acpi-cpufreq.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/dmi.h>
  35. #include <trace/events/power.h>
  36. #include <linux/acpi.h>
  37. #include <linux/io.h>
  38. #include <linux/delay.h>
  39. #include <linux/uaccess.h>
  40. #include <acpi/processor.h>
  41. #include <asm/msr.h>
  42. #include <asm/processor.h>
  43. #include <asm/cpufeature.h>
  44. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
  45. "acpi-cpufreq", msg)
  46. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  47. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  48. MODULE_LICENSE("GPL");
  49. enum {
  50. UNDEFINED_CAPABLE = 0,
  51. SYSTEM_INTEL_MSR_CAPABLE,
  52. SYSTEM_IO_CAPABLE,
  53. };
  54. #define INTEL_MSR_RANGE (0xffff)
  55. struct acpi_cpufreq_data {
  56. struct acpi_processor_performance *acpi_data;
  57. struct cpufreq_frequency_table *freq_table;
  58. unsigned int resume;
  59. unsigned int cpu_feature;
  60. };
  61. static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
  62. static DEFINE_PER_CPU(struct aperfmperf, old_perf);
  63. /* acpi_perf_data is a pointer to percpu data. */
  64. static struct acpi_processor_performance *acpi_perf_data;
  65. static struct cpufreq_driver acpi_cpufreq_driver;
  66. static unsigned int acpi_pstate_strict;
  67. static int check_est_cpu(unsigned int cpuid)
  68. {
  69. struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
  70. return cpu_has(cpu, X86_FEATURE_EST);
  71. }
  72. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  73. {
  74. struct acpi_processor_performance *perf;
  75. int i;
  76. perf = data->acpi_data;
  77. for (i = 0; i < perf->state_count; i++) {
  78. if (value == perf->states[i].status)
  79. return data->freq_table[i].frequency;
  80. }
  81. return 0;
  82. }
  83. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  84. {
  85. int i;
  86. struct acpi_processor_performance *perf;
  87. msr &= INTEL_MSR_RANGE;
  88. perf = data->acpi_data;
  89. for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  90. if (msr == perf->states[data->freq_table[i].index].status)
  91. return data->freq_table[i].frequency;
  92. }
  93. return data->freq_table[0].frequency;
  94. }
  95. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  96. {
  97. switch (data->cpu_feature) {
  98. case SYSTEM_INTEL_MSR_CAPABLE:
  99. return extract_msr(val, data);
  100. case SYSTEM_IO_CAPABLE:
  101. return extract_io(val, data);
  102. default:
  103. return 0;
  104. }
  105. }
  106. struct msr_addr {
  107. u32 reg;
  108. };
  109. struct io_addr {
  110. u16 port;
  111. u8 bit_width;
  112. };
  113. struct drv_cmd {
  114. unsigned int type;
  115. const struct cpumask *mask;
  116. union {
  117. struct msr_addr msr;
  118. struct io_addr io;
  119. } addr;
  120. u32 val;
  121. };
  122. /* Called via smp_call_function_single(), on the target CPU */
  123. static void do_drv_read(void *_cmd)
  124. {
  125. struct drv_cmd *cmd = _cmd;
  126. u32 h;
  127. switch (cmd->type) {
  128. case SYSTEM_INTEL_MSR_CAPABLE:
  129. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  130. break;
  131. case SYSTEM_IO_CAPABLE:
  132. acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
  133. &cmd->val,
  134. (u32)cmd->addr.io.bit_width);
  135. break;
  136. default:
  137. break;
  138. }
  139. }
  140. /* Called via smp_call_function_many(), on the target CPUs */
  141. static void do_drv_write(void *_cmd)
  142. {
  143. struct drv_cmd *cmd = _cmd;
  144. u32 lo, hi;
  145. switch (cmd->type) {
  146. case SYSTEM_INTEL_MSR_CAPABLE:
  147. rdmsr(cmd->addr.msr.reg, lo, hi);
  148. lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
  149. wrmsr(cmd->addr.msr.reg, lo, hi);
  150. break;
  151. case SYSTEM_IO_CAPABLE:
  152. acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
  153. cmd->val,
  154. (u32)cmd->addr.io.bit_width);
  155. break;
  156. default:
  157. break;
  158. }
  159. }
  160. static void drv_read(struct drv_cmd *cmd)
  161. {
  162. cmd->val = 0;
  163. smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
  164. }
  165. static void drv_write(struct drv_cmd *cmd)
  166. {
  167. int this_cpu;
  168. this_cpu = get_cpu();
  169. if (cpumask_test_cpu(this_cpu, cmd->mask))
  170. do_drv_write(cmd);
  171. smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
  172. put_cpu();
  173. }
  174. static u32 get_cur_val(const struct cpumask *mask)
  175. {
  176. struct acpi_processor_performance *perf;
  177. struct drv_cmd cmd;
  178. if (unlikely(cpumask_empty(mask)))
  179. return 0;
  180. switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
  181. case SYSTEM_INTEL_MSR_CAPABLE:
  182. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  183. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  184. break;
  185. case SYSTEM_IO_CAPABLE:
  186. cmd.type = SYSTEM_IO_CAPABLE;
  187. perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
  188. cmd.addr.io.port = perf->control_register.address;
  189. cmd.addr.io.bit_width = perf->control_register.bit_width;
  190. break;
  191. default:
  192. return 0;
  193. }
  194. cmd.mask = mask;
  195. drv_read(&cmd);
  196. dprintk("get_cur_val = %u\n", cmd.val);
  197. return cmd.val;
  198. }
  199. /* Called via smp_call_function_single(), on the target CPU */
  200. static void read_measured_perf_ctrs(void *_cur)
  201. {
  202. struct aperfmperf *am = _cur;
  203. get_aperfmperf(am);
  204. }
  205. /*
  206. * Return the measured active (C0) frequency on this CPU since last call
  207. * to this function.
  208. * Input: cpu number
  209. * Return: Average CPU frequency in terms of max frequency (zero on error)
  210. *
  211. * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
  212. * over a period of time, while CPU is in C0 state.
  213. * IA32_MPERF counts at the rate of max advertised frequency
  214. * IA32_APERF counts at the rate of actual CPU frequency
  215. * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
  216. * no meaning should be associated with absolute values of these MSRs.
  217. */
  218. static unsigned int get_measured_perf(struct cpufreq_policy *policy,
  219. unsigned int cpu)
  220. {
  221. struct aperfmperf perf;
  222. unsigned long ratio;
  223. unsigned int retval;
  224. if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
  225. return 0;
  226. ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
  227. per_cpu(old_perf, cpu) = perf;
  228. retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
  229. return retval;
  230. }
  231. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  232. {
  233. struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
  234. unsigned int freq;
  235. unsigned int cached_freq;
  236. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  237. if (unlikely(data == NULL ||
  238. data->acpi_data == NULL || data->freq_table == NULL)) {
  239. return 0;
  240. }
  241. cached_freq = data->freq_table[data->acpi_data->state].frequency;
  242. freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
  243. if (freq != cached_freq) {
  244. /*
  245. * The dreaded BIOS frequency change behind our back.
  246. * Force set the frequency on next target call.
  247. */
  248. data->resume = 1;
  249. }
  250. dprintk("cur freq = %u\n", freq);
  251. return freq;
  252. }
  253. static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
  254. struct acpi_cpufreq_data *data)
  255. {
  256. unsigned int cur_freq;
  257. unsigned int i;
  258. for (i = 0; i < 100; i++) {
  259. cur_freq = extract_freq(get_cur_val(mask), data);
  260. if (cur_freq == freq)
  261. return 1;
  262. udelay(10);
  263. }
  264. return 0;
  265. }
  266. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  267. unsigned int target_freq, unsigned int relation)
  268. {
  269. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  270. struct acpi_processor_performance *perf;
  271. struct cpufreq_freqs freqs;
  272. struct drv_cmd cmd;
  273. unsigned int next_state = 0; /* Index into freq_table */
  274. unsigned int next_perf_state = 0; /* Index into perf table */
  275. unsigned int i;
  276. int result = 0;
  277. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  278. if (unlikely(data == NULL ||
  279. data->acpi_data == NULL || data->freq_table == NULL)) {
  280. return -ENODEV;
  281. }
  282. perf = data->acpi_data;
  283. result = cpufreq_frequency_table_target(policy,
  284. data->freq_table,
  285. target_freq,
  286. relation, &next_state);
  287. if (unlikely(result)) {
  288. result = -ENODEV;
  289. goto out;
  290. }
  291. next_perf_state = data->freq_table[next_state].index;
  292. if (perf->state == next_perf_state) {
  293. if (unlikely(data->resume)) {
  294. dprintk("Called after resume, resetting to P%d\n",
  295. next_perf_state);
  296. data->resume = 0;
  297. } else {
  298. dprintk("Already at target state (P%d)\n",
  299. next_perf_state);
  300. goto out;
  301. }
  302. }
  303. trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
  304. switch (data->cpu_feature) {
  305. case SYSTEM_INTEL_MSR_CAPABLE:
  306. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  307. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  308. cmd.val = (u32) perf->states[next_perf_state].control;
  309. break;
  310. case SYSTEM_IO_CAPABLE:
  311. cmd.type = SYSTEM_IO_CAPABLE;
  312. cmd.addr.io.port = perf->control_register.address;
  313. cmd.addr.io.bit_width = perf->control_register.bit_width;
  314. cmd.val = (u32) perf->states[next_perf_state].control;
  315. break;
  316. default:
  317. result = -ENODEV;
  318. goto out;
  319. }
  320. /* cpufreq holds the hotplug lock, so we are safe from here on */
  321. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  322. cmd.mask = policy->cpus;
  323. else
  324. cmd.mask = cpumask_of(policy->cpu);
  325. freqs.old = perf->states[perf->state].core_frequency * 1000;
  326. freqs.new = data->freq_table[next_state].frequency;
  327. for_each_cpu(i, cmd.mask) {
  328. freqs.cpu = i;
  329. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  330. }
  331. drv_write(&cmd);
  332. if (acpi_pstate_strict) {
  333. if (!check_freqs(cmd.mask, freqs.new, data)) {
  334. dprintk("acpi_cpufreq_target failed (%d)\n",
  335. policy->cpu);
  336. result = -EAGAIN;
  337. goto out;
  338. }
  339. }
  340. for_each_cpu(i, cmd.mask) {
  341. freqs.cpu = i;
  342. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  343. }
  344. perf->state = next_perf_state;
  345. out:
  346. return result;
  347. }
  348. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  349. {
  350. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  351. dprintk("acpi_cpufreq_verify\n");
  352. return cpufreq_frequency_table_verify(policy, data->freq_table);
  353. }
  354. static unsigned long
  355. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  356. {
  357. struct acpi_processor_performance *perf = data->acpi_data;
  358. if (cpu_khz) {
  359. /* search the closest match to cpu_khz */
  360. unsigned int i;
  361. unsigned long freq;
  362. unsigned long freqn = perf->states[0].core_frequency * 1000;
  363. for (i = 0; i < (perf->state_count-1); i++) {
  364. freq = freqn;
  365. freqn = perf->states[i+1].core_frequency * 1000;
  366. if ((2 * cpu_khz) > (freqn + freq)) {
  367. perf->state = i;
  368. return freq;
  369. }
  370. }
  371. perf->state = perf->state_count-1;
  372. return freqn;
  373. } else {
  374. /* assume CPU is at P0... */
  375. perf->state = 0;
  376. return perf->states[0].core_frequency * 1000;
  377. }
  378. }
  379. static void free_acpi_perf_data(void)
  380. {
  381. unsigned int i;
  382. /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
  383. for_each_possible_cpu(i)
  384. free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
  385. ->shared_cpu_map);
  386. free_percpu(acpi_perf_data);
  387. }
  388. /*
  389. * acpi_cpufreq_early_init - initialize ACPI P-States library
  390. *
  391. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  392. * in order to determine correct frequency and voltage pairings. We can
  393. * do _PDC and _PSD and find out the processor dependency for the
  394. * actual init that will happen later...
  395. */
  396. static int __init acpi_cpufreq_early_init(void)
  397. {
  398. unsigned int i;
  399. dprintk("acpi_cpufreq_early_init\n");
  400. acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
  401. if (!acpi_perf_data) {
  402. dprintk("Memory allocation error for acpi_perf_data.\n");
  403. return -ENOMEM;
  404. }
  405. for_each_possible_cpu(i) {
  406. if (!zalloc_cpumask_var_node(
  407. &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
  408. GFP_KERNEL, cpu_to_node(i))) {
  409. /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
  410. free_acpi_perf_data();
  411. return -ENOMEM;
  412. }
  413. }
  414. /* Do initialization in ACPI core */
  415. acpi_processor_preregister_performance(acpi_perf_data);
  416. return 0;
  417. }
  418. #ifdef CONFIG_SMP
  419. /*
  420. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  421. * or do it in BIOS firmware and won't inform about it to OS. If not
  422. * detected, this has a side effect of making CPU run at a different speed
  423. * than OS intended it to run at. Detect it and handle it cleanly.
  424. */
  425. static int bios_with_sw_any_bug;
  426. static int sw_any_bug_found(const struct dmi_system_id *d)
  427. {
  428. bios_with_sw_any_bug = 1;
  429. return 0;
  430. }
  431. static const struct dmi_system_id sw_any_bug_dmi_table[] = {
  432. {
  433. .callback = sw_any_bug_found,
  434. .ident = "Supermicro Server X6DLP",
  435. .matches = {
  436. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  437. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  438. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  439. },
  440. },
  441. { }
  442. };
  443. static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
  444. {
  445. /* http://www.intel.com/Assets/PDF/specupdate/314554.pdf
  446. * AL30: A Machine Check Exception (MCE) Occurring during an
  447. * Enhanced Intel SpeedStep Technology Ratio Change May Cause
  448. * Both Processor Cores to Lock Up when HT is enabled*/
  449. if (c->x86_vendor == X86_VENDOR_INTEL) {
  450. if ((c->x86 == 15) &&
  451. (c->x86_model == 6) &&
  452. (c->x86_mask == 8) && smt_capable())
  453. return -ENODEV;
  454. }
  455. return 0;
  456. }
  457. #endif
  458. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  459. {
  460. unsigned int i;
  461. unsigned int valid_states = 0;
  462. unsigned int cpu = policy->cpu;
  463. struct acpi_cpufreq_data *data;
  464. unsigned int result = 0;
  465. struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
  466. struct acpi_processor_performance *perf;
  467. dprintk("acpi_cpufreq_cpu_init\n");
  468. #ifdef CONFIG_SMP
  469. result = acpi_cpufreq_blacklist(c);
  470. if (result)
  471. return result;
  472. #endif
  473. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  474. if (!data)
  475. return -ENOMEM;
  476. data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
  477. per_cpu(drv_data, cpu) = data;
  478. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
  479. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  480. result = acpi_processor_register_performance(data->acpi_data, cpu);
  481. if (result)
  482. goto err_free;
  483. perf = data->acpi_data;
  484. policy->shared_type = perf->shared_type;
  485. /*
  486. * Will let policy->cpus know about dependency only when software
  487. * coordination is required.
  488. */
  489. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  490. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  491. cpumask_copy(policy->cpus, perf->shared_cpu_map);
  492. }
  493. cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
  494. #ifdef CONFIG_SMP
  495. dmi_check_system(sw_any_bug_dmi_table);
  496. if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
  497. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  498. cpumask_copy(policy->cpus, cpu_core_mask(cpu));
  499. }
  500. #endif
  501. /* capability check */
  502. if (perf->state_count <= 1) {
  503. dprintk("No P-States\n");
  504. result = -ENODEV;
  505. goto err_unreg;
  506. }
  507. if (perf->control_register.space_id != perf->status_register.space_id) {
  508. result = -ENODEV;
  509. goto err_unreg;
  510. }
  511. switch (perf->control_register.space_id) {
  512. case ACPI_ADR_SPACE_SYSTEM_IO:
  513. dprintk("SYSTEM IO addr space\n");
  514. data->cpu_feature = SYSTEM_IO_CAPABLE;
  515. break;
  516. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  517. dprintk("HARDWARE addr space\n");
  518. if (!check_est_cpu(cpu)) {
  519. result = -ENODEV;
  520. goto err_unreg;
  521. }
  522. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  523. break;
  524. default:
  525. dprintk("Unknown addr space %d\n",
  526. (u32) (perf->control_register.space_id));
  527. result = -ENODEV;
  528. goto err_unreg;
  529. }
  530. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  531. (perf->state_count+1), GFP_KERNEL);
  532. if (!data->freq_table) {
  533. result = -ENOMEM;
  534. goto err_unreg;
  535. }
  536. /* detect transition latency */
  537. policy->cpuinfo.transition_latency = 0;
  538. for (i = 0; i < perf->state_count; i++) {
  539. if ((perf->states[i].transition_latency * 1000) >
  540. policy->cpuinfo.transition_latency)
  541. policy->cpuinfo.transition_latency =
  542. perf->states[i].transition_latency * 1000;
  543. }
  544. /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
  545. if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
  546. policy->cpuinfo.transition_latency > 20 * 1000) {
  547. policy->cpuinfo.transition_latency = 20 * 1000;
  548. printk_once(KERN_INFO
  549. "P-state transition latency capped at 20 uS\n");
  550. }
  551. /* table init */
  552. for (i = 0; i < perf->state_count; i++) {
  553. if (i > 0 && perf->states[i].core_frequency >=
  554. data->freq_table[valid_states-1].frequency / 1000)
  555. continue;
  556. data->freq_table[valid_states].index = i;
  557. data->freq_table[valid_states].frequency =
  558. perf->states[i].core_frequency * 1000;
  559. valid_states++;
  560. }
  561. data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
  562. perf->state = 0;
  563. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  564. if (result)
  565. goto err_freqfree;
  566. if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
  567. printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
  568. switch (perf->control_register.space_id) {
  569. case ACPI_ADR_SPACE_SYSTEM_IO:
  570. /* Current speed is unknown and not detectable by IO port */
  571. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  572. break;
  573. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  574. acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
  575. policy->cur = get_cur_freq_on_cpu(cpu);
  576. break;
  577. default:
  578. break;
  579. }
  580. /* notify BIOS that we exist */
  581. acpi_processor_notify_smm(THIS_MODULE);
  582. /* Check for APERF/MPERF support in hardware */
  583. if (cpu_has(c, X86_FEATURE_APERFMPERF))
  584. acpi_cpufreq_driver.getavg = get_measured_perf;
  585. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  586. for (i = 0; i < perf->state_count; i++)
  587. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  588. (i == perf->state ? '*' : ' '), i,
  589. (u32) perf->states[i].core_frequency,
  590. (u32) perf->states[i].power,
  591. (u32) perf->states[i].transition_latency);
  592. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  593. /*
  594. * the first call to ->target() should result in us actually
  595. * writing something to the appropriate registers.
  596. */
  597. data->resume = 1;
  598. return result;
  599. err_freqfree:
  600. kfree(data->freq_table);
  601. err_unreg:
  602. acpi_processor_unregister_performance(perf, cpu);
  603. err_free:
  604. kfree(data);
  605. per_cpu(drv_data, cpu) = NULL;
  606. return result;
  607. }
  608. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  609. {
  610. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  611. dprintk("acpi_cpufreq_cpu_exit\n");
  612. if (data) {
  613. cpufreq_frequency_table_put_attr(policy->cpu);
  614. per_cpu(drv_data, policy->cpu) = NULL;
  615. acpi_processor_unregister_performance(data->acpi_data,
  616. policy->cpu);
  617. kfree(data);
  618. }
  619. return 0;
  620. }
  621. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  622. {
  623. struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
  624. dprintk("acpi_cpufreq_resume\n");
  625. data->resume = 1;
  626. return 0;
  627. }
  628. static struct freq_attr *acpi_cpufreq_attr[] = {
  629. &cpufreq_freq_attr_scaling_available_freqs,
  630. NULL,
  631. };
  632. static struct cpufreq_driver acpi_cpufreq_driver = {
  633. .verify = acpi_cpufreq_verify,
  634. .target = acpi_cpufreq_target,
  635. .init = acpi_cpufreq_cpu_init,
  636. .exit = acpi_cpufreq_cpu_exit,
  637. .resume = acpi_cpufreq_resume,
  638. .name = "acpi-cpufreq",
  639. .owner = THIS_MODULE,
  640. .attr = acpi_cpufreq_attr,
  641. };
  642. static int __init acpi_cpufreq_init(void)
  643. {
  644. int ret;
  645. if (acpi_disabled)
  646. return 0;
  647. dprintk("acpi_cpufreq_init\n");
  648. ret = acpi_cpufreq_early_init();
  649. if (ret)
  650. return ret;
  651. ret = cpufreq_register_driver(&acpi_cpufreq_driver);
  652. if (ret)
  653. free_acpi_perf_data();
  654. return ret;
  655. }
  656. static void __exit acpi_cpufreq_exit(void)
  657. {
  658. dprintk("acpi_cpufreq_exit\n");
  659. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  660. free_percpu(acpi_perf_data);
  661. }
  662. module_param(acpi_pstate_strict, uint, 0644);
  663. MODULE_PARM_DESC(acpi_pstate_strict,
  664. "value 0 or non-zero. non-zero -> strict ACPI checks are "
  665. "performed during frequency changes.");
  666. late_initcall(acpi_cpufreq_init);
  667. module_exit(acpi_cpufreq_exit);
  668. MODULE_ALIAS("acpi");