uv_hub.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef _ASM_X86_UV_UV_HUB_H
  11. #define _ASM_X86_UV_UV_HUB_H
  12. #ifdef CONFIG_X86_64
  13. #include <linux/numa.h>
  14. #include <linux/percpu.h>
  15. #include <linux/timer.h>
  16. #include <linux/io.h>
  17. #include <asm/types.h>
  18. #include <asm/percpu.h>
  19. #include <asm/uv/uv_mmrs.h>
  20. /*
  21. * Addressing Terminology
  22. *
  23. * M - The low M bits of a physical address represent the offset
  24. * into the blade local memory. RAM memory on a blade is physically
  25. * contiguous (although various IO spaces may punch holes in
  26. * it)..
  27. *
  28. * N - Number of bits in the node portion of a socket physical
  29. * address.
  30. *
  31. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  32. * routers always have low bit of 1, C/MBricks have low bit
  33. * equal to 0. Most addressing macros that target UV hub chips
  34. * right shift the NASID by 1 to exclude the always-zero bit.
  35. * NASIDs contain up to 15 bits.
  36. *
  37. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  38. * of nasids.
  39. *
  40. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  41. * of the nasid for socket usage.
  42. *
  43. *
  44. * NumaLink Global Physical Address Format:
  45. * +--------------------------------+---------------------+
  46. * |00..000| GNODE | NodeOffset |
  47. * +--------------------------------+---------------------+
  48. * |<-------53 - M bits --->|<--------M bits ----->
  49. *
  50. * M - number of node offset bits (35 .. 40)
  51. *
  52. *
  53. * Memory/UV-HUB Processor Socket Address Format:
  54. * +----------------+---------------+---------------------+
  55. * |00..000000000000| PNODE | NodeOffset |
  56. * +----------------+---------------+---------------------+
  57. * <--- N bits --->|<--------M bits ----->
  58. *
  59. * M - number of node offset bits (35 .. 40)
  60. * N - number of PNODE bits (0 .. 10)
  61. *
  62. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  63. * The actual values are configuration dependent and are set at
  64. * boot time. M & N values are set by the hardware/BIOS at boot.
  65. *
  66. *
  67. * APICID format
  68. * NOTE!!!!!! This is the current format of the APICID. However, code
  69. * should assume that this will change in the future. Use functions
  70. * in this file for all APICID bit manipulations and conversion.
  71. *
  72. * 1111110000000000
  73. * 5432109876543210
  74. * pppppppppplc0cch
  75. * sssssssssss
  76. *
  77. * p = pnode bits
  78. * l = socket number on board
  79. * c = core
  80. * h = hyperthread
  81. * s = bits that are in the SOCKET_ID CSR
  82. *
  83. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  84. * tables hold all 16 bits. Software needs to be aware of this.
  85. *
  86. * Unless otherwise specified, all references to APICID refer to
  87. * the FULL value contained in ACPI tables, not the subset in the
  88. * processor APICID register.
  89. */
  90. /*
  91. * Maximum number of bricks in all partitions and in all coherency domains.
  92. * This is the total number of bricks accessible in the numalink fabric. It
  93. * includes all C & M bricks. Routers are NOT included.
  94. *
  95. * This value is also the value of the maximum number of non-router NASIDs
  96. * in the numalink fabric.
  97. *
  98. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  99. */
  100. #define UV_MAX_NUMALINK_BLADES 16384
  101. /*
  102. * Maximum number of C/Mbricks within a software SSI (hardware may support
  103. * more).
  104. */
  105. #define UV_MAX_SSI_BLADES 256
  106. /*
  107. * The largest possible NASID of a C or M brick (+ 2)
  108. */
  109. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  110. struct uv_scir_s {
  111. struct timer_list timer;
  112. unsigned long offset;
  113. unsigned long last;
  114. unsigned long idle_on;
  115. unsigned long idle_off;
  116. unsigned char state;
  117. unsigned char enabled;
  118. };
  119. /*
  120. * The following defines attributes of the HUB chip. These attributes are
  121. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  122. * They are kept together in a struct to minimize cache misses.
  123. */
  124. struct uv_hub_info_s {
  125. unsigned long global_mmr_base;
  126. unsigned long gpa_mask;
  127. unsigned int gnode_extra;
  128. unsigned long gnode_upper;
  129. unsigned long lowmem_remap_top;
  130. unsigned long lowmem_remap_base;
  131. unsigned short pnode;
  132. unsigned short pnode_mask;
  133. unsigned short coherency_domain_number;
  134. unsigned short numa_blade_id;
  135. unsigned char blade_processor_id;
  136. unsigned char m_val;
  137. unsigned char n_val;
  138. struct uv_scir_s scir;
  139. };
  140. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  141. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  142. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  143. /*
  144. * Local & Global MMR space macros.
  145. * Note: macros are intended to be used ONLY by inline functions
  146. * in this file - not by other kernel code.
  147. * n - NASID (full 15-bit global nasid)
  148. * g - GNODE (full 15-bit global nasid, right shifted 1)
  149. * p - PNODE (local part of nsids, right shifted 1)
  150. */
  151. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  152. #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
  153. #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
  154. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  155. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  156. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  157. #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
  158. #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
  159. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  160. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  161. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  162. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  163. (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  164. #define UV_APIC_PNODE_SHIFT 6
  165. /* Local Bus from cpu's perspective */
  166. #define LOCAL_BUS_BASE 0x1c00000
  167. #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
  168. /*
  169. * System Controller Interface Reg
  170. *
  171. * Note there are NO leds on a UV system. This register is only
  172. * used by the system controller to monitor system-wide operation.
  173. * There are 64 regs per node. With Nahelem cpus (2 cores per node,
  174. * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
  175. * a node.
  176. *
  177. * The window is located at top of ACPI MMR space
  178. */
  179. #define SCIR_WINDOW_COUNT 64
  180. #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
  181. LOCAL_BUS_SIZE - \
  182. SCIR_WINDOW_COUNT)
  183. #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
  184. #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
  185. #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
  186. /* Loop through all installed blades */
  187. #define for_each_possible_blade(bid) \
  188. for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
  189. /*
  190. * Macros for converting between kernel virtual addresses, socket local physical
  191. * addresses, and UV global physical addresses.
  192. * Note: use the standard __pa() & __va() macros for converting
  193. * between socket virtual and socket physical addresses.
  194. */
  195. /* socket phys RAM --> UV global physical address */
  196. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  197. {
  198. if (paddr < uv_hub_info->lowmem_remap_top)
  199. paddr |= uv_hub_info->lowmem_remap_base;
  200. return paddr | uv_hub_info->gnode_upper;
  201. }
  202. /* socket virtual --> UV global physical address */
  203. static inline unsigned long uv_gpa(void *v)
  204. {
  205. return uv_soc_phys_ram_to_gpa(__pa(v));
  206. }
  207. /* pnode, offset --> socket virtual */
  208. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  209. {
  210. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  211. }
  212. /*
  213. * Extract a PNODE from an APICID (full apicid, not processor subset)
  214. */
  215. static inline int uv_apicid_to_pnode(int apicid)
  216. {
  217. return (apicid >> UV_APIC_PNODE_SHIFT);
  218. }
  219. /*
  220. * Access global MMRs using the low memory MMR32 space. This region supports
  221. * faster MMR access but not all MMRs are accessible in this space.
  222. */
  223. static inline unsigned long *uv_global_mmr32_address(int pnode,
  224. unsigned long offset)
  225. {
  226. return __va(UV_GLOBAL_MMR32_BASE |
  227. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  228. }
  229. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  230. unsigned long val)
  231. {
  232. writeq(val, uv_global_mmr32_address(pnode, offset));
  233. }
  234. static inline unsigned long uv_read_global_mmr32(int pnode,
  235. unsigned long offset)
  236. {
  237. return readq(uv_global_mmr32_address(pnode, offset));
  238. }
  239. /*
  240. * Access Global MMR space using the MMR space located at the top of physical
  241. * memory.
  242. */
  243. static inline unsigned long *uv_global_mmr64_address(int pnode,
  244. unsigned long offset)
  245. {
  246. return __va(UV_GLOBAL_MMR64_BASE |
  247. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  248. }
  249. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  250. unsigned long val)
  251. {
  252. writeq(val, uv_global_mmr64_address(pnode, offset));
  253. }
  254. static inline unsigned long uv_read_global_mmr64(int pnode,
  255. unsigned long offset)
  256. {
  257. return readq(uv_global_mmr64_address(pnode, offset));
  258. }
  259. /*
  260. * Access hub local MMRs. Faster than using global space but only local MMRs
  261. * are accessible.
  262. */
  263. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  264. {
  265. return __va(UV_LOCAL_MMR_BASE | offset);
  266. }
  267. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  268. {
  269. return readq(uv_local_mmr_address(offset));
  270. }
  271. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  272. {
  273. writeq(val, uv_local_mmr_address(offset));
  274. }
  275. static inline unsigned char uv_read_local_mmr8(unsigned long offset)
  276. {
  277. return readb(uv_local_mmr_address(offset));
  278. }
  279. static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
  280. {
  281. writeb(val, uv_local_mmr_address(offset));
  282. }
  283. /*
  284. * Structures and definitions for converting between cpu, node, pnode, and blade
  285. * numbers.
  286. */
  287. struct uv_blade_info {
  288. unsigned short nr_possible_cpus;
  289. unsigned short nr_online_cpus;
  290. unsigned short pnode;
  291. short memory_nid;
  292. };
  293. extern struct uv_blade_info *uv_blade_info;
  294. extern short *uv_node_to_blade;
  295. extern short *uv_cpu_to_blade;
  296. extern short uv_possible_blades;
  297. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  298. static inline int uv_blade_processor_id(void)
  299. {
  300. return uv_hub_info->blade_processor_id;
  301. }
  302. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  303. static inline int uv_numa_blade_id(void)
  304. {
  305. return uv_hub_info->numa_blade_id;
  306. }
  307. /* Convert a cpu number to the the UV blade number */
  308. static inline int uv_cpu_to_blade_id(int cpu)
  309. {
  310. return uv_cpu_to_blade[cpu];
  311. }
  312. /* Convert linux node number to the UV blade number */
  313. static inline int uv_node_to_blade_id(int nid)
  314. {
  315. return uv_node_to_blade[nid];
  316. }
  317. /* Convert a blade id to the PNODE of the blade */
  318. static inline int uv_blade_to_pnode(int bid)
  319. {
  320. return uv_blade_info[bid].pnode;
  321. }
  322. /* Nid of memory node on blade. -1 if no blade-local memory */
  323. static inline int uv_blade_to_memory_nid(int bid)
  324. {
  325. return uv_blade_info[bid].memory_nid;
  326. }
  327. /* Determine the number of possible cpus on a blade */
  328. static inline int uv_blade_nr_possible_cpus(int bid)
  329. {
  330. return uv_blade_info[bid].nr_possible_cpus;
  331. }
  332. /* Determine the number of online cpus on a blade */
  333. static inline int uv_blade_nr_online_cpus(int bid)
  334. {
  335. return uv_blade_info[bid].nr_online_cpus;
  336. }
  337. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  338. static inline int uv_cpu_to_pnode(int cpu)
  339. {
  340. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  341. }
  342. /* Convert a linux node number to the PNODE of the blade */
  343. static inline int uv_node_to_pnode(int nid)
  344. {
  345. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  346. }
  347. /* Maximum possible number of blades */
  348. static inline int uv_num_possible_blades(void)
  349. {
  350. return uv_possible_blades;
  351. }
  352. /* Update SCIR state */
  353. static inline void uv_set_scir_bits(unsigned char value)
  354. {
  355. if (uv_hub_info->scir.state != value) {
  356. uv_hub_info->scir.state = value;
  357. uv_write_local_mmr8(uv_hub_info->scir.offset, value);
  358. }
  359. }
  360. static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
  361. {
  362. if (uv_cpu_hub_info(cpu)->scir.state != value) {
  363. uv_cpu_hub_info(cpu)->scir.state = value;
  364. uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
  365. }
  366. }
  367. static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
  368. {
  369. unsigned long val;
  370. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  371. ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
  372. (vector << UVH_IPI_INT_VECTOR_SHFT);
  373. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  374. }
  375. #endif /* CONFIG_X86_64 */
  376. #endif /* _ASM_X86_UV_UV_HUB_H */