cpufreq_conservative.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/cpufreq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/mutex.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/tick.h>
  23. #include <linux/ktime.h>
  24. #include <linux/sched.h>
  25. /*
  26. * dbs is used in this file as a shortform for demandbased switching
  27. * It helps to keep variable names smaller, simpler
  28. */
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  31. /*
  32. * The polling frequency of this governor depends on the capability of
  33. * the processor. Default polling frequency is 1000 times the transition
  34. * latency of the processor. The governor will work on any processor with
  35. * transition latency <= 10mS, using appropriate sampling
  36. * rate.
  37. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38. * this governor will not work.
  39. * All times here are in uS.
  40. */
  41. #define MIN_SAMPLING_RATE_RATIO (2)
  42. static unsigned int min_sampling_rate;
  43. #define LATENCY_MULTIPLIER (1000)
  44. #define MIN_LATENCY_MULTIPLIER (100)
  45. #define DEF_SAMPLING_DOWN_FACTOR (1)
  46. #define MAX_SAMPLING_DOWN_FACTOR (10)
  47. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  48. static void do_dbs_timer(struct work_struct *work);
  49. struct cpu_dbs_info_s {
  50. cputime64_t prev_cpu_idle;
  51. cputime64_t prev_cpu_wall;
  52. cputime64_t prev_cpu_nice;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. unsigned int down_skip;
  56. unsigned int requested_freq;
  57. int cpu;
  58. unsigned int enable:1;
  59. /*
  60. * percpu mutex that serializes governor limit change with
  61. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  62. * when user is changing the governor or limits.
  63. */
  64. struct mutex timer_mutex;
  65. };
  66. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  67. static unsigned int dbs_enable; /* number of CPUs using this policy */
  68. /*
  69. * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
  70. * different CPUs. It protects dbs_enable in governor start/stop.
  71. */
  72. static DEFINE_MUTEX(dbs_mutex);
  73. static struct workqueue_struct *kconservative_wq;
  74. static struct dbs_tuners {
  75. unsigned int sampling_rate;
  76. unsigned int sampling_down_factor;
  77. unsigned int up_threshold;
  78. unsigned int down_threshold;
  79. unsigned int ignore_nice;
  80. unsigned int freq_step;
  81. } dbs_tuners_ins = {
  82. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  83. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  84. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  85. .ignore_nice = 0,
  86. .freq_step = 5,
  87. };
  88. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  89. cputime64_t *wall)
  90. {
  91. cputime64_t idle_time;
  92. cputime64_t cur_wall_time;
  93. cputime64_t busy_time;
  94. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  95. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  96. kstat_cpu(cpu).cpustat.system);
  97. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  98. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  99. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  100. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  101. idle_time = cputime64_sub(cur_wall_time, busy_time);
  102. if (wall)
  103. *wall = cur_wall_time;
  104. return idle_time;
  105. }
  106. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  107. {
  108. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  109. if (idle_time == -1ULL)
  110. return get_cpu_idle_time_jiffy(cpu, wall);
  111. return idle_time;
  112. }
  113. /* keep track of frequency transitions */
  114. static int
  115. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  116. void *data)
  117. {
  118. struct cpufreq_freqs *freq = data;
  119. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  120. freq->cpu);
  121. struct cpufreq_policy *policy;
  122. if (!this_dbs_info->enable)
  123. return 0;
  124. policy = this_dbs_info->cur_policy;
  125. /*
  126. * we only care if our internally tracked freq moves outside
  127. * the 'valid' ranges of freqency available to us otherwise
  128. * we do not change it
  129. */
  130. if (this_dbs_info->requested_freq > policy->max
  131. || this_dbs_info->requested_freq < policy->min)
  132. this_dbs_info->requested_freq = freq->new;
  133. return 0;
  134. }
  135. static struct notifier_block dbs_cpufreq_notifier_block = {
  136. .notifier_call = dbs_cpufreq_notifier
  137. };
  138. /************************** sysfs interface ************************/
  139. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  140. {
  141. printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
  142. "sysfs file is deprecated - used by: %s\n", current->comm);
  143. return sprintf(buf, "%u\n", -1U);
  144. }
  145. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  146. {
  147. return sprintf(buf, "%u\n", min_sampling_rate);
  148. }
  149. #define define_one_ro(_name) \
  150. static struct freq_attr _name = \
  151. __ATTR(_name, 0444, show_##_name, NULL)
  152. define_one_ro(sampling_rate_max);
  153. define_one_ro(sampling_rate_min);
  154. /* cpufreq_conservative Governor Tunables */
  155. #define show_one(file_name, object) \
  156. static ssize_t show_##file_name \
  157. (struct cpufreq_policy *unused, char *buf) \
  158. { \
  159. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  160. }
  161. show_one(sampling_rate, sampling_rate);
  162. show_one(sampling_down_factor, sampling_down_factor);
  163. show_one(up_threshold, up_threshold);
  164. show_one(down_threshold, down_threshold);
  165. show_one(ignore_nice_load, ignore_nice);
  166. show_one(freq_step, freq_step);
  167. static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
  168. const char *buf, size_t count)
  169. {
  170. unsigned int input;
  171. int ret;
  172. ret = sscanf(buf, "%u", &input);
  173. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  174. return -EINVAL;
  175. mutex_lock(&dbs_mutex);
  176. dbs_tuners_ins.sampling_down_factor = input;
  177. mutex_unlock(&dbs_mutex);
  178. return count;
  179. }
  180. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  181. const char *buf, size_t count)
  182. {
  183. unsigned int input;
  184. int ret;
  185. ret = sscanf(buf, "%u", &input);
  186. if (ret != 1)
  187. return -EINVAL;
  188. mutex_lock(&dbs_mutex);
  189. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  190. mutex_unlock(&dbs_mutex);
  191. return count;
  192. }
  193. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  194. const char *buf, size_t count)
  195. {
  196. unsigned int input;
  197. int ret;
  198. ret = sscanf(buf, "%u", &input);
  199. mutex_lock(&dbs_mutex);
  200. if (ret != 1 || input > 100 ||
  201. input <= dbs_tuners_ins.down_threshold) {
  202. mutex_unlock(&dbs_mutex);
  203. return -EINVAL;
  204. }
  205. dbs_tuners_ins.up_threshold = input;
  206. mutex_unlock(&dbs_mutex);
  207. return count;
  208. }
  209. static ssize_t store_down_threshold(struct cpufreq_policy *unused,
  210. const char *buf, size_t count)
  211. {
  212. unsigned int input;
  213. int ret;
  214. ret = sscanf(buf, "%u", &input);
  215. mutex_lock(&dbs_mutex);
  216. /* cannot be lower than 11 otherwise freq will not fall */
  217. if (ret != 1 || input < 11 || input > 100 ||
  218. input >= dbs_tuners_ins.up_threshold) {
  219. mutex_unlock(&dbs_mutex);
  220. return -EINVAL;
  221. }
  222. dbs_tuners_ins.down_threshold = input;
  223. mutex_unlock(&dbs_mutex);
  224. return count;
  225. }
  226. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  227. const char *buf, size_t count)
  228. {
  229. unsigned int input;
  230. int ret;
  231. unsigned int j;
  232. ret = sscanf(buf, "%u", &input);
  233. if (ret != 1)
  234. return -EINVAL;
  235. if (input > 1)
  236. input = 1;
  237. mutex_lock(&dbs_mutex);
  238. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  239. mutex_unlock(&dbs_mutex);
  240. return count;
  241. }
  242. dbs_tuners_ins.ignore_nice = input;
  243. /* we need to re-evaluate prev_cpu_idle */
  244. for_each_online_cpu(j) {
  245. struct cpu_dbs_info_s *dbs_info;
  246. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  247. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  248. &dbs_info->prev_cpu_wall);
  249. if (dbs_tuners_ins.ignore_nice)
  250. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  251. }
  252. mutex_unlock(&dbs_mutex);
  253. return count;
  254. }
  255. static ssize_t store_freq_step(struct cpufreq_policy *policy,
  256. const char *buf, size_t count)
  257. {
  258. unsigned int input;
  259. int ret;
  260. ret = sscanf(buf, "%u", &input);
  261. if (ret != 1)
  262. return -EINVAL;
  263. if (input > 100)
  264. input = 100;
  265. /* no need to test here if freq_step is zero as the user might actually
  266. * want this, they would be crazy though :) */
  267. mutex_lock(&dbs_mutex);
  268. dbs_tuners_ins.freq_step = input;
  269. mutex_unlock(&dbs_mutex);
  270. return count;
  271. }
  272. #define define_one_rw(_name) \
  273. static struct freq_attr _name = \
  274. __ATTR(_name, 0644, show_##_name, store_##_name)
  275. define_one_rw(sampling_rate);
  276. define_one_rw(sampling_down_factor);
  277. define_one_rw(up_threshold);
  278. define_one_rw(down_threshold);
  279. define_one_rw(ignore_nice_load);
  280. define_one_rw(freq_step);
  281. static struct attribute *dbs_attributes[] = {
  282. &sampling_rate_max.attr,
  283. &sampling_rate_min.attr,
  284. &sampling_rate.attr,
  285. &sampling_down_factor.attr,
  286. &up_threshold.attr,
  287. &down_threshold.attr,
  288. &ignore_nice_load.attr,
  289. &freq_step.attr,
  290. NULL
  291. };
  292. static struct attribute_group dbs_attr_group = {
  293. .attrs = dbs_attributes,
  294. .name = "conservative",
  295. };
  296. /************************** sysfs end ************************/
  297. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  298. {
  299. unsigned int load = 0;
  300. unsigned int freq_target;
  301. struct cpufreq_policy *policy;
  302. unsigned int j;
  303. policy = this_dbs_info->cur_policy;
  304. /*
  305. * Every sampling_rate, we check, if current idle time is less
  306. * than 20% (default), then we try to increase frequency
  307. * Every sampling_rate*sampling_down_factor, we check, if current
  308. * idle time is more than 80%, then we try to decrease frequency
  309. *
  310. * Any frequency increase takes it to the maximum frequency.
  311. * Frequency reduction happens at minimum steps of
  312. * 5% (default) of maximum frequency
  313. */
  314. /* Get Absolute Load */
  315. for_each_cpu(j, policy->cpus) {
  316. struct cpu_dbs_info_s *j_dbs_info;
  317. cputime64_t cur_wall_time, cur_idle_time;
  318. unsigned int idle_time, wall_time;
  319. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  320. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  321. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  322. j_dbs_info->prev_cpu_wall);
  323. j_dbs_info->prev_cpu_wall = cur_wall_time;
  324. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  325. j_dbs_info->prev_cpu_idle);
  326. j_dbs_info->prev_cpu_idle = cur_idle_time;
  327. if (dbs_tuners_ins.ignore_nice) {
  328. cputime64_t cur_nice;
  329. unsigned long cur_nice_jiffies;
  330. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  331. j_dbs_info->prev_cpu_nice);
  332. /*
  333. * Assumption: nice time between sampling periods will
  334. * be less than 2^32 jiffies for 32 bit sys
  335. */
  336. cur_nice_jiffies = (unsigned long)
  337. cputime64_to_jiffies64(cur_nice);
  338. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  339. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  340. }
  341. if (unlikely(!wall_time || wall_time < idle_time))
  342. continue;
  343. load = 100 * (wall_time - idle_time) / wall_time;
  344. }
  345. /*
  346. * break out if we 'cannot' reduce the speed as the user might
  347. * want freq_step to be zero
  348. */
  349. if (dbs_tuners_ins.freq_step == 0)
  350. return;
  351. /* Check for frequency increase */
  352. if (load > dbs_tuners_ins.up_threshold) {
  353. this_dbs_info->down_skip = 0;
  354. /* if we are already at full speed then break out early */
  355. if (this_dbs_info->requested_freq == policy->max)
  356. return;
  357. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  358. /* max freq cannot be less than 100. But who knows.... */
  359. if (unlikely(freq_target == 0))
  360. freq_target = 5;
  361. this_dbs_info->requested_freq += freq_target;
  362. if (this_dbs_info->requested_freq > policy->max)
  363. this_dbs_info->requested_freq = policy->max;
  364. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  365. CPUFREQ_RELATION_H);
  366. return;
  367. }
  368. /*
  369. * The optimal frequency is the frequency that is the lowest that
  370. * can support the current CPU usage without triggering the up
  371. * policy. To be safe, we focus 10 points under the threshold.
  372. */
  373. if (load < (dbs_tuners_ins.down_threshold - 10)) {
  374. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  375. this_dbs_info->requested_freq -= freq_target;
  376. if (this_dbs_info->requested_freq < policy->min)
  377. this_dbs_info->requested_freq = policy->min;
  378. /*
  379. * if we cannot reduce the frequency anymore, break out early
  380. */
  381. if (policy->cur == policy->min)
  382. return;
  383. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  384. CPUFREQ_RELATION_H);
  385. return;
  386. }
  387. }
  388. static void do_dbs_timer(struct work_struct *work)
  389. {
  390. struct cpu_dbs_info_s *dbs_info =
  391. container_of(work, struct cpu_dbs_info_s, work.work);
  392. unsigned int cpu = dbs_info->cpu;
  393. /* We want all CPUs to do sampling nearly on same jiffy */
  394. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  395. delay -= jiffies % delay;
  396. mutex_lock(&dbs_info->timer_mutex);
  397. dbs_check_cpu(dbs_info);
  398. queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
  399. mutex_unlock(&dbs_info->timer_mutex);
  400. }
  401. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  402. {
  403. /* We want all CPUs to do sampling nearly on same jiffy */
  404. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  405. delay -= jiffies % delay;
  406. dbs_info->enable = 1;
  407. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  408. queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
  409. delay);
  410. }
  411. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  412. {
  413. dbs_info->enable = 0;
  414. cancel_delayed_work_sync(&dbs_info->work);
  415. }
  416. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  417. unsigned int event)
  418. {
  419. unsigned int cpu = policy->cpu;
  420. struct cpu_dbs_info_s *this_dbs_info;
  421. unsigned int j;
  422. int rc;
  423. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  424. switch (event) {
  425. case CPUFREQ_GOV_START:
  426. if ((!cpu_online(cpu)) || (!policy->cur))
  427. return -EINVAL;
  428. mutex_lock(&dbs_mutex);
  429. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  430. if (rc) {
  431. mutex_unlock(&dbs_mutex);
  432. return rc;
  433. }
  434. for_each_cpu(j, policy->cpus) {
  435. struct cpu_dbs_info_s *j_dbs_info;
  436. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  437. j_dbs_info->cur_policy = policy;
  438. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  439. &j_dbs_info->prev_cpu_wall);
  440. if (dbs_tuners_ins.ignore_nice) {
  441. j_dbs_info->prev_cpu_nice =
  442. kstat_cpu(j).cpustat.nice;
  443. }
  444. }
  445. this_dbs_info->down_skip = 0;
  446. this_dbs_info->requested_freq = policy->cur;
  447. mutex_init(&this_dbs_info->timer_mutex);
  448. dbs_enable++;
  449. /*
  450. * Start the timerschedule work, when this governor
  451. * is used for first time
  452. */
  453. if (dbs_enable == 1) {
  454. unsigned int latency;
  455. /* policy latency is in nS. Convert it to uS first */
  456. latency = policy->cpuinfo.transition_latency / 1000;
  457. if (latency == 0)
  458. latency = 1;
  459. /*
  460. * conservative does not implement micro like ondemand
  461. * governor, thus we are bound to jiffes/HZ
  462. */
  463. min_sampling_rate =
  464. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  465. /* Bring kernel and HW constraints together */
  466. min_sampling_rate = max(min_sampling_rate,
  467. MIN_LATENCY_MULTIPLIER * latency);
  468. dbs_tuners_ins.sampling_rate =
  469. max(min_sampling_rate,
  470. latency * LATENCY_MULTIPLIER);
  471. cpufreq_register_notifier(
  472. &dbs_cpufreq_notifier_block,
  473. CPUFREQ_TRANSITION_NOTIFIER);
  474. }
  475. mutex_unlock(&dbs_mutex);
  476. dbs_timer_init(this_dbs_info);
  477. break;
  478. case CPUFREQ_GOV_STOP:
  479. dbs_timer_exit(this_dbs_info);
  480. mutex_lock(&dbs_mutex);
  481. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  482. dbs_enable--;
  483. mutex_destroy(&this_dbs_info->timer_mutex);
  484. /*
  485. * Stop the timerschedule work, when this governor
  486. * is used for first time
  487. */
  488. if (dbs_enable == 0)
  489. cpufreq_unregister_notifier(
  490. &dbs_cpufreq_notifier_block,
  491. CPUFREQ_TRANSITION_NOTIFIER);
  492. mutex_unlock(&dbs_mutex);
  493. break;
  494. case CPUFREQ_GOV_LIMITS:
  495. mutex_lock(&this_dbs_info->timer_mutex);
  496. if (policy->max < this_dbs_info->cur_policy->cur)
  497. __cpufreq_driver_target(
  498. this_dbs_info->cur_policy,
  499. policy->max, CPUFREQ_RELATION_H);
  500. else if (policy->min > this_dbs_info->cur_policy->cur)
  501. __cpufreq_driver_target(
  502. this_dbs_info->cur_policy,
  503. policy->min, CPUFREQ_RELATION_L);
  504. mutex_unlock(&this_dbs_info->timer_mutex);
  505. break;
  506. }
  507. return 0;
  508. }
  509. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  510. static
  511. #endif
  512. struct cpufreq_governor cpufreq_gov_conservative = {
  513. .name = "conservative",
  514. .governor = cpufreq_governor_dbs,
  515. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  516. .owner = THIS_MODULE,
  517. };
  518. static int __init cpufreq_gov_dbs_init(void)
  519. {
  520. int err;
  521. kconservative_wq = create_workqueue("kconservative");
  522. if (!kconservative_wq) {
  523. printk(KERN_ERR "Creation of kconservative failed\n");
  524. return -EFAULT;
  525. }
  526. err = cpufreq_register_governor(&cpufreq_gov_conservative);
  527. if (err)
  528. destroy_workqueue(kconservative_wq);
  529. return err;
  530. }
  531. static void __exit cpufreq_gov_dbs_exit(void)
  532. {
  533. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  534. destroy_workqueue(kconservative_wq);
  535. }
  536. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  537. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  538. "Low Latency Frequency Transition capable processors "
  539. "optimised for use in a battery environment");
  540. MODULE_LICENSE("GPL");
  541. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  542. fs_initcall(cpufreq_gov_dbs_init);
  543. #else
  544. module_init(cpufreq_gov_dbs_init);
  545. #endif
  546. module_exit(cpufreq_gov_dbs_exit);