dma-mapping.h 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. /*
  2. * Copyright (C) 2004 IBM
  3. *
  4. * Implements the generic device dma API for powerpc.
  5. * the pci and vio busses
  6. */
  7. #ifndef _ASM_DMA_MAPPING_H
  8. #define _ASM_DMA_MAPPING_H
  9. #ifdef __KERNEL__
  10. #include <linux/types.h>
  11. #include <linux/cache.h>
  12. /* need struct page definitions */
  13. #include <linux/mm.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/dma-attrs.h>
  16. #include <linux/dma-debug.h>
  17. #include <asm/io.h>
  18. #include <asm/swiotlb.h>
  19. #define DMA_ERROR_CODE (~(dma_addr_t)0x0)
  20. /* Some dma direct funcs must be visible for use in other dma_ops */
  21. extern void *dma_direct_alloc_coherent(struct device *dev, size_t size,
  22. dma_addr_t *dma_handle, gfp_t flag);
  23. extern void dma_direct_free_coherent(struct device *dev, size_t size,
  24. void *vaddr, dma_addr_t dma_handle);
  25. extern unsigned long get_dma_direct_offset(struct device *dev);
  26. #ifdef CONFIG_NOT_COHERENT_CACHE
  27. /*
  28. * DMA-consistent mapping functions for PowerPCs that don't support
  29. * cache snooping. These allocate/free a region of uncached mapped
  30. * memory space for use with DMA devices. Alternatively, you could
  31. * allocate the space "normally" and use the cache management functions
  32. * to ensure it is consistent.
  33. */
  34. struct device;
  35. extern void *__dma_alloc_coherent(struct device *dev, size_t size,
  36. dma_addr_t *handle, gfp_t gfp);
  37. extern void __dma_free_coherent(size_t size, void *vaddr);
  38. extern void __dma_sync(void *vaddr, size_t size, int direction);
  39. extern void __dma_sync_page(struct page *page, unsigned long offset,
  40. size_t size, int direction);
  41. #else /* ! CONFIG_NOT_COHERENT_CACHE */
  42. /*
  43. * Cache coherent cores.
  44. */
  45. #define __dma_alloc_coherent(dev, gfp, size, handle) NULL
  46. #define __dma_free_coherent(size, addr) ((void)0)
  47. #define __dma_sync(addr, size, rw) ((void)0)
  48. #define __dma_sync_page(pg, off, sz, rw) ((void)0)
  49. #endif /* ! CONFIG_NOT_COHERENT_CACHE */
  50. static inline unsigned long device_to_mask(struct device *dev)
  51. {
  52. if (dev->dma_mask && *dev->dma_mask)
  53. return *dev->dma_mask;
  54. /* Assume devices without mask can take 32 bit addresses */
  55. return 0xfffffffful;
  56. }
  57. /*
  58. * Available generic sets of operations
  59. */
  60. #ifdef CONFIG_PPC64
  61. extern struct dma_map_ops dma_iommu_ops;
  62. #endif
  63. extern struct dma_map_ops dma_direct_ops;
  64. static inline struct dma_map_ops *get_dma_ops(struct device *dev)
  65. {
  66. /* We don't handle the NULL dev case for ISA for now. We could
  67. * do it via an out of line call but it is not needed for now. The
  68. * only ISA DMA device we support is the floppy and we have a hack
  69. * in the floppy driver directly to get a device for us.
  70. */
  71. if (unlikely(dev == NULL))
  72. return NULL;
  73. return dev->archdata.dma_ops;
  74. }
  75. static inline void set_dma_ops(struct device *dev, struct dma_map_ops *ops)
  76. {
  77. dev->archdata.dma_ops = ops;
  78. }
  79. /* this will be removed soon */
  80. #define flush_write_buffers()
  81. #include <asm-generic/dma-mapping-common.h>
  82. static inline int dma_supported(struct device *dev, u64 mask)
  83. {
  84. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  85. if (unlikely(dma_ops == NULL))
  86. return 0;
  87. if (dma_ops->dma_supported == NULL)
  88. return 1;
  89. return dma_ops->dma_supported(dev, mask);
  90. }
  91. /* We have our own implementation of pci_set_dma_mask() */
  92. #define HAVE_ARCH_PCI_SET_DMA_MASK
  93. static inline int dma_set_mask(struct device *dev, u64 dma_mask)
  94. {
  95. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  96. if (unlikely(dma_ops == NULL))
  97. return -EIO;
  98. if (dma_ops->set_dma_mask != NULL)
  99. return dma_ops->set_dma_mask(dev, dma_mask);
  100. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  101. return -EIO;
  102. *dev->dma_mask = dma_mask;
  103. return 0;
  104. }
  105. static inline void *dma_alloc_coherent(struct device *dev, size_t size,
  106. dma_addr_t *dma_handle, gfp_t flag)
  107. {
  108. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  109. void *cpu_addr;
  110. BUG_ON(!dma_ops);
  111. cpu_addr = dma_ops->alloc_coherent(dev, size, dma_handle, flag);
  112. debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
  113. return cpu_addr;
  114. }
  115. static inline void dma_free_coherent(struct device *dev, size_t size,
  116. void *cpu_addr, dma_addr_t dma_handle)
  117. {
  118. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  119. BUG_ON(!dma_ops);
  120. debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
  121. dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
  122. }
  123. static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  124. {
  125. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  126. if (dma_ops->mapping_error)
  127. return dma_ops->mapping_error(dev, dma_addr);
  128. #ifdef CONFIG_PPC64
  129. return (dma_addr == DMA_ERROR_CODE);
  130. #else
  131. return 0;
  132. #endif
  133. }
  134. static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
  135. {
  136. #ifdef CONFIG_SWIOTLB
  137. struct dev_archdata *sd = &dev->archdata;
  138. if (sd->max_direct_dma_addr && addr + size > sd->max_direct_dma_addr)
  139. return 0;
  140. #endif
  141. if (!dev->dma_mask)
  142. return 0;
  143. return addr + size <= *dev->dma_mask;
  144. }
  145. static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
  146. {
  147. return paddr + get_dma_direct_offset(dev);
  148. }
  149. static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
  150. {
  151. return daddr - get_dma_direct_offset(dev);
  152. }
  153. #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
  154. #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
  155. #ifdef CONFIG_NOT_COHERENT_CACHE
  156. #define dma_is_consistent(d, h) (0)
  157. #else
  158. #define dma_is_consistent(d, h) (1)
  159. #endif
  160. static inline int dma_get_cache_alignment(void)
  161. {
  162. #ifdef CONFIG_PPC64
  163. /* no easy way to get cache size on all processors, so return
  164. * the maximum possible, to be safe */
  165. return (1 << INTERNODE_CACHE_SHIFT);
  166. #else
  167. /*
  168. * Each processor family will define its own L1_CACHE_SHIFT,
  169. * L1_CACHE_BYTES wraps to this, so this is always safe.
  170. */
  171. return L1_CACHE_BYTES;
  172. #endif
  173. }
  174. static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  175. enum dma_data_direction direction)
  176. {
  177. BUG_ON(direction == DMA_NONE);
  178. __dma_sync(vaddr, size, (int)direction);
  179. }
  180. #endif /* __KERNEL__ */
  181. #endif /* _ASM_DMA_MAPPING_H */