cfq-iosched.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  33. static const int cfq_hist_divisor = 4;
  34. /*
  35. * offset from end of service tree
  36. */
  37. #define CFQ_IDLE_DELAY (HZ / 5)
  38. /*
  39. * below this threshold, we consider thinktime immediate
  40. */
  41. #define CFQ_MIN_TT (2)
  42. #define CFQ_SLICE_SCALE (5)
  43. #define CFQ_HW_QUEUE_MIN (5)
  44. #define CFQ_SERVICE_SHIFT 12
  45. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  46. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  47. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  48. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  49. #define RQ_CIC(rq) \
  50. ((struct cfq_io_context *) (rq)->elevator_private)
  51. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  52. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
  53. static struct kmem_cache *cfq_pool;
  54. static struct kmem_cache *cfq_ioc_pool;
  55. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  56. static struct completion *ioc_gone;
  57. static DEFINE_SPINLOCK(ioc_gone_lock);
  58. static DEFINE_SPINLOCK(cic_index_lock);
  59. static DEFINE_IDA(cic_index_ida);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct rb_node *active;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. atomic_t ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. };
  132. /*
  133. * First index in the service_trees.
  134. * IDLE is handled separately, so it has negative index
  135. */
  136. enum wl_prio_t {
  137. BE_WORKLOAD = 0,
  138. RT_WORKLOAD = 1,
  139. IDLE_WORKLOAD = 2,
  140. };
  141. /*
  142. * Second index in the service_trees.
  143. */
  144. enum wl_type_t {
  145. ASYNC_WORKLOAD = 0,
  146. SYNC_NOIDLE_WORKLOAD = 1,
  147. SYNC_WORKLOAD = 2
  148. };
  149. /* This is per cgroup per device grouping structure */
  150. struct cfq_group {
  151. /* group service_tree member */
  152. struct rb_node rb_node;
  153. /* group service_tree key */
  154. u64 vdisktime;
  155. unsigned int weight;
  156. bool on_st;
  157. /* number of cfqq currently on this group */
  158. int nr_cfqq;
  159. /* Per group busy queus average. Useful for workload slice calc. */
  160. unsigned int busy_queues_avg[2];
  161. /*
  162. * rr lists of queues with requests, onle rr for each priority class.
  163. * Counts are embedded in the cfq_rb_root
  164. */
  165. struct cfq_rb_root service_trees[2][3];
  166. struct cfq_rb_root service_tree_idle;
  167. unsigned long saved_workload_slice;
  168. enum wl_type_t saved_workload;
  169. enum wl_prio_t saved_serving_prio;
  170. struct blkio_group blkg;
  171. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  172. struct hlist_node cfqd_node;
  173. atomic_t ref;
  174. #endif
  175. };
  176. /*
  177. * Per block device queue structure
  178. */
  179. struct cfq_data {
  180. struct request_queue *queue;
  181. /* Root service tree for cfq_groups */
  182. struct cfq_rb_root grp_service_tree;
  183. struct cfq_group root_group;
  184. /*
  185. * The priority currently being served
  186. */
  187. enum wl_prio_t serving_prio;
  188. enum wl_type_t serving_type;
  189. unsigned long workload_expires;
  190. struct cfq_group *serving_group;
  191. bool noidle_tree_requires_idle;
  192. /*
  193. * Each priority tree is sorted by next_request position. These
  194. * trees are used when determining if two or more queues are
  195. * interleaving requests (see cfq_close_cooperator).
  196. */
  197. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  198. unsigned int busy_queues;
  199. int rq_in_driver;
  200. int rq_in_flight[2];
  201. /*
  202. * queue-depth detection
  203. */
  204. int rq_queued;
  205. int hw_tag;
  206. /*
  207. * hw_tag can be
  208. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  209. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  210. * 0 => no NCQ
  211. */
  212. int hw_tag_est_depth;
  213. unsigned int hw_tag_samples;
  214. /*
  215. * idle window management
  216. */
  217. struct timer_list idle_slice_timer;
  218. struct work_struct unplug_work;
  219. struct cfq_queue *active_queue;
  220. struct cfq_io_context *active_cic;
  221. /*
  222. * async queue for each priority case
  223. */
  224. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  225. struct cfq_queue *async_idle_cfqq;
  226. sector_t last_position;
  227. /*
  228. * tunables, see top of file
  229. */
  230. unsigned int cfq_quantum;
  231. unsigned int cfq_fifo_expire[2];
  232. unsigned int cfq_back_penalty;
  233. unsigned int cfq_back_max;
  234. unsigned int cfq_slice[2];
  235. unsigned int cfq_slice_async_rq;
  236. unsigned int cfq_slice_idle;
  237. unsigned int cfq_latency;
  238. unsigned int cfq_group_isolation;
  239. unsigned int cic_index;
  240. struct list_head cic_list;
  241. /*
  242. * Fallback dummy cfqq for extreme OOM conditions
  243. */
  244. struct cfq_queue oom_cfqq;
  245. unsigned long last_delayed_sync;
  246. /* List of cfq groups being managed on this device*/
  247. struct hlist_head cfqg_list;
  248. struct rcu_head rcu;
  249. };
  250. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  251. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  252. enum wl_prio_t prio,
  253. enum wl_type_t type)
  254. {
  255. if (!cfqg)
  256. return NULL;
  257. if (prio == IDLE_WORKLOAD)
  258. return &cfqg->service_tree_idle;
  259. return &cfqg->service_trees[prio][type];
  260. }
  261. enum cfqq_state_flags {
  262. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  263. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  264. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  265. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  266. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  267. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  268. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  269. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  270. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  271. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  272. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  273. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  274. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  275. };
  276. #define CFQ_CFQQ_FNS(name) \
  277. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  278. { \
  279. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  280. } \
  281. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  282. { \
  283. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  284. } \
  285. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  286. { \
  287. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  288. }
  289. CFQ_CFQQ_FNS(on_rr);
  290. CFQ_CFQQ_FNS(wait_request);
  291. CFQ_CFQQ_FNS(must_dispatch);
  292. CFQ_CFQQ_FNS(must_alloc_slice);
  293. CFQ_CFQQ_FNS(fifo_expire);
  294. CFQ_CFQQ_FNS(idle_window);
  295. CFQ_CFQQ_FNS(prio_changed);
  296. CFQ_CFQQ_FNS(slice_new);
  297. CFQ_CFQQ_FNS(sync);
  298. CFQ_CFQQ_FNS(coop);
  299. CFQ_CFQQ_FNS(split_coop);
  300. CFQ_CFQQ_FNS(deep);
  301. CFQ_CFQQ_FNS(wait_busy);
  302. #undef CFQ_CFQQ_FNS
  303. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  304. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  305. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  306. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  307. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  308. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  309. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  310. blkg_path(&(cfqg)->blkg), ##args); \
  311. #else
  312. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  313. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  314. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  315. #endif
  316. #define cfq_log(cfqd, fmt, args...) \
  317. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  318. /* Traverses through cfq group service trees */
  319. #define for_each_cfqg_st(cfqg, i, j, st) \
  320. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  321. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  322. : &cfqg->service_tree_idle; \
  323. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  324. (i == IDLE_WORKLOAD && j == 0); \
  325. j++, st = i < IDLE_WORKLOAD ? \
  326. &cfqg->service_trees[i][j]: NULL) \
  327. static inline bool iops_mode(struct cfq_data *cfqd)
  328. {
  329. /*
  330. * If we are not idling on queues and it is a NCQ drive, parallel
  331. * execution of requests is on and measuring time is not possible
  332. * in most of the cases until and unless we drive shallower queue
  333. * depths and that becomes a performance bottleneck. In such cases
  334. * switch to start providing fairness in terms of number of IOs.
  335. */
  336. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  337. return true;
  338. else
  339. return false;
  340. }
  341. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  342. {
  343. if (cfq_class_idle(cfqq))
  344. return IDLE_WORKLOAD;
  345. if (cfq_class_rt(cfqq))
  346. return RT_WORKLOAD;
  347. return BE_WORKLOAD;
  348. }
  349. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  350. {
  351. if (!cfq_cfqq_sync(cfqq))
  352. return ASYNC_WORKLOAD;
  353. if (!cfq_cfqq_idle_window(cfqq))
  354. return SYNC_NOIDLE_WORKLOAD;
  355. return SYNC_WORKLOAD;
  356. }
  357. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  358. struct cfq_data *cfqd,
  359. struct cfq_group *cfqg)
  360. {
  361. if (wl == IDLE_WORKLOAD)
  362. return cfqg->service_tree_idle.count;
  363. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  364. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  365. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  366. }
  367. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  368. struct cfq_group *cfqg)
  369. {
  370. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  371. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  372. }
  373. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  374. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  375. struct io_context *, gfp_t);
  376. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  377. struct io_context *);
  378. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  379. bool is_sync)
  380. {
  381. return cic->cfqq[is_sync];
  382. }
  383. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  384. struct cfq_queue *cfqq, bool is_sync)
  385. {
  386. cic->cfqq[is_sync] = cfqq;
  387. }
  388. #define CIC_DEAD_KEY 1ul
  389. #define CIC_DEAD_INDEX_SHIFT 1
  390. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  391. {
  392. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  393. }
  394. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  395. {
  396. struct cfq_data *cfqd = cic->key;
  397. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  398. return NULL;
  399. return cfqd;
  400. }
  401. /*
  402. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  403. * set (in which case it could also be direct WRITE).
  404. */
  405. static inline bool cfq_bio_sync(struct bio *bio)
  406. {
  407. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  408. }
  409. /*
  410. * scheduler run of queue, if there are requests pending and no one in the
  411. * driver that will restart queueing
  412. */
  413. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  414. {
  415. if (cfqd->busy_queues) {
  416. cfq_log(cfqd, "schedule dispatch");
  417. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  418. }
  419. }
  420. static int cfq_queue_empty(struct request_queue *q)
  421. {
  422. struct cfq_data *cfqd = q->elevator->elevator_data;
  423. return !cfqd->rq_queued;
  424. }
  425. /*
  426. * Scale schedule slice based on io priority. Use the sync time slice only
  427. * if a queue is marked sync and has sync io queued. A sync queue with async
  428. * io only, should not get full sync slice length.
  429. */
  430. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  431. unsigned short prio)
  432. {
  433. const int base_slice = cfqd->cfq_slice[sync];
  434. WARN_ON(prio >= IOPRIO_BE_NR);
  435. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  436. }
  437. static inline int
  438. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  439. {
  440. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  441. }
  442. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  443. {
  444. u64 d = delta << CFQ_SERVICE_SHIFT;
  445. d = d * BLKIO_WEIGHT_DEFAULT;
  446. do_div(d, cfqg->weight);
  447. return d;
  448. }
  449. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  450. {
  451. s64 delta = (s64)(vdisktime - min_vdisktime);
  452. if (delta > 0)
  453. min_vdisktime = vdisktime;
  454. return min_vdisktime;
  455. }
  456. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  457. {
  458. s64 delta = (s64)(vdisktime - min_vdisktime);
  459. if (delta < 0)
  460. min_vdisktime = vdisktime;
  461. return min_vdisktime;
  462. }
  463. static void update_min_vdisktime(struct cfq_rb_root *st)
  464. {
  465. u64 vdisktime = st->min_vdisktime;
  466. struct cfq_group *cfqg;
  467. if (st->active) {
  468. cfqg = rb_entry_cfqg(st->active);
  469. vdisktime = cfqg->vdisktime;
  470. }
  471. if (st->left) {
  472. cfqg = rb_entry_cfqg(st->left);
  473. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  474. }
  475. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  476. }
  477. /*
  478. * get averaged number of queues of RT/BE priority.
  479. * average is updated, with a formula that gives more weight to higher numbers,
  480. * to quickly follows sudden increases and decrease slowly
  481. */
  482. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  483. struct cfq_group *cfqg, bool rt)
  484. {
  485. unsigned min_q, max_q;
  486. unsigned mult = cfq_hist_divisor - 1;
  487. unsigned round = cfq_hist_divisor / 2;
  488. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  489. min_q = min(cfqg->busy_queues_avg[rt], busy);
  490. max_q = max(cfqg->busy_queues_avg[rt], busy);
  491. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  492. cfq_hist_divisor;
  493. return cfqg->busy_queues_avg[rt];
  494. }
  495. static inline unsigned
  496. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  497. {
  498. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  499. return cfq_target_latency * cfqg->weight / st->total_weight;
  500. }
  501. static inline void
  502. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  503. {
  504. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  505. if (cfqd->cfq_latency) {
  506. /*
  507. * interested queues (we consider only the ones with the same
  508. * priority class in the cfq group)
  509. */
  510. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  511. cfq_class_rt(cfqq));
  512. unsigned sync_slice = cfqd->cfq_slice[1];
  513. unsigned expect_latency = sync_slice * iq;
  514. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  515. if (expect_latency > group_slice) {
  516. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  517. /* scale low_slice according to IO priority
  518. * and sync vs async */
  519. unsigned low_slice =
  520. min(slice, base_low_slice * slice / sync_slice);
  521. /* the adapted slice value is scaled to fit all iqs
  522. * into the target latency */
  523. slice = max(slice * group_slice / expect_latency,
  524. low_slice);
  525. }
  526. }
  527. cfqq->slice_start = jiffies;
  528. cfqq->slice_end = jiffies + slice;
  529. cfqq->allocated_slice = slice;
  530. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  531. }
  532. /*
  533. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  534. * isn't valid until the first request from the dispatch is activated
  535. * and the slice time set.
  536. */
  537. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  538. {
  539. if (cfq_cfqq_slice_new(cfqq))
  540. return 0;
  541. if (time_before(jiffies, cfqq->slice_end))
  542. return 0;
  543. return 1;
  544. }
  545. /*
  546. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  547. * We choose the request that is closest to the head right now. Distance
  548. * behind the head is penalized and only allowed to a certain extent.
  549. */
  550. static struct request *
  551. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  552. {
  553. sector_t s1, s2, d1 = 0, d2 = 0;
  554. unsigned long back_max;
  555. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  556. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  557. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  558. if (rq1 == NULL || rq1 == rq2)
  559. return rq2;
  560. if (rq2 == NULL)
  561. return rq1;
  562. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  563. return rq1;
  564. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  565. return rq2;
  566. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  567. return rq1;
  568. else if ((rq2->cmd_flags & REQ_META) &&
  569. !(rq1->cmd_flags & REQ_META))
  570. return rq2;
  571. s1 = blk_rq_pos(rq1);
  572. s2 = blk_rq_pos(rq2);
  573. /*
  574. * by definition, 1KiB is 2 sectors
  575. */
  576. back_max = cfqd->cfq_back_max * 2;
  577. /*
  578. * Strict one way elevator _except_ in the case where we allow
  579. * short backward seeks which are biased as twice the cost of a
  580. * similar forward seek.
  581. */
  582. if (s1 >= last)
  583. d1 = s1 - last;
  584. else if (s1 + back_max >= last)
  585. d1 = (last - s1) * cfqd->cfq_back_penalty;
  586. else
  587. wrap |= CFQ_RQ1_WRAP;
  588. if (s2 >= last)
  589. d2 = s2 - last;
  590. else if (s2 + back_max >= last)
  591. d2 = (last - s2) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ2_WRAP;
  594. /* Found required data */
  595. /*
  596. * By doing switch() on the bit mask "wrap" we avoid having to
  597. * check two variables for all permutations: --> faster!
  598. */
  599. switch (wrap) {
  600. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  601. if (d1 < d2)
  602. return rq1;
  603. else if (d2 < d1)
  604. return rq2;
  605. else {
  606. if (s1 >= s2)
  607. return rq1;
  608. else
  609. return rq2;
  610. }
  611. case CFQ_RQ2_WRAP:
  612. return rq1;
  613. case CFQ_RQ1_WRAP:
  614. return rq2;
  615. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  616. default:
  617. /*
  618. * Since both rqs are wrapped,
  619. * start with the one that's further behind head
  620. * (--> only *one* back seek required),
  621. * since back seek takes more time than forward.
  622. */
  623. if (s1 <= s2)
  624. return rq1;
  625. else
  626. return rq2;
  627. }
  628. }
  629. /*
  630. * The below is leftmost cache rbtree addon
  631. */
  632. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  633. {
  634. /* Service tree is empty */
  635. if (!root->count)
  636. return NULL;
  637. if (!root->left)
  638. root->left = rb_first(&root->rb);
  639. if (root->left)
  640. return rb_entry(root->left, struct cfq_queue, rb_node);
  641. return NULL;
  642. }
  643. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  644. {
  645. if (!root->left)
  646. root->left = rb_first(&root->rb);
  647. if (root->left)
  648. return rb_entry_cfqg(root->left);
  649. return NULL;
  650. }
  651. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  652. {
  653. rb_erase(n, root);
  654. RB_CLEAR_NODE(n);
  655. }
  656. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  657. {
  658. if (root->left == n)
  659. root->left = NULL;
  660. rb_erase_init(n, &root->rb);
  661. --root->count;
  662. }
  663. /*
  664. * would be nice to take fifo expire time into account as well
  665. */
  666. static struct request *
  667. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  668. struct request *last)
  669. {
  670. struct rb_node *rbnext = rb_next(&last->rb_node);
  671. struct rb_node *rbprev = rb_prev(&last->rb_node);
  672. struct request *next = NULL, *prev = NULL;
  673. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  674. if (rbprev)
  675. prev = rb_entry_rq(rbprev);
  676. if (rbnext)
  677. next = rb_entry_rq(rbnext);
  678. else {
  679. rbnext = rb_first(&cfqq->sort_list);
  680. if (rbnext && rbnext != &last->rb_node)
  681. next = rb_entry_rq(rbnext);
  682. }
  683. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  684. }
  685. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  686. struct cfq_queue *cfqq)
  687. {
  688. /*
  689. * just an approximation, should be ok.
  690. */
  691. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  692. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  693. }
  694. static inline s64
  695. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  696. {
  697. return cfqg->vdisktime - st->min_vdisktime;
  698. }
  699. static void
  700. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  701. {
  702. struct rb_node **node = &st->rb.rb_node;
  703. struct rb_node *parent = NULL;
  704. struct cfq_group *__cfqg;
  705. s64 key = cfqg_key(st, cfqg);
  706. int left = 1;
  707. while (*node != NULL) {
  708. parent = *node;
  709. __cfqg = rb_entry_cfqg(parent);
  710. if (key < cfqg_key(st, __cfqg))
  711. node = &parent->rb_left;
  712. else {
  713. node = &parent->rb_right;
  714. left = 0;
  715. }
  716. }
  717. if (left)
  718. st->left = &cfqg->rb_node;
  719. rb_link_node(&cfqg->rb_node, parent, node);
  720. rb_insert_color(&cfqg->rb_node, &st->rb);
  721. }
  722. static void
  723. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  724. {
  725. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  726. struct cfq_group *__cfqg;
  727. struct rb_node *n;
  728. cfqg->nr_cfqq++;
  729. if (cfqg->on_st)
  730. return;
  731. /*
  732. * Currently put the group at the end. Later implement something
  733. * so that groups get lesser vtime based on their weights, so that
  734. * if group does not loose all if it was not continously backlogged.
  735. */
  736. n = rb_last(&st->rb);
  737. if (n) {
  738. __cfqg = rb_entry_cfqg(n);
  739. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  740. } else
  741. cfqg->vdisktime = st->min_vdisktime;
  742. __cfq_group_service_tree_add(st, cfqg);
  743. cfqg->on_st = true;
  744. st->total_weight += cfqg->weight;
  745. }
  746. static void
  747. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  748. {
  749. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  750. if (st->active == &cfqg->rb_node)
  751. st->active = NULL;
  752. BUG_ON(cfqg->nr_cfqq < 1);
  753. cfqg->nr_cfqq--;
  754. /* If there are other cfq queues under this group, don't delete it */
  755. if (cfqg->nr_cfqq)
  756. return;
  757. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  758. cfqg->on_st = false;
  759. st->total_weight -= cfqg->weight;
  760. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  761. cfq_rb_erase(&cfqg->rb_node, st);
  762. cfqg->saved_workload_slice = 0;
  763. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  764. }
  765. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  766. {
  767. unsigned int slice_used;
  768. /*
  769. * Queue got expired before even a single request completed or
  770. * got expired immediately after first request completion.
  771. */
  772. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  773. /*
  774. * Also charge the seek time incurred to the group, otherwise
  775. * if there are mutiple queues in the group, each can dispatch
  776. * a single request on seeky media and cause lots of seek time
  777. * and group will never know it.
  778. */
  779. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  780. 1);
  781. } else {
  782. slice_used = jiffies - cfqq->slice_start;
  783. if (slice_used > cfqq->allocated_slice)
  784. slice_used = cfqq->allocated_slice;
  785. }
  786. return slice_used;
  787. }
  788. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  789. struct cfq_queue *cfqq)
  790. {
  791. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  792. unsigned int used_sl, charge;
  793. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  794. - cfqg->service_tree_idle.count;
  795. BUG_ON(nr_sync < 0);
  796. used_sl = charge = cfq_cfqq_slice_usage(cfqq);
  797. if (iops_mode(cfqd))
  798. charge = cfqq->slice_dispatch;
  799. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  800. charge = cfqq->allocated_slice;
  801. /* Can't update vdisktime while group is on service tree */
  802. cfq_rb_erase(&cfqg->rb_node, st);
  803. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  804. __cfq_group_service_tree_add(st, cfqg);
  805. /* This group is being expired. Save the context */
  806. if (time_after(cfqd->workload_expires, jiffies)) {
  807. cfqg->saved_workload_slice = cfqd->workload_expires
  808. - jiffies;
  809. cfqg->saved_workload = cfqd->serving_type;
  810. cfqg->saved_serving_prio = cfqd->serving_prio;
  811. } else
  812. cfqg->saved_workload_slice = 0;
  813. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  814. st->min_vdisktime);
  815. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u",
  816. used_sl, cfqq->slice_dispatch, charge, iops_mode(cfqd));
  817. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
  818. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  819. }
  820. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  821. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  822. {
  823. if (blkg)
  824. return container_of(blkg, struct cfq_group, blkg);
  825. return NULL;
  826. }
  827. void
  828. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  829. {
  830. cfqg_of_blkg(blkg)->weight = weight;
  831. }
  832. static struct cfq_group *
  833. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  834. {
  835. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  836. struct cfq_group *cfqg = NULL;
  837. void *key = cfqd;
  838. int i, j;
  839. struct cfq_rb_root *st;
  840. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  841. unsigned int major, minor;
  842. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  843. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  844. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  845. cfqg->blkg.dev = MKDEV(major, minor);
  846. goto done;
  847. }
  848. if (cfqg || !create)
  849. goto done;
  850. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  851. if (!cfqg)
  852. goto done;
  853. for_each_cfqg_st(cfqg, i, j, st)
  854. *st = CFQ_RB_ROOT;
  855. RB_CLEAR_NODE(&cfqg->rb_node);
  856. /*
  857. * Take the initial reference that will be released on destroy
  858. * This can be thought of a joint reference by cgroup and
  859. * elevator which will be dropped by either elevator exit
  860. * or cgroup deletion path depending on who is exiting first.
  861. */
  862. atomic_set(&cfqg->ref, 1);
  863. /* Add group onto cgroup list */
  864. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  865. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  866. MKDEV(major, minor));
  867. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  868. /* Add group on cfqd list */
  869. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  870. done:
  871. return cfqg;
  872. }
  873. /*
  874. * Search for the cfq group current task belongs to. If create = 1, then also
  875. * create the cfq group if it does not exist. request_queue lock must be held.
  876. */
  877. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  878. {
  879. struct cgroup *cgroup;
  880. struct cfq_group *cfqg = NULL;
  881. rcu_read_lock();
  882. cgroup = task_cgroup(current, blkio_subsys_id);
  883. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  884. if (!cfqg && create)
  885. cfqg = &cfqd->root_group;
  886. rcu_read_unlock();
  887. return cfqg;
  888. }
  889. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  890. {
  891. atomic_inc(&cfqg->ref);
  892. return cfqg;
  893. }
  894. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  895. {
  896. /* Currently, all async queues are mapped to root group */
  897. if (!cfq_cfqq_sync(cfqq))
  898. cfqg = &cfqq->cfqd->root_group;
  899. cfqq->cfqg = cfqg;
  900. /* cfqq reference on cfqg */
  901. atomic_inc(&cfqq->cfqg->ref);
  902. }
  903. static void cfq_put_cfqg(struct cfq_group *cfqg)
  904. {
  905. struct cfq_rb_root *st;
  906. int i, j;
  907. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  908. if (!atomic_dec_and_test(&cfqg->ref))
  909. return;
  910. for_each_cfqg_st(cfqg, i, j, st)
  911. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  912. kfree(cfqg);
  913. }
  914. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  915. {
  916. /* Something wrong if we are trying to remove same group twice */
  917. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  918. hlist_del_init(&cfqg->cfqd_node);
  919. /*
  920. * Put the reference taken at the time of creation so that when all
  921. * queues are gone, group can be destroyed.
  922. */
  923. cfq_put_cfqg(cfqg);
  924. }
  925. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  926. {
  927. struct hlist_node *pos, *n;
  928. struct cfq_group *cfqg;
  929. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  930. /*
  931. * If cgroup removal path got to blk_group first and removed
  932. * it from cgroup list, then it will take care of destroying
  933. * cfqg also.
  934. */
  935. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  936. cfq_destroy_cfqg(cfqd, cfqg);
  937. }
  938. }
  939. /*
  940. * Blk cgroup controller notification saying that blkio_group object is being
  941. * delinked as associated cgroup object is going away. That also means that
  942. * no new IO will come in this group. So get rid of this group as soon as
  943. * any pending IO in the group is finished.
  944. *
  945. * This function is called under rcu_read_lock(). key is the rcu protected
  946. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  947. * read lock.
  948. *
  949. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  950. * it should not be NULL as even if elevator was exiting, cgroup deltion
  951. * path got to it first.
  952. */
  953. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  954. {
  955. unsigned long flags;
  956. struct cfq_data *cfqd = key;
  957. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  958. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  959. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  960. }
  961. #else /* GROUP_IOSCHED */
  962. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  963. {
  964. return &cfqd->root_group;
  965. }
  966. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  967. {
  968. return cfqg;
  969. }
  970. static inline void
  971. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  972. cfqq->cfqg = cfqg;
  973. }
  974. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  975. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  976. #endif /* GROUP_IOSCHED */
  977. /*
  978. * The cfqd->service_trees holds all pending cfq_queue's that have
  979. * requests waiting to be processed. It is sorted in the order that
  980. * we will service the queues.
  981. */
  982. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  983. bool add_front)
  984. {
  985. struct rb_node **p, *parent;
  986. struct cfq_queue *__cfqq;
  987. unsigned long rb_key;
  988. struct cfq_rb_root *service_tree;
  989. int left;
  990. int new_cfqq = 1;
  991. int group_changed = 0;
  992. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  993. if (!cfqd->cfq_group_isolation
  994. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  995. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  996. /* Move this cfq to root group */
  997. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  998. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  999. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1000. cfqq->orig_cfqg = cfqq->cfqg;
  1001. cfqq->cfqg = &cfqd->root_group;
  1002. atomic_inc(&cfqd->root_group.ref);
  1003. group_changed = 1;
  1004. } else if (!cfqd->cfq_group_isolation
  1005. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  1006. /* cfqq is sequential now needs to go to its original group */
  1007. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  1008. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  1009. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1010. cfq_put_cfqg(cfqq->cfqg);
  1011. cfqq->cfqg = cfqq->orig_cfqg;
  1012. cfqq->orig_cfqg = NULL;
  1013. group_changed = 1;
  1014. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  1015. }
  1016. #endif
  1017. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1018. cfqq_type(cfqq));
  1019. if (cfq_class_idle(cfqq)) {
  1020. rb_key = CFQ_IDLE_DELAY;
  1021. parent = rb_last(&service_tree->rb);
  1022. if (parent && parent != &cfqq->rb_node) {
  1023. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1024. rb_key += __cfqq->rb_key;
  1025. } else
  1026. rb_key += jiffies;
  1027. } else if (!add_front) {
  1028. /*
  1029. * Get our rb key offset. Subtract any residual slice
  1030. * value carried from last service. A negative resid
  1031. * count indicates slice overrun, and this should position
  1032. * the next service time further away in the tree.
  1033. */
  1034. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1035. rb_key -= cfqq->slice_resid;
  1036. cfqq->slice_resid = 0;
  1037. } else {
  1038. rb_key = -HZ;
  1039. __cfqq = cfq_rb_first(service_tree);
  1040. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1041. }
  1042. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1043. new_cfqq = 0;
  1044. /*
  1045. * same position, nothing more to do
  1046. */
  1047. if (rb_key == cfqq->rb_key &&
  1048. cfqq->service_tree == service_tree)
  1049. return;
  1050. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1051. cfqq->service_tree = NULL;
  1052. }
  1053. left = 1;
  1054. parent = NULL;
  1055. cfqq->service_tree = service_tree;
  1056. p = &service_tree->rb.rb_node;
  1057. while (*p) {
  1058. struct rb_node **n;
  1059. parent = *p;
  1060. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1061. /*
  1062. * sort by key, that represents service time.
  1063. */
  1064. if (time_before(rb_key, __cfqq->rb_key))
  1065. n = &(*p)->rb_left;
  1066. else {
  1067. n = &(*p)->rb_right;
  1068. left = 0;
  1069. }
  1070. p = n;
  1071. }
  1072. if (left)
  1073. service_tree->left = &cfqq->rb_node;
  1074. cfqq->rb_key = rb_key;
  1075. rb_link_node(&cfqq->rb_node, parent, p);
  1076. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1077. service_tree->count++;
  1078. if ((add_front || !new_cfqq) && !group_changed)
  1079. return;
  1080. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1081. }
  1082. static struct cfq_queue *
  1083. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1084. sector_t sector, struct rb_node **ret_parent,
  1085. struct rb_node ***rb_link)
  1086. {
  1087. struct rb_node **p, *parent;
  1088. struct cfq_queue *cfqq = NULL;
  1089. parent = NULL;
  1090. p = &root->rb_node;
  1091. while (*p) {
  1092. struct rb_node **n;
  1093. parent = *p;
  1094. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1095. /*
  1096. * Sort strictly based on sector. Smallest to the left,
  1097. * largest to the right.
  1098. */
  1099. if (sector > blk_rq_pos(cfqq->next_rq))
  1100. n = &(*p)->rb_right;
  1101. else if (sector < blk_rq_pos(cfqq->next_rq))
  1102. n = &(*p)->rb_left;
  1103. else
  1104. break;
  1105. p = n;
  1106. cfqq = NULL;
  1107. }
  1108. *ret_parent = parent;
  1109. if (rb_link)
  1110. *rb_link = p;
  1111. return cfqq;
  1112. }
  1113. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1114. {
  1115. struct rb_node **p, *parent;
  1116. struct cfq_queue *__cfqq;
  1117. if (cfqq->p_root) {
  1118. rb_erase(&cfqq->p_node, cfqq->p_root);
  1119. cfqq->p_root = NULL;
  1120. }
  1121. if (cfq_class_idle(cfqq))
  1122. return;
  1123. if (!cfqq->next_rq)
  1124. return;
  1125. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1126. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1127. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1128. if (!__cfqq) {
  1129. rb_link_node(&cfqq->p_node, parent, p);
  1130. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1131. } else
  1132. cfqq->p_root = NULL;
  1133. }
  1134. /*
  1135. * Update cfqq's position in the service tree.
  1136. */
  1137. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1138. {
  1139. /*
  1140. * Resorting requires the cfqq to be on the RR list already.
  1141. */
  1142. if (cfq_cfqq_on_rr(cfqq)) {
  1143. cfq_service_tree_add(cfqd, cfqq, 0);
  1144. cfq_prio_tree_add(cfqd, cfqq);
  1145. }
  1146. }
  1147. /*
  1148. * add to busy list of queues for service, trying to be fair in ordering
  1149. * the pending list according to last request service
  1150. */
  1151. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1152. {
  1153. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1154. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1155. cfq_mark_cfqq_on_rr(cfqq);
  1156. cfqd->busy_queues++;
  1157. cfq_resort_rr_list(cfqd, cfqq);
  1158. }
  1159. /*
  1160. * Called when the cfqq no longer has requests pending, remove it from
  1161. * the service tree.
  1162. */
  1163. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1164. {
  1165. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1166. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1167. cfq_clear_cfqq_on_rr(cfqq);
  1168. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1169. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1170. cfqq->service_tree = NULL;
  1171. }
  1172. if (cfqq->p_root) {
  1173. rb_erase(&cfqq->p_node, cfqq->p_root);
  1174. cfqq->p_root = NULL;
  1175. }
  1176. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1177. BUG_ON(!cfqd->busy_queues);
  1178. cfqd->busy_queues--;
  1179. }
  1180. /*
  1181. * rb tree support functions
  1182. */
  1183. static void cfq_del_rq_rb(struct request *rq)
  1184. {
  1185. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1186. const int sync = rq_is_sync(rq);
  1187. BUG_ON(!cfqq->queued[sync]);
  1188. cfqq->queued[sync]--;
  1189. elv_rb_del(&cfqq->sort_list, rq);
  1190. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1191. /*
  1192. * Queue will be deleted from service tree when we actually
  1193. * expire it later. Right now just remove it from prio tree
  1194. * as it is empty.
  1195. */
  1196. if (cfqq->p_root) {
  1197. rb_erase(&cfqq->p_node, cfqq->p_root);
  1198. cfqq->p_root = NULL;
  1199. }
  1200. }
  1201. }
  1202. static void cfq_add_rq_rb(struct request *rq)
  1203. {
  1204. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1205. struct cfq_data *cfqd = cfqq->cfqd;
  1206. struct request *__alias, *prev;
  1207. cfqq->queued[rq_is_sync(rq)]++;
  1208. /*
  1209. * looks a little odd, but the first insert might return an alias.
  1210. * if that happens, put the alias on the dispatch list
  1211. */
  1212. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1213. cfq_dispatch_insert(cfqd->queue, __alias);
  1214. if (!cfq_cfqq_on_rr(cfqq))
  1215. cfq_add_cfqq_rr(cfqd, cfqq);
  1216. /*
  1217. * check if this request is a better next-serve candidate
  1218. */
  1219. prev = cfqq->next_rq;
  1220. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1221. /*
  1222. * adjust priority tree position, if ->next_rq changes
  1223. */
  1224. if (prev != cfqq->next_rq)
  1225. cfq_prio_tree_add(cfqd, cfqq);
  1226. BUG_ON(!cfqq->next_rq);
  1227. }
  1228. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1229. {
  1230. elv_rb_del(&cfqq->sort_list, rq);
  1231. cfqq->queued[rq_is_sync(rq)]--;
  1232. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1233. rq_data_dir(rq), rq_is_sync(rq));
  1234. cfq_add_rq_rb(rq);
  1235. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1236. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1237. rq_is_sync(rq));
  1238. }
  1239. static struct request *
  1240. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1241. {
  1242. struct task_struct *tsk = current;
  1243. struct cfq_io_context *cic;
  1244. struct cfq_queue *cfqq;
  1245. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1246. if (!cic)
  1247. return NULL;
  1248. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1249. if (cfqq) {
  1250. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1251. return elv_rb_find(&cfqq->sort_list, sector);
  1252. }
  1253. return NULL;
  1254. }
  1255. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1256. {
  1257. struct cfq_data *cfqd = q->elevator->elevator_data;
  1258. cfqd->rq_in_driver++;
  1259. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1260. cfqd->rq_in_driver);
  1261. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1262. }
  1263. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1264. {
  1265. struct cfq_data *cfqd = q->elevator->elevator_data;
  1266. WARN_ON(!cfqd->rq_in_driver);
  1267. cfqd->rq_in_driver--;
  1268. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1269. cfqd->rq_in_driver);
  1270. }
  1271. static void cfq_remove_request(struct request *rq)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. if (cfqq->next_rq == rq)
  1275. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1276. list_del_init(&rq->queuelist);
  1277. cfq_del_rq_rb(rq);
  1278. cfqq->cfqd->rq_queued--;
  1279. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1280. rq_data_dir(rq), rq_is_sync(rq));
  1281. if (rq->cmd_flags & REQ_META) {
  1282. WARN_ON(!cfqq->meta_pending);
  1283. cfqq->meta_pending--;
  1284. }
  1285. }
  1286. static int cfq_merge(struct request_queue *q, struct request **req,
  1287. struct bio *bio)
  1288. {
  1289. struct cfq_data *cfqd = q->elevator->elevator_data;
  1290. struct request *__rq;
  1291. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1292. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1293. *req = __rq;
  1294. return ELEVATOR_FRONT_MERGE;
  1295. }
  1296. return ELEVATOR_NO_MERGE;
  1297. }
  1298. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1299. int type)
  1300. {
  1301. if (type == ELEVATOR_FRONT_MERGE) {
  1302. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1303. cfq_reposition_rq_rb(cfqq, req);
  1304. }
  1305. }
  1306. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1307. struct bio *bio)
  1308. {
  1309. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1310. bio_data_dir(bio), cfq_bio_sync(bio));
  1311. }
  1312. static void
  1313. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1314. struct request *next)
  1315. {
  1316. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1317. /*
  1318. * reposition in fifo if next is older than rq
  1319. */
  1320. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1321. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1322. list_move(&rq->queuelist, &next->queuelist);
  1323. rq_set_fifo_time(rq, rq_fifo_time(next));
  1324. }
  1325. if (cfqq->next_rq == next)
  1326. cfqq->next_rq = rq;
  1327. cfq_remove_request(next);
  1328. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1329. rq_data_dir(next), rq_is_sync(next));
  1330. }
  1331. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1332. struct bio *bio)
  1333. {
  1334. struct cfq_data *cfqd = q->elevator->elevator_data;
  1335. struct cfq_io_context *cic;
  1336. struct cfq_queue *cfqq;
  1337. /*
  1338. * Disallow merge of a sync bio into an async request.
  1339. */
  1340. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1341. return false;
  1342. /*
  1343. * Lookup the cfqq that this bio will be queued with. Allow
  1344. * merge only if rq is queued there.
  1345. */
  1346. cic = cfq_cic_lookup(cfqd, current->io_context);
  1347. if (!cic)
  1348. return false;
  1349. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1350. return cfqq == RQ_CFQQ(rq);
  1351. }
  1352. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1353. {
  1354. del_timer(&cfqd->idle_slice_timer);
  1355. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1356. }
  1357. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1358. struct cfq_queue *cfqq)
  1359. {
  1360. if (cfqq) {
  1361. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1362. cfqd->serving_prio, cfqd->serving_type);
  1363. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1364. cfqq->slice_start = 0;
  1365. cfqq->dispatch_start = jiffies;
  1366. cfqq->allocated_slice = 0;
  1367. cfqq->slice_end = 0;
  1368. cfqq->slice_dispatch = 0;
  1369. cfq_clear_cfqq_wait_request(cfqq);
  1370. cfq_clear_cfqq_must_dispatch(cfqq);
  1371. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1372. cfq_clear_cfqq_fifo_expire(cfqq);
  1373. cfq_mark_cfqq_slice_new(cfqq);
  1374. cfq_del_timer(cfqd, cfqq);
  1375. }
  1376. cfqd->active_queue = cfqq;
  1377. }
  1378. /*
  1379. * current cfqq expired its slice (or was too idle), select new one
  1380. */
  1381. static void
  1382. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1383. bool timed_out)
  1384. {
  1385. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1386. if (cfq_cfqq_wait_request(cfqq))
  1387. cfq_del_timer(cfqd, cfqq);
  1388. cfq_clear_cfqq_wait_request(cfqq);
  1389. cfq_clear_cfqq_wait_busy(cfqq);
  1390. /*
  1391. * If this cfqq is shared between multiple processes, check to
  1392. * make sure that those processes are still issuing I/Os within
  1393. * the mean seek distance. If not, it may be time to break the
  1394. * queues apart again.
  1395. */
  1396. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1397. cfq_mark_cfqq_split_coop(cfqq);
  1398. /*
  1399. * store what was left of this slice, if the queue idled/timed out
  1400. */
  1401. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1402. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1403. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1404. }
  1405. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1406. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1407. cfq_del_cfqq_rr(cfqd, cfqq);
  1408. cfq_resort_rr_list(cfqd, cfqq);
  1409. if (cfqq == cfqd->active_queue)
  1410. cfqd->active_queue = NULL;
  1411. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1412. cfqd->grp_service_tree.active = NULL;
  1413. if (cfqd->active_cic) {
  1414. put_io_context(cfqd->active_cic->ioc);
  1415. cfqd->active_cic = NULL;
  1416. }
  1417. }
  1418. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1419. {
  1420. struct cfq_queue *cfqq = cfqd->active_queue;
  1421. if (cfqq)
  1422. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1423. }
  1424. /*
  1425. * Get next queue for service. Unless we have a queue preemption,
  1426. * we'll simply select the first cfqq in the service tree.
  1427. */
  1428. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1429. {
  1430. struct cfq_rb_root *service_tree =
  1431. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1432. cfqd->serving_type);
  1433. if (!cfqd->rq_queued)
  1434. return NULL;
  1435. /* There is nothing to dispatch */
  1436. if (!service_tree)
  1437. return NULL;
  1438. if (RB_EMPTY_ROOT(&service_tree->rb))
  1439. return NULL;
  1440. return cfq_rb_first(service_tree);
  1441. }
  1442. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1443. {
  1444. struct cfq_group *cfqg;
  1445. struct cfq_queue *cfqq;
  1446. int i, j;
  1447. struct cfq_rb_root *st;
  1448. if (!cfqd->rq_queued)
  1449. return NULL;
  1450. cfqg = cfq_get_next_cfqg(cfqd);
  1451. if (!cfqg)
  1452. return NULL;
  1453. for_each_cfqg_st(cfqg, i, j, st)
  1454. if ((cfqq = cfq_rb_first(st)) != NULL)
  1455. return cfqq;
  1456. return NULL;
  1457. }
  1458. /*
  1459. * Get and set a new active queue for service.
  1460. */
  1461. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1462. struct cfq_queue *cfqq)
  1463. {
  1464. if (!cfqq)
  1465. cfqq = cfq_get_next_queue(cfqd);
  1466. __cfq_set_active_queue(cfqd, cfqq);
  1467. return cfqq;
  1468. }
  1469. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1470. struct request *rq)
  1471. {
  1472. if (blk_rq_pos(rq) >= cfqd->last_position)
  1473. return blk_rq_pos(rq) - cfqd->last_position;
  1474. else
  1475. return cfqd->last_position - blk_rq_pos(rq);
  1476. }
  1477. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1478. struct request *rq)
  1479. {
  1480. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1481. }
  1482. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1483. struct cfq_queue *cur_cfqq)
  1484. {
  1485. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1486. struct rb_node *parent, *node;
  1487. struct cfq_queue *__cfqq;
  1488. sector_t sector = cfqd->last_position;
  1489. if (RB_EMPTY_ROOT(root))
  1490. return NULL;
  1491. /*
  1492. * First, if we find a request starting at the end of the last
  1493. * request, choose it.
  1494. */
  1495. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1496. if (__cfqq)
  1497. return __cfqq;
  1498. /*
  1499. * If the exact sector wasn't found, the parent of the NULL leaf
  1500. * will contain the closest sector.
  1501. */
  1502. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1503. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1504. return __cfqq;
  1505. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1506. node = rb_next(&__cfqq->p_node);
  1507. else
  1508. node = rb_prev(&__cfqq->p_node);
  1509. if (!node)
  1510. return NULL;
  1511. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1512. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1513. return __cfqq;
  1514. return NULL;
  1515. }
  1516. /*
  1517. * cfqd - obvious
  1518. * cur_cfqq - passed in so that we don't decide that the current queue is
  1519. * closely cooperating with itself.
  1520. *
  1521. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1522. * one request, and that cfqd->last_position reflects a position on the disk
  1523. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1524. * assumption.
  1525. */
  1526. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1527. struct cfq_queue *cur_cfqq)
  1528. {
  1529. struct cfq_queue *cfqq;
  1530. if (cfq_class_idle(cur_cfqq))
  1531. return NULL;
  1532. if (!cfq_cfqq_sync(cur_cfqq))
  1533. return NULL;
  1534. if (CFQQ_SEEKY(cur_cfqq))
  1535. return NULL;
  1536. /*
  1537. * Don't search priority tree if it's the only queue in the group.
  1538. */
  1539. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1540. return NULL;
  1541. /*
  1542. * We should notice if some of the queues are cooperating, eg
  1543. * working closely on the same area of the disk. In that case,
  1544. * we can group them together and don't waste time idling.
  1545. */
  1546. cfqq = cfqq_close(cfqd, cur_cfqq);
  1547. if (!cfqq)
  1548. return NULL;
  1549. /* If new queue belongs to different cfq_group, don't choose it */
  1550. if (cur_cfqq->cfqg != cfqq->cfqg)
  1551. return NULL;
  1552. /*
  1553. * It only makes sense to merge sync queues.
  1554. */
  1555. if (!cfq_cfqq_sync(cfqq))
  1556. return NULL;
  1557. if (CFQQ_SEEKY(cfqq))
  1558. return NULL;
  1559. /*
  1560. * Do not merge queues of different priority classes
  1561. */
  1562. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1563. return NULL;
  1564. return cfqq;
  1565. }
  1566. /*
  1567. * Determine whether we should enforce idle window for this queue.
  1568. */
  1569. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1570. {
  1571. enum wl_prio_t prio = cfqq_prio(cfqq);
  1572. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1573. BUG_ON(!service_tree);
  1574. BUG_ON(!service_tree->count);
  1575. if (!cfqd->cfq_slice_idle)
  1576. return false;
  1577. /* We never do for idle class queues. */
  1578. if (prio == IDLE_WORKLOAD)
  1579. return false;
  1580. /* We do for queues that were marked with idle window flag. */
  1581. if (cfq_cfqq_idle_window(cfqq) &&
  1582. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1583. return true;
  1584. /*
  1585. * Otherwise, we do only if they are the last ones
  1586. * in their service tree.
  1587. */
  1588. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1589. return 1;
  1590. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1591. service_tree->count);
  1592. return 0;
  1593. }
  1594. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1595. {
  1596. struct cfq_queue *cfqq = cfqd->active_queue;
  1597. struct cfq_io_context *cic;
  1598. unsigned long sl;
  1599. /*
  1600. * SSD device without seek penalty, disable idling. But only do so
  1601. * for devices that support queuing, otherwise we still have a problem
  1602. * with sync vs async workloads.
  1603. */
  1604. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1605. return;
  1606. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1607. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1608. /*
  1609. * idle is disabled, either manually or by past process history
  1610. */
  1611. if (!cfq_should_idle(cfqd, cfqq))
  1612. return;
  1613. /*
  1614. * still active requests from this queue, don't idle
  1615. */
  1616. if (cfqq->dispatched)
  1617. return;
  1618. /*
  1619. * task has exited, don't wait
  1620. */
  1621. cic = cfqd->active_cic;
  1622. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1623. return;
  1624. /*
  1625. * If our average think time is larger than the remaining time
  1626. * slice, then don't idle. This avoids overrunning the allotted
  1627. * time slice.
  1628. */
  1629. if (sample_valid(cic->ttime_samples) &&
  1630. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1631. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1632. cic->ttime_mean);
  1633. return;
  1634. }
  1635. cfq_mark_cfqq_wait_request(cfqq);
  1636. sl = cfqd->cfq_slice_idle;
  1637. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1638. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1639. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1640. }
  1641. /*
  1642. * Move request from internal lists to the request queue dispatch list.
  1643. */
  1644. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1645. {
  1646. struct cfq_data *cfqd = q->elevator->elevator_data;
  1647. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1648. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1649. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1650. cfq_remove_request(rq);
  1651. cfqq->dispatched++;
  1652. elv_dispatch_sort(q, rq);
  1653. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1654. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1655. rq_data_dir(rq), rq_is_sync(rq));
  1656. }
  1657. /*
  1658. * return expired entry, or NULL to just start from scratch in rbtree
  1659. */
  1660. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1661. {
  1662. struct request *rq = NULL;
  1663. if (cfq_cfqq_fifo_expire(cfqq))
  1664. return NULL;
  1665. cfq_mark_cfqq_fifo_expire(cfqq);
  1666. if (list_empty(&cfqq->fifo))
  1667. return NULL;
  1668. rq = rq_entry_fifo(cfqq->fifo.next);
  1669. if (time_before(jiffies, rq_fifo_time(rq)))
  1670. rq = NULL;
  1671. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1672. return rq;
  1673. }
  1674. static inline int
  1675. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1676. {
  1677. const int base_rq = cfqd->cfq_slice_async_rq;
  1678. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1679. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1680. }
  1681. /*
  1682. * Must be called with the queue_lock held.
  1683. */
  1684. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1685. {
  1686. int process_refs, io_refs;
  1687. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1688. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1689. BUG_ON(process_refs < 0);
  1690. return process_refs;
  1691. }
  1692. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1693. {
  1694. int process_refs, new_process_refs;
  1695. struct cfq_queue *__cfqq;
  1696. /*
  1697. * If there are no process references on the new_cfqq, then it is
  1698. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1699. * chain may have dropped their last reference (not just their
  1700. * last process reference).
  1701. */
  1702. if (!cfqq_process_refs(new_cfqq))
  1703. return;
  1704. /* Avoid a circular list and skip interim queue merges */
  1705. while ((__cfqq = new_cfqq->new_cfqq)) {
  1706. if (__cfqq == cfqq)
  1707. return;
  1708. new_cfqq = __cfqq;
  1709. }
  1710. process_refs = cfqq_process_refs(cfqq);
  1711. new_process_refs = cfqq_process_refs(new_cfqq);
  1712. /*
  1713. * If the process for the cfqq has gone away, there is no
  1714. * sense in merging the queues.
  1715. */
  1716. if (process_refs == 0 || new_process_refs == 0)
  1717. return;
  1718. /*
  1719. * Merge in the direction of the lesser amount of work.
  1720. */
  1721. if (new_process_refs >= process_refs) {
  1722. cfqq->new_cfqq = new_cfqq;
  1723. atomic_add(process_refs, &new_cfqq->ref);
  1724. } else {
  1725. new_cfqq->new_cfqq = cfqq;
  1726. atomic_add(new_process_refs, &cfqq->ref);
  1727. }
  1728. }
  1729. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1730. struct cfq_group *cfqg, enum wl_prio_t prio)
  1731. {
  1732. struct cfq_queue *queue;
  1733. int i;
  1734. bool key_valid = false;
  1735. unsigned long lowest_key = 0;
  1736. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1737. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1738. /* select the one with lowest rb_key */
  1739. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1740. if (queue &&
  1741. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1742. lowest_key = queue->rb_key;
  1743. cur_best = i;
  1744. key_valid = true;
  1745. }
  1746. }
  1747. return cur_best;
  1748. }
  1749. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1750. {
  1751. unsigned slice;
  1752. unsigned count;
  1753. struct cfq_rb_root *st;
  1754. unsigned group_slice;
  1755. if (!cfqg) {
  1756. cfqd->serving_prio = IDLE_WORKLOAD;
  1757. cfqd->workload_expires = jiffies + 1;
  1758. return;
  1759. }
  1760. /* Choose next priority. RT > BE > IDLE */
  1761. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1762. cfqd->serving_prio = RT_WORKLOAD;
  1763. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1764. cfqd->serving_prio = BE_WORKLOAD;
  1765. else {
  1766. cfqd->serving_prio = IDLE_WORKLOAD;
  1767. cfqd->workload_expires = jiffies + 1;
  1768. return;
  1769. }
  1770. /*
  1771. * For RT and BE, we have to choose also the type
  1772. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1773. * expiration time
  1774. */
  1775. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1776. count = st->count;
  1777. /*
  1778. * check workload expiration, and that we still have other queues ready
  1779. */
  1780. if (count && !time_after(jiffies, cfqd->workload_expires))
  1781. return;
  1782. /* otherwise select new workload type */
  1783. cfqd->serving_type =
  1784. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1785. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1786. count = st->count;
  1787. /*
  1788. * the workload slice is computed as a fraction of target latency
  1789. * proportional to the number of queues in that workload, over
  1790. * all the queues in the same priority class
  1791. */
  1792. group_slice = cfq_group_slice(cfqd, cfqg);
  1793. slice = group_slice * count /
  1794. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1795. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1796. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1797. unsigned int tmp;
  1798. /*
  1799. * Async queues are currently system wide. Just taking
  1800. * proportion of queues with-in same group will lead to higher
  1801. * async ratio system wide as generally root group is going
  1802. * to have higher weight. A more accurate thing would be to
  1803. * calculate system wide asnc/sync ratio.
  1804. */
  1805. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1806. tmp = tmp/cfqd->busy_queues;
  1807. slice = min_t(unsigned, slice, tmp);
  1808. /* async workload slice is scaled down according to
  1809. * the sync/async slice ratio. */
  1810. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1811. } else
  1812. /* sync workload slice is at least 2 * cfq_slice_idle */
  1813. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1814. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1815. cfq_log(cfqd, "workload slice:%d", slice);
  1816. cfqd->workload_expires = jiffies + slice;
  1817. cfqd->noidle_tree_requires_idle = false;
  1818. }
  1819. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1820. {
  1821. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1822. struct cfq_group *cfqg;
  1823. if (RB_EMPTY_ROOT(&st->rb))
  1824. return NULL;
  1825. cfqg = cfq_rb_first_group(st);
  1826. st->active = &cfqg->rb_node;
  1827. update_min_vdisktime(st);
  1828. return cfqg;
  1829. }
  1830. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1831. {
  1832. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1833. cfqd->serving_group = cfqg;
  1834. /* Restore the workload type data */
  1835. if (cfqg->saved_workload_slice) {
  1836. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1837. cfqd->serving_type = cfqg->saved_workload;
  1838. cfqd->serving_prio = cfqg->saved_serving_prio;
  1839. } else
  1840. cfqd->workload_expires = jiffies - 1;
  1841. choose_service_tree(cfqd, cfqg);
  1842. }
  1843. /*
  1844. * Select a queue for service. If we have a current active queue,
  1845. * check whether to continue servicing it, or retrieve and set a new one.
  1846. */
  1847. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1848. {
  1849. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1850. cfqq = cfqd->active_queue;
  1851. if (!cfqq)
  1852. goto new_queue;
  1853. if (!cfqd->rq_queued)
  1854. return NULL;
  1855. /*
  1856. * We were waiting for group to get backlogged. Expire the queue
  1857. */
  1858. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1859. goto expire;
  1860. /*
  1861. * The active queue has run out of time, expire it and select new.
  1862. */
  1863. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1864. /*
  1865. * If slice had not expired at the completion of last request
  1866. * we might not have turned on wait_busy flag. Don't expire
  1867. * the queue yet. Allow the group to get backlogged.
  1868. *
  1869. * The very fact that we have used the slice, that means we
  1870. * have been idling all along on this queue and it should be
  1871. * ok to wait for this request to complete.
  1872. */
  1873. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1874. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1875. cfqq = NULL;
  1876. goto keep_queue;
  1877. } else
  1878. goto expire;
  1879. }
  1880. /*
  1881. * The active queue has requests and isn't expired, allow it to
  1882. * dispatch.
  1883. */
  1884. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1885. goto keep_queue;
  1886. /*
  1887. * If another queue has a request waiting within our mean seek
  1888. * distance, let it run. The expire code will check for close
  1889. * cooperators and put the close queue at the front of the service
  1890. * tree. If possible, merge the expiring queue with the new cfqq.
  1891. */
  1892. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1893. if (new_cfqq) {
  1894. if (!cfqq->new_cfqq)
  1895. cfq_setup_merge(cfqq, new_cfqq);
  1896. goto expire;
  1897. }
  1898. /*
  1899. * No requests pending. If the active queue still has requests in
  1900. * flight or is idling for a new request, allow either of these
  1901. * conditions to happen (or time out) before selecting a new queue.
  1902. */
  1903. if (timer_pending(&cfqd->idle_slice_timer) ||
  1904. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1905. cfqq = NULL;
  1906. goto keep_queue;
  1907. }
  1908. expire:
  1909. cfq_slice_expired(cfqd, 0);
  1910. new_queue:
  1911. /*
  1912. * Current queue expired. Check if we have to switch to a new
  1913. * service tree
  1914. */
  1915. if (!new_cfqq)
  1916. cfq_choose_cfqg(cfqd);
  1917. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1918. keep_queue:
  1919. return cfqq;
  1920. }
  1921. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1922. {
  1923. int dispatched = 0;
  1924. while (cfqq->next_rq) {
  1925. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1926. dispatched++;
  1927. }
  1928. BUG_ON(!list_empty(&cfqq->fifo));
  1929. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1930. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1931. return dispatched;
  1932. }
  1933. /*
  1934. * Drain our current requests. Used for barriers and when switching
  1935. * io schedulers on-the-fly.
  1936. */
  1937. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1938. {
  1939. struct cfq_queue *cfqq;
  1940. int dispatched = 0;
  1941. /* Expire the timeslice of the current active queue first */
  1942. cfq_slice_expired(cfqd, 0);
  1943. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1944. __cfq_set_active_queue(cfqd, cfqq);
  1945. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1946. }
  1947. BUG_ON(cfqd->busy_queues);
  1948. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1949. return dispatched;
  1950. }
  1951. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1952. struct cfq_queue *cfqq)
  1953. {
  1954. /* the queue hasn't finished any request, can't estimate */
  1955. if (cfq_cfqq_slice_new(cfqq))
  1956. return 1;
  1957. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1958. cfqq->slice_end))
  1959. return 1;
  1960. return 0;
  1961. }
  1962. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1963. {
  1964. unsigned int max_dispatch;
  1965. /*
  1966. * Drain async requests before we start sync IO
  1967. */
  1968. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1969. return false;
  1970. /*
  1971. * If this is an async queue and we have sync IO in flight, let it wait
  1972. */
  1973. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1974. return false;
  1975. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1976. if (cfq_class_idle(cfqq))
  1977. max_dispatch = 1;
  1978. /*
  1979. * Does this cfqq already have too much IO in flight?
  1980. */
  1981. if (cfqq->dispatched >= max_dispatch) {
  1982. /*
  1983. * idle queue must always only have a single IO in flight
  1984. */
  1985. if (cfq_class_idle(cfqq))
  1986. return false;
  1987. /*
  1988. * We have other queues, don't allow more IO from this one
  1989. */
  1990. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
  1991. return false;
  1992. /*
  1993. * Sole queue user, no limit
  1994. */
  1995. if (cfqd->busy_queues == 1)
  1996. max_dispatch = -1;
  1997. else
  1998. /*
  1999. * Normally we start throttling cfqq when cfq_quantum/2
  2000. * requests have been dispatched. But we can drive
  2001. * deeper queue depths at the beginning of slice
  2002. * subjected to upper limit of cfq_quantum.
  2003. * */
  2004. max_dispatch = cfqd->cfq_quantum;
  2005. }
  2006. /*
  2007. * Async queues must wait a bit before being allowed dispatch.
  2008. * We also ramp up the dispatch depth gradually for async IO,
  2009. * based on the last sync IO we serviced
  2010. */
  2011. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2012. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2013. unsigned int depth;
  2014. depth = last_sync / cfqd->cfq_slice[1];
  2015. if (!depth && !cfqq->dispatched)
  2016. depth = 1;
  2017. if (depth < max_dispatch)
  2018. max_dispatch = depth;
  2019. }
  2020. /*
  2021. * If we're below the current max, allow a dispatch
  2022. */
  2023. return cfqq->dispatched < max_dispatch;
  2024. }
  2025. /*
  2026. * Dispatch a request from cfqq, moving them to the request queue
  2027. * dispatch list.
  2028. */
  2029. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2030. {
  2031. struct request *rq;
  2032. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2033. if (!cfq_may_dispatch(cfqd, cfqq))
  2034. return false;
  2035. /*
  2036. * follow expired path, else get first next available
  2037. */
  2038. rq = cfq_check_fifo(cfqq);
  2039. if (!rq)
  2040. rq = cfqq->next_rq;
  2041. /*
  2042. * insert request into driver dispatch list
  2043. */
  2044. cfq_dispatch_insert(cfqd->queue, rq);
  2045. if (!cfqd->active_cic) {
  2046. struct cfq_io_context *cic = RQ_CIC(rq);
  2047. atomic_long_inc(&cic->ioc->refcount);
  2048. cfqd->active_cic = cic;
  2049. }
  2050. return true;
  2051. }
  2052. /*
  2053. * Find the cfqq that we need to service and move a request from that to the
  2054. * dispatch list
  2055. */
  2056. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2057. {
  2058. struct cfq_data *cfqd = q->elevator->elevator_data;
  2059. struct cfq_queue *cfqq;
  2060. if (!cfqd->busy_queues)
  2061. return 0;
  2062. if (unlikely(force))
  2063. return cfq_forced_dispatch(cfqd);
  2064. cfqq = cfq_select_queue(cfqd);
  2065. if (!cfqq)
  2066. return 0;
  2067. /*
  2068. * Dispatch a request from this cfqq, if it is allowed
  2069. */
  2070. if (!cfq_dispatch_request(cfqd, cfqq))
  2071. return 0;
  2072. cfqq->slice_dispatch++;
  2073. cfq_clear_cfqq_must_dispatch(cfqq);
  2074. /*
  2075. * expire an async queue immediately if it has used up its slice. idle
  2076. * queue always expire after 1 dispatch round.
  2077. */
  2078. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2079. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2080. cfq_class_idle(cfqq))) {
  2081. cfqq->slice_end = jiffies + 1;
  2082. cfq_slice_expired(cfqd, 0);
  2083. }
  2084. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2085. return 1;
  2086. }
  2087. /*
  2088. * task holds one reference to the queue, dropped when task exits. each rq
  2089. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2090. *
  2091. * Each cfq queue took a reference on the parent group. Drop it now.
  2092. * queue lock must be held here.
  2093. */
  2094. static void cfq_put_queue(struct cfq_queue *cfqq)
  2095. {
  2096. struct cfq_data *cfqd = cfqq->cfqd;
  2097. struct cfq_group *cfqg, *orig_cfqg;
  2098. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2099. if (!atomic_dec_and_test(&cfqq->ref))
  2100. return;
  2101. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2102. BUG_ON(rb_first(&cfqq->sort_list));
  2103. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2104. cfqg = cfqq->cfqg;
  2105. orig_cfqg = cfqq->orig_cfqg;
  2106. if (unlikely(cfqd->active_queue == cfqq)) {
  2107. __cfq_slice_expired(cfqd, cfqq, 0);
  2108. cfq_schedule_dispatch(cfqd);
  2109. }
  2110. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2111. kmem_cache_free(cfq_pool, cfqq);
  2112. cfq_put_cfqg(cfqg);
  2113. if (orig_cfqg)
  2114. cfq_put_cfqg(orig_cfqg);
  2115. }
  2116. /*
  2117. * Must always be called with the rcu_read_lock() held
  2118. */
  2119. static void
  2120. __call_for_each_cic(struct io_context *ioc,
  2121. void (*func)(struct io_context *, struct cfq_io_context *))
  2122. {
  2123. struct cfq_io_context *cic;
  2124. struct hlist_node *n;
  2125. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2126. func(ioc, cic);
  2127. }
  2128. /*
  2129. * Call func for each cic attached to this ioc.
  2130. */
  2131. static void
  2132. call_for_each_cic(struct io_context *ioc,
  2133. void (*func)(struct io_context *, struct cfq_io_context *))
  2134. {
  2135. rcu_read_lock();
  2136. __call_for_each_cic(ioc, func);
  2137. rcu_read_unlock();
  2138. }
  2139. static void cfq_cic_free_rcu(struct rcu_head *head)
  2140. {
  2141. struct cfq_io_context *cic;
  2142. cic = container_of(head, struct cfq_io_context, rcu_head);
  2143. kmem_cache_free(cfq_ioc_pool, cic);
  2144. elv_ioc_count_dec(cfq_ioc_count);
  2145. if (ioc_gone) {
  2146. /*
  2147. * CFQ scheduler is exiting, grab exit lock and check
  2148. * the pending io context count. If it hits zero,
  2149. * complete ioc_gone and set it back to NULL
  2150. */
  2151. spin_lock(&ioc_gone_lock);
  2152. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2153. complete(ioc_gone);
  2154. ioc_gone = NULL;
  2155. }
  2156. spin_unlock(&ioc_gone_lock);
  2157. }
  2158. }
  2159. static void cfq_cic_free(struct cfq_io_context *cic)
  2160. {
  2161. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2162. }
  2163. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2164. {
  2165. unsigned long flags;
  2166. unsigned long dead_key = (unsigned long) cic->key;
  2167. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2168. spin_lock_irqsave(&ioc->lock, flags);
  2169. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2170. hlist_del_rcu(&cic->cic_list);
  2171. spin_unlock_irqrestore(&ioc->lock, flags);
  2172. cfq_cic_free(cic);
  2173. }
  2174. /*
  2175. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2176. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2177. * and ->trim() which is called with the task lock held
  2178. */
  2179. static void cfq_free_io_context(struct io_context *ioc)
  2180. {
  2181. /*
  2182. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2183. * so no more cic's are allowed to be linked into this ioc. So it
  2184. * should be ok to iterate over the known list, we will see all cic's
  2185. * since no new ones are added.
  2186. */
  2187. __call_for_each_cic(ioc, cic_free_func);
  2188. }
  2189. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2190. {
  2191. struct cfq_queue *__cfqq, *next;
  2192. /*
  2193. * If this queue was scheduled to merge with another queue, be
  2194. * sure to drop the reference taken on that queue (and others in
  2195. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2196. */
  2197. __cfqq = cfqq->new_cfqq;
  2198. while (__cfqq) {
  2199. if (__cfqq == cfqq) {
  2200. WARN(1, "cfqq->new_cfqq loop detected\n");
  2201. break;
  2202. }
  2203. next = __cfqq->new_cfqq;
  2204. cfq_put_queue(__cfqq);
  2205. __cfqq = next;
  2206. }
  2207. }
  2208. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2209. {
  2210. if (unlikely(cfqq == cfqd->active_queue)) {
  2211. __cfq_slice_expired(cfqd, cfqq, 0);
  2212. cfq_schedule_dispatch(cfqd);
  2213. }
  2214. cfq_put_cooperator(cfqq);
  2215. cfq_put_queue(cfqq);
  2216. }
  2217. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2218. struct cfq_io_context *cic)
  2219. {
  2220. struct io_context *ioc = cic->ioc;
  2221. list_del_init(&cic->queue_list);
  2222. /*
  2223. * Make sure dead mark is seen for dead queues
  2224. */
  2225. smp_wmb();
  2226. cic->key = cfqd_dead_key(cfqd);
  2227. if (ioc->ioc_data == cic)
  2228. rcu_assign_pointer(ioc->ioc_data, NULL);
  2229. if (cic->cfqq[BLK_RW_ASYNC]) {
  2230. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2231. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2232. }
  2233. if (cic->cfqq[BLK_RW_SYNC]) {
  2234. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2235. cic->cfqq[BLK_RW_SYNC] = NULL;
  2236. }
  2237. }
  2238. static void cfq_exit_single_io_context(struct io_context *ioc,
  2239. struct cfq_io_context *cic)
  2240. {
  2241. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2242. if (cfqd) {
  2243. struct request_queue *q = cfqd->queue;
  2244. unsigned long flags;
  2245. spin_lock_irqsave(q->queue_lock, flags);
  2246. /*
  2247. * Ensure we get a fresh copy of the ->key to prevent
  2248. * race between exiting task and queue
  2249. */
  2250. smp_read_barrier_depends();
  2251. if (cic->key == cfqd)
  2252. __cfq_exit_single_io_context(cfqd, cic);
  2253. spin_unlock_irqrestore(q->queue_lock, flags);
  2254. }
  2255. }
  2256. /*
  2257. * The process that ioc belongs to has exited, we need to clean up
  2258. * and put the internal structures we have that belongs to that process.
  2259. */
  2260. static void cfq_exit_io_context(struct io_context *ioc)
  2261. {
  2262. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2263. }
  2264. static struct cfq_io_context *
  2265. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2266. {
  2267. struct cfq_io_context *cic;
  2268. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2269. cfqd->queue->node);
  2270. if (cic) {
  2271. cic->last_end_request = jiffies;
  2272. INIT_LIST_HEAD(&cic->queue_list);
  2273. INIT_HLIST_NODE(&cic->cic_list);
  2274. cic->dtor = cfq_free_io_context;
  2275. cic->exit = cfq_exit_io_context;
  2276. elv_ioc_count_inc(cfq_ioc_count);
  2277. }
  2278. return cic;
  2279. }
  2280. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2281. {
  2282. struct task_struct *tsk = current;
  2283. int ioprio_class;
  2284. if (!cfq_cfqq_prio_changed(cfqq))
  2285. return;
  2286. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2287. switch (ioprio_class) {
  2288. default:
  2289. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2290. case IOPRIO_CLASS_NONE:
  2291. /*
  2292. * no prio set, inherit CPU scheduling settings
  2293. */
  2294. cfqq->ioprio = task_nice_ioprio(tsk);
  2295. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2296. break;
  2297. case IOPRIO_CLASS_RT:
  2298. cfqq->ioprio = task_ioprio(ioc);
  2299. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2300. break;
  2301. case IOPRIO_CLASS_BE:
  2302. cfqq->ioprio = task_ioprio(ioc);
  2303. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2304. break;
  2305. case IOPRIO_CLASS_IDLE:
  2306. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2307. cfqq->ioprio = 7;
  2308. cfq_clear_cfqq_idle_window(cfqq);
  2309. break;
  2310. }
  2311. /*
  2312. * keep track of original prio settings in case we have to temporarily
  2313. * elevate the priority of this queue
  2314. */
  2315. cfqq->org_ioprio = cfqq->ioprio;
  2316. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2317. cfq_clear_cfqq_prio_changed(cfqq);
  2318. }
  2319. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2320. {
  2321. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2322. struct cfq_queue *cfqq;
  2323. unsigned long flags;
  2324. if (unlikely(!cfqd))
  2325. return;
  2326. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2327. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2328. if (cfqq) {
  2329. struct cfq_queue *new_cfqq;
  2330. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2331. GFP_ATOMIC);
  2332. if (new_cfqq) {
  2333. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2334. cfq_put_queue(cfqq);
  2335. }
  2336. }
  2337. cfqq = cic->cfqq[BLK_RW_SYNC];
  2338. if (cfqq)
  2339. cfq_mark_cfqq_prio_changed(cfqq);
  2340. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2341. }
  2342. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2343. {
  2344. call_for_each_cic(ioc, changed_ioprio);
  2345. ioc->ioprio_changed = 0;
  2346. }
  2347. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2348. pid_t pid, bool is_sync)
  2349. {
  2350. RB_CLEAR_NODE(&cfqq->rb_node);
  2351. RB_CLEAR_NODE(&cfqq->p_node);
  2352. INIT_LIST_HEAD(&cfqq->fifo);
  2353. atomic_set(&cfqq->ref, 0);
  2354. cfqq->cfqd = cfqd;
  2355. cfq_mark_cfqq_prio_changed(cfqq);
  2356. if (is_sync) {
  2357. if (!cfq_class_idle(cfqq))
  2358. cfq_mark_cfqq_idle_window(cfqq);
  2359. cfq_mark_cfqq_sync(cfqq);
  2360. }
  2361. cfqq->pid = pid;
  2362. }
  2363. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2364. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2365. {
  2366. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2367. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2368. unsigned long flags;
  2369. struct request_queue *q;
  2370. if (unlikely(!cfqd))
  2371. return;
  2372. q = cfqd->queue;
  2373. spin_lock_irqsave(q->queue_lock, flags);
  2374. if (sync_cfqq) {
  2375. /*
  2376. * Drop reference to sync queue. A new sync queue will be
  2377. * assigned in new group upon arrival of a fresh request.
  2378. */
  2379. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2380. cic_set_cfqq(cic, NULL, 1);
  2381. cfq_put_queue(sync_cfqq);
  2382. }
  2383. spin_unlock_irqrestore(q->queue_lock, flags);
  2384. }
  2385. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2386. {
  2387. call_for_each_cic(ioc, changed_cgroup);
  2388. ioc->cgroup_changed = 0;
  2389. }
  2390. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2391. static struct cfq_queue *
  2392. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2393. struct io_context *ioc, gfp_t gfp_mask)
  2394. {
  2395. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2396. struct cfq_io_context *cic;
  2397. struct cfq_group *cfqg;
  2398. retry:
  2399. cfqg = cfq_get_cfqg(cfqd, 1);
  2400. cic = cfq_cic_lookup(cfqd, ioc);
  2401. /* cic always exists here */
  2402. cfqq = cic_to_cfqq(cic, is_sync);
  2403. /*
  2404. * Always try a new alloc if we fell back to the OOM cfqq
  2405. * originally, since it should just be a temporary situation.
  2406. */
  2407. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2408. cfqq = NULL;
  2409. if (new_cfqq) {
  2410. cfqq = new_cfqq;
  2411. new_cfqq = NULL;
  2412. } else if (gfp_mask & __GFP_WAIT) {
  2413. spin_unlock_irq(cfqd->queue->queue_lock);
  2414. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2415. gfp_mask | __GFP_ZERO,
  2416. cfqd->queue->node);
  2417. spin_lock_irq(cfqd->queue->queue_lock);
  2418. if (new_cfqq)
  2419. goto retry;
  2420. } else {
  2421. cfqq = kmem_cache_alloc_node(cfq_pool,
  2422. gfp_mask | __GFP_ZERO,
  2423. cfqd->queue->node);
  2424. }
  2425. if (cfqq) {
  2426. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2427. cfq_init_prio_data(cfqq, ioc);
  2428. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2429. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2430. } else
  2431. cfqq = &cfqd->oom_cfqq;
  2432. }
  2433. if (new_cfqq)
  2434. kmem_cache_free(cfq_pool, new_cfqq);
  2435. return cfqq;
  2436. }
  2437. static struct cfq_queue **
  2438. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2439. {
  2440. switch (ioprio_class) {
  2441. case IOPRIO_CLASS_RT:
  2442. return &cfqd->async_cfqq[0][ioprio];
  2443. case IOPRIO_CLASS_BE:
  2444. return &cfqd->async_cfqq[1][ioprio];
  2445. case IOPRIO_CLASS_IDLE:
  2446. return &cfqd->async_idle_cfqq;
  2447. default:
  2448. BUG();
  2449. }
  2450. }
  2451. static struct cfq_queue *
  2452. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2453. gfp_t gfp_mask)
  2454. {
  2455. const int ioprio = task_ioprio(ioc);
  2456. const int ioprio_class = task_ioprio_class(ioc);
  2457. struct cfq_queue **async_cfqq = NULL;
  2458. struct cfq_queue *cfqq = NULL;
  2459. if (!is_sync) {
  2460. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2461. cfqq = *async_cfqq;
  2462. }
  2463. if (!cfqq)
  2464. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2465. /*
  2466. * pin the queue now that it's allocated, scheduler exit will prune it
  2467. */
  2468. if (!is_sync && !(*async_cfqq)) {
  2469. atomic_inc(&cfqq->ref);
  2470. *async_cfqq = cfqq;
  2471. }
  2472. atomic_inc(&cfqq->ref);
  2473. return cfqq;
  2474. }
  2475. /*
  2476. * We drop cfq io contexts lazily, so we may find a dead one.
  2477. */
  2478. static void
  2479. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2480. struct cfq_io_context *cic)
  2481. {
  2482. unsigned long flags;
  2483. WARN_ON(!list_empty(&cic->queue_list));
  2484. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2485. spin_lock_irqsave(&ioc->lock, flags);
  2486. BUG_ON(ioc->ioc_data == cic);
  2487. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2488. hlist_del_rcu(&cic->cic_list);
  2489. spin_unlock_irqrestore(&ioc->lock, flags);
  2490. cfq_cic_free(cic);
  2491. }
  2492. static struct cfq_io_context *
  2493. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2494. {
  2495. struct cfq_io_context *cic;
  2496. unsigned long flags;
  2497. if (unlikely(!ioc))
  2498. return NULL;
  2499. rcu_read_lock();
  2500. /*
  2501. * we maintain a last-hit cache, to avoid browsing over the tree
  2502. */
  2503. cic = rcu_dereference(ioc->ioc_data);
  2504. if (cic && cic->key == cfqd) {
  2505. rcu_read_unlock();
  2506. return cic;
  2507. }
  2508. do {
  2509. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2510. rcu_read_unlock();
  2511. if (!cic)
  2512. break;
  2513. if (unlikely(cic->key != cfqd)) {
  2514. cfq_drop_dead_cic(cfqd, ioc, cic);
  2515. rcu_read_lock();
  2516. continue;
  2517. }
  2518. spin_lock_irqsave(&ioc->lock, flags);
  2519. rcu_assign_pointer(ioc->ioc_data, cic);
  2520. spin_unlock_irqrestore(&ioc->lock, flags);
  2521. break;
  2522. } while (1);
  2523. return cic;
  2524. }
  2525. /*
  2526. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2527. * the process specific cfq io context when entered from the block layer.
  2528. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2529. */
  2530. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2531. struct cfq_io_context *cic, gfp_t gfp_mask)
  2532. {
  2533. unsigned long flags;
  2534. int ret;
  2535. ret = radix_tree_preload(gfp_mask);
  2536. if (!ret) {
  2537. cic->ioc = ioc;
  2538. cic->key = cfqd;
  2539. spin_lock_irqsave(&ioc->lock, flags);
  2540. ret = radix_tree_insert(&ioc->radix_root,
  2541. cfqd->cic_index, cic);
  2542. if (!ret)
  2543. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2544. spin_unlock_irqrestore(&ioc->lock, flags);
  2545. radix_tree_preload_end();
  2546. if (!ret) {
  2547. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2548. list_add(&cic->queue_list, &cfqd->cic_list);
  2549. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2550. }
  2551. }
  2552. if (ret)
  2553. printk(KERN_ERR "cfq: cic link failed!\n");
  2554. return ret;
  2555. }
  2556. /*
  2557. * Setup general io context and cfq io context. There can be several cfq
  2558. * io contexts per general io context, if this process is doing io to more
  2559. * than one device managed by cfq.
  2560. */
  2561. static struct cfq_io_context *
  2562. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2563. {
  2564. struct io_context *ioc = NULL;
  2565. struct cfq_io_context *cic;
  2566. might_sleep_if(gfp_mask & __GFP_WAIT);
  2567. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2568. if (!ioc)
  2569. return NULL;
  2570. cic = cfq_cic_lookup(cfqd, ioc);
  2571. if (cic)
  2572. goto out;
  2573. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2574. if (cic == NULL)
  2575. goto err;
  2576. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2577. goto err_free;
  2578. out:
  2579. smp_read_barrier_depends();
  2580. if (unlikely(ioc->ioprio_changed))
  2581. cfq_ioc_set_ioprio(ioc);
  2582. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2583. if (unlikely(ioc->cgroup_changed))
  2584. cfq_ioc_set_cgroup(ioc);
  2585. #endif
  2586. return cic;
  2587. err_free:
  2588. cfq_cic_free(cic);
  2589. err:
  2590. put_io_context(ioc);
  2591. return NULL;
  2592. }
  2593. static void
  2594. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2595. {
  2596. unsigned long elapsed = jiffies - cic->last_end_request;
  2597. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2598. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2599. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2600. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2601. }
  2602. static void
  2603. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2604. struct request *rq)
  2605. {
  2606. sector_t sdist = 0;
  2607. sector_t n_sec = blk_rq_sectors(rq);
  2608. if (cfqq->last_request_pos) {
  2609. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2610. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2611. else
  2612. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2613. }
  2614. cfqq->seek_history <<= 1;
  2615. if (blk_queue_nonrot(cfqd->queue))
  2616. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2617. else
  2618. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2619. }
  2620. /*
  2621. * Disable idle window if the process thinks too long or seeks so much that
  2622. * it doesn't matter
  2623. */
  2624. static void
  2625. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2626. struct cfq_io_context *cic)
  2627. {
  2628. int old_idle, enable_idle;
  2629. /*
  2630. * Don't idle for async or idle io prio class
  2631. */
  2632. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2633. return;
  2634. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2635. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2636. cfq_mark_cfqq_deep(cfqq);
  2637. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2638. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2639. enable_idle = 0;
  2640. else if (sample_valid(cic->ttime_samples)) {
  2641. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2642. enable_idle = 0;
  2643. else
  2644. enable_idle = 1;
  2645. }
  2646. if (old_idle != enable_idle) {
  2647. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2648. if (enable_idle)
  2649. cfq_mark_cfqq_idle_window(cfqq);
  2650. else
  2651. cfq_clear_cfqq_idle_window(cfqq);
  2652. }
  2653. }
  2654. /*
  2655. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2656. * no or if we aren't sure, a 1 will cause a preempt.
  2657. */
  2658. static bool
  2659. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2660. struct request *rq)
  2661. {
  2662. struct cfq_queue *cfqq;
  2663. cfqq = cfqd->active_queue;
  2664. if (!cfqq)
  2665. return false;
  2666. if (cfq_class_idle(new_cfqq))
  2667. return false;
  2668. if (cfq_class_idle(cfqq))
  2669. return true;
  2670. /*
  2671. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2672. */
  2673. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2674. return false;
  2675. /*
  2676. * if the new request is sync, but the currently running queue is
  2677. * not, let the sync request have priority.
  2678. */
  2679. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2680. return true;
  2681. if (new_cfqq->cfqg != cfqq->cfqg)
  2682. return false;
  2683. if (cfq_slice_used(cfqq))
  2684. return true;
  2685. /* Allow preemption only if we are idling on sync-noidle tree */
  2686. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2687. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2688. new_cfqq->service_tree->count == 2 &&
  2689. RB_EMPTY_ROOT(&cfqq->sort_list))
  2690. return true;
  2691. /*
  2692. * So both queues are sync. Let the new request get disk time if
  2693. * it's a metadata request and the current queue is doing regular IO.
  2694. */
  2695. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2696. return true;
  2697. /*
  2698. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2699. */
  2700. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2701. return true;
  2702. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2703. return false;
  2704. /*
  2705. * if this request is as-good as one we would expect from the
  2706. * current cfqq, let it preempt
  2707. */
  2708. if (cfq_rq_close(cfqd, cfqq, rq))
  2709. return true;
  2710. return false;
  2711. }
  2712. /*
  2713. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2714. * let it have half of its nominal slice.
  2715. */
  2716. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2717. {
  2718. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2719. cfq_slice_expired(cfqd, 1);
  2720. /*
  2721. * Put the new queue at the front of the of the current list,
  2722. * so we know that it will be selected next.
  2723. */
  2724. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2725. cfq_service_tree_add(cfqd, cfqq, 1);
  2726. cfqq->slice_end = 0;
  2727. cfq_mark_cfqq_slice_new(cfqq);
  2728. }
  2729. /*
  2730. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2731. * something we should do about it
  2732. */
  2733. static void
  2734. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2735. struct request *rq)
  2736. {
  2737. struct cfq_io_context *cic = RQ_CIC(rq);
  2738. cfqd->rq_queued++;
  2739. if (rq->cmd_flags & REQ_META)
  2740. cfqq->meta_pending++;
  2741. cfq_update_io_thinktime(cfqd, cic);
  2742. cfq_update_io_seektime(cfqd, cfqq, rq);
  2743. cfq_update_idle_window(cfqd, cfqq, cic);
  2744. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2745. if (cfqq == cfqd->active_queue) {
  2746. /*
  2747. * Remember that we saw a request from this process, but
  2748. * don't start queuing just yet. Otherwise we risk seeing lots
  2749. * of tiny requests, because we disrupt the normal plugging
  2750. * and merging. If the request is already larger than a single
  2751. * page, let it rip immediately. For that case we assume that
  2752. * merging is already done. Ditto for a busy system that
  2753. * has other work pending, don't risk delaying until the
  2754. * idle timer unplug to continue working.
  2755. */
  2756. if (cfq_cfqq_wait_request(cfqq)) {
  2757. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2758. cfqd->busy_queues > 1) {
  2759. cfq_del_timer(cfqd, cfqq);
  2760. cfq_clear_cfqq_wait_request(cfqq);
  2761. __blk_run_queue(cfqd->queue);
  2762. } else {
  2763. cfq_blkiocg_update_idle_time_stats(
  2764. &cfqq->cfqg->blkg);
  2765. cfq_mark_cfqq_must_dispatch(cfqq);
  2766. }
  2767. }
  2768. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2769. /*
  2770. * not the active queue - expire current slice if it is
  2771. * idle and has expired it's mean thinktime or this new queue
  2772. * has some old slice time left and is of higher priority or
  2773. * this new queue is RT and the current one is BE
  2774. */
  2775. cfq_preempt_queue(cfqd, cfqq);
  2776. __blk_run_queue(cfqd->queue);
  2777. }
  2778. }
  2779. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2780. {
  2781. struct cfq_data *cfqd = q->elevator->elevator_data;
  2782. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2783. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2784. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2785. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2786. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2787. cfq_add_rq_rb(rq);
  2788. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2789. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2790. rq_is_sync(rq));
  2791. cfq_rq_enqueued(cfqd, cfqq, rq);
  2792. }
  2793. /*
  2794. * Update hw_tag based on peak queue depth over 50 samples under
  2795. * sufficient load.
  2796. */
  2797. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2798. {
  2799. struct cfq_queue *cfqq = cfqd->active_queue;
  2800. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2801. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2802. if (cfqd->hw_tag == 1)
  2803. return;
  2804. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2805. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2806. return;
  2807. /*
  2808. * If active queue hasn't enough requests and can idle, cfq might not
  2809. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2810. * case
  2811. */
  2812. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2813. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2814. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2815. return;
  2816. if (cfqd->hw_tag_samples++ < 50)
  2817. return;
  2818. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2819. cfqd->hw_tag = 1;
  2820. else
  2821. cfqd->hw_tag = 0;
  2822. }
  2823. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2824. {
  2825. struct cfq_io_context *cic = cfqd->active_cic;
  2826. /* If there are other queues in the group, don't wait */
  2827. if (cfqq->cfqg->nr_cfqq > 1)
  2828. return false;
  2829. if (cfq_slice_used(cfqq))
  2830. return true;
  2831. /* if slice left is less than think time, wait busy */
  2832. if (cic && sample_valid(cic->ttime_samples)
  2833. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2834. return true;
  2835. /*
  2836. * If think times is less than a jiffy than ttime_mean=0 and above
  2837. * will not be true. It might happen that slice has not expired yet
  2838. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2839. * case where think time is less than a jiffy, mark the queue wait
  2840. * busy if only 1 jiffy is left in the slice.
  2841. */
  2842. if (cfqq->slice_end - jiffies == 1)
  2843. return true;
  2844. return false;
  2845. }
  2846. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2847. {
  2848. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2849. struct cfq_data *cfqd = cfqq->cfqd;
  2850. const int sync = rq_is_sync(rq);
  2851. unsigned long now;
  2852. now = jiffies;
  2853. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2854. !!(rq->cmd_flags & REQ_NOIDLE));
  2855. cfq_update_hw_tag(cfqd);
  2856. WARN_ON(!cfqd->rq_in_driver);
  2857. WARN_ON(!cfqq->dispatched);
  2858. cfqd->rq_in_driver--;
  2859. cfqq->dispatched--;
  2860. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2861. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2862. rq_data_dir(rq), rq_is_sync(rq));
  2863. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2864. if (sync) {
  2865. RQ_CIC(rq)->last_end_request = now;
  2866. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2867. cfqd->last_delayed_sync = now;
  2868. }
  2869. /*
  2870. * If this is the active queue, check if it needs to be expired,
  2871. * or if we want to idle in case it has no pending requests.
  2872. */
  2873. if (cfqd->active_queue == cfqq) {
  2874. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2875. if (cfq_cfqq_slice_new(cfqq)) {
  2876. cfq_set_prio_slice(cfqd, cfqq);
  2877. cfq_clear_cfqq_slice_new(cfqq);
  2878. }
  2879. /*
  2880. * Should we wait for next request to come in before we expire
  2881. * the queue.
  2882. */
  2883. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2884. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2885. cfq_mark_cfqq_wait_busy(cfqq);
  2886. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2887. }
  2888. /*
  2889. * Idling is not enabled on:
  2890. * - expired queues
  2891. * - idle-priority queues
  2892. * - async queues
  2893. * - queues with still some requests queued
  2894. * - when there is a close cooperator
  2895. */
  2896. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2897. cfq_slice_expired(cfqd, 1);
  2898. else if (sync && cfqq_empty &&
  2899. !cfq_close_cooperator(cfqd, cfqq)) {
  2900. cfqd->noidle_tree_requires_idle |=
  2901. !(rq->cmd_flags & REQ_NOIDLE);
  2902. /*
  2903. * Idling is enabled for SYNC_WORKLOAD.
  2904. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2905. * only if we processed at least one !REQ_NOIDLE request
  2906. */
  2907. if (cfqd->serving_type == SYNC_WORKLOAD
  2908. || cfqd->noidle_tree_requires_idle
  2909. || cfqq->cfqg->nr_cfqq == 1)
  2910. cfq_arm_slice_timer(cfqd);
  2911. }
  2912. }
  2913. if (!cfqd->rq_in_driver)
  2914. cfq_schedule_dispatch(cfqd);
  2915. }
  2916. /*
  2917. * we temporarily boost lower priority queues if they are holding fs exclusive
  2918. * resources. they are boosted to normal prio (CLASS_BE/4)
  2919. */
  2920. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2921. {
  2922. if (has_fs_excl()) {
  2923. /*
  2924. * boost idle prio on transactions that would lock out other
  2925. * users of the filesystem
  2926. */
  2927. if (cfq_class_idle(cfqq))
  2928. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2929. if (cfqq->ioprio > IOPRIO_NORM)
  2930. cfqq->ioprio = IOPRIO_NORM;
  2931. } else {
  2932. /*
  2933. * unboost the queue (if needed)
  2934. */
  2935. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2936. cfqq->ioprio = cfqq->org_ioprio;
  2937. }
  2938. }
  2939. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2940. {
  2941. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2942. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2943. return ELV_MQUEUE_MUST;
  2944. }
  2945. return ELV_MQUEUE_MAY;
  2946. }
  2947. static int cfq_may_queue(struct request_queue *q, int rw)
  2948. {
  2949. struct cfq_data *cfqd = q->elevator->elevator_data;
  2950. struct task_struct *tsk = current;
  2951. struct cfq_io_context *cic;
  2952. struct cfq_queue *cfqq;
  2953. /*
  2954. * don't force setup of a queue from here, as a call to may_queue
  2955. * does not necessarily imply that a request actually will be queued.
  2956. * so just lookup a possibly existing queue, or return 'may queue'
  2957. * if that fails
  2958. */
  2959. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2960. if (!cic)
  2961. return ELV_MQUEUE_MAY;
  2962. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2963. if (cfqq) {
  2964. cfq_init_prio_data(cfqq, cic->ioc);
  2965. cfq_prio_boost(cfqq);
  2966. return __cfq_may_queue(cfqq);
  2967. }
  2968. return ELV_MQUEUE_MAY;
  2969. }
  2970. /*
  2971. * queue lock held here
  2972. */
  2973. static void cfq_put_request(struct request *rq)
  2974. {
  2975. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2976. if (cfqq) {
  2977. const int rw = rq_data_dir(rq);
  2978. BUG_ON(!cfqq->allocated[rw]);
  2979. cfqq->allocated[rw]--;
  2980. put_io_context(RQ_CIC(rq)->ioc);
  2981. rq->elevator_private = NULL;
  2982. rq->elevator_private2 = NULL;
  2983. /* Put down rq reference on cfqg */
  2984. cfq_put_cfqg(RQ_CFQG(rq));
  2985. rq->elevator_private3 = NULL;
  2986. cfq_put_queue(cfqq);
  2987. }
  2988. }
  2989. static struct cfq_queue *
  2990. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2991. struct cfq_queue *cfqq)
  2992. {
  2993. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2994. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2995. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2996. cfq_put_queue(cfqq);
  2997. return cic_to_cfqq(cic, 1);
  2998. }
  2999. /*
  3000. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3001. * was the last process referring to said cfqq.
  3002. */
  3003. static struct cfq_queue *
  3004. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3005. {
  3006. if (cfqq_process_refs(cfqq) == 1) {
  3007. cfqq->pid = current->pid;
  3008. cfq_clear_cfqq_coop(cfqq);
  3009. cfq_clear_cfqq_split_coop(cfqq);
  3010. return cfqq;
  3011. }
  3012. cic_set_cfqq(cic, NULL, 1);
  3013. cfq_put_cooperator(cfqq);
  3014. cfq_put_queue(cfqq);
  3015. return NULL;
  3016. }
  3017. /*
  3018. * Allocate cfq data structures associated with this request.
  3019. */
  3020. static int
  3021. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3022. {
  3023. struct cfq_data *cfqd = q->elevator->elevator_data;
  3024. struct cfq_io_context *cic;
  3025. const int rw = rq_data_dir(rq);
  3026. const bool is_sync = rq_is_sync(rq);
  3027. struct cfq_queue *cfqq;
  3028. unsigned long flags;
  3029. might_sleep_if(gfp_mask & __GFP_WAIT);
  3030. cic = cfq_get_io_context(cfqd, gfp_mask);
  3031. spin_lock_irqsave(q->queue_lock, flags);
  3032. if (!cic)
  3033. goto queue_fail;
  3034. new_queue:
  3035. cfqq = cic_to_cfqq(cic, is_sync);
  3036. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3037. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3038. cic_set_cfqq(cic, cfqq, is_sync);
  3039. } else {
  3040. /*
  3041. * If the queue was seeky for too long, break it apart.
  3042. */
  3043. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3044. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3045. cfqq = split_cfqq(cic, cfqq);
  3046. if (!cfqq)
  3047. goto new_queue;
  3048. }
  3049. /*
  3050. * Check to see if this queue is scheduled to merge with
  3051. * another, closely cooperating queue. The merging of
  3052. * queues happens here as it must be done in process context.
  3053. * The reference on new_cfqq was taken in merge_cfqqs.
  3054. */
  3055. if (cfqq->new_cfqq)
  3056. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3057. }
  3058. cfqq->allocated[rw]++;
  3059. atomic_inc(&cfqq->ref);
  3060. spin_unlock_irqrestore(q->queue_lock, flags);
  3061. rq->elevator_private = cic;
  3062. rq->elevator_private2 = cfqq;
  3063. rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
  3064. return 0;
  3065. queue_fail:
  3066. if (cic)
  3067. put_io_context(cic->ioc);
  3068. cfq_schedule_dispatch(cfqd);
  3069. spin_unlock_irqrestore(q->queue_lock, flags);
  3070. cfq_log(cfqd, "set_request fail");
  3071. return 1;
  3072. }
  3073. static void cfq_kick_queue(struct work_struct *work)
  3074. {
  3075. struct cfq_data *cfqd =
  3076. container_of(work, struct cfq_data, unplug_work);
  3077. struct request_queue *q = cfqd->queue;
  3078. spin_lock_irq(q->queue_lock);
  3079. __blk_run_queue(cfqd->queue);
  3080. spin_unlock_irq(q->queue_lock);
  3081. }
  3082. /*
  3083. * Timer running if the active_queue is currently idling inside its time slice
  3084. */
  3085. static void cfq_idle_slice_timer(unsigned long data)
  3086. {
  3087. struct cfq_data *cfqd = (struct cfq_data *) data;
  3088. struct cfq_queue *cfqq;
  3089. unsigned long flags;
  3090. int timed_out = 1;
  3091. cfq_log(cfqd, "idle timer fired");
  3092. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3093. cfqq = cfqd->active_queue;
  3094. if (cfqq) {
  3095. timed_out = 0;
  3096. /*
  3097. * We saw a request before the queue expired, let it through
  3098. */
  3099. if (cfq_cfqq_must_dispatch(cfqq))
  3100. goto out_kick;
  3101. /*
  3102. * expired
  3103. */
  3104. if (cfq_slice_used(cfqq))
  3105. goto expire;
  3106. /*
  3107. * only expire and reinvoke request handler, if there are
  3108. * other queues with pending requests
  3109. */
  3110. if (!cfqd->busy_queues)
  3111. goto out_cont;
  3112. /*
  3113. * not expired and it has a request pending, let it dispatch
  3114. */
  3115. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3116. goto out_kick;
  3117. /*
  3118. * Queue depth flag is reset only when the idle didn't succeed
  3119. */
  3120. cfq_clear_cfqq_deep(cfqq);
  3121. }
  3122. expire:
  3123. cfq_slice_expired(cfqd, timed_out);
  3124. out_kick:
  3125. cfq_schedule_dispatch(cfqd);
  3126. out_cont:
  3127. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3128. }
  3129. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3130. {
  3131. del_timer_sync(&cfqd->idle_slice_timer);
  3132. cancel_work_sync(&cfqd->unplug_work);
  3133. }
  3134. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3135. {
  3136. int i;
  3137. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3138. if (cfqd->async_cfqq[0][i])
  3139. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3140. if (cfqd->async_cfqq[1][i])
  3141. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3142. }
  3143. if (cfqd->async_idle_cfqq)
  3144. cfq_put_queue(cfqd->async_idle_cfqq);
  3145. }
  3146. static void cfq_cfqd_free(struct rcu_head *head)
  3147. {
  3148. kfree(container_of(head, struct cfq_data, rcu));
  3149. }
  3150. static void cfq_exit_queue(struct elevator_queue *e)
  3151. {
  3152. struct cfq_data *cfqd = e->elevator_data;
  3153. struct request_queue *q = cfqd->queue;
  3154. cfq_shutdown_timer_wq(cfqd);
  3155. spin_lock_irq(q->queue_lock);
  3156. if (cfqd->active_queue)
  3157. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3158. while (!list_empty(&cfqd->cic_list)) {
  3159. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3160. struct cfq_io_context,
  3161. queue_list);
  3162. __cfq_exit_single_io_context(cfqd, cic);
  3163. }
  3164. cfq_put_async_queues(cfqd);
  3165. cfq_release_cfq_groups(cfqd);
  3166. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3167. spin_unlock_irq(q->queue_lock);
  3168. cfq_shutdown_timer_wq(cfqd);
  3169. spin_lock(&cic_index_lock);
  3170. ida_remove(&cic_index_ida, cfqd->cic_index);
  3171. spin_unlock(&cic_index_lock);
  3172. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3173. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3174. }
  3175. static int cfq_alloc_cic_index(void)
  3176. {
  3177. int index, error;
  3178. do {
  3179. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3180. return -ENOMEM;
  3181. spin_lock(&cic_index_lock);
  3182. error = ida_get_new(&cic_index_ida, &index);
  3183. spin_unlock(&cic_index_lock);
  3184. if (error && error != -EAGAIN)
  3185. return error;
  3186. } while (error);
  3187. return index;
  3188. }
  3189. static void *cfq_init_queue(struct request_queue *q)
  3190. {
  3191. struct cfq_data *cfqd;
  3192. int i, j;
  3193. struct cfq_group *cfqg;
  3194. struct cfq_rb_root *st;
  3195. i = cfq_alloc_cic_index();
  3196. if (i < 0)
  3197. return NULL;
  3198. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3199. if (!cfqd)
  3200. return NULL;
  3201. cfqd->cic_index = i;
  3202. /* Init root service tree */
  3203. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3204. /* Init root group */
  3205. cfqg = &cfqd->root_group;
  3206. for_each_cfqg_st(cfqg, i, j, st)
  3207. *st = CFQ_RB_ROOT;
  3208. RB_CLEAR_NODE(&cfqg->rb_node);
  3209. /* Give preference to root group over other groups */
  3210. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3211. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3212. /*
  3213. * Take a reference to root group which we never drop. This is just
  3214. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3215. */
  3216. atomic_set(&cfqg->ref, 1);
  3217. rcu_read_lock();
  3218. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3219. (void *)cfqd, 0);
  3220. rcu_read_unlock();
  3221. #endif
  3222. /*
  3223. * Not strictly needed (since RB_ROOT just clears the node and we
  3224. * zeroed cfqd on alloc), but better be safe in case someone decides
  3225. * to add magic to the rb code
  3226. */
  3227. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3228. cfqd->prio_trees[i] = RB_ROOT;
  3229. /*
  3230. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3231. * Grab a permanent reference to it, so that the normal code flow
  3232. * will not attempt to free it.
  3233. */
  3234. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3235. atomic_inc(&cfqd->oom_cfqq.ref);
  3236. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3237. INIT_LIST_HEAD(&cfqd->cic_list);
  3238. cfqd->queue = q;
  3239. init_timer(&cfqd->idle_slice_timer);
  3240. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3241. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3242. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3243. cfqd->cfq_quantum = cfq_quantum;
  3244. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3245. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3246. cfqd->cfq_back_max = cfq_back_max;
  3247. cfqd->cfq_back_penalty = cfq_back_penalty;
  3248. cfqd->cfq_slice[0] = cfq_slice_async;
  3249. cfqd->cfq_slice[1] = cfq_slice_sync;
  3250. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3251. cfqd->cfq_slice_idle = cfq_slice_idle;
  3252. cfqd->cfq_latency = 1;
  3253. cfqd->cfq_group_isolation = 0;
  3254. cfqd->hw_tag = -1;
  3255. /*
  3256. * we optimistically start assuming sync ops weren't delayed in last
  3257. * second, in order to have larger depth for async operations.
  3258. */
  3259. cfqd->last_delayed_sync = jiffies - HZ;
  3260. return cfqd;
  3261. }
  3262. static void cfq_slab_kill(void)
  3263. {
  3264. /*
  3265. * Caller already ensured that pending RCU callbacks are completed,
  3266. * so we should have no busy allocations at this point.
  3267. */
  3268. if (cfq_pool)
  3269. kmem_cache_destroy(cfq_pool);
  3270. if (cfq_ioc_pool)
  3271. kmem_cache_destroy(cfq_ioc_pool);
  3272. }
  3273. static int __init cfq_slab_setup(void)
  3274. {
  3275. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3276. if (!cfq_pool)
  3277. goto fail;
  3278. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3279. if (!cfq_ioc_pool)
  3280. goto fail;
  3281. return 0;
  3282. fail:
  3283. cfq_slab_kill();
  3284. return -ENOMEM;
  3285. }
  3286. /*
  3287. * sysfs parts below -->
  3288. */
  3289. static ssize_t
  3290. cfq_var_show(unsigned int var, char *page)
  3291. {
  3292. return sprintf(page, "%d\n", var);
  3293. }
  3294. static ssize_t
  3295. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3296. {
  3297. char *p = (char *) page;
  3298. *var = simple_strtoul(p, &p, 10);
  3299. return count;
  3300. }
  3301. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3302. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3303. { \
  3304. struct cfq_data *cfqd = e->elevator_data; \
  3305. unsigned int __data = __VAR; \
  3306. if (__CONV) \
  3307. __data = jiffies_to_msecs(__data); \
  3308. return cfq_var_show(__data, (page)); \
  3309. }
  3310. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3311. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3312. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3313. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3314. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3315. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3316. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3317. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3318. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3319. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3320. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3321. #undef SHOW_FUNCTION
  3322. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3323. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3324. { \
  3325. struct cfq_data *cfqd = e->elevator_data; \
  3326. unsigned int __data; \
  3327. int ret = cfq_var_store(&__data, (page), count); \
  3328. if (__data < (MIN)) \
  3329. __data = (MIN); \
  3330. else if (__data > (MAX)) \
  3331. __data = (MAX); \
  3332. if (__CONV) \
  3333. *(__PTR) = msecs_to_jiffies(__data); \
  3334. else \
  3335. *(__PTR) = __data; \
  3336. return ret; \
  3337. }
  3338. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3339. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3340. UINT_MAX, 1);
  3341. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3342. UINT_MAX, 1);
  3343. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3344. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3345. UINT_MAX, 0);
  3346. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3347. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3348. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3349. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3350. UINT_MAX, 0);
  3351. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3352. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3353. #undef STORE_FUNCTION
  3354. #define CFQ_ATTR(name) \
  3355. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3356. static struct elv_fs_entry cfq_attrs[] = {
  3357. CFQ_ATTR(quantum),
  3358. CFQ_ATTR(fifo_expire_sync),
  3359. CFQ_ATTR(fifo_expire_async),
  3360. CFQ_ATTR(back_seek_max),
  3361. CFQ_ATTR(back_seek_penalty),
  3362. CFQ_ATTR(slice_sync),
  3363. CFQ_ATTR(slice_async),
  3364. CFQ_ATTR(slice_async_rq),
  3365. CFQ_ATTR(slice_idle),
  3366. CFQ_ATTR(low_latency),
  3367. CFQ_ATTR(group_isolation),
  3368. __ATTR_NULL
  3369. };
  3370. static struct elevator_type iosched_cfq = {
  3371. .ops = {
  3372. .elevator_merge_fn = cfq_merge,
  3373. .elevator_merged_fn = cfq_merged_request,
  3374. .elevator_merge_req_fn = cfq_merged_requests,
  3375. .elevator_allow_merge_fn = cfq_allow_merge,
  3376. .elevator_bio_merged_fn = cfq_bio_merged,
  3377. .elevator_dispatch_fn = cfq_dispatch_requests,
  3378. .elevator_add_req_fn = cfq_insert_request,
  3379. .elevator_activate_req_fn = cfq_activate_request,
  3380. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3381. .elevator_queue_empty_fn = cfq_queue_empty,
  3382. .elevator_completed_req_fn = cfq_completed_request,
  3383. .elevator_former_req_fn = elv_rb_former_request,
  3384. .elevator_latter_req_fn = elv_rb_latter_request,
  3385. .elevator_set_req_fn = cfq_set_request,
  3386. .elevator_put_req_fn = cfq_put_request,
  3387. .elevator_may_queue_fn = cfq_may_queue,
  3388. .elevator_init_fn = cfq_init_queue,
  3389. .elevator_exit_fn = cfq_exit_queue,
  3390. .trim = cfq_free_io_context,
  3391. },
  3392. .elevator_attrs = cfq_attrs,
  3393. .elevator_name = "cfq",
  3394. .elevator_owner = THIS_MODULE,
  3395. };
  3396. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3397. static struct blkio_policy_type blkio_policy_cfq = {
  3398. .ops = {
  3399. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3400. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3401. },
  3402. };
  3403. #else
  3404. static struct blkio_policy_type blkio_policy_cfq;
  3405. #endif
  3406. static int __init cfq_init(void)
  3407. {
  3408. /*
  3409. * could be 0 on HZ < 1000 setups
  3410. */
  3411. if (!cfq_slice_async)
  3412. cfq_slice_async = 1;
  3413. if (!cfq_slice_idle)
  3414. cfq_slice_idle = 1;
  3415. if (cfq_slab_setup())
  3416. return -ENOMEM;
  3417. elv_register(&iosched_cfq);
  3418. blkio_policy_register(&blkio_policy_cfq);
  3419. return 0;
  3420. }
  3421. static void __exit cfq_exit(void)
  3422. {
  3423. DECLARE_COMPLETION_ONSTACK(all_gone);
  3424. blkio_policy_unregister(&blkio_policy_cfq);
  3425. elv_unregister(&iosched_cfq);
  3426. ioc_gone = &all_gone;
  3427. /* ioc_gone's update must be visible before reading ioc_count */
  3428. smp_wmb();
  3429. /*
  3430. * this also protects us from entering cfq_slab_kill() with
  3431. * pending RCU callbacks
  3432. */
  3433. if (elv_ioc_count_read(cfq_ioc_count))
  3434. wait_for_completion(&all_gone);
  3435. ida_destroy(&cic_index_ida);
  3436. cfq_slab_kill();
  3437. }
  3438. module_init(cfq_init);
  3439. module_exit(cfq_exit);
  3440. MODULE_AUTHOR("Jens Axboe");
  3441. MODULE_LICENSE("GPL");
  3442. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");