enlighten.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <linux/mm.h>
  26. #include <linux/page-flags.h>
  27. #include <linux/highmem.h>
  28. #include <linux/console.h>
  29. #include <xen/interface/xen.h>
  30. #include <xen/interface/version.h>
  31. #include <xen/interface/physdev.h>
  32. #include <xen/interface/vcpu.h>
  33. #include <xen/features.h>
  34. #include <xen/page.h>
  35. #include <xen/hvc-console.h>
  36. #include <asm/paravirt.h>
  37. #include <asm/apic.h>
  38. #include <asm/page.h>
  39. #include <asm/xen/hypercall.h>
  40. #include <asm/xen/hypervisor.h>
  41. #include <asm/fixmap.h>
  42. #include <asm/processor.h>
  43. #include <asm/proto.h>
  44. #include <asm/msr-index.h>
  45. #include <asm/traps.h>
  46. #include <asm/setup.h>
  47. #include <asm/desc.h>
  48. #include <asm/pgtable.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/reboot.h>
  51. #include <asm/stackprotector.h>
  52. #include "xen-ops.h"
  53. #include "mmu.h"
  54. #include "multicalls.h"
  55. EXPORT_SYMBOL_GPL(hypercall_page);
  56. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  57. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  58. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  59. EXPORT_SYMBOL_GPL(xen_domain_type);
  60. struct start_info *xen_start_info;
  61. EXPORT_SYMBOL_GPL(xen_start_info);
  62. struct shared_info xen_dummy_shared_info;
  63. void *xen_initial_gdt;
  64. /*
  65. * Point at some empty memory to start with. We map the real shared_info
  66. * page as soon as fixmap is up and running.
  67. */
  68. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  69. /*
  70. * Flag to determine whether vcpu info placement is available on all
  71. * VCPUs. We assume it is to start with, and then set it to zero on
  72. * the first failure. This is because it can succeed on some VCPUs
  73. * and not others, since it can involve hypervisor memory allocation,
  74. * or because the guest failed to guarantee all the appropriate
  75. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  76. *
  77. * Note that any particular CPU may be using a placed vcpu structure,
  78. * but we can only optimise if the all are.
  79. *
  80. * 0: not available, 1: available
  81. */
  82. static int have_vcpu_info_placement = 1;
  83. static void xen_vcpu_setup(int cpu)
  84. {
  85. struct vcpu_register_vcpu_info info;
  86. int err;
  87. struct vcpu_info *vcpup;
  88. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  89. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  90. if (!have_vcpu_info_placement)
  91. return; /* already tested, not available */
  92. vcpup = &per_cpu(xen_vcpu_info, cpu);
  93. info.mfn = arbitrary_virt_to_mfn(vcpup);
  94. info.offset = offset_in_page(vcpup);
  95. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  96. cpu, vcpup, info.mfn, info.offset);
  97. /* Check to see if the hypervisor will put the vcpu_info
  98. structure where we want it, which allows direct access via
  99. a percpu-variable. */
  100. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  101. if (err) {
  102. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  103. have_vcpu_info_placement = 0;
  104. } else {
  105. /* This cpu is using the registered vcpu info, even if
  106. later ones fail to. */
  107. per_cpu(xen_vcpu, cpu) = vcpup;
  108. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  109. cpu, vcpup);
  110. }
  111. }
  112. /*
  113. * On restore, set the vcpu placement up again.
  114. * If it fails, then we're in a bad state, since
  115. * we can't back out from using it...
  116. */
  117. void xen_vcpu_restore(void)
  118. {
  119. if (have_vcpu_info_placement) {
  120. int cpu;
  121. for_each_online_cpu(cpu) {
  122. bool other_cpu = (cpu != smp_processor_id());
  123. if (other_cpu &&
  124. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  125. BUG();
  126. xen_vcpu_setup(cpu);
  127. if (other_cpu &&
  128. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  129. BUG();
  130. }
  131. BUG_ON(!have_vcpu_info_placement);
  132. }
  133. }
  134. static void __init xen_banner(void)
  135. {
  136. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  137. struct xen_extraversion extra;
  138. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  139. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  140. pv_info.name);
  141. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  142. version >> 16, version & 0xffff, extra.extraversion,
  143. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  144. }
  145. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  146. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  147. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  148. unsigned int *cx, unsigned int *dx)
  149. {
  150. unsigned maskecx = ~0;
  151. unsigned maskedx = ~0;
  152. /*
  153. * Mask out inconvenient features, to try and disable as many
  154. * unsupported kernel subsystems as possible.
  155. */
  156. if (*ax == 1) {
  157. maskecx = cpuid_leaf1_ecx_mask;
  158. maskedx = cpuid_leaf1_edx_mask;
  159. }
  160. asm(XEN_EMULATE_PREFIX "cpuid"
  161. : "=a" (*ax),
  162. "=b" (*bx),
  163. "=c" (*cx),
  164. "=d" (*dx)
  165. : "0" (*ax), "2" (*cx));
  166. *cx &= maskecx;
  167. *dx &= maskedx;
  168. }
  169. static __init void xen_init_cpuid_mask(void)
  170. {
  171. unsigned int ax, bx, cx, dx;
  172. cpuid_leaf1_edx_mask =
  173. ~((1 << X86_FEATURE_MCE) | /* disable MCE */
  174. (1 << X86_FEATURE_MCA) | /* disable MCA */
  175. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  176. if (!xen_initial_domain())
  177. cpuid_leaf1_edx_mask &=
  178. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  179. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  180. ax = 1;
  181. cx = 0;
  182. xen_cpuid(&ax, &bx, &cx, &dx);
  183. /* cpuid claims we support xsave; try enabling it to see what happens */
  184. if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
  185. unsigned long cr4;
  186. set_in_cr4(X86_CR4_OSXSAVE);
  187. cr4 = read_cr4();
  188. if ((cr4 & X86_CR4_OSXSAVE) == 0)
  189. cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
  190. clear_in_cr4(X86_CR4_OSXSAVE);
  191. }
  192. }
  193. static void xen_set_debugreg(int reg, unsigned long val)
  194. {
  195. HYPERVISOR_set_debugreg(reg, val);
  196. }
  197. static unsigned long xen_get_debugreg(int reg)
  198. {
  199. return HYPERVISOR_get_debugreg(reg);
  200. }
  201. static void xen_end_context_switch(struct task_struct *next)
  202. {
  203. xen_mc_flush();
  204. paravirt_end_context_switch(next);
  205. }
  206. static unsigned long xen_store_tr(void)
  207. {
  208. return 0;
  209. }
  210. /*
  211. * Set the page permissions for a particular virtual address. If the
  212. * address is a vmalloc mapping (or other non-linear mapping), then
  213. * find the linear mapping of the page and also set its protections to
  214. * match.
  215. */
  216. static void set_aliased_prot(void *v, pgprot_t prot)
  217. {
  218. int level;
  219. pte_t *ptep;
  220. pte_t pte;
  221. unsigned long pfn;
  222. struct page *page;
  223. ptep = lookup_address((unsigned long)v, &level);
  224. BUG_ON(ptep == NULL);
  225. pfn = pte_pfn(*ptep);
  226. page = pfn_to_page(pfn);
  227. pte = pfn_pte(pfn, prot);
  228. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  229. BUG();
  230. if (!PageHighMem(page)) {
  231. void *av = __va(PFN_PHYS(pfn));
  232. if (av != v)
  233. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  234. BUG();
  235. } else
  236. kmap_flush_unused();
  237. }
  238. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  239. {
  240. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  241. int i;
  242. for(i = 0; i < entries; i += entries_per_page)
  243. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  244. }
  245. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  246. {
  247. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  248. int i;
  249. for(i = 0; i < entries; i += entries_per_page)
  250. set_aliased_prot(ldt + i, PAGE_KERNEL);
  251. }
  252. static void xen_set_ldt(const void *addr, unsigned entries)
  253. {
  254. struct mmuext_op *op;
  255. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  256. op = mcs.args;
  257. op->cmd = MMUEXT_SET_LDT;
  258. op->arg1.linear_addr = (unsigned long)addr;
  259. op->arg2.nr_ents = entries;
  260. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  261. xen_mc_issue(PARAVIRT_LAZY_CPU);
  262. }
  263. static void xen_load_gdt(const struct desc_ptr *dtr)
  264. {
  265. unsigned long va = dtr->address;
  266. unsigned int size = dtr->size + 1;
  267. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  268. unsigned long frames[pages];
  269. int f;
  270. /*
  271. * A GDT can be up to 64k in size, which corresponds to 8192
  272. * 8-byte entries, or 16 4k pages..
  273. */
  274. BUG_ON(size > 65536);
  275. BUG_ON(va & ~PAGE_MASK);
  276. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  277. int level;
  278. pte_t *ptep;
  279. unsigned long pfn, mfn;
  280. void *virt;
  281. /*
  282. * The GDT is per-cpu and is in the percpu data area.
  283. * That can be virtually mapped, so we need to do a
  284. * page-walk to get the underlying MFN for the
  285. * hypercall. The page can also be in the kernel's
  286. * linear range, so we need to RO that mapping too.
  287. */
  288. ptep = lookup_address(va, &level);
  289. BUG_ON(ptep == NULL);
  290. pfn = pte_pfn(*ptep);
  291. mfn = pfn_to_mfn(pfn);
  292. virt = __va(PFN_PHYS(pfn));
  293. frames[f] = mfn;
  294. make_lowmem_page_readonly((void *)va);
  295. make_lowmem_page_readonly(virt);
  296. }
  297. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  298. BUG();
  299. }
  300. /*
  301. * load_gdt for early boot, when the gdt is only mapped once
  302. */
  303. static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
  304. {
  305. unsigned long va = dtr->address;
  306. unsigned int size = dtr->size + 1;
  307. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  308. unsigned long frames[pages];
  309. int f;
  310. /*
  311. * A GDT can be up to 64k in size, which corresponds to 8192
  312. * 8-byte entries, or 16 4k pages..
  313. */
  314. BUG_ON(size > 65536);
  315. BUG_ON(va & ~PAGE_MASK);
  316. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  317. pte_t pte;
  318. unsigned long pfn, mfn;
  319. pfn = virt_to_pfn(va);
  320. mfn = pfn_to_mfn(pfn);
  321. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  322. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  323. BUG();
  324. frames[f] = mfn;
  325. }
  326. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  327. BUG();
  328. }
  329. static void load_TLS_descriptor(struct thread_struct *t,
  330. unsigned int cpu, unsigned int i)
  331. {
  332. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  333. xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  334. struct multicall_space mc = __xen_mc_entry(0);
  335. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  336. }
  337. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  338. {
  339. /*
  340. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  341. * and lazy gs handling is enabled, it means we're in a
  342. * context switch, and %gs has just been saved. This means we
  343. * can zero it out to prevent faults on exit from the
  344. * hypervisor if the next process has no %gs. Either way, it
  345. * has been saved, and the new value will get loaded properly.
  346. * This will go away as soon as Xen has been modified to not
  347. * save/restore %gs for normal hypercalls.
  348. *
  349. * On x86_64, this hack is not used for %gs, because gs points
  350. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  351. * must not zero %gs on x86_64
  352. *
  353. * For x86_64, we need to zero %fs, otherwise we may get an
  354. * exception between the new %fs descriptor being loaded and
  355. * %fs being effectively cleared at __switch_to().
  356. */
  357. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  358. #ifdef CONFIG_X86_32
  359. lazy_load_gs(0);
  360. #else
  361. loadsegment(fs, 0);
  362. #endif
  363. }
  364. xen_mc_batch();
  365. load_TLS_descriptor(t, cpu, 0);
  366. load_TLS_descriptor(t, cpu, 1);
  367. load_TLS_descriptor(t, cpu, 2);
  368. xen_mc_issue(PARAVIRT_LAZY_CPU);
  369. }
  370. #ifdef CONFIG_X86_64
  371. static void xen_load_gs_index(unsigned int idx)
  372. {
  373. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  374. BUG();
  375. }
  376. #endif
  377. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  378. const void *ptr)
  379. {
  380. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  381. u64 entry = *(u64 *)ptr;
  382. preempt_disable();
  383. xen_mc_flush();
  384. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  385. BUG();
  386. preempt_enable();
  387. }
  388. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  389. struct trap_info *info)
  390. {
  391. unsigned long addr;
  392. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  393. return 0;
  394. info->vector = vector;
  395. addr = gate_offset(*val);
  396. #ifdef CONFIG_X86_64
  397. /*
  398. * Look for known traps using IST, and substitute them
  399. * appropriately. The debugger ones are the only ones we care
  400. * about. Xen will handle faults like double_fault and
  401. * machine_check, so we should never see them. Warn if
  402. * there's an unexpected IST-using fault handler.
  403. */
  404. if (addr == (unsigned long)debug)
  405. addr = (unsigned long)xen_debug;
  406. else if (addr == (unsigned long)int3)
  407. addr = (unsigned long)xen_int3;
  408. else if (addr == (unsigned long)stack_segment)
  409. addr = (unsigned long)xen_stack_segment;
  410. else if (addr == (unsigned long)double_fault ||
  411. addr == (unsigned long)nmi) {
  412. /* Don't need to handle these */
  413. return 0;
  414. #ifdef CONFIG_X86_MCE
  415. } else if (addr == (unsigned long)machine_check) {
  416. return 0;
  417. #endif
  418. } else {
  419. /* Some other trap using IST? */
  420. if (WARN_ON(val->ist != 0))
  421. return 0;
  422. }
  423. #endif /* CONFIG_X86_64 */
  424. info->address = addr;
  425. info->cs = gate_segment(*val);
  426. info->flags = val->dpl;
  427. /* interrupt gates clear IF */
  428. if (val->type == GATE_INTERRUPT)
  429. info->flags |= 1 << 2;
  430. return 1;
  431. }
  432. /* Locations of each CPU's IDT */
  433. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  434. /* Set an IDT entry. If the entry is part of the current IDT, then
  435. also update Xen. */
  436. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  437. {
  438. unsigned long p = (unsigned long)&dt[entrynum];
  439. unsigned long start, end;
  440. preempt_disable();
  441. start = __get_cpu_var(idt_desc).address;
  442. end = start + __get_cpu_var(idt_desc).size + 1;
  443. xen_mc_flush();
  444. native_write_idt_entry(dt, entrynum, g);
  445. if (p >= start && (p + 8) <= end) {
  446. struct trap_info info[2];
  447. info[1].address = 0;
  448. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  449. if (HYPERVISOR_set_trap_table(info))
  450. BUG();
  451. }
  452. preempt_enable();
  453. }
  454. static void xen_convert_trap_info(const struct desc_ptr *desc,
  455. struct trap_info *traps)
  456. {
  457. unsigned in, out, count;
  458. count = (desc->size+1) / sizeof(gate_desc);
  459. BUG_ON(count > 256);
  460. for (in = out = 0; in < count; in++) {
  461. gate_desc *entry = (gate_desc*)(desc->address) + in;
  462. if (cvt_gate_to_trap(in, entry, &traps[out]))
  463. out++;
  464. }
  465. traps[out].address = 0;
  466. }
  467. void xen_copy_trap_info(struct trap_info *traps)
  468. {
  469. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  470. xen_convert_trap_info(desc, traps);
  471. }
  472. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  473. hold a spinlock to protect the static traps[] array (static because
  474. it avoids allocation, and saves stack space). */
  475. static void xen_load_idt(const struct desc_ptr *desc)
  476. {
  477. static DEFINE_SPINLOCK(lock);
  478. static struct trap_info traps[257];
  479. spin_lock(&lock);
  480. __get_cpu_var(idt_desc) = *desc;
  481. xen_convert_trap_info(desc, traps);
  482. xen_mc_flush();
  483. if (HYPERVISOR_set_trap_table(traps))
  484. BUG();
  485. spin_unlock(&lock);
  486. }
  487. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  488. they're handled differently. */
  489. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  490. const void *desc, int type)
  491. {
  492. preempt_disable();
  493. switch (type) {
  494. case DESC_LDT:
  495. case DESC_TSS:
  496. /* ignore */
  497. break;
  498. default: {
  499. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  500. xen_mc_flush();
  501. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  502. BUG();
  503. }
  504. }
  505. preempt_enable();
  506. }
  507. /*
  508. * Version of write_gdt_entry for use at early boot-time needed to
  509. * update an entry as simply as possible.
  510. */
  511. static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  512. const void *desc, int type)
  513. {
  514. switch (type) {
  515. case DESC_LDT:
  516. case DESC_TSS:
  517. /* ignore */
  518. break;
  519. default: {
  520. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  521. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  522. dt[entry] = *(struct desc_struct *)desc;
  523. }
  524. }
  525. }
  526. static void xen_load_sp0(struct tss_struct *tss,
  527. struct thread_struct *thread)
  528. {
  529. struct multicall_space mcs = xen_mc_entry(0);
  530. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  531. xen_mc_issue(PARAVIRT_LAZY_CPU);
  532. }
  533. static void xen_set_iopl_mask(unsigned mask)
  534. {
  535. struct physdev_set_iopl set_iopl;
  536. /* Force the change at ring 0. */
  537. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  538. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  539. }
  540. static void xen_io_delay(void)
  541. {
  542. }
  543. #ifdef CONFIG_X86_LOCAL_APIC
  544. static u32 xen_apic_read(u32 reg)
  545. {
  546. return 0;
  547. }
  548. static void xen_apic_write(u32 reg, u32 val)
  549. {
  550. /* Warn to see if there's any stray references */
  551. WARN_ON(1);
  552. }
  553. static u64 xen_apic_icr_read(void)
  554. {
  555. return 0;
  556. }
  557. static void xen_apic_icr_write(u32 low, u32 id)
  558. {
  559. /* Warn to see if there's any stray references */
  560. WARN_ON(1);
  561. }
  562. static void xen_apic_wait_icr_idle(void)
  563. {
  564. return;
  565. }
  566. static u32 xen_safe_apic_wait_icr_idle(void)
  567. {
  568. return 0;
  569. }
  570. static void set_xen_basic_apic_ops(void)
  571. {
  572. apic->read = xen_apic_read;
  573. apic->write = xen_apic_write;
  574. apic->icr_read = xen_apic_icr_read;
  575. apic->icr_write = xen_apic_icr_write;
  576. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  577. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  578. }
  579. #endif
  580. static void xen_clts(void)
  581. {
  582. struct multicall_space mcs;
  583. mcs = xen_mc_entry(0);
  584. MULTI_fpu_taskswitch(mcs.mc, 0);
  585. xen_mc_issue(PARAVIRT_LAZY_CPU);
  586. }
  587. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  588. static unsigned long xen_read_cr0(void)
  589. {
  590. unsigned long cr0 = percpu_read(xen_cr0_value);
  591. if (unlikely(cr0 == 0)) {
  592. cr0 = native_read_cr0();
  593. percpu_write(xen_cr0_value, cr0);
  594. }
  595. return cr0;
  596. }
  597. static void xen_write_cr0(unsigned long cr0)
  598. {
  599. struct multicall_space mcs;
  600. percpu_write(xen_cr0_value, cr0);
  601. /* Only pay attention to cr0.TS; everything else is
  602. ignored. */
  603. mcs = xen_mc_entry(0);
  604. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  605. xen_mc_issue(PARAVIRT_LAZY_CPU);
  606. }
  607. static void xen_write_cr4(unsigned long cr4)
  608. {
  609. cr4 &= ~X86_CR4_PGE;
  610. cr4 &= ~X86_CR4_PSE;
  611. native_write_cr4(cr4);
  612. }
  613. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  614. {
  615. int ret;
  616. ret = 0;
  617. switch (msr) {
  618. #ifdef CONFIG_X86_64
  619. unsigned which;
  620. u64 base;
  621. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  622. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  623. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  624. set:
  625. base = ((u64)high << 32) | low;
  626. if (HYPERVISOR_set_segment_base(which, base) != 0)
  627. ret = -EIO;
  628. break;
  629. #endif
  630. case MSR_STAR:
  631. case MSR_CSTAR:
  632. case MSR_LSTAR:
  633. case MSR_SYSCALL_MASK:
  634. case MSR_IA32_SYSENTER_CS:
  635. case MSR_IA32_SYSENTER_ESP:
  636. case MSR_IA32_SYSENTER_EIP:
  637. /* Fast syscall setup is all done in hypercalls, so
  638. these are all ignored. Stub them out here to stop
  639. Xen console noise. */
  640. break;
  641. default:
  642. ret = native_write_msr_safe(msr, low, high);
  643. }
  644. return ret;
  645. }
  646. void xen_setup_shared_info(void)
  647. {
  648. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  649. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  650. xen_start_info->shared_info);
  651. HYPERVISOR_shared_info =
  652. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  653. } else
  654. HYPERVISOR_shared_info =
  655. (struct shared_info *)__va(xen_start_info->shared_info);
  656. #ifndef CONFIG_SMP
  657. /* In UP this is as good a place as any to set up shared info */
  658. xen_setup_vcpu_info_placement();
  659. #endif
  660. xen_setup_mfn_list_list();
  661. }
  662. /* This is called once we have the cpu_possible_map */
  663. void xen_setup_vcpu_info_placement(void)
  664. {
  665. int cpu;
  666. for_each_possible_cpu(cpu)
  667. xen_vcpu_setup(cpu);
  668. /* xen_vcpu_setup managed to place the vcpu_info within the
  669. percpu area for all cpus, so make use of it */
  670. if (have_vcpu_info_placement) {
  671. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  672. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  673. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  674. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  675. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  676. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  677. }
  678. }
  679. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  680. unsigned long addr, unsigned len)
  681. {
  682. char *start, *end, *reloc;
  683. unsigned ret;
  684. start = end = reloc = NULL;
  685. #define SITE(op, x) \
  686. case PARAVIRT_PATCH(op.x): \
  687. if (have_vcpu_info_placement) { \
  688. start = (char *)xen_##x##_direct; \
  689. end = xen_##x##_direct_end; \
  690. reloc = xen_##x##_direct_reloc; \
  691. } \
  692. goto patch_site
  693. switch (type) {
  694. SITE(pv_irq_ops, irq_enable);
  695. SITE(pv_irq_ops, irq_disable);
  696. SITE(pv_irq_ops, save_fl);
  697. SITE(pv_irq_ops, restore_fl);
  698. #undef SITE
  699. patch_site:
  700. if (start == NULL || (end-start) > len)
  701. goto default_patch;
  702. ret = paravirt_patch_insns(insnbuf, len, start, end);
  703. /* Note: because reloc is assigned from something that
  704. appears to be an array, gcc assumes it's non-null,
  705. but doesn't know its relationship with start and
  706. end. */
  707. if (reloc > start && reloc < end) {
  708. int reloc_off = reloc - start;
  709. long *relocp = (long *)(insnbuf + reloc_off);
  710. long delta = start - (char *)addr;
  711. *relocp += delta;
  712. }
  713. break;
  714. default_patch:
  715. default:
  716. ret = paravirt_patch_default(type, clobbers, insnbuf,
  717. addr, len);
  718. break;
  719. }
  720. return ret;
  721. }
  722. static const struct pv_info xen_info __initdata = {
  723. .paravirt_enabled = 1,
  724. .shared_kernel_pmd = 0,
  725. .name = "Xen",
  726. };
  727. static const struct pv_init_ops xen_init_ops __initdata = {
  728. .patch = xen_patch,
  729. };
  730. static const struct pv_time_ops xen_time_ops __initdata = {
  731. .sched_clock = xen_sched_clock,
  732. };
  733. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  734. .cpuid = xen_cpuid,
  735. .set_debugreg = xen_set_debugreg,
  736. .get_debugreg = xen_get_debugreg,
  737. .clts = xen_clts,
  738. .read_cr0 = xen_read_cr0,
  739. .write_cr0 = xen_write_cr0,
  740. .read_cr4 = native_read_cr4,
  741. .read_cr4_safe = native_read_cr4_safe,
  742. .write_cr4 = xen_write_cr4,
  743. .wbinvd = native_wbinvd,
  744. .read_msr = native_read_msr_safe,
  745. .write_msr = xen_write_msr_safe,
  746. .read_tsc = native_read_tsc,
  747. .read_pmc = native_read_pmc,
  748. .iret = xen_iret,
  749. .irq_enable_sysexit = xen_sysexit,
  750. #ifdef CONFIG_X86_64
  751. .usergs_sysret32 = xen_sysret32,
  752. .usergs_sysret64 = xen_sysret64,
  753. #endif
  754. .load_tr_desc = paravirt_nop,
  755. .set_ldt = xen_set_ldt,
  756. .load_gdt = xen_load_gdt,
  757. .load_idt = xen_load_idt,
  758. .load_tls = xen_load_tls,
  759. #ifdef CONFIG_X86_64
  760. .load_gs_index = xen_load_gs_index,
  761. #endif
  762. .alloc_ldt = xen_alloc_ldt,
  763. .free_ldt = xen_free_ldt,
  764. .store_gdt = native_store_gdt,
  765. .store_idt = native_store_idt,
  766. .store_tr = xen_store_tr,
  767. .write_ldt_entry = xen_write_ldt_entry,
  768. .write_gdt_entry = xen_write_gdt_entry,
  769. .write_idt_entry = xen_write_idt_entry,
  770. .load_sp0 = xen_load_sp0,
  771. .set_iopl_mask = xen_set_iopl_mask,
  772. .io_delay = xen_io_delay,
  773. /* Xen takes care of %gs when switching to usermode for us */
  774. .swapgs = paravirt_nop,
  775. .start_context_switch = paravirt_start_context_switch,
  776. .end_context_switch = xen_end_context_switch,
  777. };
  778. static const struct pv_apic_ops xen_apic_ops __initdata = {
  779. #ifdef CONFIG_X86_LOCAL_APIC
  780. .startup_ipi_hook = paravirt_nop,
  781. #endif
  782. };
  783. static void xen_reboot(int reason)
  784. {
  785. struct sched_shutdown r = { .reason = reason };
  786. #ifdef CONFIG_SMP
  787. smp_send_stop();
  788. #endif
  789. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  790. BUG();
  791. }
  792. static void xen_restart(char *msg)
  793. {
  794. xen_reboot(SHUTDOWN_reboot);
  795. }
  796. static void xen_emergency_restart(void)
  797. {
  798. xen_reboot(SHUTDOWN_reboot);
  799. }
  800. static void xen_machine_halt(void)
  801. {
  802. xen_reboot(SHUTDOWN_poweroff);
  803. }
  804. static void xen_crash_shutdown(struct pt_regs *regs)
  805. {
  806. xen_reboot(SHUTDOWN_crash);
  807. }
  808. static const struct machine_ops __initdata xen_machine_ops = {
  809. .restart = xen_restart,
  810. .halt = xen_machine_halt,
  811. .power_off = xen_machine_halt,
  812. .shutdown = xen_machine_halt,
  813. .crash_shutdown = xen_crash_shutdown,
  814. .emergency_restart = xen_emergency_restart,
  815. };
  816. /*
  817. * Set up the GDT and segment registers for -fstack-protector. Until
  818. * we do this, we have to be careful not to call any stack-protected
  819. * function, which is most of the kernel.
  820. */
  821. static void __init xen_setup_stackprotector(void)
  822. {
  823. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  824. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  825. setup_stack_canary_segment(0);
  826. switch_to_new_gdt(0);
  827. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  828. pv_cpu_ops.load_gdt = xen_load_gdt;
  829. }
  830. /* First C function to be called on Xen boot */
  831. asmlinkage void __init xen_start_kernel(void)
  832. {
  833. pgd_t *pgd;
  834. if (!xen_start_info)
  835. return;
  836. xen_domain_type = XEN_PV_DOMAIN;
  837. /* Install Xen paravirt ops */
  838. pv_info = xen_info;
  839. pv_init_ops = xen_init_ops;
  840. pv_time_ops = xen_time_ops;
  841. pv_cpu_ops = xen_cpu_ops;
  842. pv_apic_ops = xen_apic_ops;
  843. x86_init.resources.memory_setup = xen_memory_setup;
  844. x86_init.oem.arch_setup = xen_arch_setup;
  845. x86_init.oem.banner = xen_banner;
  846. x86_init.timers.timer_init = xen_time_init;
  847. x86_init.timers.setup_percpu_clockev = x86_init_noop;
  848. x86_cpuinit.setup_percpu_clockev = x86_init_noop;
  849. x86_platform.calibrate_tsc = xen_tsc_khz;
  850. x86_platform.get_wallclock = xen_get_wallclock;
  851. x86_platform.set_wallclock = xen_set_wallclock;
  852. /*
  853. * Set up some pagetable state before starting to set any ptes.
  854. */
  855. /* Prevent unwanted bits from being set in PTEs. */
  856. __supported_pte_mask &= ~_PAGE_GLOBAL;
  857. if (!xen_initial_domain())
  858. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  859. __supported_pte_mask |= _PAGE_IOMAP;
  860. xen_setup_features();
  861. /* Get mfn list */
  862. if (!xen_feature(XENFEAT_auto_translated_physmap))
  863. xen_build_dynamic_phys_to_machine();
  864. /*
  865. * Set up kernel GDT and segment registers, mainly so that
  866. * -fstack-protector code can be executed.
  867. */
  868. xen_setup_stackprotector();
  869. xen_init_mmu_ops();
  870. xen_init_irq_ops();
  871. xen_init_cpuid_mask();
  872. #ifdef CONFIG_X86_LOCAL_APIC
  873. /*
  874. * set up the basic apic ops.
  875. */
  876. set_xen_basic_apic_ops();
  877. #endif
  878. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  879. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  880. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  881. }
  882. machine_ops = xen_machine_ops;
  883. /*
  884. * The only reliable way to retain the initial address of the
  885. * percpu gdt_page is to remember it here, so we can go and
  886. * mark it RW later, when the initial percpu area is freed.
  887. */
  888. xen_initial_gdt = &per_cpu(gdt_page, 0);
  889. xen_smp_init();
  890. pgd = (pgd_t *)xen_start_info->pt_base;
  891. #ifdef CONFIG_X86_64
  892. /* Work out if we support NX */
  893. check_efer();
  894. #endif
  895. /* Don't do the full vcpu_info placement stuff until we have a
  896. possible map and a non-dummy shared_info. */
  897. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  898. local_irq_disable();
  899. early_boot_irqs_off();
  900. xen_raw_console_write("mapping kernel into physical memory\n");
  901. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  902. init_mm.pgd = pgd;
  903. /* keep using Xen gdt for now; no urgent need to change it */
  904. pv_info.kernel_rpl = 1;
  905. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  906. pv_info.kernel_rpl = 0;
  907. /* set the limit of our address space */
  908. xen_reserve_top();
  909. #ifdef CONFIG_X86_32
  910. /* set up basic CPUID stuff */
  911. cpu_detect(&new_cpu_data);
  912. new_cpu_data.hard_math = 1;
  913. new_cpu_data.wp_works_ok = 1;
  914. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  915. #endif
  916. /* Poke various useful things into boot_params */
  917. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  918. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  919. ? __pa(xen_start_info->mod_start) : 0;
  920. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  921. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  922. if (!xen_initial_domain()) {
  923. add_preferred_console("xenboot", 0, NULL);
  924. add_preferred_console("tty", 0, NULL);
  925. add_preferred_console("hvc", 0, NULL);
  926. }
  927. xen_raw_console_write("about to get started...\n");
  928. /* Start the world */
  929. #ifdef CONFIG_X86_32
  930. i386_start_kernel();
  931. #else
  932. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  933. #endif
  934. }