mmu-hash64.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x6
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. #define SLB_MIN_SIZE 32
  37. /* Bits in the SLB ESID word */
  38. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  39. /* Bits in the SLB VSID word */
  40. #define SLB_VSID_SHIFT 12
  41. #define SLB_VSID_SHIFT_1T 24
  42. #define SLB_VSID_SSIZE_SHIFT 62
  43. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  44. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  45. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  46. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  47. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  48. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  49. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  50. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  51. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  52. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  53. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  54. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  55. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  56. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  57. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  58. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  59. #define SLBIE_C (0x08000000)
  60. #define SLBIE_SSIZE_SHIFT 25
  61. /*
  62. * Hash table
  63. */
  64. #define HPTES_PER_GROUP 8
  65. #define HPTE_V_SSIZE_SHIFT 62
  66. #define HPTE_V_AVPN_SHIFT 7
  67. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  68. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  69. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  70. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  71. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  72. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  73. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  74. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  75. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  76. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  77. #define HPTE_R_RPN_SHIFT 12
  78. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  79. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  80. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  81. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  82. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  83. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  84. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  85. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  86. /* Values for PP (assumes Ks=0, Kp=1) */
  87. /* pp0 will always be 0 for linux */
  88. #define PP_RWXX 0 /* Supervisor read/write, User none */
  89. #define PP_RWRX 1 /* Supervisor read/write, User read */
  90. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  91. #define PP_RXRX 3 /* Supervisor read, User read */
  92. #ifndef __ASSEMBLY__
  93. struct hash_pte {
  94. unsigned long v;
  95. unsigned long r;
  96. };
  97. extern struct hash_pte *htab_address;
  98. extern unsigned long htab_size_bytes;
  99. extern unsigned long htab_hash_mask;
  100. /*
  101. * Page size definition
  102. *
  103. * shift : is the "PAGE_SHIFT" value for that page size
  104. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  105. * directly to a slbmte "vsid" value
  106. * penc : is the HPTE encoding mask for the "LP" field:
  107. *
  108. */
  109. struct mmu_psize_def
  110. {
  111. unsigned int shift; /* number of bits */
  112. unsigned int penc; /* HPTE encoding */
  113. unsigned int tlbiel; /* tlbiel supported for that page size */
  114. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  115. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  116. };
  117. #endif /* __ASSEMBLY__ */
  118. /*
  119. * Segment sizes.
  120. * These are the values used by hardware in the B field of
  121. * SLB entries and the first dword of MMU hashtable entries.
  122. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  123. */
  124. #define MMU_SEGSIZE_256M 0
  125. #define MMU_SEGSIZE_1T 1
  126. #ifndef __ASSEMBLY__
  127. /*
  128. * The current system page and segment sizes
  129. */
  130. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  131. extern int mmu_linear_psize;
  132. extern int mmu_virtual_psize;
  133. extern int mmu_vmalloc_psize;
  134. extern int mmu_vmemmap_psize;
  135. extern int mmu_io_psize;
  136. extern int mmu_kernel_ssize;
  137. extern int mmu_highuser_ssize;
  138. extern u16 mmu_slb_size;
  139. extern unsigned long tce_alloc_start, tce_alloc_end;
  140. /*
  141. * If the processor supports 64k normal pages but not 64k cache
  142. * inhibited pages, we have to be prepared to switch processes
  143. * to use 4k pages when they create cache-inhibited mappings.
  144. * If this is the case, mmu_ci_restrictions will be set to 1.
  145. */
  146. extern int mmu_ci_restrictions;
  147. #ifdef CONFIG_HUGETLB_PAGE
  148. /*
  149. * The page size indexes of the huge pages for use by hugetlbfs
  150. */
  151. extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
  152. #endif /* CONFIG_HUGETLB_PAGE */
  153. /*
  154. * This function sets the AVPN and L fields of the HPTE appropriately
  155. * for the page size
  156. */
  157. static inline unsigned long hpte_encode_v(unsigned long va, int psize,
  158. int ssize)
  159. {
  160. unsigned long v;
  161. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  162. v <<= HPTE_V_AVPN_SHIFT;
  163. if (psize != MMU_PAGE_4K)
  164. v |= HPTE_V_LARGE;
  165. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  166. return v;
  167. }
  168. /*
  169. * This function sets the ARPN, and LP fields of the HPTE appropriately
  170. * for the page size. We assume the pa is already "clean" that is properly
  171. * aligned for the requested page size
  172. */
  173. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  174. {
  175. unsigned long r;
  176. /* A 4K page needs no special encoding */
  177. if (psize == MMU_PAGE_4K)
  178. return pa & HPTE_R_RPN;
  179. else {
  180. unsigned int penc = mmu_psize_defs[psize].penc;
  181. unsigned int shift = mmu_psize_defs[psize].shift;
  182. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  183. }
  184. return r;
  185. }
  186. /*
  187. * Build a VA given VSID, EA and segment size
  188. */
  189. static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
  190. int ssize)
  191. {
  192. if (ssize == MMU_SEGSIZE_256M)
  193. return (vsid << 28) | (ea & 0xfffffffUL);
  194. return (vsid << 40) | (ea & 0xffffffffffUL);
  195. }
  196. /*
  197. * This hashes a virtual address
  198. */
  199. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
  200. int ssize)
  201. {
  202. unsigned long hash, vsid;
  203. if (ssize == MMU_SEGSIZE_256M) {
  204. hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
  205. } else {
  206. vsid = va >> 40;
  207. hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
  208. }
  209. return hash & 0x7fffffffffUL;
  210. }
  211. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  212. unsigned long vsid, pte_t *ptep, unsigned long trap,
  213. unsigned int local, int ssize, int subpage_prot);
  214. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  215. unsigned long vsid, pte_t *ptep, unsigned long trap,
  216. unsigned int local, int ssize);
  217. struct mm_struct;
  218. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  219. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  220. unsigned long ea, unsigned long vsid, int local,
  221. unsigned long trap);
  222. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  223. unsigned long pstart, unsigned long prot,
  224. int psize, int ssize);
  225. extern void add_gpage(unsigned long addr, unsigned long page_size,
  226. unsigned long number_of_pages);
  227. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  228. extern void hpte_init_native(void);
  229. extern void hpte_init_lpar(void);
  230. extern void hpte_init_iSeries(void);
  231. extern void hpte_init_beat(void);
  232. extern void hpte_init_beat_v3(void);
  233. extern void stabs_alloc(void);
  234. extern void slb_initialize(void);
  235. extern void slb_flush_and_rebolt(void);
  236. extern void stab_initialize(unsigned long stab);
  237. extern void slb_vmalloc_update(void);
  238. extern void slb_set_size(u16 size);
  239. #endif /* __ASSEMBLY__ */
  240. /*
  241. * VSID allocation
  242. *
  243. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  244. * is equal to the ESID, for user addresses it is:
  245. * (context << 15) | (esid & 0x7fff)
  246. *
  247. * The two forms are distinguishable because the top bit is 0 for user
  248. * addresses, whereas the top two bits are 1 for kernel addresses.
  249. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  250. * now.
  251. *
  252. * The proto-VSIDs are then scrambled into real VSIDs with the
  253. * multiplicative hash:
  254. *
  255. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  256. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  257. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  258. *
  259. * This scramble is only well defined for proto-VSIDs below
  260. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  261. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  262. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  263. * Because the modulus is 2^n-1 we can compute it efficiently without
  264. * a divide or extra multiply (see below).
  265. *
  266. * This scheme has several advantages over older methods:
  267. *
  268. * - We have VSIDs allocated for every kernel address
  269. * (i.e. everything above 0xC000000000000000), except the very top
  270. * segment, which simplifies several things.
  271. *
  272. * - We allow for 15 significant bits of ESID and 20 bits of
  273. * context for user addresses. i.e. 8T (43 bits) of address space for
  274. * up to 1M contexts (although the page table structure and context
  275. * allocation will need changes to take advantage of this).
  276. *
  277. * - The scramble function gives robust scattering in the hash
  278. * table (at least based on some initial results). The previous
  279. * method was more susceptible to pathological cases giving excessive
  280. * hash collisions.
  281. */
  282. /*
  283. * WARNING - If you change these you must make sure the asm
  284. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  285. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  286. *
  287. * You'll also need to change the precomputed VSID values in head.S
  288. * which are used by the iSeries firmware.
  289. */
  290. #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
  291. #define VSID_BITS_256M 36
  292. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  293. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  294. #define VSID_BITS_1T 24
  295. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  296. #define CONTEXT_BITS 19
  297. #define USER_ESID_BITS 16
  298. #define USER_ESID_BITS_1T 4
  299. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  300. /*
  301. * This macro generates asm code to compute the VSID scramble
  302. * function. Used in slb_allocate() and do_stab_bolted. The function
  303. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  304. *
  305. * rt = register continaing the proto-VSID and into which the
  306. * VSID will be stored
  307. * rx = scratch register (clobbered)
  308. *
  309. * - rt and rx must be different registers
  310. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  311. * bits may contain other garbage, so you may need to mask the
  312. * result.
  313. */
  314. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  315. lis rx,VSID_MULTIPLIER_##size@h; \
  316. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  317. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  318. \
  319. srdi rx,rt,VSID_BITS_##size; \
  320. clrldi rt,rt,(64-VSID_BITS_##size); \
  321. add rt,rt,rx; /* add high and low bits */ \
  322. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  323. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  324. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  325. * the bit clear, r3 already has the answer we want, if it \
  326. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  327. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  328. addi rx,rt,1; \
  329. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  330. add rt,rt,rx
  331. #ifndef __ASSEMBLY__
  332. typedef unsigned long mm_context_id_t;
  333. typedef struct {
  334. mm_context_id_t id;
  335. u16 user_psize; /* page size index */
  336. #ifdef CONFIG_PPC_MM_SLICES
  337. u64 low_slices_psize; /* SLB page size encodings */
  338. u64 high_slices_psize; /* 4 bits per slice for now */
  339. #else
  340. u16 sllp; /* SLB page size encoding */
  341. #endif
  342. unsigned long vdso_base;
  343. } mm_context_t;
  344. #if 0
  345. /*
  346. * The code below is equivalent to this function for arguments
  347. * < 2^VSID_BITS, which is all this should ever be called
  348. * with. However gcc is not clever enough to compute the
  349. * modulus (2^n-1) without a second multiply.
  350. */
  351. #define vsid_scrample(protovsid, size) \
  352. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  353. #else /* 1 */
  354. #define vsid_scramble(protovsid, size) \
  355. ({ \
  356. unsigned long x; \
  357. x = (protovsid) * VSID_MULTIPLIER_##size; \
  358. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  359. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  360. })
  361. #endif /* 1 */
  362. /* This is only valid for addresses >= PAGE_OFFSET */
  363. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  364. {
  365. if (ssize == MMU_SEGSIZE_256M)
  366. return vsid_scramble(ea >> SID_SHIFT, 256M);
  367. return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
  368. }
  369. /* Returns the segment size indicator for a user address */
  370. static inline int user_segment_size(unsigned long addr)
  371. {
  372. /* Use 1T segments if possible for addresses >= 1T */
  373. if (addr >= (1UL << SID_SHIFT_1T))
  374. return mmu_highuser_ssize;
  375. return MMU_SEGSIZE_256M;
  376. }
  377. /* This is only valid for user addresses (which are below 2^44) */
  378. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  379. int ssize)
  380. {
  381. if (ssize == MMU_SEGSIZE_256M)
  382. return vsid_scramble((context << USER_ESID_BITS)
  383. | (ea >> SID_SHIFT), 256M);
  384. return vsid_scramble((context << USER_ESID_BITS_1T)
  385. | (ea >> SID_SHIFT_1T), 1T);
  386. }
  387. /*
  388. * This is only used on legacy iSeries in lparmap.c,
  389. * hence the 256MB segment assumption.
  390. */
  391. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
  392. VSID_MODULUS_256M)
  393. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  394. #endif /* __ASSEMBLY__ */
  395. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */