123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225 |
- #include "amd64_edac.h"
- #include <asm/k8.h>
- static struct edac_pci_ctl_info *amd64_ctl_pci;
- static int report_gart_errors;
- module_param(report_gart_errors, int, 0644);
- /*
- * Set by command line parameter. If BIOS has enabled the ECC, this override is
- * cleared to prevent re-enabling the hardware by this driver.
- */
- static int ecc_enable_override;
- module_param(ecc_enable_override, int, 0644);
- /* Lookup table for all possible MC control instances */
- struct amd64_pvt;
- static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
- static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
- /*
- * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
- * for DDR2 DRAM mapping.
- */
- u32 revf_quad_ddr2_shift[] = {
- 0, /* 0000b NULL DIMM (128mb) */
- 28, /* 0001b 256mb */
- 29, /* 0010b 512mb */
- 29, /* 0011b 512mb */
- 29, /* 0100b 512mb */
- 30, /* 0101b 1gb */
- 30, /* 0110b 1gb */
- 31, /* 0111b 2gb */
- 31, /* 1000b 2gb */
- 32, /* 1001b 4gb */
- 32, /* 1010b 4gb */
- 33, /* 1011b 8gb */
- 0, /* 1100b future */
- 0, /* 1101b future */
- 0, /* 1110b future */
- 0 /* 1111b future */
- };
- /*
- * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
- * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
- * or higher value'.
- *
- *FIXME: Produce a better mapping/linearisation.
- */
- struct scrubrate scrubrates[] = {
- { 0x01, 1600000000UL},
- { 0x02, 800000000UL},
- { 0x03, 400000000UL},
- { 0x04, 200000000UL},
- { 0x05, 100000000UL},
- { 0x06, 50000000UL},
- { 0x07, 25000000UL},
- { 0x08, 12284069UL},
- { 0x09, 6274509UL},
- { 0x0A, 3121951UL},
- { 0x0B, 1560975UL},
- { 0x0C, 781440UL},
- { 0x0D, 390720UL},
- { 0x0E, 195300UL},
- { 0x0F, 97650UL},
- { 0x10, 48854UL},
- { 0x11, 24427UL},
- { 0x12, 12213UL},
- { 0x13, 6101UL},
- { 0x14, 3051UL},
- { 0x15, 1523UL},
- { 0x16, 761UL},
- { 0x00, 0UL}, /* scrubbing off */
- };
- /*
- * Memory scrubber control interface. For K8, memory scrubbing is handled by
- * hardware and can involve L2 cache, dcache as well as the main memory. With
- * F10, this is extended to L3 cache scrubbing on CPU models sporting that
- * functionality.
- *
- * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
- * (dram) over to cache lines. This is nasty, so we will use bandwidth in
- * bytes/sec for the setting.
- *
- * Currently, we only do dram scrubbing. If the scrubbing is done in software on
- * other archs, we might not have access to the caches directly.
- */
- /*
- * scan the scrub rate mapping table for a close or matching bandwidth value to
- * issue. If requested is too big, then use last maximum value found.
- */
- static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
- u32 min_scrubrate)
- {
- u32 scrubval;
- int i;
- /*
- * map the configured rate (new_bw) to a value specific to the AMD64
- * memory controller and apply to register. Search for the first
- * bandwidth entry that is greater or equal than the setting requested
- * and program that. If at last entry, turn off DRAM scrubbing.
- */
- for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
- /*
- * skip scrub rates which aren't recommended
- * (see F10 BKDG, F3x58)
- */
- if (scrubrates[i].scrubval < min_scrubrate)
- continue;
- if (scrubrates[i].bandwidth <= new_bw)
- break;
- /*
- * if no suitable bandwidth found, turn off DRAM scrubbing
- * entirely by falling back to the last element in the
- * scrubrates array.
- */
- }
- scrubval = scrubrates[i].scrubval;
- if (scrubval)
- edac_printk(KERN_DEBUG, EDAC_MC,
- "Setting scrub rate bandwidth: %u\n",
- scrubrates[i].bandwidth);
- else
- edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
- pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
- return 0;
- }
- static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 min_scrubrate = 0x0;
- switch (boot_cpu_data.x86) {
- case 0xf:
- min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
- break;
- case 0x10:
- min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
- break;
- case 0x11:
- min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
- break;
- default:
- amd64_printk(KERN_ERR, "Unsupported family!\n");
- break;
- }
- return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
- min_scrubrate);
- }
- static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 scrubval = 0;
- int status = -1, i, ret = 0;
- ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
- if (ret)
- debugf0("Reading K8_SCRCTRL failed\n");
- scrubval = scrubval & 0x001F;
- edac_printk(KERN_DEBUG, EDAC_MC,
- "pci-read, sdram scrub control value: %d \n", scrubval);
- for (i = 0; ARRAY_SIZE(scrubrates); i++) {
- if (scrubrates[i].scrubval == scrubval) {
- *bw = scrubrates[i].bandwidth;
- status = 0;
- break;
- }
- }
- return status;
- }
- /* Map from a CSROW entry to the mask entry that operates on it */
- static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
- {
- return csrow >> (pvt->num_dcsm >> 3);
- }
- /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
- static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
- {
- if (dct == 0)
- return pvt->dcsb0[csrow];
- else
- return pvt->dcsb1[csrow];
- }
- /*
- * Return the 'mask' address the i'th CS entry. This function is needed because
- * there number of DCSM registers on Rev E and prior vs Rev F and later is
- * different.
- */
- static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
- {
- if (dct == 0)
- return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
- else
- return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
- }
- /*
- * In *base and *limit, pass back the full 40-bit base and limit physical
- * addresses for the node given by node_id. This information is obtained from
- * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
- * base and limit addresses are of type SysAddr, as defined at the start of
- * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
- * in the address range they represent.
- */
- static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
- u64 *base, u64 *limit)
- {
- *base = pvt->dram_base[node_id];
- *limit = pvt->dram_limit[node_id];
- }
- /*
- * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
- * with node_id
- */
- static int amd64_base_limit_match(struct amd64_pvt *pvt,
- u64 sys_addr, int node_id)
- {
- u64 base, limit, addr;
- amd64_get_base_and_limit(pvt, node_id, &base, &limit);
- /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
- * all ones if the most significant implemented address bit is 1.
- * Here we discard bits 63-40. See section 3.4.2 of AMD publication
- * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
- * Application Programming.
- */
- addr = sys_addr & 0x000000ffffffffffull;
- return (addr >= base) && (addr <= limit);
- }
- /*
- * Attempt to map a SysAddr to a node. On success, return a pointer to the
- * mem_ctl_info structure for the node that the SysAddr maps to.
- *
- * On failure, return NULL.
- */
- static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
- u64 sys_addr)
- {
- struct amd64_pvt *pvt;
- int node_id;
- u32 intlv_en, bits;
- /*
- * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
- * 3.4.4.2) registers to map the SysAddr to a node ID.
- */
- pvt = mci->pvt_info;
- /*
- * The value of this field should be the same for all DRAM Base
- * registers. Therefore we arbitrarily choose to read it from the
- * register for node 0.
- */
- intlv_en = pvt->dram_IntlvEn[0];
- if (intlv_en == 0) {
- for (node_id = 0; ; ) {
- if (amd64_base_limit_match(pvt, sys_addr, node_id))
- break;
- if (++node_id >= DRAM_REG_COUNT)
- goto err_no_match;
- }
- goto found;
- }
- if (unlikely((intlv_en != (0x01 << 8)) &&
- (intlv_en != (0x03 << 8)) &&
- (intlv_en != (0x07 << 8)))) {
- amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
- "IntlvEn field of DRAM Base Register for node 0: "
- "This probably indicates a BIOS bug.\n", intlv_en);
- return NULL;
- }
- bits = (((u32) sys_addr) >> 12) & intlv_en;
- for (node_id = 0; ; ) {
- if ((pvt->dram_limit[node_id] & intlv_en) == bits)
- break; /* intlv_sel field matches */
- if (++node_id >= DRAM_REG_COUNT)
- goto err_no_match;
- }
- /* sanity test for sys_addr */
- if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
- amd64_printk(KERN_WARNING,
- "%s(): sys_addr 0x%lx falls outside base/limit "
- "address range for node %d with node interleaving "
- "enabled.\n", __func__, (unsigned long)sys_addr,
- node_id);
- return NULL;
- }
- found:
- return edac_mc_find(node_id);
- err_no_match:
- debugf2("sys_addr 0x%lx doesn't match any node\n",
- (unsigned long)sys_addr);
- return NULL;
- }
- /*
- * Extract the DRAM CS base address from selected csrow register.
- */
- static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
- {
- return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
- pvt->dcs_shift;
- }
- /*
- * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
- */
- static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
- {
- u64 dcsm_bits, other_bits;
- u64 mask;
- /* Extract bits from DRAM CS Mask. */
- dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
- other_bits = pvt->dcsm_mask;
- other_bits = ~(other_bits << pvt->dcs_shift);
- /*
- * The extracted bits from DCSM belong in the spaces represented by
- * the cleared bits in other_bits.
- */
- mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
- return mask;
- }
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Return the
- * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
- */
- static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- int csrow;
- u64 base, mask;
- pvt = mci->pvt_info;
- /*
- * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
- * base/mask register pair, test the condition shown near the start of
- * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
- */
- for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
- /* This DRAM chip select is disabled on this node */
- if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
- continue;
- base = base_from_dct_base(pvt, csrow);
- mask = ~mask_from_dct_mask(pvt, csrow);
- if ((input_addr & mask) == (base & mask)) {
- debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
- (unsigned long)input_addr, csrow,
- pvt->mc_node_id);
- return csrow;
- }
- }
- debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
- (unsigned long)input_addr, pvt->mc_node_id);
- return -1;
- }
- /*
- * Return the base value defined by the DRAM Base register for the node
- * represented by mci. This function returns the full 40-bit value despite the
- * fact that the register only stores bits 39-24 of the value. See section
- * 3.4.4.1 (BKDG #26094, K8, revA-E)
- */
- static inline u64 get_dram_base(struct mem_ctl_info *mci)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- return pvt->dram_base[pvt->mc_node_id];
- }
- /*
- * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
- * for the node represented by mci. Info is passed back in *hole_base,
- * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
- * info is invalid. Info may be invalid for either of the following reasons:
- *
- * - The revision of the node is not E or greater. In this case, the DRAM Hole
- * Address Register does not exist.
- *
- * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
- * indicating that its contents are not valid.
- *
- * The values passed back in *hole_base, *hole_offset, and *hole_size are
- * complete 32-bit values despite the fact that the bitfields in the DHAR
- * only represent bits 31-24 of the base and offset values.
- */
- int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
- u64 *hole_offset, u64 *hole_size)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 base;
- /* only revE and later have the DRAM Hole Address Register */
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
- debugf1(" revision %d for node %d does not support DHAR\n",
- pvt->ext_model, pvt->mc_node_id);
- return 1;
- }
- /* only valid for Fam10h */
- if (boot_cpu_data.x86 == 0x10 &&
- (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
- debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
- return 1;
- }
- if ((pvt->dhar & DHAR_VALID) == 0) {
- debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
- pvt->mc_node_id);
- return 1;
- }
- /* This node has Memory Hoisting */
- /* +------------------+--------------------+--------------------+-----
- * | memory | DRAM hole | relocated |
- * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
- * | | | DRAM hole |
- * | | | [0x100000000, |
- * | | | (0x100000000+ |
- * | | | (0xffffffff-x))] |
- * +------------------+--------------------+--------------------+-----
- *
- * Above is a diagram of physical memory showing the DRAM hole and the
- * relocated addresses from the DRAM hole. As shown, the DRAM hole
- * starts at address x (the base address) and extends through address
- * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
- * addresses in the hole so that they start at 0x100000000.
- */
- base = dhar_base(pvt->dhar);
- *hole_base = base;
- *hole_size = (0x1ull << 32) - base;
- if (boot_cpu_data.x86 > 0xf)
- *hole_offset = f10_dhar_offset(pvt->dhar);
- else
- *hole_offset = k8_dhar_offset(pvt->dhar);
- debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
- pvt->mc_node_id, (unsigned long)*hole_base,
- (unsigned long)*hole_offset, (unsigned long)*hole_size);
- return 0;
- }
- EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
- /*
- * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
- * assumed that sys_addr maps to the node given by mci.
- *
- * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
- * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
- * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
- * then it is also involved in translating a SysAddr to a DramAddr. Sections
- * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
- * These parts of the documentation are unclear. I interpret them as follows:
- *
- * When node n receives a SysAddr, it processes the SysAddr as follows:
- *
- * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
- * Limit registers for node n. If the SysAddr is not within the range
- * specified by the base and limit values, then node n ignores the Sysaddr
- * (since it does not map to node n). Otherwise continue to step 2 below.
- *
- * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
- * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
- * the range of relocated addresses (starting at 0x100000000) from the DRAM
- * hole. If not, skip to step 3 below. Else get the value of the
- * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
- * offset defined by this value from the SysAddr.
- *
- * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
- * Base register for node n. To obtain the DramAddr, subtract the base
- * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
- */
- static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
- int ret = 0;
- dram_base = get_dram_base(mci);
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((sys_addr >= (1ull << 32)) &&
- (sys_addr < ((1ull << 32) + hole_size))) {
- /* use DHAR to translate SysAddr to DramAddr */
- dram_addr = sys_addr - hole_offset;
- debugf2("using DHAR to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n",
- (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- }
- /*
- * Translate the SysAddr to a DramAddr as shown near the start of
- * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
- * only deals with 40-bit values. Therefore we discard bits 63-40 of
- * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
- * discard are all 1s. Otherwise the bits we discard are all 0s. See
- * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
- * Programmer's Manual Volume 1 Application Programming.
- */
- dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
- debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
- "DramAddr 0x%lx\n", (unsigned long)sys_addr,
- (unsigned long)dram_addr);
- return dram_addr;
- }
- /*
- * @intlv_en is the value of the IntlvEn field from a DRAM Base register
- * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
- * for node interleaving.
- */
- static int num_node_interleave_bits(unsigned intlv_en)
- {
- static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
- int n;
- BUG_ON(intlv_en > 7);
- n = intlv_shift_table[intlv_en];
- return n;
- }
- /* Translate the DramAddr given by @dram_addr to an InputAddr. */
- static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt;
- int intlv_shift;
- u64 input_addr;
- pvt = mci->pvt_info;
- /*
- * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * concerning translating a DramAddr to an InputAddr.
- */
- intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
- input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
- (dram_addr & 0xfff);
- debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
- intlv_shift, (unsigned long)dram_addr,
- (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
- * assumed that @sys_addr maps to the node given by mci.
- */
- static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
- {
- u64 input_addr;
- input_addr =
- dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
- debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
- (unsigned long)sys_addr, (unsigned long)input_addr);
- return input_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node represented by mci.
- * Translate @input_addr to a DramAddr and return the result.
- */
- static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
- {
- struct amd64_pvt *pvt;
- int node_id, intlv_shift;
- u64 bits, dram_addr;
- u32 intlv_sel;
- /*
- * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
- * shows how to translate a DramAddr to an InputAddr. Here we reverse
- * this procedure. When translating from a DramAddr to an InputAddr, the
- * bits used for node interleaving are discarded. Here we recover these
- * bits from the IntlvSel field of the DRAM Limit register (section
- * 3.4.4.2) for the node that input_addr is associated with.
- */
- pvt = mci->pvt_info;
- node_id = pvt->mc_node_id;
- BUG_ON((node_id < 0) || (node_id > 7));
- intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
- if (intlv_shift == 0) {
- debugf1(" InputAddr 0x%lx translates to DramAddr of "
- "same value\n", (unsigned long)input_addr);
- return input_addr;
- }
- bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
- (input_addr & 0xfff);
- intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
- dram_addr = bits + (intlv_sel << 12);
- debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
- "(%d node interleave bits)\n", (unsigned long)input_addr,
- (unsigned long)dram_addr, intlv_shift);
- return dram_addr;
- }
- /*
- * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
- * @dram_addr to a SysAddr.
- */
- static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
- int ret = 0;
- ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
- &hole_size);
- if (!ret) {
- if ((dram_addr >= hole_base) &&
- (dram_addr < (hole_base + hole_size))) {
- sys_addr = dram_addr + hole_offset;
- debugf1("using DHAR to translate DramAddr 0x%lx to "
- "SysAddr 0x%lx\n", (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- }
- amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
- sys_addr = dram_addr + base;
- /*
- * The sys_addr we have computed up to this point is a 40-bit value
- * because the k8 deals with 40-bit values. However, the value we are
- * supposed to return is a full 64-bit physical address. The AMD
- * x86-64 architecture specifies that the most significant implemented
- * address bit through bit 63 of a physical address must be either all
- * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
- * 64-bit value below. See section 3.4.2 of AMD publication 24592:
- * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
- * Programming.
- */
- sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
- debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
- pvt->mc_node_id, (unsigned long)dram_addr,
- (unsigned long)sys_addr);
- return sys_addr;
- }
- /*
- * @input_addr is an InputAddr associated with the node given by mci. Translate
- * @input_addr to a SysAddr.
- */
- static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
- u64 input_addr)
- {
- return dram_addr_to_sys_addr(mci,
- input_addr_to_dram_addr(mci, input_addr));
- }
- /*
- * Find the minimum and maximum InputAddr values that map to the given @csrow.
- * Pass back these values in *input_addr_min and *input_addr_max.
- */
- static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
- u64 *input_addr_min, u64 *input_addr_max)
- {
- struct amd64_pvt *pvt;
- u64 base, mask;
- pvt = mci->pvt_info;
- BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
- base = base_from_dct_base(pvt, csrow);
- mask = mask_from_dct_mask(pvt, csrow);
- *input_addr_min = base & ~mask;
- *input_addr_max = base | mask | pvt->dcs_mask_notused;
- }
- /*
- * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
- * Address High (section 3.6.4.6) register values and return the result. Address
- * is located in the info structure (nbeah and nbeal), the encoding is device
- * specific.
- */
- static u64 extract_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- return pvt->ops->get_error_address(mci, info);
- }
- /* Map the Error address to a PAGE and PAGE OFFSET. */
- static inline void error_address_to_page_and_offset(u64 error_address,
- u32 *page, u32 *offset)
- {
- *page = (u32) (error_address >> PAGE_SHIFT);
- *offset = ((u32) error_address) & ~PAGE_MASK;
- }
- /*
- * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
- * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
- * of a node that detected an ECC memory error. mci represents the node that
- * the error address maps to (possibly different from the node that detected
- * the error). Return the number of the csrow that sys_addr maps to, or -1 on
- * error.
- */
- static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
- {
- int csrow;
- csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
- if (csrow == -1)
- amd64_mc_printk(mci, KERN_ERR,
- "Failed to translate InputAddr to csrow for "
- "address 0x%lx\n", (unsigned long)sys_addr);
- return csrow;
- }
- static int get_channel_from_ecc_syndrome(unsigned short syndrome);
- static void amd64_cpu_display_info(struct amd64_pvt *pvt)
- {
- if (boot_cpu_data.x86 == 0x11)
- edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
- else if (boot_cpu_data.x86 == 0x10)
- edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
- else if (boot_cpu_data.x86 == 0xf)
- edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
- (pvt->ext_model >= OPTERON_CPU_REV_F) ?
- "Rev F or later" : "Rev E or earlier");
- else
- /* we'll hardly ever ever get here */
- edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
- }
- /*
- * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
- * are ECC capable.
- */
- static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
- {
- int bit;
- enum dev_type edac_cap = EDAC_FLAG_NONE;
- bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
- ? 19
- : 17;
- if (pvt->dclr0 & BIT(bit))
- edac_cap = EDAC_FLAG_SECDED;
- return edac_cap;
- }
- static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
- int ganged);
- /* Display and decode various NB registers for debug purposes. */
- static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
- {
- int ganged;
- debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
- pvt->nbcap,
- (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
- debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
- (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
- debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
- pvt->dclr0,
- (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
- (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
- (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
- debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
- (pvt->dclr0 & BIT(12)) ? "Y" : "N",
- (pvt->dclr0 & BIT(13)) ? "Y" : "N",
- (pvt->dclr0 & BIT(14)) ? "Y" : "N",
- (pvt->dclr0 & BIT(15)) ? "Y" : "N",
- (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
- debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
- if (boot_cpu_data.x86 == 0xf) {
- debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
- pvt->dhar, dhar_base(pvt->dhar),
- k8_dhar_offset(pvt->dhar));
- debugf1(" DramHoleValid=%s\n",
- (pvt->dhar & DHAR_VALID) ? "True" : "False");
- debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
- /* everything below this point is Fam10h and above */
- return;
- } else {
- debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
- pvt->dhar, dhar_base(pvt->dhar),
- f10_dhar_offset(pvt->dhar));
- debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
- (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
- "True" : "False",
- (pvt->dhar & DHAR_VALID) ?
- "True" : "False");
- }
- /* Only if NOT ganged does dcl1 have valid info */
- if (!dct_ganging_enabled(pvt)) {
- debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
- "Width=%s\n", pvt->dclr1,
- (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
- (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
- (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
- debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
- "DIMM Type=%s\n",
- (pvt->dclr1 & BIT(12)) ? "Y" : "N",
- (pvt->dclr1 & BIT(13)) ? "Y" : "N",
- (pvt->dclr1 & BIT(14)) ? "Y" : "N",
- (pvt->dclr1 & BIT(15)) ? "Y" : "N",
- (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
- }
- /*
- * Determine if ganged and then dump memory sizes for first controller,
- * and if NOT ganged dump info for 2nd controller.
- */
- ganged = dct_ganging_enabled(pvt);
- f10_debug_display_dimm_sizes(0, pvt, ganged);
- if (!ganged)
- f10_debug_display_dimm_sizes(1, pvt, ganged);
- }
- /* Read in both of DBAM registers */
- static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
- {
- int err = 0;
- unsigned int reg;
- reg = DBAM0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
- if (err)
- goto err_reg;
- if (boot_cpu_data.x86 >= 0x10) {
- reg = DBAM1;
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
- if (err)
- goto err_reg;
- }
- return;
- err_reg:
- debugf0("Error reading F2x%03x.\n", reg);
- }
- /*
- * NOTE: CPU Revision Dependent code: Rev E and Rev F
- *
- * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
- * set the shift factor for the DCSB and DCSM values.
- *
- * ->dcs_mask_notused, RevE:
- *
- * To find the max InputAddr for the csrow, start with the base address and set
- * all bits that are "don't care" bits in the test at the start of section
- * 3.5.4 (p. 84).
- *
- * The "don't care" bits are all set bits in the mask and all bits in the gaps
- * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
- * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
- * gaps.
- *
- * ->dcs_mask_notused, RevF and later:
- *
- * To find the max InputAddr for the csrow, start with the base address and set
- * all bits that are "don't care" bits in the test at the start of NPT section
- * 4.5.4 (p. 87).
- *
- * The "don't care" bits are all set bits in the mask and all bits in the gaps
- * between bit ranges [36:27] and [21:13].
- *
- * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
- * which are all bits in the above-mentioned gaps.
- */
- static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
- {
- if (pvt->ext_model >= OPTERON_CPU_REV_F) {
- pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
- pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
- pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
- pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
- switch (boot_cpu_data.x86) {
- case 0xf:
- pvt->num_dcsm = REV_F_DCSM_COUNT;
- break;
- case 0x10:
- pvt->num_dcsm = F10_DCSM_COUNT;
- break;
- case 0x11:
- pvt->num_dcsm = F11_DCSM_COUNT;
- break;
- default:
- amd64_printk(KERN_ERR, "Unsupported family!\n");
- break;
- }
- } else {
- pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
- pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
- pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
- pvt->dcs_shift = REV_E_DCS_SHIFT;
- pvt->num_dcsm = REV_E_DCSM_COUNT;
- }
- }
- /*
- * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
- */
- static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
- {
- int cs, reg, err = 0;
- amd64_set_dct_base_and_mask(pvt);
- for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
- reg = K8_DCSB0 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsb0[cs]);
- if (unlikely(err))
- debugf0("Reading K8_DCSB0[%d] failed\n", cs);
- else
- debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsb0[cs], reg);
- /* If DCT are NOT ganged, then read in DCT1's base */
- if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
- reg = F10_DCSB1 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsb1[cs]);
- if (unlikely(err))
- debugf0("Reading F10_DCSB1[%d] failed\n", cs);
- else
- debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsb1[cs], reg);
- } else {
- pvt->dcsb1[cs] = 0;
- }
- }
- for (cs = 0; cs < pvt->num_dcsm; cs++) {
- reg = K8_DCSM0 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsm0[cs]);
- if (unlikely(err))
- debugf0("Reading K8_DCSM0 failed\n");
- else
- debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsm0[cs], reg);
- /* If DCT are NOT ganged, then read in DCT1's mask */
- if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
- reg = F10_DCSM1 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsm1[cs]);
- if (unlikely(err))
- debugf0("Reading F10_DCSM1[%d] failed\n", cs);
- else
- debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
- cs, pvt->dcsm1[cs], reg);
- } else
- pvt->dcsm1[cs] = 0;
- }
- }
- static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
- {
- enum mem_type type;
- if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
- /* Rev F and later */
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
- } else {
- /* Rev E and earlier */
- type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
- }
- debugf1(" Memory type is: %s\n",
- (type == MEM_DDR2) ? "MEM_DDR2" :
- (type == MEM_RDDR2) ? "MEM_RDDR2" :
- (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
- return type;
- }
- /*
- * Read the DRAM Configuration Low register. It differs between CG, D & E revs
- * and the later RevF memory controllers (DDR vs DDR2)
- *
- * Return:
- * number of memory channels in operation
- * Pass back:
- * contents of the DCL0_LOW register
- */
- static int k8_early_channel_count(struct amd64_pvt *pvt)
- {
- int flag, err = 0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- return err;
- if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
- /* RevF (NPT) and later */
- flag = pvt->dclr0 & F10_WIDTH_128;
- } else {
- /* RevE and earlier */
- flag = pvt->dclr0 & REVE_WIDTH_128;
- }
- /* not used */
- pvt->dclr1 = 0;
- return (flag) ? 2 : 1;
- }
- /* extract the ERROR ADDRESS for the K8 CPUs */
- static u64 k8_get_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- return (((u64) (info->nbeah & 0xff)) << 32) +
- (info->nbeal & ~0x03);
- }
- /*
- * Read the Base and Limit registers for K8 based Memory controllers; extract
- * fields from the 'raw' reg into separate data fields
- *
- * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
- */
- static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
- {
- u32 low;
- u32 off = dram << 3; /* 8 bytes between DRAM entries */
- int err;
- err = pci_read_config_dword(pvt->addr_f1_ctl,
- K8_DRAM_BASE_LOW + off, &low);
- if (err)
- debugf0("Reading K8_DRAM_BASE_LOW failed\n");
- /* Extract parts into separate data entries */
- pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
- pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
- pvt->dram_rw_en[dram] = (low & 0x3);
- err = pci_read_config_dword(pvt->addr_f1_ctl,
- K8_DRAM_LIMIT_LOW + off, &low);
- if (err)
- debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
- /*
- * Extract parts into separate data entries. Limit is the HIGHEST memory
- * location of the region, so lower 24 bits need to be all ones
- */
- pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
- pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
- pvt->dram_DstNode[dram] = (low & 0x7);
- }
- static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
- struct err_regs *info,
- u64 SystemAddress)
- {
- struct mem_ctl_info *src_mci;
- unsigned short syndrome;
- int channel, csrow;
- u32 page, offset;
- /* Extract the syndrome parts and form a 16-bit syndrome */
- syndrome = HIGH_SYNDROME(info->nbsl) << 8;
- syndrome |= LOW_SYNDROME(info->nbsh);
- /* CHIPKILL enabled */
- if (info->nbcfg & K8_NBCFG_CHIPKILL) {
- channel = get_channel_from_ecc_syndrome(syndrome);
- if (channel < 0) {
- /*
- * Syndrome didn't map, so we don't know which of the
- * 2 DIMMs is in error. So we need to ID 'both' of them
- * as suspect.
- */
- amd64_mc_printk(mci, KERN_WARNING,
- "unknown syndrome 0x%x - possible error "
- "reporting race\n", syndrome);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- } else {
- /*
- * non-chipkill ecc mode
- *
- * The k8 documentation is unclear about how to determine the
- * channel number when using non-chipkill memory. This method
- * was obtained from email communication with someone at AMD.
- * (Wish the email was placed in this comment - norsk)
- */
- channel = ((SystemAddress & BIT(3)) != 0);
- }
- /*
- * Find out which node the error address belongs to. This may be
- * different from the node that detected the error.
- */
- src_mci = find_mc_by_sys_addr(mci, SystemAddress);
- if (src_mci) {
- amd64_mc_printk(mci, KERN_ERR,
- "failed to map error address 0x%lx to a node\n",
- (unsigned long)SystemAddress);
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- /* Now map the SystemAddress to a CSROW */
- csrow = sys_addr_to_csrow(src_mci, SystemAddress);
- if (csrow < 0) {
- edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
- } else {
- error_address_to_page_and_offset(SystemAddress, &page, &offset);
- edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
- channel, EDAC_MOD_STR);
- }
- }
- /*
- * determrine the number of PAGES in for this DIMM's size based on its DRAM
- * Address Mapping.
- *
- * First step is to calc the number of bits to shift a value of 1 left to
- * indicate show many pages. Start with the DBAM value as the starting bits,
- * then proceed to adjust those shift bits, based on CPU rev and the table.
- * See BKDG on the DBAM
- */
- static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
- {
- int nr_pages;
- if (pvt->ext_model >= OPTERON_CPU_REV_F) {
- nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
- } else {
- /*
- * RevE and less section; this line is tricky. It collapses the
- * table used by RevD and later to one that matches revisions CG
- * and earlier.
- */
- dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
- (dram_map > 8 ? 4 : (dram_map > 5 ?
- 3 : (dram_map > 2 ? 1 : 0))) : 0;
- /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
- nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
- }
- return nr_pages;
- }
- /*
- * Get the number of DCT channels in use.
- *
- * Return:
- * number of Memory Channels in operation
- * Pass back:
- * contents of the DCL0_LOW register
- */
- static int f10_early_channel_count(struct amd64_pvt *pvt)
- {
- int dbams[] = { DBAM0, DBAM1 };
- int err = 0, channels = 0;
- int i, j;
- u32 dbam;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
- if (err)
- goto err_reg;
- /* If we are in 128 bit mode, then we are using 2 channels */
- if (pvt->dclr0 & F10_WIDTH_128) {
- debugf0("Data WIDTH is 128 bits - 2 channels\n");
- channels = 2;
- return channels;
- }
- /*
- * Need to check if in UN-ganged mode: In such, there are 2 channels,
- * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
- * will be OFF.
- *
- * Need to check DCT0[0] and DCT1[0] to see if only one of them has
- * their CSEnable bit on. If so, then SINGLE DIMM case.
- */
- debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
- /*
- * Check DRAM Bank Address Mapping values for each DIMM to see if there
- * is more than just one DIMM present in unganged mode. Need to check
- * both controllers since DIMMs can be placed in either one.
- */
- for (i = 0; i < ARRAY_SIZE(dbams); i++) {
- err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
- if (err)
- goto err_reg;
- for (j = 0; j < 4; j++) {
- if (DBAM_DIMM(j, dbam) > 0) {
- channels++;
- break;
- }
- }
- }
- debugf0("MCT channel count: %d\n", channels);
- return channels;
- err_reg:
- return -1;
- }
- static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
- {
- return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
- }
- /* Enable extended configuration access via 0xCF8 feature */
- static void amd64_setup(struct amd64_pvt *pvt)
- {
- u32 reg;
- pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
- pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
- reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
- }
- /* Restore the extended configuration access via 0xCF8 feature */
- static void amd64_teardown(struct amd64_pvt *pvt)
- {
- u32 reg;
- pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
- reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- if (pvt->flags.cf8_extcfg)
- reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
- pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
- }
- static u64 f10_get_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- return (((u64) (info->nbeah & 0xffff)) << 32) +
- (info->nbeal & ~0x01);
- }
- /*
- * Read the Base and Limit registers for F10 based Memory controllers. Extract
- * fields from the 'raw' reg into separate data fields.
- *
- * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
- */
- static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
- {
- u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
- low_offset = K8_DRAM_BASE_LOW + (dram << 3);
- high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
- /* read the 'raw' DRAM BASE Address register */
- pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
- /* Read from the ECS data register */
- pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
- /* Extract parts into separate data entries */
- pvt->dram_rw_en[dram] = (low_base & 0x3);
- if (pvt->dram_rw_en[dram] == 0)
- return;
- pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
- pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
- ((u64) low_base & 0xFFFF0000))) << 8;
- low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
- high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
- /* read the 'raw' LIMIT registers */
- pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
- /* Read from the ECS data register for the HIGH portion */
- pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
- debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
- high_base, low_base, high_limit, low_limit);
- pvt->dram_DstNode[dram] = (low_limit & 0x7);
- pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
- /*
- * Extract address values and form a LIMIT address. Limit is the HIGHEST
- * memory location of the region, so low 24 bits need to be all ones.
- */
- low_limit |= 0x0000FFFF;
- pvt->dram_limit[dram] =
- ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
- }
- static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
- {
- int err = 0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
- &pvt->dram_ctl_select_low);
- if (err) {
- debugf0("Reading F10_DCTL_SEL_LOW failed\n");
- } else {
- debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
- pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
- debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
- "sel-hi-range=%s\n",
- (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
- (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
- (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
- debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
- (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
- (dct_memory_cleared(pvt) ? "True " : "False "),
- dct_sel_interleave_addr(pvt));
- }
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
- &pvt->dram_ctl_select_high);
- if (err)
- debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
- }
- /*
- * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
- * Interleaving Modes.
- */
- static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
- int hi_range_sel, u32 intlv_en)
- {
- u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
- if (dct_ganging_enabled(pvt))
- cs = 0;
- else if (hi_range_sel)
- cs = dct_sel_high;
- else if (dct_interleave_enabled(pvt)) {
- /*
- * see F2x110[DctSelIntLvAddr] - channel interleave mode
- */
- if (dct_sel_interleave_addr(pvt) == 0)
- cs = sys_addr >> 6 & 1;
- else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
- temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
- if (dct_sel_interleave_addr(pvt) & 1)
- cs = (sys_addr >> 9 & 1) ^ temp;
- else
- cs = (sys_addr >> 6 & 1) ^ temp;
- } else if (intlv_en & 4)
- cs = sys_addr >> 15 & 1;
- else if (intlv_en & 2)
- cs = sys_addr >> 14 & 1;
- else if (intlv_en & 1)
- cs = sys_addr >> 13 & 1;
- else
- cs = sys_addr >> 12 & 1;
- } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
- cs = ~dct_sel_high & 1;
- else
- cs = 0;
- return cs;
- }
- static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
- {
- if (intlv_en == 1)
- return 1;
- else if (intlv_en == 3)
- return 2;
- else if (intlv_en == 7)
- return 3;
- return 0;
- }
- /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
- static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
- u32 dct_sel_base_addr,
- u64 dct_sel_base_off,
- u32 hole_valid, u32 hole_off,
- u64 dram_base)
- {
- u64 chan_off;
- if (hi_range_sel) {
- if (!(dct_sel_base_addr & 0xFFFFF800) &&
- hole_valid && (sys_addr >= 0x100000000ULL))
- chan_off = hole_off << 16;
- else
- chan_off = dct_sel_base_off;
- } else {
- if (hole_valid && (sys_addr >= 0x100000000ULL))
- chan_off = hole_off << 16;
- else
- chan_off = dram_base & 0xFFFFF8000000ULL;
- }
- return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
- (chan_off & 0x0000FFFFFF800000ULL);
- }
- /* Hack for the time being - Can we get this from BIOS?? */
- #define CH0SPARE_RANK 0
- #define CH1SPARE_RANK 1
- /*
- * checks if the csrow passed in is marked as SPARED, if so returns the new
- * spare row
- */
- static inline int f10_process_possible_spare(int csrow,
- u32 cs, struct amd64_pvt *pvt)
- {
- u32 swap_done;
- u32 bad_dram_cs;
- /* Depending on channel, isolate respective SPARING info */
- if (cs) {
- swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
- bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
- if (swap_done && (csrow == bad_dram_cs))
- csrow = CH1SPARE_RANK;
- } else {
- swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
- bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
- if (swap_done && (csrow == bad_dram_cs))
- csrow = CH0SPARE_RANK;
- }
- return csrow;
- }
- /*
- * Iterate over the DRAM DCT "base" and "mask" registers looking for a
- * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
- *
- * Return:
- * -EINVAL: NOT FOUND
- * 0..csrow = Chip-Select Row
- */
- static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- u32 cs_base, cs_mask;
- int cs_found = -EINVAL;
- int csrow;
- mci = mci_lookup[nid];
- if (!mci)
- return cs_found;
- pvt = mci->pvt_info;
- debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
- for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
- cs_base = amd64_get_dct_base(pvt, cs, csrow);
- if (!(cs_base & K8_DCSB_CS_ENABLE))
- continue;
- /*
- * We have an ENABLED CSROW, Isolate just the MASK bits of the
- * target: [28:19] and [13:5], which map to [36:27] and [21:13]
- * of the actual address.
- */
- cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
- /*
- * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
- * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
- */
- cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
- debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
- csrow, cs_base, cs_mask);
- cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
- debugf1(" Final CSMask=0x%x\n", cs_mask);
- debugf1(" (InputAddr & ~CSMask)=0x%x "
- "(CSBase & ~CSMask)=0x%x\n",
- (in_addr & ~cs_mask), (cs_base & ~cs_mask));
- if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
- cs_found = f10_process_possible_spare(csrow, cs, pvt);
- debugf1(" MATCH csrow=%d\n", cs_found);
- break;
- }
- }
- return cs_found;
- }
- /* For a given @dram_range, check if @sys_addr falls within it. */
- static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
- u64 sys_addr, int *nid, int *chan_sel)
- {
- int node_id, cs_found = -EINVAL, high_range = 0;
- u32 intlv_en, intlv_sel, intlv_shift, hole_off;
- u32 hole_valid, tmp, dct_sel_base, channel;
- u64 dram_base, chan_addr, dct_sel_base_off;
- dram_base = pvt->dram_base[dram_range];
- intlv_en = pvt->dram_IntlvEn[dram_range];
- node_id = pvt->dram_DstNode[dram_range];
- intlv_sel = pvt->dram_IntlvSel[dram_range];
- debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
- dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
- /*
- * This assumes that one node's DHAR is the same as all the other
- * nodes' DHAR.
- */
- hole_off = (pvt->dhar & 0x0000FF80);
- hole_valid = (pvt->dhar & 0x1);
- dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
- debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
- hole_off, hole_valid, intlv_sel);
- if (intlv_en ||
- (intlv_sel != ((sys_addr >> 12) & intlv_en)))
- return -EINVAL;
- dct_sel_base = dct_sel_baseaddr(pvt);
- /*
- * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
- * select between DCT0 and DCT1.
- */
- if (dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt) &&
- ((sys_addr >> 27) >= (dct_sel_base >> 11)))
- high_range = 1;
- channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
- chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
- dct_sel_base_off, hole_valid,
- hole_off, dram_base);
- intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
- /* remove Node ID (in case of memory interleaving) */
- tmp = chan_addr & 0xFC0;
- chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
- /* remove channel interleave and hash */
- if (dct_interleave_enabled(pvt) &&
- !dct_high_range_enabled(pvt) &&
- !dct_ganging_enabled(pvt)) {
- if (dct_sel_interleave_addr(pvt) != 1)
- chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
- else {
- tmp = chan_addr & 0xFC0;
- chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
- | tmp;
- }
- }
- debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
- chan_addr, (u32)(chan_addr >> 8));
- cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
- if (cs_found >= 0) {
- *nid = node_id;
- *chan_sel = channel;
- }
- return cs_found;
- }
- static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
- int *node, int *chan_sel)
- {
- int dram_range, cs_found = -EINVAL;
- u64 dram_base, dram_limit;
- for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
- if (!pvt->dram_rw_en[dram_range])
- continue;
- dram_base = pvt->dram_base[dram_range];
- dram_limit = pvt->dram_limit[dram_range];
- if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
- cs_found = f10_match_to_this_node(pvt, dram_range,
- sys_addr, node,
- chan_sel);
- if (cs_found >= 0)
- break;
- }
- }
- return cs_found;
- }
- /*
- * This the F10h reference code from AMD to map a @sys_addr to NodeID,
- * CSROW, Channel.
- *
- * The @sys_addr is usually an error address received from the hardware.
- */
- static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
- struct err_regs *info,
- u64 sys_addr)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u32 page, offset;
- unsigned short syndrome;
- int nid, csrow, chan = 0;
- csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
- if (csrow >= 0) {
- error_address_to_page_and_offset(sys_addr, &page, &offset);
- syndrome = HIGH_SYNDROME(info->nbsl) << 8;
- syndrome |= LOW_SYNDROME(info->nbsh);
- /*
- * Is CHIPKILL on? If so, then we can attempt to use the
- * syndrome to isolate which channel the error was on.
- */
- if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
- chan = get_channel_from_ecc_syndrome(syndrome);
- if (chan >= 0) {
- edac_mc_handle_ce(mci, page, offset, syndrome,
- csrow, chan, EDAC_MOD_STR);
- } else {
- /*
- * Channel unknown, report all channels on this
- * CSROW as failed.
- */
- for (chan = 0; chan < mci->csrows[csrow].nr_channels;
- chan++) {
- edac_mc_handle_ce(mci, page, offset,
- syndrome,
- csrow, chan,
- EDAC_MOD_STR);
- }
- }
- } else {
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- }
- }
- /*
- * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
- * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
- * indicates an empty DIMM slot, as reported by Hardware on empty slots.
- *
- * Normalize to 128MB by subracting 27 bit shift.
- */
- static int map_dbam_to_csrow_size(int index)
- {
- int mega_bytes = 0;
- if (index > 0 && index <= DBAM_MAX_VALUE)
- mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
- return mega_bytes;
- }
- /*
- * debug routine to display the memory sizes of a DIMM (ganged or not) and it
- * CSROWs as well
- */
- static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
- int ganged)
- {
- int dimm, size0, size1;
- u32 dbam;
- u32 *dcsb;
- debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
- ctrl ? pvt->dbam1 : pvt->dbam0,
- ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
- dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
- dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
- /* Dump memory sizes for DIMM and its CSROWs */
- for (dimm = 0; dimm < 4; dimm++) {
- size0 = 0;
- if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
- size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
- size1 = 0;
- if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
- size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
- debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
- "CSROW-%d=%5dMB\n",
- ctrl,
- dimm,
- size0 + size1,
- dimm * 2,
- size0,
- dimm * 2 + 1,
- size1);
- }
- }
- /*
- * Very early hardware probe on pci_probe thread to determine if this module
- * supports the hardware.
- *
- * Return:
- * 0 for OK
- * 1 for error
- */
- static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
- {
- int ret = 0;
- /*
- * If we are on a DDR3 machine, we don't know yet if
- * we support that properly at this time
- */
- if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
- (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
- amd64_printk(KERN_WARNING,
- "%s() This machine is running with DDR3 memory. "
- "This is not currently supported. "
- "DCHR0=0x%x DCHR1=0x%x\n",
- __func__, pvt->dchr0, pvt->dchr1);
- amd64_printk(KERN_WARNING,
- " Contact '%s' module MAINTAINER to help add"
- " support.\n",
- EDAC_MOD_STR);
- ret = 1;
- }
- return ret;
- }
- /*
- * There currently are 3 types type of MC devices for AMD Athlon/Opterons
- * (as per PCI DEVICE_IDs):
- *
- * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
- * DEVICE ID, even though there is differences between the different Revisions
- * (CG,D,E,F).
- *
- * Family F10h and F11h.
- *
- */
- static struct amd64_family_type amd64_family_types[] = {
- [K8_CPUS] = {
- .ctl_name = "RevF",
- .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
- .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
- .ops = {
- .early_channel_count = k8_early_channel_count,
- .get_error_address = k8_get_error_address,
- .read_dram_base_limit = k8_read_dram_base_limit,
- .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
- .dbam_map_to_pages = k8_dbam_map_to_pages,
- }
- },
- [F10_CPUS] = {
- .ctl_name = "Family 10h",
- .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
- .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
- .ops = {
- .probe_valid_hardware = f10_probe_valid_hardware,
- .early_channel_count = f10_early_channel_count,
- .get_error_address = f10_get_error_address,
- .read_dram_base_limit = f10_read_dram_base_limit,
- .read_dram_ctl_register = f10_read_dram_ctl_register,
- .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
- .dbam_map_to_pages = f10_dbam_map_to_pages,
- }
- },
- [F11_CPUS] = {
- .ctl_name = "Family 11h",
- .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
- .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
- .ops = {
- .probe_valid_hardware = f10_probe_valid_hardware,
- .early_channel_count = f10_early_channel_count,
- .get_error_address = f10_get_error_address,
- .read_dram_base_limit = f10_read_dram_base_limit,
- .read_dram_ctl_register = f10_read_dram_ctl_register,
- .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
- .dbam_map_to_pages = f10_dbam_map_to_pages,
- }
- },
- };
- static struct pci_dev *pci_get_related_function(unsigned int vendor,
- unsigned int device,
- struct pci_dev *related)
- {
- struct pci_dev *dev = NULL;
- dev = pci_get_device(vendor, device, dev);
- while (dev) {
- if ((dev->bus->number == related->bus->number) &&
- (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
- break;
- dev = pci_get_device(vendor, device, dev);
- }
- return dev;
- }
- /*
- * syndrome mapping table for ECC ChipKill devices
- *
- * The comment in each row is the token (nibble) number that is in error.
- * The least significant nibble of the syndrome is the mask for the bits
- * that are in error (need to be toggled) for the particular nibble.
- *
- * Each row contains 16 entries.
- * The first entry (0th) is the channel number for that row of syndromes.
- * The remaining 15 entries are the syndromes for the respective Error
- * bit mask index.
- *
- * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
- * bit in error.
- * The 2nd index entry is 0x0010 that the second bit is damaged.
- * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
- * are damaged.
- * Thus so on until index 15, 0x1111, whose entry has the syndrome
- * indicating that all 4 bits are damaged.
- *
- * A search is performed on this table looking for a given syndrome.
- *
- * See the AMD documentation for ECC syndromes. This ECC table is valid
- * across all the versions of the AMD64 processors.
- *
- * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
- * COLUMN index, then search all ROWS of that column, looking for a match
- * with the input syndrome. The ROW value will be the token number.
- *
- * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
- * error.
- */
- #define NUMBER_ECC_ROWS 36
- static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
- /* Channel 0 syndromes */
- {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
- 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
- {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
- 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
- {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
- 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
- {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
- 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
- {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
- 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
- {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
- 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
- {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
- 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
- {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
- 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
- {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
- 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
- {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
- 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
- {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
- 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
- {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
- 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
- {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
- 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
- {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
- 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
- {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
- 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
- {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
- 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
- /* Channel 1 syndromes */
- {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
- 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
- {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
- 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
- {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
- 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
- {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
- 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
- {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
- 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
- {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
- 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
- {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
- 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
- {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
- 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
- {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
- 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
- {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
- 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
- {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
- 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
- {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
- 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
- {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
- 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
- {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
- 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
- {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
- 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
- {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
- 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
- /* ECC bits are also in the set of tokens and they too can go bad
- * first 2 cover channel 0, while the second 2 cover channel 1
- */
- {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
- 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
- {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
- 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
- {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
- 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
- {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
- 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
- };
- /*
- * Given the syndrome argument, scan each of the channel tables for a syndrome
- * match. Depending on which table it is found, return the channel number.
- */
- static int get_channel_from_ecc_syndrome(unsigned short syndrome)
- {
- int row;
- int column;
- /* Determine column to scan */
- column = syndrome & 0xF;
- /* Scan all rows, looking for syndrome, or end of table */
- for (row = 0; row < NUMBER_ECC_ROWS; row++) {
- if (ecc_chipkill_syndromes[row][column] == syndrome)
- return ecc_chipkill_syndromes[row][0];
- }
- debugf0("syndrome(%x) not found\n", syndrome);
- return -1;
- }
- /*
- * Check for valid error in the NB Status High register. If so, proceed to read
- * NB Status Low, NB Address Low and NB Address High registers and store data
- * into error structure.
- *
- * Returns:
- * - 1: if hardware regs contains valid error info
- * - 0: if no valid error is indicated
- */
- static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
- struct err_regs *regs)
- {
- struct amd64_pvt *pvt;
- struct pci_dev *misc_f3_ctl;
- int err = 0;
- pvt = mci->pvt_info;
- misc_f3_ctl = pvt->misc_f3_ctl;
- err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, ®s->nbsh);
- if (err)
- goto err_reg;
- if (!(regs->nbsh & K8_NBSH_VALID_BIT))
- return 0;
- /* valid error, read remaining error information registers */
- err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, ®s->nbsl);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, ®s->nbeal);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, ®s->nbeah);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, ®s->nbcfg);
- if (err)
- goto err_reg;
- return 1;
- err_reg:
- debugf0("Reading error info register failed\n");
- return 0;
- }
- /*
- * This function is called to retrieve the error data from hardware and store it
- * in the info structure.
- *
- * Returns:
- * - 1: if a valid error is found
- * - 0: if no error is found
- */
- static int amd64_get_error_info(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- struct amd64_pvt *pvt;
- struct err_regs regs;
- pvt = mci->pvt_info;
- if (!amd64_get_error_info_regs(mci, info))
- return 0;
- /*
- * Here's the problem with the K8's EDAC reporting: There are four
- * registers which report pieces of error information. They are shared
- * between CEs and UEs. Furthermore, contrary to what is stated in the
- * BKDG, the overflow bit is never used! Every error always updates the
- * reporting registers.
- *
- * Can you see the race condition? All four error reporting registers
- * must be read before a new error updates them! There is no way to read
- * all four registers atomically. The best than can be done is to detect
- * that a race has occured and then report the error without any kind of
- * precision.
- *
- * What is still positive is that errors are still reported and thus
- * problems can still be detected - just not localized because the
- * syndrome and address are spread out across registers.
- *
- * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
- * UEs and CEs should have separate register sets with proper overflow
- * bits that are used! At very least the problem can be fixed by
- * honoring the ErrValid bit in 'nbsh' and not updating registers - just
- * set the overflow bit - unless the current error is CE and the new
- * error is UE which would be the only situation for overwriting the
- * current values.
- */
- regs = *info;
- /* Use info from the second read - most current */
- if (unlikely(!amd64_get_error_info_regs(mci, info)))
- return 0;
- /* clear the error bits in hardware */
- pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
- /* Check for the possible race condition */
- if ((regs.nbsh != info->nbsh) ||
- (regs.nbsl != info->nbsl) ||
- (regs.nbeah != info->nbeah) ||
- (regs.nbeal != info->nbeal)) {
- amd64_mc_printk(mci, KERN_WARNING,
- "hardware STATUS read access race condition "
- "detected!\n");
- return 0;
- }
- return 1;
- }
- /*
- * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
- * ADDRESS and process.
- */
- static void amd64_handle_ce(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- u64 SystemAddress;
- /* Ensure that the Error Address is VALID */
- if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
- amd64_mc_printk(mci, KERN_ERR,
- "HW has no ERROR_ADDRESS available\n");
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
- return;
- }
- SystemAddress = extract_error_address(mci, info);
- amd64_mc_printk(mci, KERN_ERR,
- "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
- pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
- }
- /* Handle any Un-correctable Errors (UEs) */
- static void amd64_handle_ue(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- int csrow;
- u64 SystemAddress;
- u32 page, offset;
- struct mem_ctl_info *log_mci, *src_mci = NULL;
- log_mci = mci;
- if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
- amd64_mc_printk(mci, KERN_CRIT,
- "HW has no ERROR_ADDRESS available\n");
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- return;
- }
- SystemAddress = extract_error_address(mci, info);
- /*
- * Find out which node the error address belongs to. This may be
- * different from the node that detected the error.
- */
- src_mci = find_mc_by_sys_addr(mci, SystemAddress);
- if (!src_mci) {
- amd64_mc_printk(mci, KERN_CRIT,
- "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
- (unsigned long)SystemAddress);
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- return;
- }
- log_mci = src_mci;
- csrow = sys_addr_to_csrow(log_mci, SystemAddress);
- if (csrow < 0) {
- amd64_mc_printk(mci, KERN_CRIT,
- "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
- (unsigned long)SystemAddress);
- edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
- } else {
- error_address_to_page_and_offset(SystemAddress, &page, &offset);
- edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
- }
- }
- static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
- struct err_regs *info)
- {
- u32 ec = ERROR_CODE(info->nbsl);
- u32 xec = EXT_ERROR_CODE(info->nbsl);
- int ecc_type = info->nbsh & (0x3 << 13);
- /* Bail early out if this was an 'observed' error */
- if (PP(ec) == K8_NBSL_PP_OBS)
- return;
- /* Do only ECC errors */
- if (xec && xec != F10_NBSL_EXT_ERR_ECC)
- return;
- if (ecc_type == 2)
- amd64_handle_ce(mci, info);
- else if (ecc_type == 1)
- amd64_handle_ue(mci, info);
- /*
- * If main error is CE then overflow must be CE. If main error is UE
- * then overflow is unknown. We'll call the overflow a CE - if
- * panic_on_ue is set then we're already panic'ed and won't arrive
- * here. Else, then apparently someone doesn't think that UE's are
- * catastrophic.
- */
- if (info->nbsh & K8_NBSH_OVERFLOW)
- edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
- }
- void amd64_decode_bus_error(int node_id, struct err_regs *regs)
- {
- struct mem_ctl_info *mci = mci_lookup[node_id];
- __amd64_decode_bus_error(mci, regs);
- /*
- * Check the UE bit of the NB status high register, if set generate some
- * logs. If NOT a GART error, then process the event as a NO-INFO event.
- * If it was a GART error, skip that process.
- *
- * FIXME: this should go somewhere else, if at all.
- */
- if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
- edac_mc_handle_ue_no_info(mci, "UE bit is set");
- }
- /*
- * The main polling 'check' function, called FROM the edac core to perform the
- * error checking and if an error is encountered, error processing.
- */
- static void amd64_check(struct mem_ctl_info *mci)
- {
- struct err_regs regs;
- if (amd64_get_error_info(mci, ®s)) {
- struct amd64_pvt *pvt = mci->pvt_info;
- amd_decode_nb_mce(pvt->mc_node_id, ®s, 1);
- }
- }
- /*
- * Input:
- * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
- * 2) AMD Family index value
- *
- * Ouput:
- * Upon return of 0, the following filled in:
- *
- * struct pvt->addr_f1_ctl
- * struct pvt->misc_f3_ctl
- *
- * Filled in with related device funcitions of 'dram_f2_ctl'
- * These devices are "reserved" via the pci_get_device()
- *
- * Upon return of 1 (error status):
- *
- * Nothing reserved
- */
- static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
- {
- const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
- /* Reserve the ADDRESS MAP Device */
- pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
- amd64_dev->addr_f1_ctl,
- pvt->dram_f2_ctl);
- if (!pvt->addr_f1_ctl) {
- amd64_printk(KERN_ERR, "error address map device not found: "
- "vendor %x device 0x%x (broken BIOS?)\n",
- PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
- return 1;
- }
- /* Reserve the MISC Device */
- pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
- amd64_dev->misc_f3_ctl,
- pvt->dram_f2_ctl);
- if (!pvt->misc_f3_ctl) {
- pci_dev_put(pvt->addr_f1_ctl);
- pvt->addr_f1_ctl = NULL;
- amd64_printk(KERN_ERR, "error miscellaneous device not found: "
- "vendor %x device 0x%x (broken BIOS?)\n",
- PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
- return 1;
- }
- debugf1(" Addr Map device PCI Bus ID:\t%s\n",
- pci_name(pvt->addr_f1_ctl));
- debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
- pci_name(pvt->dram_f2_ctl));
- debugf1(" Misc device PCI Bus ID:\t%s\n",
- pci_name(pvt->misc_f3_ctl));
- return 0;
- }
- static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
- {
- pci_dev_put(pvt->addr_f1_ctl);
- pci_dev_put(pvt->misc_f3_ctl);
- }
- /*
- * Retrieve the hardware registers of the memory controller (this includes the
- * 'Address Map' and 'Misc' device regs)
- */
- static void amd64_read_mc_registers(struct amd64_pvt *pvt)
- {
- u64 msr_val;
- int dram, err = 0;
- /*
- * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
- * those are Read-As-Zero
- */
- rdmsrl(MSR_K8_TOP_MEM1, msr_val);
- pvt->top_mem = msr_val >> 23;
- debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
- /* check first whether TOP_MEM2 is enabled */
- rdmsrl(MSR_K8_SYSCFG, msr_val);
- if (msr_val & (1U << 21)) {
- rdmsrl(MSR_K8_TOP_MEM2, msr_val);
- pvt->top_mem2 = msr_val >> 23;
- debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
- } else
- debugf0(" TOP_MEM2 disabled.\n");
- amd64_cpu_display_info(pvt);
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
- if (err)
- goto err_reg;
- if (pvt->ops->read_dram_ctl_register)
- pvt->ops->read_dram_ctl_register(pvt);
- for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
- /*
- * Call CPU specific READ function to get the DRAM Base and
- * Limit values from the DCT.
- */
- pvt->ops->read_dram_base_limit(pvt, dram);
- /*
- * Only print out debug info on rows with both R and W Enabled.
- * Normal processing, compiler should optimize this whole 'if'
- * debug output block away.
- */
- if (pvt->dram_rw_en[dram] != 0) {
- debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
- "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
- dram,
- (u32)(pvt->dram_base[dram] >> 32),
- (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
- (u32)(pvt->dram_limit[dram] >> 32),
- (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
- debugf1(" IntlvEn=%s %s %s "
- "IntlvSel=%d DstNode=%d\n",
- pvt->dram_IntlvEn[dram] ?
- "Enabled" : "Disabled",
- (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
- (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
- pvt->dram_IntlvSel[dram],
- pvt->dram_DstNode[dram]);
- }
- }
- amd64_read_dct_base_mask(pvt);
- err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
- if (err)
- goto err_reg;
- amd64_read_dbam_reg(pvt);
- err = pci_read_config_dword(pvt->misc_f3_ctl,
- F10_ONLINE_SPARE, &pvt->online_spare);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
- if (err)
- goto err_reg;
- if (!dct_ganging_enabled(pvt)) {
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
- &pvt->dclr1);
- if (err)
- goto err_reg;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
- &pvt->dchr1);
- if (err)
- goto err_reg;
- }
- amd64_dump_misc_regs(pvt);
- return;
- err_reg:
- debugf0("Reading an MC register failed\n");
- }
- /*
- * NOTE: CPU Revision Dependent code
- *
- * Input:
- * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
- * k8 private pointer to -->
- * DRAM Bank Address mapping register
- * node_id
- * DCL register where dual_channel_active is
- *
- * The DBAM register consists of 4 sets of 4 bits each definitions:
- *
- * Bits: CSROWs
- * 0-3 CSROWs 0 and 1
- * 4-7 CSROWs 2 and 3
- * 8-11 CSROWs 4 and 5
- * 12-15 CSROWs 6 and 7
- *
- * Values range from: 0 to 15
- * The meaning of the values depends on CPU revision and dual-channel state,
- * see relevant BKDG more info.
- *
- * The memory controller provides for total of only 8 CSROWs in its current
- * architecture. Each "pair" of CSROWs normally represents just one DIMM in
- * single channel or two (2) DIMMs in dual channel mode.
- *
- * The following code logic collapses the various tables for CSROW based on CPU
- * revision.
- *
- * Returns:
- * The number of PAGE_SIZE pages on the specified CSROW number it
- * encompasses
- *
- */
- static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
- {
- u32 dram_map, nr_pages;
- /*
- * The math on this doesn't look right on the surface because x/2*4 can
- * be simplified to x*2 but this expression makes use of the fact that
- * it is integral math where 1/2=0. This intermediate value becomes the
- * number of bits to shift the DBAM register to extract the proper CSROW
- * field.
- */
- dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
- nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
- /*
- * If dual channel then double the memory size of single channel.
- * Channel count is 1 or 2
- */
- nr_pages <<= (pvt->channel_count - 1);
- debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
- debugf0(" nr_pages= %u channel-count = %d\n",
- nr_pages, pvt->channel_count);
- return nr_pages;
- }
- /*
- * Initialize the array of csrow attribute instances, based on the values
- * from pci config hardware registers.
- */
- static int amd64_init_csrows(struct mem_ctl_info *mci)
- {
- struct csrow_info *csrow;
- struct amd64_pvt *pvt;
- u64 input_addr_min, input_addr_max, sys_addr;
- int i, err = 0, empty = 1;
- pvt = mci->pvt_info;
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
- debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
- (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
- (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
- );
- for (i = 0; i < CHIPSELECT_COUNT; i++) {
- csrow = &mci->csrows[i];
- if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
- debugf1("----CSROW %d EMPTY for node %d\n", i,
- pvt->mc_node_id);
- continue;
- }
- debugf1("----CSROW %d VALID for MC node %d\n",
- i, pvt->mc_node_id);
- empty = 0;
- csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
- find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
- sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
- csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
- sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
- csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
- csrow->page_mask = ~mask_from_dct_mask(pvt, i);
- /* 8 bytes of resolution */
- csrow->mtype = amd64_determine_memory_type(pvt);
- debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
- debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
- (unsigned long)input_addr_min,
- (unsigned long)input_addr_max);
- debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
- (unsigned long)sys_addr, csrow->page_mask);
- debugf1(" nr_pages: %u first_page: 0x%lx "
- "last_page: 0x%lx\n",
- (unsigned)csrow->nr_pages,
- csrow->first_page, csrow->last_page);
- /*
- * determine whether CHIPKILL or JUST ECC or NO ECC is operating
- */
- if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
- csrow->edac_mode =
- (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
- EDAC_S4ECD4ED : EDAC_SECDED;
- else
- csrow->edac_mode = EDAC_NONE;
- }
- return empty;
- }
- /*
- * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
- * enable it.
- */
- static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
- int cpu, idx = 0, err = 0;
- struct msr msrs[cpumask_weight(cpumask)];
- u32 value;
- u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
- if (!ecc_enable_override)
- return;
- memset(msrs, 0, sizeof(msrs));
- amd64_printk(KERN_WARNING,
- "'ecc_enable_override' parameter is active, "
- "Enabling AMD ECC hardware now: CAUTION\n");
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
- /* turn on UECCn and CECCEn bits */
- pvt->old_nbctl = value & mask;
- pvt->nbctl_mcgctl_saved = 1;
- value |= mask;
- pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
- rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
- for_each_cpu(cpu, cpumask) {
- if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
- set_bit(idx, &pvt->old_mcgctl);
- msrs[idx].l |= K8_MSR_MCGCTL_NBE;
- idx++;
- }
- wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
- debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
- (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
- (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
- if (!(value & K8_NBCFG_ECC_ENABLE)) {
- amd64_printk(KERN_WARNING,
- "This node reports that DRAM ECC is "
- "currently Disabled; ENABLING now\n");
- /* Attempt to turn on DRAM ECC Enable */
- value |= K8_NBCFG_ECC_ENABLE;
- pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
- if (!(value & K8_NBCFG_ECC_ENABLE)) {
- amd64_printk(KERN_WARNING,
- "Hardware rejects Enabling DRAM ECC checking\n"
- "Check memory DIMM configuration\n");
- } else {
- amd64_printk(KERN_DEBUG,
- "Hardware accepted DRAM ECC Enable\n");
- }
- }
- debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
- (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
- (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
- pvt->ctl_error_info.nbcfg = value;
- }
- static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
- {
- const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
- int cpu, idx = 0, err = 0;
- struct msr msrs[cpumask_weight(cpumask)];
- u32 value;
- u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
- if (!pvt->nbctl_mcgctl_saved)
- return;
- memset(msrs, 0, sizeof(msrs));
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
- value &= ~mask;
- value |= pvt->old_nbctl;
- /* restore the NB Enable MCGCTL bit */
- pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
- rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
- for_each_cpu(cpu, cpumask) {
- msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
- msrs[idx].l |=
- test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
- idx++;
- }
- wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
- }
- /* get all cores on this DCT */
- static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
- {
- int cpu;
- for_each_online_cpu(cpu)
- if (amd_get_nb_id(cpu) == nid)
- cpumask_set_cpu(cpu, mask);
- }
- /* check MCG_CTL on all the cpus on this node */
- static bool amd64_nb_mce_bank_enabled_on_node(int nid)
- {
- cpumask_t mask;
- struct msr *msrs;
- int cpu, nbe, idx = 0;
- bool ret = false;
- cpumask_clear(&mask);
- get_cpus_on_this_dct_cpumask(&mask, nid);
- msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
- if (!msrs) {
- amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
- __func__);
- return false;
- }
- rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
- for_each_cpu(cpu, &mask) {
- nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
- debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
- cpu, msrs[idx].q,
- (nbe ? "enabled" : "disabled"));
- if (!nbe)
- goto out;
- idx++;
- }
- ret = true;
- out:
- kfree(msrs);
- return ret;
- }
- /*
- * EDAC requires that the BIOS have ECC enabled before taking over the
- * processing of ECC errors. This is because the BIOS can properly initialize
- * the memory system completely. A command line option allows to force-enable
- * hardware ECC later in amd64_enable_ecc_error_reporting().
- */
- static const char *ecc_warning =
- "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
- " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
- " Also, use of the override can cause unknown side effects.\n";
- static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
- {
- u32 value;
- int err = 0;
- u8 ecc_enabled = 0;
- bool nb_mce_en = false;
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
- ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
- if (!ecc_enabled)
- amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
- "is currently disabled, set F3x%x[22] (%s).\n",
- K8_NBCFG, pci_name(pvt->misc_f3_ctl));
- else
- amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
- nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
- if (!nb_mce_en)
- amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
- "0x%08x[4] on node %d to enable.\n",
- MSR_IA32_MCG_CTL, pvt->mc_node_id);
- if (!ecc_enabled || !nb_mce_en) {
- if (!ecc_enable_override) {
- amd64_printk(KERN_WARNING, "%s", ecc_warning);
- return -ENODEV;
- }
- } else
- /* CLEAR the override, since BIOS controlled it */
- ecc_enable_override = 0;
- return 0;
- }
- struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
- ARRAY_SIZE(amd64_inj_attrs) +
- 1];
- struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
- static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
- {
- unsigned int i = 0, j = 0;
- for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
- sysfs_attrs[i] = amd64_dbg_attrs[i];
- for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
- sysfs_attrs[i] = amd64_inj_attrs[j];
- sysfs_attrs[i] = terminator;
- mci->mc_driver_sysfs_attributes = sysfs_attrs;
- }
- static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
- {
- struct amd64_pvt *pvt = mci->pvt_info;
- mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
- mci->edac_ctl_cap = EDAC_FLAG_NONE;
- if (pvt->nbcap & K8_NBCAP_SECDED)
- mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
- if (pvt->nbcap & K8_NBCAP_CHIPKILL)
- mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
- mci->edac_cap = amd64_determine_edac_cap(pvt);
- mci->mod_name = EDAC_MOD_STR;
- mci->mod_ver = EDAC_AMD64_VERSION;
- mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
- mci->dev_name = pci_name(pvt->dram_f2_ctl);
- mci->ctl_page_to_phys = NULL;
- /* IMPORTANT: Set the polling 'check' function in this module */
- mci->edac_check = amd64_check;
- /* memory scrubber interface */
- mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
- mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
- }
- /*
- * Init stuff for this DRAM Controller device.
- *
- * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
- * Space feature MUST be enabled on ALL Processors prior to actually reading
- * from the ECS registers. Since the loading of the module can occur on any
- * 'core', and cores don't 'see' all the other processors ECS data when the
- * others are NOT enabled. Our solution is to first enable ECS access in this
- * routine on all processors, gather some data in a amd64_pvt structure and
- * later come back in a finish-setup function to perform that final
- * initialization. See also amd64_init_2nd_stage() for that.
- */
- static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
- int mc_type_index)
- {
- struct amd64_pvt *pvt = NULL;
- int err = 0, ret;
- ret = -ENOMEM;
- pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
- if (!pvt)
- goto err_exit;
- pvt->mc_node_id = get_node_id(dram_f2_ctl);
- pvt->dram_f2_ctl = dram_f2_ctl;
- pvt->ext_model = boot_cpu_data.x86_model >> 4;
- pvt->mc_type_index = mc_type_index;
- pvt->ops = family_ops(mc_type_index);
- pvt->old_mcgctl = 0;
- /*
- * We have the dram_f2_ctl device as an argument, now go reserve its
- * sibling devices from the PCI system.
- */
- ret = -ENODEV;
- err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
- if (err)
- goto err_free;
- ret = -EINVAL;
- err = amd64_check_ecc_enabled(pvt);
- if (err)
- goto err_put;
- /*
- * Key operation here: setup of HW prior to performing ops on it. Some
- * setup is required to access ECS data. After this is performed, the
- * 'teardown' function must be called upon error and normal exit paths.
- */
- if (boot_cpu_data.x86 >= 0x10)
- amd64_setup(pvt);
- /*
- * Save the pointer to the private data for use in 2nd initialization
- * stage
- */
- pvt_lookup[pvt->mc_node_id] = pvt;
- return 0;
- err_put:
- amd64_free_mc_sibling_devices(pvt);
- err_free:
- kfree(pvt);
- err_exit:
- return ret;
- }
- /*
- * This is the finishing stage of the init code. Needs to be performed after all
- * MCs' hardware have been prepped for accessing extended config space.
- */
- static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
- {
- int node_id = pvt->mc_node_id;
- struct mem_ctl_info *mci;
- int ret, err = 0;
- amd64_read_mc_registers(pvt);
- ret = -ENODEV;
- if (pvt->ops->probe_valid_hardware) {
- err = pvt->ops->probe_valid_hardware(pvt);
- if (err)
- goto err_exit;
- }
- /*
- * We need to determine how many memory channels there are. Then use
- * that information for calculating the size of the dynamic instance
- * tables in the 'mci' structure
- */
- pvt->channel_count = pvt->ops->early_channel_count(pvt);
- if (pvt->channel_count < 0)
- goto err_exit;
- ret = -ENOMEM;
- mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
- if (!mci)
- goto err_exit;
- mci->pvt_info = pvt;
- mci->dev = &pvt->dram_f2_ctl->dev;
- amd64_setup_mci_misc_attributes(mci);
- if (amd64_init_csrows(mci))
- mci->edac_cap = EDAC_FLAG_NONE;
- amd64_enable_ecc_error_reporting(mci);
- amd64_set_mc_sysfs_attributes(mci);
- ret = -ENODEV;
- if (edac_mc_add_mc(mci)) {
- debugf1("failed edac_mc_add_mc()\n");
- goto err_add_mc;
- }
- mci_lookup[node_id] = mci;
- pvt_lookup[node_id] = NULL;
- /* register stuff with EDAC MCE */
- if (report_gart_errors)
- amd_report_gart_errors(true);
- amd_register_ecc_decoder(amd64_decode_bus_error);
- return 0;
- err_add_mc:
- edac_mc_free(mci);
- err_exit:
- debugf0("failure to init 2nd stage: ret=%d\n", ret);
- amd64_restore_ecc_error_reporting(pvt);
- if (boot_cpu_data.x86 > 0xf)
- amd64_teardown(pvt);
- amd64_free_mc_sibling_devices(pvt);
- kfree(pvt_lookup[pvt->mc_node_id]);
- pvt_lookup[node_id] = NULL;
- return ret;
- }
- static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
- const struct pci_device_id *mc_type)
- {
- int ret = 0;
- debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
- get_amd_family_name(mc_type->driver_data));
- ret = pci_enable_device(pdev);
- if (ret < 0)
- ret = -EIO;
- else
- ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
- if (ret < 0)
- debugf0("ret=%d\n", ret);
- return ret;
- }
- static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- /* Remove from EDAC CORE tracking list */
- mci = edac_mc_del_mc(&pdev->dev);
- if (!mci)
- return;
- pvt = mci->pvt_info;
- amd64_restore_ecc_error_reporting(pvt);
- if (boot_cpu_data.x86 > 0xf)
- amd64_teardown(pvt);
- amd64_free_mc_sibling_devices(pvt);
- kfree(pvt);
- mci->pvt_info = NULL;
- mci_lookup[pvt->mc_node_id] = NULL;
- /* unregister from EDAC MCE */
- amd_report_gart_errors(false);
- amd_unregister_ecc_decoder(amd64_decode_bus_error);
- /* Free the EDAC CORE resources */
- edac_mc_free(mci);
- }
- /*
- * This table is part of the interface for loading drivers for PCI devices. The
- * PCI core identifies what devices are on a system during boot, and then
- * inquiry this table to see if this driver is for a given device found.
- */
- static const struct pci_device_id amd64_pci_table[] __devinitdata = {
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- .driver_data = K8_CPUS
- },
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- .driver_data = F10_CPUS
- },
- {
- .vendor = PCI_VENDOR_ID_AMD,
- .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
- .subvendor = PCI_ANY_ID,
- .subdevice = PCI_ANY_ID,
- .class = 0,
- .class_mask = 0,
- .driver_data = F11_CPUS
- },
- {0, }
- };
- MODULE_DEVICE_TABLE(pci, amd64_pci_table);
- static struct pci_driver amd64_pci_driver = {
- .name = EDAC_MOD_STR,
- .probe = amd64_init_one_instance,
- .remove = __devexit_p(amd64_remove_one_instance),
- .id_table = amd64_pci_table,
- };
- static void amd64_setup_pci_device(void)
- {
- struct mem_ctl_info *mci;
- struct amd64_pvt *pvt;
- if (amd64_ctl_pci)
- return;
- mci = mci_lookup[0];
- if (mci) {
- pvt = mci->pvt_info;
- amd64_ctl_pci =
- edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
- EDAC_MOD_STR);
- if (!amd64_ctl_pci) {
- pr_warning("%s(): Unable to create PCI control\n",
- __func__);
- pr_warning("%s(): PCI error report via EDAC not set\n",
- __func__);
- }
- }
- }
- static int __init amd64_edac_init(void)
- {
- int nb, err = -ENODEV;
- edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
- opstate_init();
- if (cache_k8_northbridges() < 0)
- goto err_exit;
- err = pci_register_driver(&amd64_pci_driver);
- if (err)
- return err;
- /*
- * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
- * amd64_pvt structs. These will be used in the 2nd stage init function
- * to finish initialization of the MC instances.
- */
- for (nb = 0; nb < num_k8_northbridges; nb++) {
- if (!pvt_lookup[nb])
- continue;
- err = amd64_init_2nd_stage(pvt_lookup[nb]);
- if (err)
- goto err_2nd_stage;
- }
- amd64_setup_pci_device();
- return 0;
- err_2nd_stage:
- debugf0("2nd stage failed\n");
- err_exit:
- pci_unregister_driver(&amd64_pci_driver);
- return err;
- }
- static void __exit amd64_edac_exit(void)
- {
- if (amd64_ctl_pci)
- edac_pci_release_generic_ctl(amd64_ctl_pci);
- pci_unregister_driver(&amd64_pci_driver);
- }
- module_init(amd64_edac_init);
- module_exit(amd64_edac_exit);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
- "Dave Peterson, Thayne Harbaugh");
- MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
- EDAC_AMD64_VERSION);
- module_param(edac_op_state, int, 0444);
- MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|