time.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/io.h>
  57. #include <asm/processor.h>
  58. #include <asm/nvram.h>
  59. #include <asm/cache.h>
  60. #include <asm/machdep.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/time.h>
  63. #include <asm/prom.h>
  64. #include <asm/irq.h>
  65. #include <asm/div64.h>
  66. #include <asm/smp.h>
  67. #include <asm/vdso_datapage.h>
  68. #include <asm/firmware.h>
  69. #include <asm/cputime.h>
  70. #ifdef CONFIG_PPC_ISERIES
  71. #include <asm/iseries/it_lp_queue.h>
  72. #include <asm/iseries/hv_call_xm.h>
  73. #endif
  74. /* powerpc clocksource/clockevent code */
  75. #include <linux/clockchips.h>
  76. #include <linux/clocksource.h>
  77. static cycle_t rtc_read(struct clocksource *);
  78. static struct clocksource clocksource_rtc = {
  79. .name = "rtc",
  80. .rating = 400,
  81. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  82. .mask = CLOCKSOURCE_MASK(64),
  83. .shift = 22,
  84. .mult = 0, /* To be filled in */
  85. .read = rtc_read,
  86. };
  87. static cycle_t timebase_read(struct clocksource *);
  88. static struct clocksource clocksource_timebase = {
  89. .name = "timebase",
  90. .rating = 400,
  91. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  92. .mask = CLOCKSOURCE_MASK(64),
  93. .shift = 22,
  94. .mult = 0, /* To be filled in */
  95. .read = timebase_read,
  96. };
  97. #define DECREMENTER_MAX 0x7fffffff
  98. static int decrementer_set_next_event(unsigned long evt,
  99. struct clock_event_device *dev);
  100. static void decrementer_set_mode(enum clock_event_mode mode,
  101. struct clock_event_device *dev);
  102. static struct clock_event_device decrementer_clockevent = {
  103. .name = "decrementer",
  104. .rating = 200,
  105. .shift = 0, /* To be filled in */
  106. .mult = 0, /* To be filled in */
  107. .irq = 0,
  108. .set_next_event = decrementer_set_next_event,
  109. .set_mode = decrementer_set_mode,
  110. .features = CLOCK_EVT_FEAT_ONESHOT,
  111. };
  112. struct decrementer_clock {
  113. struct clock_event_device event;
  114. u64 next_tb;
  115. };
  116. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  117. #ifdef CONFIG_PPC_ISERIES
  118. static unsigned long __initdata iSeries_recal_titan;
  119. static signed long __initdata iSeries_recal_tb;
  120. /* Forward declaration is only needed for iSereis compiles */
  121. static void __init clocksource_init(void);
  122. #endif
  123. #define XSEC_PER_SEC (1024*1024)
  124. #ifdef CONFIG_PPC64
  125. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  126. #else
  127. /* compute ((xsec << 12) * max) >> 32 */
  128. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  129. #endif
  130. unsigned long tb_ticks_per_jiffy;
  131. unsigned long tb_ticks_per_usec = 100; /* sane default */
  132. EXPORT_SYMBOL(tb_ticks_per_usec);
  133. unsigned long tb_ticks_per_sec;
  134. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  135. u64 tb_to_xs;
  136. unsigned tb_to_us;
  137. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  138. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  139. static u64 ticklen_to_xs; /* 0.64 fraction */
  140. /* If last_tick_len corresponds to about 1/HZ seconds, then
  141. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  142. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  143. DEFINE_SPINLOCK(rtc_lock);
  144. EXPORT_SYMBOL_GPL(rtc_lock);
  145. static u64 tb_to_ns_scale __read_mostly;
  146. static unsigned tb_to_ns_shift __read_mostly;
  147. static unsigned long boot_tb __read_mostly;
  148. extern struct timezone sys_tz;
  149. static long timezone_offset;
  150. unsigned long ppc_proc_freq;
  151. EXPORT_SYMBOL(ppc_proc_freq);
  152. unsigned long ppc_tb_freq;
  153. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  154. static DEFINE_PER_CPU(u64, last_jiffy);
  155. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  156. /*
  157. * Factors for converting from cputime_t (timebase ticks) to
  158. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  159. * These are all stored as 0.64 fixed-point binary fractions.
  160. */
  161. u64 __cputime_jiffies_factor;
  162. EXPORT_SYMBOL(__cputime_jiffies_factor);
  163. u64 __cputime_msec_factor;
  164. EXPORT_SYMBOL(__cputime_msec_factor);
  165. u64 __cputime_sec_factor;
  166. EXPORT_SYMBOL(__cputime_sec_factor);
  167. u64 __cputime_clockt_factor;
  168. EXPORT_SYMBOL(__cputime_clockt_factor);
  169. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  170. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  171. static void calc_cputime_factors(void)
  172. {
  173. struct div_result res;
  174. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  175. __cputime_jiffies_factor = res.result_low;
  176. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  177. __cputime_msec_factor = res.result_low;
  178. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  179. __cputime_sec_factor = res.result_low;
  180. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  181. __cputime_clockt_factor = res.result_low;
  182. }
  183. /*
  184. * Read the PURR on systems that have it, otherwise the timebase.
  185. */
  186. static u64 read_purr(void)
  187. {
  188. if (cpu_has_feature(CPU_FTR_PURR))
  189. return mfspr(SPRN_PURR);
  190. return mftb();
  191. }
  192. /*
  193. * Read the SPURR on systems that have it, otherwise the purr
  194. */
  195. static u64 read_spurr(u64 purr)
  196. {
  197. /*
  198. * cpus without PURR won't have a SPURR
  199. * We already know the former when we use this, so tell gcc
  200. */
  201. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  202. return mfspr(SPRN_SPURR);
  203. return purr;
  204. }
  205. /*
  206. * Account time for a transition between system, hard irq
  207. * or soft irq state.
  208. */
  209. void account_system_vtime(struct task_struct *tsk)
  210. {
  211. u64 now, nowscaled, delta, deltascaled, sys_time;
  212. unsigned long flags;
  213. local_irq_save(flags);
  214. now = read_purr();
  215. nowscaled = read_spurr(now);
  216. delta = now - get_paca()->startpurr;
  217. deltascaled = nowscaled - get_paca()->startspurr;
  218. get_paca()->startpurr = now;
  219. get_paca()->startspurr = nowscaled;
  220. if (!in_interrupt()) {
  221. /* deltascaled includes both user and system time.
  222. * Hence scale it based on the purr ratio to estimate
  223. * the system time */
  224. sys_time = get_paca()->system_time;
  225. if (get_paca()->user_time)
  226. deltascaled = deltascaled * sys_time /
  227. (sys_time + get_paca()->user_time);
  228. delta += sys_time;
  229. get_paca()->system_time = 0;
  230. }
  231. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  232. account_system_time(tsk, 0, delta, deltascaled);
  233. else
  234. account_idle_time(delta);
  235. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  236. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  237. local_irq_restore(flags);
  238. }
  239. /*
  240. * Transfer the user and system times accumulated in the paca
  241. * by the exception entry and exit code to the generic process
  242. * user and system time records.
  243. * Must be called with interrupts disabled.
  244. */
  245. void account_process_tick(struct task_struct *tsk, int user_tick)
  246. {
  247. cputime_t utime, utimescaled;
  248. utime = get_paca()->user_time;
  249. get_paca()->user_time = 0;
  250. utimescaled = cputime_to_scaled(utime);
  251. account_user_time(tsk, utime, utimescaled);
  252. }
  253. /*
  254. * Stuff for accounting stolen time.
  255. */
  256. struct cpu_purr_data {
  257. int initialized; /* thread is running */
  258. u64 tb; /* last TB value read */
  259. u64 purr; /* last PURR value read */
  260. u64 spurr; /* last SPURR value read */
  261. };
  262. /*
  263. * Each entry in the cpu_purr_data array is manipulated only by its
  264. * "owner" cpu -- usually in the timer interrupt but also occasionally
  265. * in process context for cpu online. As long as cpus do not touch
  266. * each others' cpu_purr_data, disabling local interrupts is
  267. * sufficient to serialize accesses.
  268. */
  269. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  270. static void snapshot_tb_and_purr(void *data)
  271. {
  272. unsigned long flags;
  273. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  274. local_irq_save(flags);
  275. p->tb = get_tb_or_rtc();
  276. p->purr = mfspr(SPRN_PURR);
  277. wmb();
  278. p->initialized = 1;
  279. local_irq_restore(flags);
  280. }
  281. /*
  282. * Called during boot when all cpus have come up.
  283. */
  284. void snapshot_timebases(void)
  285. {
  286. if (!cpu_has_feature(CPU_FTR_PURR))
  287. return;
  288. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  289. }
  290. /*
  291. * Must be called with interrupts disabled.
  292. */
  293. void calculate_steal_time(void)
  294. {
  295. u64 tb, purr;
  296. s64 stolen;
  297. struct cpu_purr_data *pme;
  298. pme = &__get_cpu_var(cpu_purr_data);
  299. if (!pme->initialized)
  300. return; /* !CPU_FTR_PURR or early in early boot */
  301. tb = mftb();
  302. purr = mfspr(SPRN_PURR);
  303. stolen = (tb - pme->tb) - (purr - pme->purr);
  304. if (stolen > 0) {
  305. if (idle_task(smp_processor_id()) != current)
  306. account_steal_time(stolen);
  307. else
  308. account_idle_time(stolen);
  309. }
  310. pme->tb = tb;
  311. pme->purr = purr;
  312. }
  313. #ifdef CONFIG_PPC_SPLPAR
  314. /*
  315. * Must be called before the cpu is added to the online map when
  316. * a cpu is being brought up at runtime.
  317. */
  318. static void snapshot_purr(void)
  319. {
  320. struct cpu_purr_data *pme;
  321. unsigned long flags;
  322. if (!cpu_has_feature(CPU_FTR_PURR))
  323. return;
  324. local_irq_save(flags);
  325. pme = &__get_cpu_var(cpu_purr_data);
  326. pme->tb = mftb();
  327. pme->purr = mfspr(SPRN_PURR);
  328. pme->initialized = 1;
  329. local_irq_restore(flags);
  330. }
  331. #endif /* CONFIG_PPC_SPLPAR */
  332. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  333. #define calc_cputime_factors()
  334. #define calculate_steal_time() do { } while (0)
  335. #endif
  336. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  337. #define snapshot_purr() do { } while (0)
  338. #endif
  339. /*
  340. * Called when a cpu comes up after the system has finished booting,
  341. * i.e. as a result of a hotplug cpu action.
  342. */
  343. void snapshot_timebase(void)
  344. {
  345. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  346. snapshot_purr();
  347. }
  348. void __delay(unsigned long loops)
  349. {
  350. unsigned long start;
  351. int diff;
  352. if (__USE_RTC()) {
  353. start = get_rtcl();
  354. do {
  355. /* the RTCL register wraps at 1000000000 */
  356. diff = get_rtcl() - start;
  357. if (diff < 0)
  358. diff += 1000000000;
  359. } while (diff < loops);
  360. } else {
  361. start = get_tbl();
  362. while (get_tbl() - start < loops)
  363. HMT_low();
  364. HMT_medium();
  365. }
  366. }
  367. EXPORT_SYMBOL(__delay);
  368. void udelay(unsigned long usecs)
  369. {
  370. __delay(tb_ticks_per_usec * usecs);
  371. }
  372. EXPORT_SYMBOL(udelay);
  373. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  374. u64 new_tb_to_xs)
  375. {
  376. /*
  377. * tb_update_count is used to allow the userspace gettimeofday code
  378. * to assure itself that it sees a consistent view of the tb_to_xs and
  379. * stamp_xsec variables. It reads the tb_update_count, then reads
  380. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  381. * the two values of tb_update_count match and are even then the
  382. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  383. * loops back and reads them again until this criteria is met.
  384. * We expect the caller to have done the first increment of
  385. * vdso_data->tb_update_count already.
  386. */
  387. vdso_data->tb_orig_stamp = new_tb_stamp;
  388. vdso_data->stamp_xsec = new_stamp_xsec;
  389. vdso_data->tb_to_xs = new_tb_to_xs;
  390. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  391. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  392. vdso_data->stamp_xtime = xtime;
  393. smp_wmb();
  394. ++(vdso_data->tb_update_count);
  395. }
  396. #ifdef CONFIG_SMP
  397. unsigned long profile_pc(struct pt_regs *regs)
  398. {
  399. unsigned long pc = instruction_pointer(regs);
  400. if (in_lock_functions(pc))
  401. return regs->link;
  402. return pc;
  403. }
  404. EXPORT_SYMBOL(profile_pc);
  405. #endif
  406. #ifdef CONFIG_PPC_ISERIES
  407. /*
  408. * This function recalibrates the timebase based on the 49-bit time-of-day
  409. * value in the Titan chip. The Titan is much more accurate than the value
  410. * returned by the service processor for the timebase frequency.
  411. */
  412. static int __init iSeries_tb_recal(void)
  413. {
  414. struct div_result divres;
  415. unsigned long titan, tb;
  416. /* Make sure we only run on iSeries */
  417. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  418. return -ENODEV;
  419. tb = get_tb();
  420. titan = HvCallXm_loadTod();
  421. if ( iSeries_recal_titan ) {
  422. unsigned long tb_ticks = tb - iSeries_recal_tb;
  423. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  424. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  425. unsigned long new_tb_ticks_per_jiffy =
  426. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  427. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  428. char sign = '+';
  429. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  430. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  431. if ( tick_diff < 0 ) {
  432. tick_diff = -tick_diff;
  433. sign = '-';
  434. }
  435. if ( tick_diff ) {
  436. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  437. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  438. new_tb_ticks_per_jiffy, sign, tick_diff );
  439. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  440. tb_ticks_per_sec = new_tb_ticks_per_sec;
  441. calc_cputime_factors();
  442. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  443. tb_to_xs = divres.result_low;
  444. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  445. vdso_data->tb_to_xs = tb_to_xs;
  446. }
  447. else {
  448. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  449. " new tb_ticks_per_jiffy = %lu\n"
  450. " old tb_ticks_per_jiffy = %lu\n",
  451. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  452. }
  453. }
  454. }
  455. iSeries_recal_titan = titan;
  456. iSeries_recal_tb = tb;
  457. /* Called here as now we know accurate values for the timebase */
  458. clocksource_init();
  459. return 0;
  460. }
  461. late_initcall(iSeries_tb_recal);
  462. /* Called from platform early init */
  463. void __init iSeries_time_init_early(void)
  464. {
  465. iSeries_recal_tb = get_tb();
  466. iSeries_recal_titan = HvCallXm_loadTod();
  467. }
  468. #endif /* CONFIG_PPC_ISERIES */
  469. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
  470. DEFINE_PER_CPU(u8, perf_event_pending);
  471. void set_perf_event_pending(void)
  472. {
  473. get_cpu_var(perf_event_pending) = 1;
  474. set_dec(1);
  475. put_cpu_var(perf_event_pending);
  476. }
  477. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  478. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  479. #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  480. #define test_perf_event_pending() 0
  481. #define clear_perf_event_pending()
  482. #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  483. /*
  484. * For iSeries shared processors, we have to let the hypervisor
  485. * set the hardware decrementer. We set a virtual decrementer
  486. * in the lppaca and call the hypervisor if the virtual
  487. * decrementer is less than the current value in the hardware
  488. * decrementer. (almost always the new decrementer value will
  489. * be greater than the current hardware decementer so the hypervisor
  490. * call will not be needed)
  491. */
  492. /*
  493. * timer_interrupt - gets called when the decrementer overflows,
  494. * with interrupts disabled.
  495. */
  496. void timer_interrupt(struct pt_regs * regs)
  497. {
  498. struct pt_regs *old_regs;
  499. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  500. struct clock_event_device *evt = &decrementer->event;
  501. u64 now;
  502. /* Ensure a positive value is written to the decrementer, or else
  503. * some CPUs will continuue to take decrementer exceptions */
  504. set_dec(DECREMENTER_MAX);
  505. #ifdef CONFIG_PPC32
  506. if (test_perf_event_pending()) {
  507. clear_perf_event_pending();
  508. perf_event_do_pending();
  509. }
  510. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  511. do_IRQ(regs);
  512. #endif
  513. now = get_tb_or_rtc();
  514. if (now < decrementer->next_tb) {
  515. /* not time for this event yet */
  516. now = decrementer->next_tb - now;
  517. if (now <= DECREMENTER_MAX)
  518. set_dec((int)now);
  519. return;
  520. }
  521. old_regs = set_irq_regs(regs);
  522. irq_enter();
  523. calculate_steal_time();
  524. #ifdef CONFIG_PPC_ISERIES
  525. if (firmware_has_feature(FW_FEATURE_ISERIES))
  526. get_lppaca()->int_dword.fields.decr_int = 0;
  527. #endif
  528. if (evt->event_handler)
  529. evt->event_handler(evt);
  530. #ifdef CONFIG_PPC_ISERIES
  531. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  532. process_hvlpevents();
  533. #endif
  534. #ifdef CONFIG_PPC64
  535. /* collect purr register values often, for accurate calculations */
  536. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  537. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  538. cu->current_tb = mfspr(SPRN_PURR);
  539. }
  540. #endif
  541. irq_exit();
  542. set_irq_regs(old_regs);
  543. }
  544. void wakeup_decrementer(void)
  545. {
  546. unsigned long ticks;
  547. /*
  548. * The timebase gets saved on sleep and restored on wakeup,
  549. * so all we need to do is to reset the decrementer.
  550. */
  551. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  552. if (ticks < tb_ticks_per_jiffy)
  553. ticks = tb_ticks_per_jiffy - ticks;
  554. else
  555. ticks = 1;
  556. set_dec(ticks);
  557. }
  558. #ifdef CONFIG_SUSPEND
  559. void generic_suspend_disable_irqs(void)
  560. {
  561. preempt_disable();
  562. /* Disable the decrementer, so that it doesn't interfere
  563. * with suspending.
  564. */
  565. set_dec(0x7fffffff);
  566. local_irq_disable();
  567. set_dec(0x7fffffff);
  568. }
  569. void generic_suspend_enable_irqs(void)
  570. {
  571. wakeup_decrementer();
  572. local_irq_enable();
  573. preempt_enable();
  574. }
  575. /* Overrides the weak version in kernel/power/main.c */
  576. void arch_suspend_disable_irqs(void)
  577. {
  578. if (ppc_md.suspend_disable_irqs)
  579. ppc_md.suspend_disable_irqs();
  580. generic_suspend_disable_irqs();
  581. }
  582. /* Overrides the weak version in kernel/power/main.c */
  583. void arch_suspend_enable_irqs(void)
  584. {
  585. generic_suspend_enable_irqs();
  586. if (ppc_md.suspend_enable_irqs)
  587. ppc_md.suspend_enable_irqs();
  588. }
  589. #endif
  590. #ifdef CONFIG_SMP
  591. void __init smp_space_timers(unsigned int max_cpus)
  592. {
  593. int i;
  594. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  595. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  596. previous_tb -= tb_ticks_per_jiffy;
  597. for_each_possible_cpu(i) {
  598. if (i == boot_cpuid)
  599. continue;
  600. per_cpu(last_jiffy, i) = previous_tb;
  601. }
  602. }
  603. #endif
  604. /*
  605. * Scheduler clock - returns current time in nanosec units.
  606. *
  607. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  608. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  609. * are 64-bit unsigned numbers.
  610. */
  611. unsigned long long sched_clock(void)
  612. {
  613. if (__USE_RTC())
  614. return get_rtc();
  615. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  616. }
  617. static int __init get_freq(char *name, int cells, unsigned long *val)
  618. {
  619. struct device_node *cpu;
  620. const unsigned int *fp;
  621. int found = 0;
  622. /* The cpu node should have timebase and clock frequency properties */
  623. cpu = of_find_node_by_type(NULL, "cpu");
  624. if (cpu) {
  625. fp = of_get_property(cpu, name, NULL);
  626. if (fp) {
  627. found = 1;
  628. *val = of_read_ulong(fp, cells);
  629. }
  630. of_node_put(cpu);
  631. }
  632. return found;
  633. }
  634. /* should become __cpuinit when secondary_cpu_time_init also is */
  635. void start_cpu_decrementer(void)
  636. {
  637. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  638. /* Clear any pending timer interrupts */
  639. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  640. /* Enable decrementer interrupt */
  641. mtspr(SPRN_TCR, TCR_DIE);
  642. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  643. }
  644. void __init generic_calibrate_decr(void)
  645. {
  646. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  647. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  648. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  649. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  650. "(not found)\n");
  651. }
  652. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  653. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  654. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  655. printk(KERN_ERR "WARNING: Estimating processor frequency "
  656. "(not found)\n");
  657. }
  658. }
  659. int update_persistent_clock(struct timespec now)
  660. {
  661. struct rtc_time tm;
  662. if (!ppc_md.set_rtc_time)
  663. return 0;
  664. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  665. tm.tm_year -= 1900;
  666. tm.tm_mon -= 1;
  667. return ppc_md.set_rtc_time(&tm);
  668. }
  669. void read_persistent_clock(struct timespec *ts)
  670. {
  671. struct rtc_time tm;
  672. static int first = 1;
  673. ts->tv_nsec = 0;
  674. /* XXX this is a litle fragile but will work okay in the short term */
  675. if (first) {
  676. first = 0;
  677. if (ppc_md.time_init)
  678. timezone_offset = ppc_md.time_init();
  679. /* get_boot_time() isn't guaranteed to be safe to call late */
  680. if (ppc_md.get_boot_time) {
  681. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  682. return;
  683. }
  684. }
  685. if (!ppc_md.get_rtc_time) {
  686. ts->tv_sec = 0;
  687. return;
  688. }
  689. ppc_md.get_rtc_time(&tm);
  690. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  691. tm.tm_hour, tm.tm_min, tm.tm_sec);
  692. }
  693. /* clocksource code */
  694. static cycle_t rtc_read(struct clocksource *cs)
  695. {
  696. return (cycle_t)get_rtc();
  697. }
  698. static cycle_t timebase_read(struct clocksource *cs)
  699. {
  700. return (cycle_t)get_tb();
  701. }
  702. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  703. {
  704. u64 t2x, stamp_xsec;
  705. if (clock != &clocksource_timebase)
  706. return;
  707. /* Make userspace gettimeofday spin until we're done. */
  708. ++vdso_data->tb_update_count;
  709. smp_mb();
  710. /* XXX this assumes clock->shift == 22 */
  711. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  712. t2x = (u64) clock->mult * 4611686018ULL;
  713. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  714. do_div(stamp_xsec, 1000000000);
  715. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  716. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  717. }
  718. void update_vsyscall_tz(void)
  719. {
  720. /* Make userspace gettimeofday spin until we're done. */
  721. ++vdso_data->tb_update_count;
  722. smp_mb();
  723. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  724. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  725. smp_mb();
  726. ++vdso_data->tb_update_count;
  727. }
  728. static void __init clocksource_init(void)
  729. {
  730. struct clocksource *clock;
  731. if (__USE_RTC())
  732. clock = &clocksource_rtc;
  733. else
  734. clock = &clocksource_timebase;
  735. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  736. if (clocksource_register(clock)) {
  737. printk(KERN_ERR "clocksource: %s is already registered\n",
  738. clock->name);
  739. return;
  740. }
  741. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  742. clock->name, clock->mult, clock->shift);
  743. }
  744. static int decrementer_set_next_event(unsigned long evt,
  745. struct clock_event_device *dev)
  746. {
  747. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  748. set_dec(evt);
  749. return 0;
  750. }
  751. static void decrementer_set_mode(enum clock_event_mode mode,
  752. struct clock_event_device *dev)
  753. {
  754. if (mode != CLOCK_EVT_MODE_ONESHOT)
  755. decrementer_set_next_event(DECREMENTER_MAX, dev);
  756. }
  757. static void __init setup_clockevent_multiplier(unsigned long hz)
  758. {
  759. u64 mult, shift = 32;
  760. while (1) {
  761. mult = div_sc(hz, NSEC_PER_SEC, shift);
  762. if (mult && (mult >> 32UL) == 0UL)
  763. break;
  764. shift--;
  765. }
  766. decrementer_clockevent.shift = shift;
  767. decrementer_clockevent.mult = mult;
  768. }
  769. static void register_decrementer_clockevent(int cpu)
  770. {
  771. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  772. *dec = decrementer_clockevent;
  773. dec->cpumask = cpumask_of(cpu);
  774. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  775. dec->name, dec->mult, dec->shift, cpu);
  776. clockevents_register_device(dec);
  777. }
  778. static void __init init_decrementer_clockevent(void)
  779. {
  780. int cpu = smp_processor_id();
  781. setup_clockevent_multiplier(ppc_tb_freq);
  782. decrementer_clockevent.max_delta_ns =
  783. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  784. decrementer_clockevent.min_delta_ns =
  785. clockevent_delta2ns(2, &decrementer_clockevent);
  786. register_decrementer_clockevent(cpu);
  787. }
  788. void secondary_cpu_time_init(void)
  789. {
  790. /* Start the decrementer on CPUs that have manual control
  791. * such as BookE
  792. */
  793. start_cpu_decrementer();
  794. /* FIME: Should make unrelatred change to move snapshot_timebase
  795. * call here ! */
  796. register_decrementer_clockevent(smp_processor_id());
  797. }
  798. /* This function is only called on the boot processor */
  799. void __init time_init(void)
  800. {
  801. unsigned long flags;
  802. struct div_result res;
  803. u64 scale, x;
  804. unsigned shift;
  805. if (__USE_RTC()) {
  806. /* 601 processor: dec counts down by 128 every 128ns */
  807. ppc_tb_freq = 1000000000;
  808. tb_last_jiffy = get_rtcl();
  809. } else {
  810. /* Normal PowerPC with timebase register */
  811. ppc_md.calibrate_decr();
  812. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  813. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  814. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  815. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  816. tb_last_jiffy = get_tb();
  817. }
  818. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  819. tb_ticks_per_sec = ppc_tb_freq;
  820. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  821. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  822. calc_cputime_factors();
  823. /*
  824. * Calculate the length of each tick in ns. It will not be
  825. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  826. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  827. * rounded up.
  828. */
  829. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  830. do_div(x, ppc_tb_freq);
  831. tick_nsec = x;
  832. last_tick_len = x << TICKLEN_SCALE;
  833. /*
  834. * Compute ticklen_to_xs, which is a factor which gets multiplied
  835. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  836. * It is computed as:
  837. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  838. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  839. * which turns out to be N = 51 - SHIFT_HZ.
  840. * This gives the result as a 0.64 fixed-point fraction.
  841. * That value is reduced by an offset amounting to 1 xsec per
  842. * 2^31 timebase ticks to avoid problems with time going backwards
  843. * by 1 xsec when we do timer_recalc_offset due to losing the
  844. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  845. * since there are 2^20 xsec in a second.
  846. */
  847. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  848. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  849. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  850. ticklen_to_xs = res.result_low;
  851. /* Compute tb_to_xs from tick_nsec */
  852. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  853. /*
  854. * Compute scale factor for sched_clock.
  855. * The calibrate_decr() function has set tb_ticks_per_sec,
  856. * which is the timebase frequency.
  857. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  858. * the 128-bit result as a 64.64 fixed-point number.
  859. * We then shift that number right until it is less than 1.0,
  860. * giving us the scale factor and shift count to use in
  861. * sched_clock().
  862. */
  863. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  864. scale = res.result_low;
  865. for (shift = 0; res.result_high != 0; ++shift) {
  866. scale = (scale >> 1) | (res.result_high << 63);
  867. res.result_high >>= 1;
  868. }
  869. tb_to_ns_scale = scale;
  870. tb_to_ns_shift = shift;
  871. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  872. boot_tb = get_tb_or_rtc();
  873. write_seqlock_irqsave(&xtime_lock, flags);
  874. /* If platform provided a timezone (pmac), we correct the time */
  875. if (timezone_offset) {
  876. sys_tz.tz_minuteswest = -timezone_offset / 60;
  877. sys_tz.tz_dsttime = 0;
  878. }
  879. vdso_data->tb_orig_stamp = tb_last_jiffy;
  880. vdso_data->tb_update_count = 0;
  881. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  882. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  883. vdso_data->tb_to_xs = tb_to_xs;
  884. write_sequnlock_irqrestore(&xtime_lock, flags);
  885. /* Start the decrementer on CPUs that have manual control
  886. * such as BookE
  887. */
  888. start_cpu_decrementer();
  889. /* Register the clocksource, if we're not running on iSeries */
  890. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  891. clocksource_init();
  892. init_decrementer_clockevent();
  893. }
  894. #define FEBRUARY 2
  895. #define STARTOFTIME 1970
  896. #define SECDAY 86400L
  897. #define SECYR (SECDAY * 365)
  898. #define leapyear(year) ((year) % 4 == 0 && \
  899. ((year) % 100 != 0 || (year) % 400 == 0))
  900. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  901. #define days_in_month(a) (month_days[(a) - 1])
  902. static int month_days[12] = {
  903. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  904. };
  905. /*
  906. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  907. */
  908. void GregorianDay(struct rtc_time * tm)
  909. {
  910. int leapsToDate;
  911. int lastYear;
  912. int day;
  913. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  914. lastYear = tm->tm_year - 1;
  915. /*
  916. * Number of leap corrections to apply up to end of last year
  917. */
  918. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  919. /*
  920. * This year is a leap year if it is divisible by 4 except when it is
  921. * divisible by 100 unless it is divisible by 400
  922. *
  923. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  924. */
  925. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  926. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  927. tm->tm_mday;
  928. tm->tm_wday = day % 7;
  929. }
  930. void to_tm(int tim, struct rtc_time * tm)
  931. {
  932. register int i;
  933. register long hms, day;
  934. day = tim / SECDAY;
  935. hms = tim % SECDAY;
  936. /* Hours, minutes, seconds are easy */
  937. tm->tm_hour = hms / 3600;
  938. tm->tm_min = (hms % 3600) / 60;
  939. tm->tm_sec = (hms % 3600) % 60;
  940. /* Number of years in days */
  941. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  942. day -= days_in_year(i);
  943. tm->tm_year = i;
  944. /* Number of months in days left */
  945. if (leapyear(tm->tm_year))
  946. days_in_month(FEBRUARY) = 29;
  947. for (i = 1; day >= days_in_month(i); i++)
  948. day -= days_in_month(i);
  949. days_in_month(FEBRUARY) = 28;
  950. tm->tm_mon = i;
  951. /* Days are what is left over (+1) from all that. */
  952. tm->tm_mday = day + 1;
  953. /*
  954. * Determine the day of week
  955. */
  956. GregorianDay(tm);
  957. }
  958. /* Auxiliary function to compute scaling factors */
  959. /* Actually the choice of a timebase running at 1/4 the of the bus
  960. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  961. * It makes this computation very precise (27-28 bits typically) which
  962. * is optimistic considering the stability of most processor clock
  963. * oscillators and the precision with which the timebase frequency
  964. * is measured but does not harm.
  965. */
  966. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  967. {
  968. unsigned mlt=0, tmp, err;
  969. /* No concern for performance, it's done once: use a stupid
  970. * but safe and compact method to find the multiplier.
  971. */
  972. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  973. if (mulhwu(inscale, mlt|tmp) < outscale)
  974. mlt |= tmp;
  975. }
  976. /* We might still be off by 1 for the best approximation.
  977. * A side effect of this is that if outscale is too large
  978. * the returned value will be zero.
  979. * Many corner cases have been checked and seem to work,
  980. * some might have been forgotten in the test however.
  981. */
  982. err = inscale * (mlt+1);
  983. if (err <= inscale/2)
  984. mlt++;
  985. return mlt;
  986. }
  987. /*
  988. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  989. * result.
  990. */
  991. void div128_by_32(u64 dividend_high, u64 dividend_low,
  992. unsigned divisor, struct div_result *dr)
  993. {
  994. unsigned long a, b, c, d;
  995. unsigned long w, x, y, z;
  996. u64 ra, rb, rc;
  997. a = dividend_high >> 32;
  998. b = dividend_high & 0xffffffff;
  999. c = dividend_low >> 32;
  1000. d = dividend_low & 0xffffffff;
  1001. w = a / divisor;
  1002. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1003. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1004. x = ra;
  1005. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1006. y = rb;
  1007. do_div(rc, divisor);
  1008. z = rc;
  1009. dr->result_high = ((u64)w << 32) + x;
  1010. dr->result_low = ((u64)y << 32) + z;
  1011. }
  1012. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1013. void calibrate_delay(void)
  1014. {
  1015. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1016. * as the number of __delay(1) in a jiffy, so make it so
  1017. */
  1018. loops_per_jiffy = tb_ticks_per_jiffy;
  1019. }
  1020. static int __init rtc_init(void)
  1021. {
  1022. struct platform_device *pdev;
  1023. if (!ppc_md.get_rtc_time)
  1024. return -ENODEV;
  1025. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1026. if (IS_ERR(pdev))
  1027. return PTR_ERR(pdev);
  1028. return 0;
  1029. }
  1030. module_init(rtc_init);