sbp2.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664
  1. /*
  2. * SBP2 driver (SCSI over IEEE1394)
  3. *
  4. * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. /*
  21. * The basic structure of this driver is based on the old storage driver,
  22. * drivers/ieee1394/sbp2.c, originally written by
  23. * James Goodwin <jamesg@filanet.com>
  24. * with later contributions and ongoing maintenance from
  25. * Ben Collins <bcollins@debian.org>,
  26. * Stefan Richter <stefanr@s5r6.in-berlin.de>
  27. * and many others.
  28. */
  29. #include <linux/blkdev.h>
  30. #include <linux/bug.h>
  31. #include <linux/completion.h>
  32. #include <linux/delay.h>
  33. #include <linux/device.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/firewire.h>
  36. #include <linux/firewire-constants.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/kernel.h>
  40. #include <linux/kref.h>
  41. #include <linux/list.h>
  42. #include <linux/mod_devicetable.h>
  43. #include <linux/module.h>
  44. #include <linux/moduleparam.h>
  45. #include <linux/scatterlist.h>
  46. #include <linux/slab.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/string.h>
  49. #include <linux/stringify.h>
  50. #include <linux/workqueue.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <scsi/scsi.h>
  54. #include <scsi/scsi_cmnd.h>
  55. #include <scsi/scsi_device.h>
  56. #include <scsi/scsi_host.h>
  57. /*
  58. * So far only bridges from Oxford Semiconductor are known to support
  59. * concurrent logins. Depending on firmware, four or two concurrent logins
  60. * are possible on OXFW911 and newer Oxsemi bridges.
  61. *
  62. * Concurrent logins are useful together with cluster filesystems.
  63. */
  64. static int sbp2_param_exclusive_login = 1;
  65. module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  66. MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  67. "(default = Y, use N for concurrent initiators)");
  68. /*
  69. * Flags for firmware oddities
  70. *
  71. * - 128kB max transfer
  72. * Limit transfer size. Necessary for some old bridges.
  73. *
  74. * - 36 byte inquiry
  75. * When scsi_mod probes the device, let the inquiry command look like that
  76. * from MS Windows.
  77. *
  78. * - skip mode page 8
  79. * Suppress sending of mode_sense for mode page 8 if the device pretends to
  80. * support the SCSI Primary Block commands instead of Reduced Block Commands.
  81. *
  82. * - fix capacity
  83. * Tell sd_mod to correct the last sector number reported by read_capacity.
  84. * Avoids access beyond actual disk limits on devices with an off-by-one bug.
  85. * Don't use this with devices which don't have this bug.
  86. *
  87. * - delay inquiry
  88. * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  89. *
  90. * - power condition
  91. * Set the power condition field in the START STOP UNIT commands sent by
  92. * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  93. * Some disks need this to spin down or to resume properly.
  94. *
  95. * - override internal blacklist
  96. * Instead of adding to the built-in blacklist, use only the workarounds
  97. * specified in the module load parameter.
  98. * Useful if a blacklist entry interfered with a non-broken device.
  99. */
  100. #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
  101. #define SBP2_WORKAROUND_INQUIRY_36 0x2
  102. #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
  103. #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
  104. #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
  105. #define SBP2_INQUIRY_DELAY 12
  106. #define SBP2_WORKAROUND_POWER_CONDITION 0x20
  107. #define SBP2_WORKAROUND_OVERRIDE 0x100
  108. static int sbp2_param_workarounds;
  109. module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
  110. MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
  111. ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
  112. ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
  113. ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
  114. ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
  115. ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
  116. ", set power condition in start stop unit = "
  117. __stringify(SBP2_WORKAROUND_POWER_CONDITION)
  118. ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
  119. ", or a combination)");
  120. /* I don't know why the SCSI stack doesn't define something like this... */
  121. typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
  122. static const char sbp2_driver_name[] = "sbp2";
  123. /*
  124. * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
  125. * and one struct scsi_device per sbp2_logical_unit.
  126. */
  127. struct sbp2_logical_unit {
  128. struct sbp2_target *tgt;
  129. struct list_head link;
  130. struct fw_address_handler address_handler;
  131. struct list_head orb_list;
  132. u64 command_block_agent_address;
  133. u16 lun;
  134. int login_id;
  135. /*
  136. * The generation is updated once we've logged in or reconnected
  137. * to the logical unit. Thus, I/O to the device will automatically
  138. * fail and get retried if it happens in a window where the device
  139. * is not ready, e.g. after a bus reset but before we reconnect.
  140. */
  141. int generation;
  142. int retries;
  143. struct delayed_work work;
  144. bool has_sdev;
  145. bool blocked;
  146. };
  147. /*
  148. * We create one struct sbp2_target per IEEE 1212 Unit Directory
  149. * and one struct Scsi_Host per sbp2_target.
  150. */
  151. struct sbp2_target {
  152. struct kref kref;
  153. struct fw_unit *unit;
  154. const char *bus_id;
  155. struct list_head lu_list;
  156. u64 management_agent_address;
  157. u64 guid;
  158. int directory_id;
  159. int node_id;
  160. int address_high;
  161. unsigned int workarounds;
  162. unsigned int mgt_orb_timeout;
  163. unsigned int max_payload;
  164. int dont_block; /* counter for each logical unit */
  165. int blocked; /* ditto */
  166. };
  167. static struct fw_device *target_device(struct sbp2_target *tgt)
  168. {
  169. return fw_parent_device(tgt->unit);
  170. }
  171. /* Impossible login_id, to detect logout attempt before successful login */
  172. #define INVALID_LOGIN_ID 0x10000
  173. /*
  174. * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
  175. * provided in the config rom. Most devices do provide a value, which
  176. * we'll use for login management orbs, but with some sane limits.
  177. */
  178. #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
  179. #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
  180. #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
  181. #define SBP2_ORB_NULL 0x80000000
  182. #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
  183. #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
  184. /*
  185. * There is no transport protocol limit to the CDB length, but we implement
  186. * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
  187. */
  188. #define SBP2_MAX_CDB_SIZE 16
  189. /*
  190. * The default maximum s/g segment size of a FireWire controller is
  191. * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
  192. * be quadlet-aligned, we set the length limit to 0xffff & ~3.
  193. */
  194. #define SBP2_MAX_SEG_SIZE 0xfffc
  195. /* Unit directory keys */
  196. #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
  197. #define SBP2_CSR_FIRMWARE_REVISION 0x3c
  198. #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
  199. #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
  200. /* Management orb opcodes */
  201. #define SBP2_LOGIN_REQUEST 0x0
  202. #define SBP2_QUERY_LOGINS_REQUEST 0x1
  203. #define SBP2_RECONNECT_REQUEST 0x3
  204. #define SBP2_SET_PASSWORD_REQUEST 0x4
  205. #define SBP2_LOGOUT_REQUEST 0x7
  206. #define SBP2_ABORT_TASK_REQUEST 0xb
  207. #define SBP2_ABORT_TASK_SET 0xc
  208. #define SBP2_LOGICAL_UNIT_RESET 0xe
  209. #define SBP2_TARGET_RESET_REQUEST 0xf
  210. /* Offsets for command block agent registers */
  211. #define SBP2_AGENT_STATE 0x00
  212. #define SBP2_AGENT_RESET 0x04
  213. #define SBP2_ORB_POINTER 0x08
  214. #define SBP2_DOORBELL 0x10
  215. #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
  216. /* Status write response codes */
  217. #define SBP2_STATUS_REQUEST_COMPLETE 0x0
  218. #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
  219. #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
  220. #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
  221. #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
  222. #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
  223. #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
  224. #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
  225. #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
  226. #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
  227. #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
  228. #define STATUS_GET_DATA(v) ((v).data)
  229. struct sbp2_status {
  230. u32 status;
  231. u32 orb_low;
  232. u8 data[24];
  233. };
  234. struct sbp2_pointer {
  235. __be32 high;
  236. __be32 low;
  237. };
  238. struct sbp2_orb {
  239. struct fw_transaction t;
  240. struct kref kref;
  241. dma_addr_t request_bus;
  242. int rcode;
  243. struct sbp2_pointer pointer;
  244. void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
  245. struct list_head link;
  246. };
  247. #define MANAGEMENT_ORB_LUN(v) ((v))
  248. #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
  249. #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
  250. #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
  251. #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
  252. #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
  253. #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
  254. #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
  255. struct sbp2_management_orb {
  256. struct sbp2_orb base;
  257. struct {
  258. struct sbp2_pointer password;
  259. struct sbp2_pointer response;
  260. __be32 misc;
  261. __be32 length;
  262. struct sbp2_pointer status_fifo;
  263. } request;
  264. __be32 response[4];
  265. dma_addr_t response_bus;
  266. struct completion done;
  267. struct sbp2_status status;
  268. };
  269. struct sbp2_login_response {
  270. __be32 misc;
  271. struct sbp2_pointer command_block_agent;
  272. __be32 reconnect_hold;
  273. };
  274. #define COMMAND_ORB_DATA_SIZE(v) ((v))
  275. #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
  276. #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
  277. #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
  278. #define COMMAND_ORB_SPEED(v) ((v) << 24)
  279. #define COMMAND_ORB_DIRECTION ((1) << 27)
  280. #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
  281. #define COMMAND_ORB_NOTIFY ((1) << 31)
  282. struct sbp2_command_orb {
  283. struct sbp2_orb base;
  284. struct {
  285. struct sbp2_pointer next;
  286. struct sbp2_pointer data_descriptor;
  287. __be32 misc;
  288. u8 command_block[SBP2_MAX_CDB_SIZE];
  289. } request;
  290. struct scsi_cmnd *cmd;
  291. scsi_done_fn_t done;
  292. struct sbp2_logical_unit *lu;
  293. struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
  294. dma_addr_t page_table_bus;
  295. };
  296. #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
  297. #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
  298. /*
  299. * List of devices with known bugs.
  300. *
  301. * The firmware_revision field, masked with 0xffff00, is the best
  302. * indicator for the type of bridge chip of a device. It yields a few
  303. * false positives but this did not break correctly behaving devices
  304. * so far.
  305. */
  306. static const struct {
  307. u32 firmware_revision;
  308. u32 model;
  309. unsigned int workarounds;
  310. } sbp2_workarounds_table[] = {
  311. /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
  312. .firmware_revision = 0x002800,
  313. .model = 0x001010,
  314. .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
  315. SBP2_WORKAROUND_MODE_SENSE_8 |
  316. SBP2_WORKAROUND_POWER_CONDITION,
  317. },
  318. /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
  319. .firmware_revision = 0x002800,
  320. .model = 0x000000,
  321. .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
  322. SBP2_WORKAROUND_POWER_CONDITION,
  323. },
  324. /* Initio bridges, actually only needed for some older ones */ {
  325. .firmware_revision = 0x000200,
  326. .model = SBP2_ROM_VALUE_WILDCARD,
  327. .workarounds = SBP2_WORKAROUND_INQUIRY_36,
  328. },
  329. /* PL-3507 bridge with Prolific firmware */ {
  330. .firmware_revision = 0x012800,
  331. .model = SBP2_ROM_VALUE_WILDCARD,
  332. .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
  333. },
  334. /* Symbios bridge */ {
  335. .firmware_revision = 0xa0b800,
  336. .model = SBP2_ROM_VALUE_WILDCARD,
  337. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  338. },
  339. /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
  340. .firmware_revision = 0x002600,
  341. .model = SBP2_ROM_VALUE_WILDCARD,
  342. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  343. },
  344. /*
  345. * iPod 2nd generation: needs 128k max transfer size workaround
  346. * iPod 3rd generation: needs fix capacity workaround
  347. */
  348. {
  349. .firmware_revision = 0x0a2700,
  350. .model = 0x000000,
  351. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
  352. SBP2_WORKAROUND_FIX_CAPACITY,
  353. },
  354. /* iPod 4th generation */ {
  355. .firmware_revision = 0x0a2700,
  356. .model = 0x000021,
  357. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  358. },
  359. /* iPod mini */ {
  360. .firmware_revision = 0x0a2700,
  361. .model = 0x000022,
  362. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  363. },
  364. /* iPod mini */ {
  365. .firmware_revision = 0x0a2700,
  366. .model = 0x000023,
  367. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  368. },
  369. /* iPod Photo */ {
  370. .firmware_revision = 0x0a2700,
  371. .model = 0x00007e,
  372. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  373. }
  374. };
  375. static void free_orb(struct kref *kref)
  376. {
  377. struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
  378. kfree(orb);
  379. }
  380. static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
  381. int tcode, int destination, int source,
  382. int generation, int speed,
  383. unsigned long long offset,
  384. void *payload, size_t length, void *callback_data)
  385. {
  386. struct sbp2_logical_unit *lu = callback_data;
  387. struct sbp2_orb *orb;
  388. struct sbp2_status status;
  389. size_t header_size;
  390. unsigned long flags;
  391. if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
  392. length == 0 || length > sizeof(status)) {
  393. fw_send_response(card, request, RCODE_TYPE_ERROR);
  394. return;
  395. }
  396. header_size = min(length, 2 * sizeof(u32));
  397. fw_memcpy_from_be32(&status, payload, header_size);
  398. if (length > header_size)
  399. memcpy(status.data, payload + 8, length - header_size);
  400. if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
  401. fw_notify("non-orb related status write, not handled\n");
  402. fw_send_response(card, request, RCODE_COMPLETE);
  403. return;
  404. }
  405. /* Lookup the orb corresponding to this status write. */
  406. spin_lock_irqsave(&card->lock, flags);
  407. list_for_each_entry(orb, &lu->orb_list, link) {
  408. if (STATUS_GET_ORB_HIGH(status) == 0 &&
  409. STATUS_GET_ORB_LOW(status) == orb->request_bus) {
  410. orb->rcode = RCODE_COMPLETE;
  411. list_del(&orb->link);
  412. break;
  413. }
  414. }
  415. spin_unlock_irqrestore(&card->lock, flags);
  416. if (&orb->link != &lu->orb_list) {
  417. orb->callback(orb, &status);
  418. kref_put(&orb->kref, free_orb);
  419. } else {
  420. fw_error("status write for unknown orb\n");
  421. }
  422. fw_send_response(card, request, RCODE_COMPLETE);
  423. }
  424. static void complete_transaction(struct fw_card *card, int rcode,
  425. void *payload, size_t length, void *data)
  426. {
  427. struct sbp2_orb *orb = data;
  428. unsigned long flags;
  429. /*
  430. * This is a little tricky. We can get the status write for
  431. * the orb before we get this callback. The status write
  432. * handler above will assume the orb pointer transaction was
  433. * successful and set the rcode to RCODE_COMPLETE for the orb.
  434. * So this callback only sets the rcode if it hasn't already
  435. * been set and only does the cleanup if the transaction
  436. * failed and we didn't already get a status write.
  437. */
  438. spin_lock_irqsave(&card->lock, flags);
  439. if (orb->rcode == -1)
  440. orb->rcode = rcode;
  441. if (orb->rcode != RCODE_COMPLETE) {
  442. list_del(&orb->link);
  443. spin_unlock_irqrestore(&card->lock, flags);
  444. orb->callback(orb, NULL);
  445. } else {
  446. spin_unlock_irqrestore(&card->lock, flags);
  447. }
  448. kref_put(&orb->kref, free_orb);
  449. }
  450. static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
  451. int node_id, int generation, u64 offset)
  452. {
  453. struct fw_device *device = target_device(lu->tgt);
  454. unsigned long flags;
  455. orb->pointer.high = 0;
  456. orb->pointer.low = cpu_to_be32(orb->request_bus);
  457. spin_lock_irqsave(&device->card->lock, flags);
  458. list_add_tail(&orb->link, &lu->orb_list);
  459. spin_unlock_irqrestore(&device->card->lock, flags);
  460. /* Take a ref for the orb list and for the transaction callback. */
  461. kref_get(&orb->kref);
  462. kref_get(&orb->kref);
  463. fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
  464. node_id, generation, device->max_speed, offset,
  465. &orb->pointer, sizeof(orb->pointer),
  466. complete_transaction, orb);
  467. }
  468. static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
  469. {
  470. struct fw_device *device = target_device(lu->tgt);
  471. struct sbp2_orb *orb, *next;
  472. struct list_head list;
  473. unsigned long flags;
  474. int retval = -ENOENT;
  475. INIT_LIST_HEAD(&list);
  476. spin_lock_irqsave(&device->card->lock, flags);
  477. list_splice_init(&lu->orb_list, &list);
  478. spin_unlock_irqrestore(&device->card->lock, flags);
  479. list_for_each_entry_safe(orb, next, &list, link) {
  480. retval = 0;
  481. if (fw_cancel_transaction(device->card, &orb->t) == 0)
  482. continue;
  483. orb->rcode = RCODE_CANCELLED;
  484. orb->callback(orb, NULL);
  485. }
  486. return retval;
  487. }
  488. static void complete_management_orb(struct sbp2_orb *base_orb,
  489. struct sbp2_status *status)
  490. {
  491. struct sbp2_management_orb *orb =
  492. container_of(base_orb, struct sbp2_management_orb, base);
  493. if (status)
  494. memcpy(&orb->status, status, sizeof(*status));
  495. complete(&orb->done);
  496. }
  497. static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
  498. int generation, int function,
  499. int lun_or_login_id, void *response)
  500. {
  501. struct fw_device *device = target_device(lu->tgt);
  502. struct sbp2_management_orb *orb;
  503. unsigned int timeout;
  504. int retval = -ENOMEM;
  505. if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
  506. return 0;
  507. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  508. if (orb == NULL)
  509. return -ENOMEM;
  510. kref_init(&orb->base.kref);
  511. orb->response_bus =
  512. dma_map_single(device->card->device, &orb->response,
  513. sizeof(orb->response), DMA_FROM_DEVICE);
  514. if (dma_mapping_error(device->card->device, orb->response_bus))
  515. goto fail_mapping_response;
  516. orb->request.response.high = 0;
  517. orb->request.response.low = cpu_to_be32(orb->response_bus);
  518. orb->request.misc = cpu_to_be32(
  519. MANAGEMENT_ORB_NOTIFY |
  520. MANAGEMENT_ORB_FUNCTION(function) |
  521. MANAGEMENT_ORB_LUN(lun_or_login_id));
  522. orb->request.length = cpu_to_be32(
  523. MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
  524. orb->request.status_fifo.high =
  525. cpu_to_be32(lu->address_handler.offset >> 32);
  526. orb->request.status_fifo.low =
  527. cpu_to_be32(lu->address_handler.offset);
  528. if (function == SBP2_LOGIN_REQUEST) {
  529. /* Ask for 2^2 == 4 seconds reconnect grace period */
  530. orb->request.misc |= cpu_to_be32(
  531. MANAGEMENT_ORB_RECONNECT(2) |
  532. MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
  533. timeout = lu->tgt->mgt_orb_timeout;
  534. } else {
  535. timeout = SBP2_ORB_TIMEOUT;
  536. }
  537. init_completion(&orb->done);
  538. orb->base.callback = complete_management_orb;
  539. orb->base.request_bus =
  540. dma_map_single(device->card->device, &orb->request,
  541. sizeof(orb->request), DMA_TO_DEVICE);
  542. if (dma_mapping_error(device->card->device, orb->base.request_bus))
  543. goto fail_mapping_request;
  544. sbp2_send_orb(&orb->base, lu, node_id, generation,
  545. lu->tgt->management_agent_address);
  546. wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
  547. retval = -EIO;
  548. if (sbp2_cancel_orbs(lu) == 0) {
  549. fw_error("%s: orb reply timed out, rcode=0x%02x\n",
  550. lu->tgt->bus_id, orb->base.rcode);
  551. goto out;
  552. }
  553. if (orb->base.rcode != RCODE_COMPLETE) {
  554. fw_error("%s: management write failed, rcode 0x%02x\n",
  555. lu->tgt->bus_id, orb->base.rcode);
  556. goto out;
  557. }
  558. if (STATUS_GET_RESPONSE(orb->status) != 0 ||
  559. STATUS_GET_SBP_STATUS(orb->status) != 0) {
  560. fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
  561. STATUS_GET_RESPONSE(orb->status),
  562. STATUS_GET_SBP_STATUS(orb->status));
  563. goto out;
  564. }
  565. retval = 0;
  566. out:
  567. dma_unmap_single(device->card->device, orb->base.request_bus,
  568. sizeof(orb->request), DMA_TO_DEVICE);
  569. fail_mapping_request:
  570. dma_unmap_single(device->card->device, orb->response_bus,
  571. sizeof(orb->response), DMA_FROM_DEVICE);
  572. fail_mapping_response:
  573. if (response)
  574. memcpy(response, orb->response, sizeof(orb->response));
  575. kref_put(&orb->base.kref, free_orb);
  576. return retval;
  577. }
  578. static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
  579. {
  580. struct fw_device *device = target_device(lu->tgt);
  581. __be32 d = 0;
  582. fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
  583. lu->tgt->node_id, lu->generation, device->max_speed,
  584. lu->command_block_agent_address + SBP2_AGENT_RESET,
  585. &d, sizeof(d));
  586. }
  587. static void complete_agent_reset_write_no_wait(struct fw_card *card,
  588. int rcode, void *payload, size_t length, void *data)
  589. {
  590. kfree(data);
  591. }
  592. static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
  593. {
  594. struct fw_device *device = target_device(lu->tgt);
  595. struct fw_transaction *t;
  596. static __be32 d;
  597. t = kmalloc(sizeof(*t), GFP_ATOMIC);
  598. if (t == NULL)
  599. return;
  600. fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
  601. lu->tgt->node_id, lu->generation, device->max_speed,
  602. lu->command_block_agent_address + SBP2_AGENT_RESET,
  603. &d, sizeof(d), complete_agent_reset_write_no_wait, t);
  604. }
  605. static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
  606. {
  607. /*
  608. * We may access dont_block without taking card->lock here:
  609. * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
  610. * are currently serialized against each other.
  611. * And a wrong result in sbp2_conditionally_block()'s access of
  612. * dont_block is rather harmless, it simply misses its first chance.
  613. */
  614. --lu->tgt->dont_block;
  615. }
  616. /*
  617. * Blocks lu->tgt if all of the following conditions are met:
  618. * - Login, INQUIRY, and high-level SCSI setup of all of the target's
  619. * logical units have been finished (indicated by dont_block == 0).
  620. * - lu->generation is stale.
  621. *
  622. * Note, scsi_block_requests() must be called while holding card->lock,
  623. * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
  624. * unblock the target.
  625. */
  626. static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
  627. {
  628. struct sbp2_target *tgt = lu->tgt;
  629. struct fw_card *card = target_device(tgt)->card;
  630. struct Scsi_Host *shost =
  631. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  632. unsigned long flags;
  633. spin_lock_irqsave(&card->lock, flags);
  634. if (!tgt->dont_block && !lu->blocked &&
  635. lu->generation != card->generation) {
  636. lu->blocked = true;
  637. if (++tgt->blocked == 1)
  638. scsi_block_requests(shost);
  639. }
  640. spin_unlock_irqrestore(&card->lock, flags);
  641. }
  642. /*
  643. * Unblocks lu->tgt as soon as all its logical units can be unblocked.
  644. * Note, it is harmless to run scsi_unblock_requests() outside the
  645. * card->lock protected section. On the other hand, running it inside
  646. * the section might clash with shost->host_lock.
  647. */
  648. static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
  649. {
  650. struct sbp2_target *tgt = lu->tgt;
  651. struct fw_card *card = target_device(tgt)->card;
  652. struct Scsi_Host *shost =
  653. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  654. unsigned long flags;
  655. bool unblock = false;
  656. spin_lock_irqsave(&card->lock, flags);
  657. if (lu->blocked && lu->generation == card->generation) {
  658. lu->blocked = false;
  659. unblock = --tgt->blocked == 0;
  660. }
  661. spin_unlock_irqrestore(&card->lock, flags);
  662. if (unblock)
  663. scsi_unblock_requests(shost);
  664. }
  665. /*
  666. * Prevents future blocking of tgt and unblocks it.
  667. * Note, it is harmless to run scsi_unblock_requests() outside the
  668. * card->lock protected section. On the other hand, running it inside
  669. * the section might clash with shost->host_lock.
  670. */
  671. static void sbp2_unblock(struct sbp2_target *tgt)
  672. {
  673. struct fw_card *card = target_device(tgt)->card;
  674. struct Scsi_Host *shost =
  675. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  676. unsigned long flags;
  677. spin_lock_irqsave(&card->lock, flags);
  678. ++tgt->dont_block;
  679. spin_unlock_irqrestore(&card->lock, flags);
  680. scsi_unblock_requests(shost);
  681. }
  682. static int sbp2_lun2int(u16 lun)
  683. {
  684. struct scsi_lun eight_bytes_lun;
  685. memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
  686. eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
  687. eight_bytes_lun.scsi_lun[1] = lun & 0xff;
  688. return scsilun_to_int(&eight_bytes_lun);
  689. }
  690. static void sbp2_release_target(struct kref *kref)
  691. {
  692. struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
  693. struct sbp2_logical_unit *lu, *next;
  694. struct Scsi_Host *shost =
  695. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  696. struct scsi_device *sdev;
  697. struct fw_device *device = target_device(tgt);
  698. /* prevent deadlocks */
  699. sbp2_unblock(tgt);
  700. list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
  701. sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
  702. if (sdev) {
  703. scsi_remove_device(sdev);
  704. scsi_device_put(sdev);
  705. }
  706. if (lu->login_id != INVALID_LOGIN_ID) {
  707. int generation, node_id;
  708. /*
  709. * tgt->node_id may be obsolete here if we failed
  710. * during initial login or after a bus reset where
  711. * the topology changed.
  712. */
  713. generation = device->generation;
  714. smp_rmb(); /* node_id vs. generation */
  715. node_id = device->node_id;
  716. sbp2_send_management_orb(lu, node_id, generation,
  717. SBP2_LOGOUT_REQUEST,
  718. lu->login_id, NULL);
  719. }
  720. fw_core_remove_address_handler(&lu->address_handler);
  721. list_del(&lu->link);
  722. kfree(lu);
  723. }
  724. scsi_remove_host(shost);
  725. fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
  726. fw_unit_put(tgt->unit);
  727. scsi_host_put(shost);
  728. fw_device_put(device);
  729. }
  730. static struct workqueue_struct *sbp2_wq;
  731. static void sbp2_target_put(struct sbp2_target *tgt)
  732. {
  733. kref_put(&tgt->kref, sbp2_release_target);
  734. }
  735. /*
  736. * Always get the target's kref when scheduling work on one its units.
  737. * Each workqueue job is responsible to call sbp2_target_put() upon return.
  738. */
  739. static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
  740. {
  741. kref_get(&lu->tgt->kref);
  742. if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
  743. sbp2_target_put(lu->tgt);
  744. }
  745. /*
  746. * Write retransmit retry values into the BUSY_TIMEOUT register.
  747. * - The single-phase retry protocol is supported by all SBP-2 devices, but the
  748. * default retry_limit value is 0 (i.e. never retry transmission). We write a
  749. * saner value after logging into the device.
  750. * - The dual-phase retry protocol is optional to implement, and if not
  751. * supported, writes to the dual-phase portion of the register will be
  752. * ignored. We try to write the original 1394-1995 default here.
  753. * - In the case of devices that are also SBP-3-compliant, all writes are
  754. * ignored, as the register is read-only, but contains single-phase retry of
  755. * 15, which is what we're trying to set for all SBP-2 device anyway, so this
  756. * write attempt is safe and yields more consistent behavior for all devices.
  757. *
  758. * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
  759. * and section 6.4 of the SBP-3 spec for further details.
  760. */
  761. static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
  762. {
  763. struct fw_device *device = target_device(lu->tgt);
  764. __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
  765. fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
  766. lu->tgt->node_id, lu->generation, device->max_speed,
  767. CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
  768. &d, sizeof(d));
  769. }
  770. static void sbp2_reconnect(struct work_struct *work);
  771. static void sbp2_login(struct work_struct *work)
  772. {
  773. struct sbp2_logical_unit *lu =
  774. container_of(work, struct sbp2_logical_unit, work.work);
  775. struct sbp2_target *tgt = lu->tgt;
  776. struct fw_device *device = target_device(tgt);
  777. struct Scsi_Host *shost;
  778. struct scsi_device *sdev;
  779. struct sbp2_login_response response;
  780. int generation, node_id, local_node_id;
  781. if (fw_device_is_shutdown(device))
  782. goto out;
  783. generation = device->generation;
  784. smp_rmb(); /* node IDs must not be older than generation */
  785. node_id = device->node_id;
  786. local_node_id = device->card->node_id;
  787. /* If this is a re-login attempt, log out, or we might be rejected. */
  788. if (lu->has_sdev)
  789. sbp2_send_management_orb(lu, device->node_id, generation,
  790. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  791. if (sbp2_send_management_orb(lu, node_id, generation,
  792. SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
  793. if (lu->retries++ < 5) {
  794. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  795. } else {
  796. fw_error("%s: failed to login to LUN %04x\n",
  797. tgt->bus_id, lu->lun);
  798. /* Let any waiting I/O fail from now on. */
  799. sbp2_unblock(lu->tgt);
  800. }
  801. goto out;
  802. }
  803. tgt->node_id = node_id;
  804. tgt->address_high = local_node_id << 16;
  805. smp_wmb(); /* node IDs must not be older than generation */
  806. lu->generation = generation;
  807. lu->command_block_agent_address =
  808. ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
  809. << 32) | be32_to_cpu(response.command_block_agent.low);
  810. lu->login_id = be32_to_cpu(response.misc) & 0xffff;
  811. fw_notify("%s: logged in to LUN %04x (%d retries)\n",
  812. tgt->bus_id, lu->lun, lu->retries);
  813. /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
  814. sbp2_set_busy_timeout(lu);
  815. PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
  816. sbp2_agent_reset(lu);
  817. /* This was a re-login. */
  818. if (lu->has_sdev) {
  819. sbp2_cancel_orbs(lu);
  820. sbp2_conditionally_unblock(lu);
  821. goto out;
  822. }
  823. if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
  824. ssleep(SBP2_INQUIRY_DELAY);
  825. shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  826. sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
  827. /*
  828. * FIXME: We are unable to perform reconnects while in sbp2_login().
  829. * Therefore __scsi_add_device() will get into trouble if a bus reset
  830. * happens in parallel. It will either fail or leave us with an
  831. * unusable sdev. As a workaround we check for this and retry the
  832. * whole login and SCSI probing.
  833. */
  834. /* Reported error during __scsi_add_device() */
  835. if (IS_ERR(sdev))
  836. goto out_logout_login;
  837. /* Unreported error during __scsi_add_device() */
  838. smp_rmb(); /* get current card generation */
  839. if (generation != device->card->generation) {
  840. scsi_remove_device(sdev);
  841. scsi_device_put(sdev);
  842. goto out_logout_login;
  843. }
  844. /* No error during __scsi_add_device() */
  845. lu->has_sdev = true;
  846. scsi_device_put(sdev);
  847. sbp2_allow_block(lu);
  848. goto out;
  849. out_logout_login:
  850. smp_rmb(); /* generation may have changed */
  851. generation = device->generation;
  852. smp_rmb(); /* node_id must not be older than generation */
  853. sbp2_send_management_orb(lu, device->node_id, generation,
  854. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  855. /*
  856. * If a bus reset happened, sbp2_update will have requeued
  857. * lu->work already. Reset the work from reconnect to login.
  858. */
  859. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  860. out:
  861. sbp2_target_put(tgt);
  862. }
  863. static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
  864. {
  865. struct sbp2_logical_unit *lu;
  866. lu = kmalloc(sizeof(*lu), GFP_KERNEL);
  867. if (!lu)
  868. return -ENOMEM;
  869. lu->address_handler.length = 0x100;
  870. lu->address_handler.address_callback = sbp2_status_write;
  871. lu->address_handler.callback_data = lu;
  872. if (fw_core_add_address_handler(&lu->address_handler,
  873. &fw_high_memory_region) < 0) {
  874. kfree(lu);
  875. return -ENOMEM;
  876. }
  877. lu->tgt = tgt;
  878. lu->lun = lun_entry & 0xffff;
  879. lu->login_id = INVALID_LOGIN_ID;
  880. lu->retries = 0;
  881. lu->has_sdev = false;
  882. lu->blocked = false;
  883. ++tgt->dont_block;
  884. INIT_LIST_HEAD(&lu->orb_list);
  885. INIT_DELAYED_WORK(&lu->work, sbp2_login);
  886. list_add_tail(&lu->link, &tgt->lu_list);
  887. return 0;
  888. }
  889. static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
  890. {
  891. struct fw_csr_iterator ci;
  892. int key, value;
  893. fw_csr_iterator_init(&ci, directory);
  894. while (fw_csr_iterator_next(&ci, &key, &value))
  895. if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
  896. sbp2_add_logical_unit(tgt, value) < 0)
  897. return -ENOMEM;
  898. return 0;
  899. }
  900. static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
  901. u32 *model, u32 *firmware_revision)
  902. {
  903. struct fw_csr_iterator ci;
  904. int key, value;
  905. unsigned int timeout;
  906. fw_csr_iterator_init(&ci, directory);
  907. while (fw_csr_iterator_next(&ci, &key, &value)) {
  908. switch (key) {
  909. case CSR_DEPENDENT_INFO | CSR_OFFSET:
  910. tgt->management_agent_address =
  911. CSR_REGISTER_BASE + 4 * value;
  912. break;
  913. case CSR_DIRECTORY_ID:
  914. tgt->directory_id = value;
  915. break;
  916. case CSR_MODEL:
  917. *model = value;
  918. break;
  919. case SBP2_CSR_FIRMWARE_REVISION:
  920. *firmware_revision = value;
  921. break;
  922. case SBP2_CSR_UNIT_CHARACTERISTICS:
  923. /* the timeout value is stored in 500ms units */
  924. timeout = ((unsigned int) value >> 8 & 0xff) * 500;
  925. timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
  926. tgt->mgt_orb_timeout =
  927. min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
  928. if (timeout > tgt->mgt_orb_timeout)
  929. fw_notify("%s: config rom contains %ds "
  930. "management ORB timeout, limiting "
  931. "to %ds\n", tgt->bus_id,
  932. timeout / 1000,
  933. tgt->mgt_orb_timeout / 1000);
  934. break;
  935. case SBP2_CSR_LOGICAL_UNIT_NUMBER:
  936. if (sbp2_add_logical_unit(tgt, value) < 0)
  937. return -ENOMEM;
  938. break;
  939. case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
  940. /* Adjust for the increment in the iterator */
  941. if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
  942. return -ENOMEM;
  943. break;
  944. }
  945. }
  946. return 0;
  947. }
  948. static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
  949. u32 firmware_revision)
  950. {
  951. int i;
  952. unsigned int w = sbp2_param_workarounds;
  953. if (w)
  954. fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
  955. "if you need the workarounds parameter for %s\n",
  956. tgt->bus_id);
  957. if (w & SBP2_WORKAROUND_OVERRIDE)
  958. goto out;
  959. for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
  960. if (sbp2_workarounds_table[i].firmware_revision !=
  961. (firmware_revision & 0xffffff00))
  962. continue;
  963. if (sbp2_workarounds_table[i].model != model &&
  964. sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
  965. continue;
  966. w |= sbp2_workarounds_table[i].workarounds;
  967. break;
  968. }
  969. out:
  970. if (w)
  971. fw_notify("Workarounds for %s: 0x%x "
  972. "(firmware_revision 0x%06x, model_id 0x%06x)\n",
  973. tgt->bus_id, w, firmware_revision, model);
  974. tgt->workarounds = w;
  975. }
  976. static struct scsi_host_template scsi_driver_template;
  977. static int sbp2_probe(struct device *dev)
  978. {
  979. struct fw_unit *unit = fw_unit(dev);
  980. struct fw_device *device = fw_parent_device(unit);
  981. struct sbp2_target *tgt;
  982. struct sbp2_logical_unit *lu;
  983. struct Scsi_Host *shost;
  984. u32 model, firmware_revision;
  985. if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
  986. BUG_ON(dma_set_max_seg_size(device->card->device,
  987. SBP2_MAX_SEG_SIZE));
  988. shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
  989. if (shost == NULL)
  990. return -ENOMEM;
  991. tgt = (struct sbp2_target *)shost->hostdata;
  992. dev_set_drvdata(&unit->device, tgt);
  993. tgt->unit = unit;
  994. kref_init(&tgt->kref);
  995. INIT_LIST_HEAD(&tgt->lu_list);
  996. tgt->bus_id = dev_name(&unit->device);
  997. tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
  998. if (fw_device_enable_phys_dma(device) < 0)
  999. goto fail_shost_put;
  1000. shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
  1001. if (scsi_add_host(shost, &unit->device) < 0)
  1002. goto fail_shost_put;
  1003. fw_device_get(device);
  1004. fw_unit_get(unit);
  1005. /* implicit directory ID */
  1006. tgt->directory_id = ((unit->directory - device->config_rom) * 4
  1007. + CSR_CONFIG_ROM) & 0xffffff;
  1008. firmware_revision = SBP2_ROM_VALUE_MISSING;
  1009. model = SBP2_ROM_VALUE_MISSING;
  1010. if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
  1011. &firmware_revision) < 0)
  1012. goto fail_tgt_put;
  1013. sbp2_init_workarounds(tgt, model, firmware_revision);
  1014. /*
  1015. * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
  1016. * and so on up to 4096 bytes. The SBP-2 max_payload field
  1017. * specifies the max payload size as 2 ^ (max_payload + 2), so
  1018. * if we set this to max_speed + 7, we get the right value.
  1019. */
  1020. tgt->max_payload = min(device->max_speed + 7, 10U);
  1021. tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
  1022. /* Do the login in a workqueue so we can easily reschedule retries. */
  1023. list_for_each_entry(lu, &tgt->lu_list, link)
  1024. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  1025. return 0;
  1026. fail_tgt_put:
  1027. sbp2_target_put(tgt);
  1028. return -ENOMEM;
  1029. fail_shost_put:
  1030. scsi_host_put(shost);
  1031. return -ENOMEM;
  1032. }
  1033. static int sbp2_remove(struct device *dev)
  1034. {
  1035. struct fw_unit *unit = fw_unit(dev);
  1036. struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
  1037. sbp2_target_put(tgt);
  1038. return 0;
  1039. }
  1040. static void sbp2_reconnect(struct work_struct *work)
  1041. {
  1042. struct sbp2_logical_unit *lu =
  1043. container_of(work, struct sbp2_logical_unit, work.work);
  1044. struct sbp2_target *tgt = lu->tgt;
  1045. struct fw_device *device = target_device(tgt);
  1046. int generation, node_id, local_node_id;
  1047. if (fw_device_is_shutdown(device))
  1048. goto out;
  1049. generation = device->generation;
  1050. smp_rmb(); /* node IDs must not be older than generation */
  1051. node_id = device->node_id;
  1052. local_node_id = device->card->node_id;
  1053. if (sbp2_send_management_orb(lu, node_id, generation,
  1054. SBP2_RECONNECT_REQUEST,
  1055. lu->login_id, NULL) < 0) {
  1056. /*
  1057. * If reconnect was impossible even though we are in the
  1058. * current generation, fall back and try to log in again.
  1059. *
  1060. * We could check for "Function rejected" status, but
  1061. * looking at the bus generation as simpler and more general.
  1062. */
  1063. smp_rmb(); /* get current card generation */
  1064. if (generation == device->card->generation ||
  1065. lu->retries++ >= 5) {
  1066. fw_error("%s: failed to reconnect\n", tgt->bus_id);
  1067. lu->retries = 0;
  1068. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  1069. }
  1070. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  1071. goto out;
  1072. }
  1073. tgt->node_id = node_id;
  1074. tgt->address_high = local_node_id << 16;
  1075. smp_wmb(); /* node IDs must not be older than generation */
  1076. lu->generation = generation;
  1077. fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
  1078. tgt->bus_id, lu->lun, lu->retries);
  1079. sbp2_agent_reset(lu);
  1080. sbp2_cancel_orbs(lu);
  1081. sbp2_conditionally_unblock(lu);
  1082. out:
  1083. sbp2_target_put(tgt);
  1084. }
  1085. static void sbp2_update(struct fw_unit *unit)
  1086. {
  1087. struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
  1088. struct sbp2_logical_unit *lu;
  1089. fw_device_enable_phys_dma(fw_parent_device(unit));
  1090. /*
  1091. * Fw-core serializes sbp2_update() against sbp2_remove().
  1092. * Iteration over tgt->lu_list is therefore safe here.
  1093. */
  1094. list_for_each_entry(lu, &tgt->lu_list, link) {
  1095. sbp2_conditionally_block(lu);
  1096. lu->retries = 0;
  1097. sbp2_queue_work(lu, 0);
  1098. }
  1099. }
  1100. #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
  1101. #define SBP2_SW_VERSION_ENTRY 0x00010483
  1102. static const struct ieee1394_device_id sbp2_id_table[] = {
  1103. {
  1104. .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
  1105. IEEE1394_MATCH_VERSION,
  1106. .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
  1107. .version = SBP2_SW_VERSION_ENTRY,
  1108. },
  1109. { }
  1110. };
  1111. static struct fw_driver sbp2_driver = {
  1112. .driver = {
  1113. .owner = THIS_MODULE,
  1114. .name = sbp2_driver_name,
  1115. .bus = &fw_bus_type,
  1116. .probe = sbp2_probe,
  1117. .remove = sbp2_remove,
  1118. },
  1119. .update = sbp2_update,
  1120. .id_table = sbp2_id_table,
  1121. };
  1122. static void sbp2_unmap_scatterlist(struct device *card_device,
  1123. struct sbp2_command_orb *orb)
  1124. {
  1125. if (scsi_sg_count(orb->cmd))
  1126. dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
  1127. scsi_sg_count(orb->cmd),
  1128. orb->cmd->sc_data_direction);
  1129. if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
  1130. dma_unmap_single(card_device, orb->page_table_bus,
  1131. sizeof(orb->page_table), DMA_TO_DEVICE);
  1132. }
  1133. static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
  1134. {
  1135. int sam_status;
  1136. sense_data[0] = 0x70;
  1137. sense_data[1] = 0x0;
  1138. sense_data[2] = sbp2_status[1];
  1139. sense_data[3] = sbp2_status[4];
  1140. sense_data[4] = sbp2_status[5];
  1141. sense_data[5] = sbp2_status[6];
  1142. sense_data[6] = sbp2_status[7];
  1143. sense_data[7] = 10;
  1144. sense_data[8] = sbp2_status[8];
  1145. sense_data[9] = sbp2_status[9];
  1146. sense_data[10] = sbp2_status[10];
  1147. sense_data[11] = sbp2_status[11];
  1148. sense_data[12] = sbp2_status[2];
  1149. sense_data[13] = sbp2_status[3];
  1150. sense_data[14] = sbp2_status[12];
  1151. sense_data[15] = sbp2_status[13];
  1152. sam_status = sbp2_status[0] & 0x3f;
  1153. switch (sam_status) {
  1154. case SAM_STAT_GOOD:
  1155. case SAM_STAT_CHECK_CONDITION:
  1156. case SAM_STAT_CONDITION_MET:
  1157. case SAM_STAT_BUSY:
  1158. case SAM_STAT_RESERVATION_CONFLICT:
  1159. case SAM_STAT_COMMAND_TERMINATED:
  1160. return DID_OK << 16 | sam_status;
  1161. default:
  1162. return DID_ERROR << 16;
  1163. }
  1164. }
  1165. static void complete_command_orb(struct sbp2_orb *base_orb,
  1166. struct sbp2_status *status)
  1167. {
  1168. struct sbp2_command_orb *orb =
  1169. container_of(base_orb, struct sbp2_command_orb, base);
  1170. struct fw_device *device = target_device(orb->lu->tgt);
  1171. int result;
  1172. if (status != NULL) {
  1173. if (STATUS_GET_DEAD(*status))
  1174. sbp2_agent_reset_no_wait(orb->lu);
  1175. switch (STATUS_GET_RESPONSE(*status)) {
  1176. case SBP2_STATUS_REQUEST_COMPLETE:
  1177. result = DID_OK << 16;
  1178. break;
  1179. case SBP2_STATUS_TRANSPORT_FAILURE:
  1180. result = DID_BUS_BUSY << 16;
  1181. break;
  1182. case SBP2_STATUS_ILLEGAL_REQUEST:
  1183. case SBP2_STATUS_VENDOR_DEPENDENT:
  1184. default:
  1185. result = DID_ERROR << 16;
  1186. break;
  1187. }
  1188. if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
  1189. result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
  1190. orb->cmd->sense_buffer);
  1191. } else {
  1192. /*
  1193. * If the orb completes with status == NULL, something
  1194. * went wrong, typically a bus reset happened mid-orb
  1195. * or when sending the write (less likely).
  1196. */
  1197. result = DID_BUS_BUSY << 16;
  1198. sbp2_conditionally_block(orb->lu);
  1199. }
  1200. dma_unmap_single(device->card->device, orb->base.request_bus,
  1201. sizeof(orb->request), DMA_TO_DEVICE);
  1202. sbp2_unmap_scatterlist(device->card->device, orb);
  1203. orb->cmd->result = result;
  1204. orb->done(orb->cmd);
  1205. }
  1206. static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
  1207. struct fw_device *device, struct sbp2_logical_unit *lu)
  1208. {
  1209. struct scatterlist *sg = scsi_sglist(orb->cmd);
  1210. int i, n;
  1211. n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  1212. orb->cmd->sc_data_direction);
  1213. if (n == 0)
  1214. goto fail;
  1215. /*
  1216. * Handle the special case where there is only one element in
  1217. * the scatter list by converting it to an immediate block
  1218. * request. This is also a workaround for broken devices such
  1219. * as the second generation iPod which doesn't support page
  1220. * tables.
  1221. */
  1222. if (n == 1) {
  1223. orb->request.data_descriptor.high =
  1224. cpu_to_be32(lu->tgt->address_high);
  1225. orb->request.data_descriptor.low =
  1226. cpu_to_be32(sg_dma_address(sg));
  1227. orb->request.misc |=
  1228. cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
  1229. return 0;
  1230. }
  1231. for_each_sg(sg, sg, n, i) {
  1232. orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
  1233. orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
  1234. }
  1235. orb->page_table_bus =
  1236. dma_map_single(device->card->device, orb->page_table,
  1237. sizeof(orb->page_table), DMA_TO_DEVICE);
  1238. if (dma_mapping_error(device->card->device, orb->page_table_bus))
  1239. goto fail_page_table;
  1240. /*
  1241. * The data_descriptor pointer is the one case where we need
  1242. * to fill in the node ID part of the address. All other
  1243. * pointers assume that the data referenced reside on the
  1244. * initiator (i.e. us), but data_descriptor can refer to data
  1245. * on other nodes so we need to put our ID in descriptor.high.
  1246. */
  1247. orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
  1248. orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
  1249. orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
  1250. COMMAND_ORB_DATA_SIZE(n));
  1251. return 0;
  1252. fail_page_table:
  1253. dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
  1254. scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
  1255. fail:
  1256. return -ENOMEM;
  1257. }
  1258. /* SCSI stack integration */
  1259. static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
  1260. {
  1261. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1262. struct fw_device *device = target_device(lu->tgt);
  1263. struct sbp2_command_orb *orb;
  1264. int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
  1265. /*
  1266. * Bidirectional commands are not yet implemented, and unknown
  1267. * transfer direction not handled.
  1268. */
  1269. if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
  1270. fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
  1271. cmd->result = DID_ERROR << 16;
  1272. done(cmd);
  1273. return 0;
  1274. }
  1275. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  1276. if (orb == NULL) {
  1277. fw_notify("failed to alloc orb\n");
  1278. return SCSI_MLQUEUE_HOST_BUSY;
  1279. }
  1280. /* Initialize rcode to something not RCODE_COMPLETE. */
  1281. orb->base.rcode = -1;
  1282. kref_init(&orb->base.kref);
  1283. orb->lu = lu;
  1284. orb->done = done;
  1285. orb->cmd = cmd;
  1286. orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
  1287. orb->request.misc = cpu_to_be32(
  1288. COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
  1289. COMMAND_ORB_SPEED(device->max_speed) |
  1290. COMMAND_ORB_NOTIFY);
  1291. if (cmd->sc_data_direction == DMA_FROM_DEVICE)
  1292. orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
  1293. generation = device->generation;
  1294. smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
  1295. if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
  1296. goto out;
  1297. memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
  1298. orb->base.callback = complete_command_orb;
  1299. orb->base.request_bus =
  1300. dma_map_single(device->card->device, &orb->request,
  1301. sizeof(orb->request), DMA_TO_DEVICE);
  1302. if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
  1303. sbp2_unmap_scatterlist(device->card->device, orb);
  1304. goto out;
  1305. }
  1306. sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
  1307. lu->command_block_agent_address + SBP2_ORB_POINTER);
  1308. retval = 0;
  1309. out:
  1310. kref_put(&orb->base.kref, free_orb);
  1311. return retval;
  1312. }
  1313. static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
  1314. {
  1315. struct sbp2_logical_unit *lu = sdev->hostdata;
  1316. /* (Re-)Adding logical units via the SCSI stack is not supported. */
  1317. if (!lu)
  1318. return -ENOSYS;
  1319. sdev->allow_restart = 1;
  1320. /* SBP-2 requires quadlet alignment of the data buffers. */
  1321. blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
  1322. if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
  1323. sdev->inquiry_len = 36;
  1324. return 0;
  1325. }
  1326. static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
  1327. {
  1328. struct sbp2_logical_unit *lu = sdev->hostdata;
  1329. sdev->use_10_for_rw = 1;
  1330. if (sbp2_param_exclusive_login)
  1331. sdev->manage_start_stop = 1;
  1332. if (sdev->type == TYPE_ROM)
  1333. sdev->use_10_for_ms = 1;
  1334. if (sdev->type == TYPE_DISK &&
  1335. lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
  1336. sdev->skip_ms_page_8 = 1;
  1337. if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
  1338. sdev->fix_capacity = 1;
  1339. if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
  1340. sdev->start_stop_pwr_cond = 1;
  1341. if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
  1342. blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
  1343. blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
  1344. return 0;
  1345. }
  1346. /*
  1347. * Called by scsi stack when something has really gone wrong. Usually
  1348. * called when a command has timed-out for some reason.
  1349. */
  1350. static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
  1351. {
  1352. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1353. fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
  1354. sbp2_agent_reset(lu);
  1355. sbp2_cancel_orbs(lu);
  1356. return SUCCESS;
  1357. }
  1358. /*
  1359. * Format of /sys/bus/scsi/devices/.../ieee1394_id:
  1360. * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
  1361. *
  1362. * This is the concatenation of target port identifier and logical unit
  1363. * identifier as per SAM-2...SAM-4 annex A.
  1364. */
  1365. static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
  1366. struct device_attribute *attr, char *buf)
  1367. {
  1368. struct scsi_device *sdev = to_scsi_device(dev);
  1369. struct sbp2_logical_unit *lu;
  1370. if (!sdev)
  1371. return 0;
  1372. lu = sdev->hostdata;
  1373. return sprintf(buf, "%016llx:%06x:%04x\n",
  1374. (unsigned long long)lu->tgt->guid,
  1375. lu->tgt->directory_id, lu->lun);
  1376. }
  1377. static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
  1378. static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
  1379. &dev_attr_ieee1394_id,
  1380. NULL
  1381. };
  1382. static struct scsi_host_template scsi_driver_template = {
  1383. .module = THIS_MODULE,
  1384. .name = "SBP-2 IEEE-1394",
  1385. .proc_name = sbp2_driver_name,
  1386. .queuecommand = sbp2_scsi_queuecommand,
  1387. .slave_alloc = sbp2_scsi_slave_alloc,
  1388. .slave_configure = sbp2_scsi_slave_configure,
  1389. .eh_abort_handler = sbp2_scsi_abort,
  1390. .this_id = -1,
  1391. .sg_tablesize = SG_ALL,
  1392. .use_clustering = ENABLE_CLUSTERING,
  1393. .cmd_per_lun = 1,
  1394. .can_queue = 1,
  1395. .sdev_attrs = sbp2_scsi_sysfs_attrs,
  1396. };
  1397. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  1398. MODULE_DESCRIPTION("SCSI over IEEE1394");
  1399. MODULE_LICENSE("GPL");
  1400. MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
  1401. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  1402. #ifndef CONFIG_IEEE1394_SBP2_MODULE
  1403. MODULE_ALIAS("sbp2");
  1404. #endif
  1405. static int __init sbp2_init(void)
  1406. {
  1407. sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
  1408. if (!sbp2_wq)
  1409. return -ENOMEM;
  1410. return driver_register(&sbp2_driver.driver);
  1411. }
  1412. static void __exit sbp2_cleanup(void)
  1413. {
  1414. driver_unregister(&sbp2_driver.driver);
  1415. destroy_workqueue(sbp2_wq);
  1416. }
  1417. module_init(sbp2_init);
  1418. module_exit(sbp2_cleanup);