kvmclock.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. /* KVM paravirtual clock driver. A clocksource implementation
  2. Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3. This program is free software; you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation; either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program; if not, write to the Free Software
  13. Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  14. */
  15. #include <linux/clocksource.h>
  16. #include <linux/kvm_para.h>
  17. #include <asm/pvclock.h>
  18. #include <asm/msr.h>
  19. #include <asm/apic.h>
  20. #include <linux/percpu.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/reboot.h>
  23. #define KVM_SCALE 22
  24. static int kvmclock = 1;
  25. static int parse_no_kvmclock(char *arg)
  26. {
  27. kvmclock = 0;
  28. return 0;
  29. }
  30. early_param("no-kvmclock", parse_no_kvmclock);
  31. /* The hypervisor will put information about time periodically here */
  32. static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
  33. static struct pvclock_wall_clock wall_clock;
  34. /*
  35. * The wallclock is the time of day when we booted. Since then, some time may
  36. * have elapsed since the hypervisor wrote the data. So we try to account for
  37. * that with system time
  38. */
  39. static unsigned long kvm_get_wallclock(void)
  40. {
  41. struct pvclock_vcpu_time_info *vcpu_time;
  42. struct timespec ts;
  43. int low, high;
  44. low = (int)__pa_symbol(&wall_clock);
  45. high = ((u64)__pa_symbol(&wall_clock) >> 32);
  46. native_write_msr(MSR_KVM_WALL_CLOCK, low, high);
  47. vcpu_time = &get_cpu_var(hv_clock);
  48. pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
  49. put_cpu_var(hv_clock);
  50. return ts.tv_sec;
  51. }
  52. static int kvm_set_wallclock(unsigned long now)
  53. {
  54. return -1;
  55. }
  56. static cycle_t kvm_clock_read(void)
  57. {
  58. struct pvclock_vcpu_time_info *src;
  59. cycle_t ret;
  60. src = &get_cpu_var(hv_clock);
  61. ret = pvclock_clocksource_read(src);
  62. put_cpu_var(hv_clock);
  63. return ret;
  64. }
  65. static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  66. {
  67. return kvm_clock_read();
  68. }
  69. /*
  70. * If we don't do that, there is the possibility that the guest
  71. * will calibrate under heavy load - thus, getting a lower lpj -
  72. * and execute the delays themselves without load. This is wrong,
  73. * because no delay loop can finish beforehand.
  74. * Any heuristics is subject to fail, because ultimately, a large
  75. * poll of guests can be running and trouble each other. So we preset
  76. * lpj here
  77. */
  78. static unsigned long kvm_get_tsc_khz(void)
  79. {
  80. struct pvclock_vcpu_time_info *src;
  81. src = &per_cpu(hv_clock, 0);
  82. return pvclock_tsc_khz(src);
  83. }
  84. static void kvm_get_preset_lpj(void)
  85. {
  86. unsigned long khz;
  87. u64 lpj;
  88. khz = kvm_get_tsc_khz();
  89. lpj = ((u64)khz * 1000);
  90. do_div(lpj, HZ);
  91. preset_lpj = lpj;
  92. }
  93. static struct clocksource kvm_clock = {
  94. .name = "kvm-clock",
  95. .read = kvm_clock_get_cycles,
  96. .rating = 400,
  97. .mask = CLOCKSOURCE_MASK(64),
  98. .mult = 1 << KVM_SCALE,
  99. .shift = KVM_SCALE,
  100. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  101. };
  102. static int kvm_register_clock(char *txt)
  103. {
  104. int cpu = smp_processor_id();
  105. int low, high;
  106. low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
  107. high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
  108. printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
  109. cpu, high, low, txt);
  110. return native_write_msr_safe(MSR_KVM_SYSTEM_TIME, low, high);
  111. }
  112. #ifdef CONFIG_X86_LOCAL_APIC
  113. static void __cpuinit kvm_setup_secondary_clock(void)
  114. {
  115. /*
  116. * Now that the first cpu already had this clocksource initialized,
  117. * we shouldn't fail.
  118. */
  119. WARN_ON(kvm_register_clock("secondary cpu clock"));
  120. /* ok, done with our trickery, call native */
  121. setup_secondary_APIC_clock();
  122. }
  123. #endif
  124. #ifdef CONFIG_SMP
  125. static void __init kvm_smp_prepare_boot_cpu(void)
  126. {
  127. WARN_ON(kvm_register_clock("primary cpu clock"));
  128. native_smp_prepare_boot_cpu();
  129. }
  130. #endif
  131. /*
  132. * After the clock is registered, the host will keep writing to the
  133. * registered memory location. If the guest happens to shutdown, this memory
  134. * won't be valid. In cases like kexec, in which you install a new kernel, this
  135. * means a random memory location will be kept being written. So before any
  136. * kind of shutdown from our side, we unregister the clock by writting anything
  137. * that does not have the 'enable' bit set in the msr
  138. */
  139. #ifdef CONFIG_KEXEC
  140. static void kvm_crash_shutdown(struct pt_regs *regs)
  141. {
  142. native_write_msr_safe(MSR_KVM_SYSTEM_TIME, 0, 0);
  143. native_machine_crash_shutdown(regs);
  144. }
  145. #endif
  146. static void kvm_shutdown(void)
  147. {
  148. native_write_msr_safe(MSR_KVM_SYSTEM_TIME, 0, 0);
  149. native_machine_shutdown();
  150. }
  151. void __init kvmclock_init(void)
  152. {
  153. if (!kvm_para_available())
  154. return;
  155. if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
  156. if (kvm_register_clock("boot clock"))
  157. return;
  158. pv_time_ops.sched_clock = kvm_clock_read;
  159. x86_platform.calibrate_tsc = kvm_get_tsc_khz;
  160. x86_platform.get_wallclock = kvm_get_wallclock;
  161. x86_platform.set_wallclock = kvm_set_wallclock;
  162. #ifdef CONFIG_X86_LOCAL_APIC
  163. x86_cpuinit.setup_percpu_clockev =
  164. kvm_setup_secondary_clock;
  165. #endif
  166. #ifdef CONFIG_SMP
  167. smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
  168. #endif
  169. machine_ops.shutdown = kvm_shutdown;
  170. #ifdef CONFIG_KEXEC
  171. machine_ops.crash_shutdown = kvm_crash_shutdown;
  172. #endif
  173. kvm_get_preset_lpj();
  174. clocksource_register(&kvm_clock);
  175. pv_info.paravirt_enabled = 1;
  176. pv_info.name = "KVM";
  177. }
  178. }