4 bytes in the FIFO. Read 3 bytes
  325. * and leave the rest to the block below.
  326. */
  327. async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
  328. async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
  329. async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
  330. }
  331. if (status & (UTSR0_RFS | UTSR0_RID)) {
  332. /*
  333. * Fifo contains more than 1 character.
  334. */
  335. do {
  336. async_unwrap_char(dev, &dev->stats, &si->rx_buff,
  337. Ser2UTDR);
  338. } while (Ser2UTSR1 & UTSR1_RNE);
  339. }
  340. if (status & UTSR0_TFS && si->tx_buff.len) {
  341. /*
  342. * Transmitter FIFO is not full
  343. */
  344. do {
  345. Ser2UTDR = *si->tx_buff.data++;
  346. si->tx_buff.len -= 1;
  347. } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
  348. if (si->tx_buff.len == 0) {
  349. dev->stats.tx_packets++;
  350. dev->stats.tx_bytes += si->tx_buff.data -
  351. si->tx_buff.head;
  352. /*
  353. * We need to ensure that the transmitter has
  354. * finished.
  355. */
  356. do
  357. rmb();
  358. while (Ser2UTSR1 & UTSR1_TBY);
  359. /*
  360. * Ok, we've finished transmitting. Now enable
  361. * the receiver. Sometimes we get a receive IRQ
  362. * immediately after a transmit...
  363. */
  364. Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
  365. Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
  366. if (si->newspeed) {
  367. sa1100_irda_set_speed(si, si->newspeed);
  368. si->newspeed = 0;
  369. }
  370. /* I'm hungry! */
  371. netif_wake_queue(dev);
  372. }
  373. }
  374. }
  375. static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
  376. {
  377. struct sk_buff *skb = si->rxskb;
  378. dma_addr_t dma_addr;
  379. unsigned int len, stat, data;
  380. if (!skb) {
  381. printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
  382. return;
  383. }
  384. /*
  385. * Get the current data position.
  386. */
  387. dma_addr = sa1100_get_dma_pos(si->rxdma);
  388. len = dma_addr - si->rxbuf_dma;
  389. if (len > HPSIR_MAX_RXLEN)
  390. len = HPSIR_MAX_RXLEN;
  391. dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE);
  392. do {
  393. /*
  394. * Read Status, and then Data.
  395. */
  396. stat = Ser2HSSR1;
  397. rmb();
  398. data = Ser2HSDR;
  399. if (stat & (HSSR1_CRE | HSSR1_ROR)) {
  400. dev->stats.rx_errors++;
  401. if (stat & HSSR1_CRE)
  402. dev->stats.rx_crc_errors++;
  403. if (stat & HSSR1_ROR)
  404. dev->stats.rx_frame_errors++;
  405. } else
  406. skb->data[len++] = data;
  407. /*
  408. * If we hit the end of frame, there's
  409. * no point in continuing.
  410. */
  411. if (stat & HSSR1_EOF)
  412. break;
  413. } while (Ser2HSSR0 & HSSR0_EIF);
  414. if (stat & HSSR1_EOF) {
  415. si->rxskb = NULL;
  416. skb_put(skb, len);
  417. skb->dev = dev;
  418. skb_reset_mac_header(skb);
  419. skb->protocol = htons(ETH_P_IRDA);
  420. dev->stats.rx_packets++;
  421. dev->stats.rx_bytes += len;
  422. /*
  423. * Before we pass the buffer up, allocate a new one.
  424. */
  425. sa1100_irda_rx_alloc(si);
  426. netif_rx(skb);
  427. } else {
  428. /*
  429. * Remap the buffer.
  430. */
  431. si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
  432. HPSIR_MAX_RXLEN,
  433. DMA_FROM_DEVICE);
  434. }
  435. }
  436. /*
  437. * FIR format interrupt service routine. We only have to
  438. * handle RX events; transmit events go via the TX DMA handler.
  439. *
  440. * No matter what, we disable RX, process, and the restart RX.
  441. */
  442. static void sa1100_irda_fir_irq(struct net_device *dev)
  443. {
  444. struct sa1100_irda *si = netdev_priv(dev);
  445. /*
  446. * Stop RX DMA
  447. */
  448. sa1100_stop_dma(si->rxdma);
  449. /*
  450. * Framing error - we throw away the packet completely.
  451. * Clearing RXE flushes the error conditions and data
  452. * from the fifo.
  453. */
  454. if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
  455. dev->stats.rx_errors++;
  456. if (Ser2HSSR0 & HSSR0_FRE)
  457. dev->stats.rx_frame_errors++;
  458. /*
  459. * Clear out the DMA...
  460. */
  461. Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
  462. /*
  463. * Clear selected status bits now, so we
  464. * don't miss them next time around.
  465. */
  466. Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
  467. }
  468. /*
  469. * Deal with any receive errors. The any of the lowest
  470. * 8 bytes in the FIFO may contain an error. We must read
  471. * them one by one. The "error" could even be the end of
  472. * packet!
  473. */
  474. if (Ser2HSSR0 & HSSR0_EIF)
  475. sa1100_irda_fir_error(si, dev);
  476. /*
  477. * No matter what happens, we must restart reception.
  478. */
  479. sa1100_irda_rx_dma_start(si);
  480. }
  481. static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
  482. {
  483. struct net_device *dev = dev_id;
  484. if (IS_FIR(((struct sa1100_irda *)netdev_priv(dev))))
  485. sa1100_irda_fir_irq(dev);
  486. else
  487. sa1100_irda_hpsir_irq(dev);
  488. return IRQ_HANDLED;
  489. }
  490. /*
  491. * TX DMA completion handler.
  492. */
  493. static void sa1100_irda_txdma_irq(void *id)
  494. {
  495. struct net_device *dev = id;
  496. struct sa1100_irda *si = netdev_priv(dev);
  497. struct sk_buff *skb = si->txskb;
  498. si->txskb = NULL;
  499. /*
  500. * Wait for the transmission to complete. Unfortunately,
  501. * the hardware doesn't give us an interrupt to indicate
  502. * "end of frame".
  503. */
  504. do
  505. rmb();
  506. while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
  507. /*
  508. * Clear the transmit underrun bit.
  509. */
  510. Ser2HSSR0 = HSSR0_TUR;
  511. /*
  512. * Do we need to change speed? Note that we're lazy
  513. * here - we don't free the old rxskb. We don't need
  514. * to allocate a buffer either.
  515. */
  516. if (si->newspeed) {
  517. sa1100_irda_set_speed(si, si->newspeed);
  518. si->newspeed = 0;
  519. }
  520. /*
  521. * Start reception. This disables the transmitter for
  522. * us. This will be using the existing RX buffer.
  523. */
  524. sa1100_irda_rx_dma_start(si);
  525. /*
  526. * Account and free the packet.
  527. */
  528. if (skb) {
  529. dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE);
  530. dev->stats.tx_packets ++;
  531. dev->stats.tx_bytes += skb->len;
  532. dev_kfree_skb_irq(skb);
  533. }
  534. /*
  535. * Make sure that the TX queue is available for sending
  536. * (for retries). TX has priority over RX at all times.
  537. */
  538. netif_wake_queue(dev);
  539. }
  540. static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
  541. {
  542. struct sa1100_irda *si = netdev_priv(dev);
  543. int speed = irda_get_next_speed(skb);
  544. /*
  545. * Does this packet contain a request to change the interface
  546. * speed? If so, remember it until we complete the transmission
  547. * of this frame.
  548. */
  549. if (speed != si->speed && speed != -1)
  550. si->newspeed = speed;
  551. /*
  552. * If this is an empty frame, we can bypass a lot.
  553. */
  554. if (skb->len == 0) {
  555. if (si->newspeed) {
  556. si->newspeed = 0;
  557. sa1100_irda_set_speed(si, speed);
  558. }
  559. dev_kfree_skb(skb);
  560. return NETDEV_TX_OK;
  561. }
  562. if (!IS_FIR(si)) {
  563. netif_stop_queue(dev);
  564. si->tx_buff.data = si->tx_buff.head;
  565. si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
  566. si->tx_buff.truesize);
  567. /*
  568. * Set the transmit interrupt enable. This will fire
  569. * off an interrupt immediately. Note that we disable
  570. * the receiver so we won't get spurious characteres
  571. * received.
  572. */
  573. Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
  574. dev_kfree_skb(skb);
  575. } else {
  576. int mtt = irda_get_mtt(skb);
  577. /*
  578. * We must not be transmitting...
  579. */
  580. BUG_ON(si->txskb);
  581. netif_stop_queue(dev);
  582. si->txskb = skb;
  583. si->txbuf_dma = dma_map_single(si->dev, skb->data,
  584. skb->len, DMA_TO_DEVICE);
  585. sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
  586. /*
  587. * If we have a mean turn-around time, impose the specified
  588. * specified delay. We could shorten this by timing from
  589. * the point we received the packet.
  590. */
  591. if (mtt)
  592. udelay(mtt);
  593. Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE;
  594. }
  595. dev->trans_start = jiffies;
  596. return NETDEV_TX_OK;
  597. }
  598. static int
  599. sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
  600. {
  601. struct if_irda_req *rq = (struct if_irda_req *)ifreq;
  602. struct sa1100_irda *si = netdev_priv(dev);
  603. int ret = -EOPNOTSUPP;
  604. switch (cmd) {
  605. case SIOCSBANDWIDTH:
  606. if (capable(CAP_NET_ADMIN)) {
  607. /*
  608. * We are unable to set the speed if the
  609. * device is not running.
  610. */
  611. if (si->open) {
  612. ret = sa1100_irda_set_speed(si,
  613. rq->ifr_baudrate);
  614. } else {
  615. printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
  616. ret = 0;
  617. }
  618. }
  619. break;
  620. case SIOCSMEDIABUSY:
  621. ret = -EPERM;
  622. if (capable(CAP_NET_ADMIN)) {
  623. irda_device_set_media_busy(dev, TRUE);
  624. ret = 0;
  625. }
  626. break;
  627. case SIOCGRECEIVING:
  628. rq->ifr_receiving = IS_FIR(si) ? 0
  629. : si->rx_buff.state != OUTSIDE_FRAME;
  630. break;
  631. default:
  632. break;
  633. }
  634. return ret;
  635. }
  636. static int sa1100_irda_start(struct net_device *dev)
  637. {
  638. struct sa1100_irda *si = netdev_priv(dev);
  639. int err;
  640. si->speed = 9600;
  641. err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
  642. if (err)
  643. goto err_irq;
  644. err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
  645. NULL, NULL, &si->rxdma);
  646. if (err)
  647. goto err_rx_dma;
  648. err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit",
  649. sa1100_irda_txdma_irq, dev, &si->txdma);
  650. if (err)
  651. goto err_tx_dma;
  652. /*
  653. * The interrupt must remain disabled for now.
  654. */
  655. disable_irq(dev->irq);
  656. /*
  657. * Setup the serial port for the specified speed.
  658. */
  659. err = sa1100_irda_startup(si);
  660. if (err)
  661. goto err_startup;
  662. /*
  663. * Open a new IrLAP layer instance.
  664. */
  665. si->irlap = irlap_open(dev, &si->qos, "sa1100");
  666. err = -ENOMEM;
  667. if (!si->irlap)
  668. goto err_irlap;
  669. /*
  670. * Now enable the interrupt and start the queue
  671. */
  672. si->open = 1;
  673. sa1100_set_power(si, power_level); /* low power mode */
  674. enable_irq(dev->irq);
  675. netif_start_queue(dev);
  676. return 0;
  677. err_irlap:
  678. si->open = 0;
  679. sa1100_irda_shutdown(si);
  680. err_startup:
  681. sa1100_free_dma(si->txdma);
  682. err_tx_dma:
  683. sa1100_free_dma(si->rxdma);
  684. err_rx_dma:
  685. free_irq(dev->irq, dev);
  686. err_irq:
  687. return err;
  688. }
  689. static int sa1100_irda_stop(struct net_device *dev)
  690. {
  691. struct sa1100_irda *si = netdev_priv(dev);
  692. disable_irq(dev->irq);
  693. sa1100_irda_shutdown(si);
  694. /*
  695. * If we have been doing DMA receive, make sure we
  696. * tidy that up cleanly.
  697. */
  698. if (si->rxskb) {
  699. dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN,
  700. DMA_FROM_DEVICE);
  701. dev_kfree_skb(si->rxskb);
  702. si->rxskb = NULL;
  703. }
  704. /* Stop IrLAP */
  705. if (si->irlap) {
  706. irlap_close(si->irlap);
  707. si->irlap = NULL;
  708. }
  709. netif_stop_queue(dev);
  710. si->open = 0;
  711. /*
  712. * Free resources
  713. */
  714. sa1100_free_dma(si->txdma);
  715. sa1100_free_dma(si->rxdma);
  716. free_irq(dev->irq, dev);
  717. sa1100_set_power(si, 0);
  718. return 0;
  719. }
  720. static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
  721. {
  722. io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
  723. if (io->head != NULL) {
  724. io->truesize = size;
  725. io->in_frame = FALSE;
  726. io->state = OUTSIDE_FRAME;
  727. io->data = io->head;
  728. }
  729. return io->head ? 0 : -ENOMEM;
  730. }
  731. static const struct net_device_ops sa1100_irda_netdev_ops = {
  732. .ndo_open = sa1100_irda_start,
  733. .ndo_stop = sa1100_irda_stop,
  734. .ndo_start_xmit = sa1100_irda_hard_xmit,
  735. .ndo_do_ioctl = sa1100_irda_ioctl,
  736. };
  737. static int sa1100_irda_probe(struct platform_device *pdev)
  738. {
  739. struct net_device *dev;
  740. struct sa1100_irda *si;
  741. unsigned int baudrate_mask;
  742. int err;
  743. if (!pdev->dev.platform_data)
  744. return -EINVAL;
  745. err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
  746. if (err)
  747. goto err_mem_1;
  748. err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
  749. if (err)
  750. goto err_mem_2;
  751. err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
  752. if (err)
  753. goto err_mem_3;
  754. dev = alloc_irdadev(sizeof(struct sa1100_irda));
  755. if (!dev)
  756. goto err_mem_4;
  757. si = netdev_priv(dev);
  758. si->dev = &pdev->dev;
  759. si->pdata = pdev->dev.platform_data;
  760. /*
  761. * Initialise the HP-SIR buffers
  762. */
  763. err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
  764. if (err)
  765. goto err_mem_5;
  766. err = sa1100_irda_init_iobuf(&si->tx_buff, 4000);
  767. if (err)
  768. goto err_mem_5;
  769. dev->netdev_ops = &sa1100_irda_netdev_ops;
  770. dev->irq = IRQ_Ser2ICP;
  771. irda_init_max_qos_capabilies(&si->qos);
  772. /*
  773. * We support original IRDA up to 115k2. (we don't currently
  774. * support 4Mbps). Min Turn Time set to 1ms or greater.
  775. */
  776. baudrate_mask = IR_9600;
  777. switch (max_rate) {
  778. case 4000000: baudrate_mask |= IR_4000000 << 8;
  779. case 115200: baudrate_mask |= IR_115200;
  780. case 57600: baudrate_mask |= IR_57600;
  781. case 38400: baudrate_mask |= IR_38400;
  782. case 19200: baudrate_mask |= IR_19200;
  783. }
  784. si->qos.baud_rate.bits &= baudrate_mask;
  785. si->qos.min_turn_time.bits = 7;
  786. irda_qos_bits_to_value(&si->qos);
  787. si->utcr4 = UTCR4_HPSIR;
  788. if (tx_lpm)
  789. si->utcr4 |= UTCR4_Z1_6us;
  790. /*
  791. * Initially enable HP-SIR modulation, and ensure that the port
  792. * is disabled.
  793. */
  794. Ser2UTCR3 = 0;
  795. Ser2UTCR4 = si->utcr4;
  796. Ser2HSCR0 = HSCR0_UART;
  797. err = register_netdev(dev);
  798. if (err == 0)
  799. platform_set_drvdata(pdev, dev);
  800. if (err) {
  801. err_mem_5:
  802. kfree(si->tx_buff.head);
  803. kfree(si->rx_buff.head);
  804. free_netdev(dev);
  805. err_mem_4:
  806. release_mem_region(__PREG(Ser2HSCR2), 0x04);
  807. err_mem_3:
  808. release_mem_region(__PREG(Ser2HSCR0), 0x1c);
  809. err_mem_2:
  810. release_mem_region(__PREG(Ser2UTCR0), 0x24);
  811. }
  812. err_mem_1:
  813. return err;
  814. }
  815. static int sa1100_irda_remove(struct platform_device *pdev)
  816. {
  817. struct net_device *dev = platform_get_drvdata(pdev);
  818. if (dev) {
  819. struct sa1100_irda *si = netdev_priv(dev);
  820. unregister_netdev(dev);
  821. kfree(si->tx_buff.head);
  822. kfree(si->rx_buff.head);
  823. free_netdev(dev);
  824. }
  825. release_mem_region(__PREG(Ser2HSCR2), 0x04);
  826. release_mem_region(__PREG(Ser2HSCR0), 0x1c);
  827. release_mem_region(__PREG(Ser2UTCR0), 0x24);
  828. return 0;
  829. }
  830. static struct platform_driver sa1100ir_driver = {
  831. .probe = sa1100_irda_probe,
  832. .remove = sa1100_irda_remove,
  833. .suspend = sa1100_irda_suspend,
  834. .resume = sa1100_irda_resume,
  835. .driver = {
  836. .name = "sa11x0-ir",
  837. .owner = THIS_MODULE,
  838. },
  839. };
  840. static int __init sa1100_irda_init(void)
  841. {
  842. /*
  843. * Limit power level a sensible range.
  844. */
  845. if (power_level < 1)
  846. power_level = 1;
  847. if (power_level > 3)
  848. power_level = 3;
  849. return platform_driver_register(&sa1100ir_driver);
  850. }
  851. static void __exit sa1100_irda_exit(void)
  852. {
  853. platform_driver_unregister(&sa1100ir_driver);
  854. }
  855. module_init(sa1100_irda_init);
  856. module_exit(sa1100_irda_exit);
  857. module_param(power_level, int, 0);
  858. module_param(tx_lpm, int, 0);
  859. module_param(max_rate, int, 0);
  860. MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
  861. MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
  862. MODULE_LICENSE("GPL");
  863. MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
  864. MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
  865. MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
  866. MODULE_ALIAS("platform:sa11x0-ir");