page_alloc.c 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/oom.h>
  33. #include <linux/notifier.h>
  34. #include <linux/topology.h>
  35. #include <linux/sysctl.h>
  36. #include <linux/cpu.h>
  37. #include <linux/cpuset.h>
  38. #include <linux/memory_hotplug.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/mempolicy.h>
  42. #include <linux/stop_machine.h>
  43. #include <linux/sort.h>
  44. #include <linux/pfn.h>
  45. #include <linux/backing-dev.h>
  46. #include <linux/fault-inject.h>
  47. #include <linux/page-isolation.h>
  48. #include <linux/page_cgroup.h>
  49. #include <linux/debugobjects.h>
  50. #include <linux/kmemleak.h>
  51. #include <linux/memory.h>
  52. #include <linux/compaction.h>
  53. #include <trace/events/kmem.h>
  54. #include <linux/ftrace_event.h>
  55. #include <asm/tlbflush.h>
  56. #include <asm/div64.h>
  57. #include "internal.h"
  58. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  59. DEFINE_PER_CPU(int, numa_node);
  60. EXPORT_PER_CPU_SYMBOL(numa_node);
  61. #endif
  62. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  63. /*
  64. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  65. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  66. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  67. * defined in <linux/topology.h>.
  68. */
  69. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  70. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  71. #endif
  72. /*
  73. * Array of node states.
  74. */
  75. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  76. [N_POSSIBLE] = NODE_MASK_ALL,
  77. [N_ONLINE] = { { [0] = 1UL } },
  78. #ifndef CONFIG_NUMA
  79. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  80. #ifdef CONFIG_HIGHMEM
  81. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  82. #endif
  83. [N_CPU] = { { [0] = 1UL } },
  84. #endif /* NUMA */
  85. };
  86. EXPORT_SYMBOL(node_states);
  87. unsigned long totalram_pages __read_mostly;
  88. unsigned long totalreserve_pages __read_mostly;
  89. int percpu_pagelist_fraction;
  90. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  91. #ifdef CONFIG_PM_SLEEP
  92. /*
  93. * The following functions are used by the suspend/hibernate code to temporarily
  94. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  95. * while devices are suspended. To avoid races with the suspend/hibernate code,
  96. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  97. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  98. * guaranteed not to run in parallel with that modification).
  99. */
  100. static gfp_t saved_gfp_mask;
  101. void pm_restore_gfp_mask(void)
  102. {
  103. WARN_ON(!mutex_is_locked(&pm_mutex));
  104. if (saved_gfp_mask) {
  105. gfp_allowed_mask = saved_gfp_mask;
  106. saved_gfp_mask = 0;
  107. }
  108. }
  109. void pm_restrict_gfp_mask(void)
  110. {
  111. WARN_ON(!mutex_is_locked(&pm_mutex));
  112. WARN_ON(saved_gfp_mask);
  113. saved_gfp_mask = gfp_allowed_mask;
  114. gfp_allowed_mask &= ~GFP_IOFS;
  115. }
  116. #endif /* CONFIG_PM_SLEEP */
  117. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  118. int pageblock_order __read_mostly;
  119. #endif
  120. static void __free_pages_ok(struct page *page, unsigned int order);
  121. /*
  122. * results with 256, 32 in the lowmem_reserve sysctl:
  123. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  124. * 1G machine -> (16M dma, 784M normal, 224M high)
  125. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  126. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  127. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  128. *
  129. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  130. * don't need any ZONE_NORMAL reservation
  131. */
  132. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  133. #ifdef CONFIG_ZONE_DMA
  134. 256,
  135. #endif
  136. #ifdef CONFIG_ZONE_DMA32
  137. 256,
  138. #endif
  139. #ifdef CONFIG_HIGHMEM
  140. 32,
  141. #endif
  142. 32,
  143. };
  144. EXPORT_SYMBOL(totalram_pages);
  145. static char * const zone_names[MAX_NR_ZONES] = {
  146. #ifdef CONFIG_ZONE_DMA
  147. "DMA",
  148. #endif
  149. #ifdef CONFIG_ZONE_DMA32
  150. "DMA32",
  151. #endif
  152. "Normal",
  153. #ifdef CONFIG_HIGHMEM
  154. "HighMem",
  155. #endif
  156. "Movable",
  157. };
  158. int min_free_kbytes = 1024;
  159. static unsigned long __meminitdata nr_kernel_pages;
  160. static unsigned long __meminitdata nr_all_pages;
  161. static unsigned long __meminitdata dma_reserve;
  162. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  163. /*
  164. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  165. * ranges of memory (RAM) that may be registered with add_active_range().
  166. * Ranges passed to add_active_range() will be merged if possible
  167. * so the number of times add_active_range() can be called is
  168. * related to the number of nodes and the number of holes
  169. */
  170. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  171. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  172. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  173. #else
  174. #if MAX_NUMNODES >= 32
  175. /* If there can be many nodes, allow up to 50 holes per node */
  176. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  177. #else
  178. /* By default, allow up to 256 distinct regions */
  179. #define MAX_ACTIVE_REGIONS 256
  180. #endif
  181. #endif
  182. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  183. static int __meminitdata nr_nodemap_entries;
  184. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  185. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  186. static unsigned long __initdata required_kernelcore;
  187. static unsigned long __initdata required_movablecore;
  188. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  189. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  190. int movable_zone;
  191. EXPORT_SYMBOL(movable_zone);
  192. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  193. #if MAX_NUMNODES > 1
  194. int nr_node_ids __read_mostly = MAX_NUMNODES;
  195. int nr_online_nodes __read_mostly = 1;
  196. EXPORT_SYMBOL(nr_node_ids);
  197. EXPORT_SYMBOL(nr_online_nodes);
  198. #endif
  199. int page_group_by_mobility_disabled __read_mostly;
  200. static void set_pageblock_migratetype(struct page *page, int migratetype)
  201. {
  202. if (unlikely(page_group_by_mobility_disabled))
  203. migratetype = MIGRATE_UNMOVABLE;
  204. set_pageblock_flags_group(page, (unsigned long)migratetype,
  205. PB_migrate, PB_migrate_end);
  206. }
  207. bool oom_killer_disabled __read_mostly;
  208. #ifdef CONFIG_DEBUG_VM
  209. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  210. {
  211. int ret = 0;
  212. unsigned seq;
  213. unsigned long pfn = page_to_pfn(page);
  214. do {
  215. seq = zone_span_seqbegin(zone);
  216. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  217. ret = 1;
  218. else if (pfn < zone->zone_start_pfn)
  219. ret = 1;
  220. } while (zone_span_seqretry(zone, seq));
  221. return ret;
  222. }
  223. static int page_is_consistent(struct zone *zone, struct page *page)
  224. {
  225. if (!pfn_valid_within(page_to_pfn(page)))
  226. return 0;
  227. if (zone != page_zone(page))
  228. return 0;
  229. return 1;
  230. }
  231. /*
  232. * Temporary debugging check for pages not lying within a given zone.
  233. */
  234. static int bad_range(struct zone *zone, struct page *page)
  235. {
  236. if (page_outside_zone_boundaries(zone, page))
  237. return 1;
  238. if (!page_is_consistent(zone, page))
  239. return 1;
  240. return 0;
  241. }
  242. #else
  243. static inline int bad_range(struct zone *zone, struct page *page)
  244. {
  245. return 0;
  246. }
  247. #endif
  248. static void bad_page(struct page *page)
  249. {
  250. static unsigned long resume;
  251. static unsigned long nr_shown;
  252. static unsigned long nr_unshown;
  253. /* Don't complain about poisoned pages */
  254. if (PageHWPoison(page)) {
  255. __ClearPageBuddy(page);
  256. return;
  257. }
  258. /*
  259. * Allow a burst of 60 reports, then keep quiet for that minute;
  260. * or allow a steady drip of one report per second.
  261. */
  262. if (nr_shown == 60) {
  263. if (time_before(jiffies, resume)) {
  264. nr_unshown++;
  265. goto out;
  266. }
  267. if (nr_unshown) {
  268. printk(KERN_ALERT
  269. "BUG: Bad page state: %lu messages suppressed\n",
  270. nr_unshown);
  271. nr_unshown = 0;
  272. }
  273. nr_shown = 0;
  274. }
  275. if (nr_shown++ == 0)
  276. resume = jiffies + 60 * HZ;
  277. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  278. current->comm, page_to_pfn(page));
  279. dump_page(page);
  280. dump_stack();
  281. out:
  282. /* Leave bad fields for debug, except PageBuddy could make trouble */
  283. __ClearPageBuddy(page);
  284. add_taint(TAINT_BAD_PAGE);
  285. }
  286. /*
  287. * Higher-order pages are called "compound pages". They are structured thusly:
  288. *
  289. * The first PAGE_SIZE page is called the "head page".
  290. *
  291. * The remaining PAGE_SIZE pages are called "tail pages".
  292. *
  293. * All pages have PG_compound set. All pages have their ->private pointing at
  294. * the head page (even the head page has this).
  295. *
  296. * The first tail page's ->lru.next holds the address of the compound page's
  297. * put_page() function. Its ->lru.prev holds the order of allocation.
  298. * This usage means that zero-order pages may not be compound.
  299. */
  300. static void free_compound_page(struct page *page)
  301. {
  302. __free_pages_ok(page, compound_order(page));
  303. }
  304. void prep_compound_page(struct page *page, unsigned long order)
  305. {
  306. int i;
  307. int nr_pages = 1 << order;
  308. set_compound_page_dtor(page, free_compound_page);
  309. set_compound_order(page, order);
  310. __SetPageHead(page);
  311. for (i = 1; i < nr_pages; i++) {
  312. struct page *p = page + i;
  313. __SetPageTail(p);
  314. p->first_page = page;
  315. }
  316. }
  317. /* update __split_huge_page_refcount if you change this function */
  318. static int destroy_compound_page(struct page *page, unsigned long order)
  319. {
  320. int i;
  321. int nr_pages = 1 << order;
  322. int bad = 0;
  323. if (unlikely(compound_order(page) != order) ||
  324. unlikely(!PageHead(page))) {
  325. bad_page(page);
  326. bad++;
  327. }
  328. __ClearPageHead(page);
  329. for (i = 1; i < nr_pages; i++) {
  330. struct page *p = page + i;
  331. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  332. bad_page(page);
  333. bad++;
  334. }
  335. __ClearPageTail(p);
  336. }
  337. return bad;
  338. }
  339. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  340. {
  341. int i;
  342. /*
  343. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  344. * and __GFP_HIGHMEM from hard or soft interrupt context.
  345. */
  346. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  347. for (i = 0; i < (1 << order); i++)
  348. clear_highpage(page + i);
  349. }
  350. static inline void set_page_order(struct page *page, int order)
  351. {
  352. set_page_private(page, order);
  353. __SetPageBuddy(page);
  354. }
  355. static inline void rmv_page_order(struct page *page)
  356. {
  357. __ClearPageBuddy(page);
  358. set_page_private(page, 0);
  359. }
  360. /*
  361. * Locate the struct page for both the matching buddy in our
  362. * pair (buddy1) and the combined O(n+1) page they form (page).
  363. *
  364. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  365. * the following equation:
  366. * B2 = B1 ^ (1 << O)
  367. * For example, if the starting buddy (buddy2) is #8 its order
  368. * 1 buddy is #10:
  369. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  370. *
  371. * 2) Any buddy B will have an order O+1 parent P which
  372. * satisfies the following equation:
  373. * P = B & ~(1 << O)
  374. *
  375. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  376. */
  377. static inline unsigned long
  378. __find_buddy_index(unsigned long page_idx, unsigned int order)
  379. {
  380. return page_idx ^ (1 << order);
  381. }
  382. /*
  383. * This function checks whether a page is free && is the buddy
  384. * we can do coalesce a page and its buddy if
  385. * (a) the buddy is not in a hole &&
  386. * (b) the buddy is in the buddy system &&
  387. * (c) a page and its buddy have the same order &&
  388. * (d) a page and its buddy are in the same zone.
  389. *
  390. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  391. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  392. *
  393. * For recording page's order, we use page_private(page).
  394. */
  395. static inline int page_is_buddy(struct page *page, struct page *buddy,
  396. int order)
  397. {
  398. if (!pfn_valid_within(page_to_pfn(buddy)))
  399. return 0;
  400. if (page_zone_id(page) != page_zone_id(buddy))
  401. return 0;
  402. if (PageBuddy(buddy) && page_order(buddy) == order) {
  403. VM_BUG_ON(page_count(buddy) != 0);
  404. return 1;
  405. }
  406. return 0;
  407. }
  408. /*
  409. * Freeing function for a buddy system allocator.
  410. *
  411. * The concept of a buddy system is to maintain direct-mapped table
  412. * (containing bit values) for memory blocks of various "orders".
  413. * The bottom level table contains the map for the smallest allocatable
  414. * units of memory (here, pages), and each level above it describes
  415. * pairs of units from the levels below, hence, "buddies".
  416. * At a high level, all that happens here is marking the table entry
  417. * at the bottom level available, and propagating the changes upward
  418. * as necessary, plus some accounting needed to play nicely with other
  419. * parts of the VM system.
  420. * At each level, we keep a list of pages, which are heads of continuous
  421. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  422. * order is recorded in page_private(page) field.
  423. * So when we are allocating or freeing one, we can derive the state of the
  424. * other. That is, if we allocate a small block, and both were
  425. * free, the remainder of the region must be split into blocks.
  426. * If a block is freed, and its buddy is also free, then this
  427. * triggers coalescing into a block of larger size.
  428. *
  429. * -- wli
  430. */
  431. static inline void __free_one_page(struct page *page,
  432. struct zone *zone, unsigned int order,
  433. int migratetype)
  434. {
  435. unsigned long page_idx;
  436. unsigned long combined_idx;
  437. unsigned long uninitialized_var(buddy_idx);
  438. struct page *buddy;
  439. if (unlikely(PageCompound(page)))
  440. if (unlikely(destroy_compound_page(page, order)))
  441. return;
  442. VM_BUG_ON(migratetype == -1);
  443. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  444. VM_BUG_ON(page_idx & ((1 << order) - 1));
  445. VM_BUG_ON(bad_range(zone, page));
  446. while (order < MAX_ORDER-1) {
  447. buddy_idx = __find_buddy_index(page_idx, order);
  448. buddy = page + (buddy_idx - page_idx);
  449. if (!page_is_buddy(page, buddy, order))
  450. break;
  451. /* Our buddy is free, merge with it and move up one order. */
  452. list_del(&buddy->lru);
  453. zone->free_area[order].nr_free--;
  454. rmv_page_order(buddy);
  455. combined_idx = buddy_idx & page_idx;
  456. page = page + (combined_idx - page_idx);
  457. page_idx = combined_idx;
  458. order++;
  459. }
  460. set_page_order(page, order);
  461. /*
  462. * If this is not the largest possible page, check if the buddy
  463. * of the next-highest order is free. If it is, it's possible
  464. * that pages are being freed that will coalesce soon. In case,
  465. * that is happening, add the free page to the tail of the list
  466. * so it's less likely to be used soon and more likely to be merged
  467. * as a higher order page
  468. */
  469. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  470. struct page *higher_page, *higher_buddy;
  471. combined_idx = buddy_idx & page_idx;
  472. higher_page = page + (combined_idx - page_idx);
  473. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  474. higher_buddy = page + (buddy_idx - combined_idx);
  475. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  476. list_add_tail(&page->lru,
  477. &zone->free_area[order].free_list[migratetype]);
  478. goto out;
  479. }
  480. }
  481. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  482. out:
  483. zone->free_area[order].nr_free++;
  484. }
  485. /*
  486. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  487. * Page should not be on lru, so no need to fix that up.
  488. * free_pages_check() will verify...
  489. */
  490. static inline void free_page_mlock(struct page *page)
  491. {
  492. __dec_zone_page_state(page, NR_MLOCK);
  493. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  494. }
  495. static inline int free_pages_check(struct page *page)
  496. {
  497. if (unlikely(page_mapcount(page) |
  498. (page->mapping != NULL) |
  499. (atomic_read(&page->_count) != 0) |
  500. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  501. bad_page(page);
  502. return 1;
  503. }
  504. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  505. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  506. return 0;
  507. }
  508. /*
  509. * Frees a number of pages from the PCP lists
  510. * Assumes all pages on list are in same zone, and of same order.
  511. * count is the number of pages to free.
  512. *
  513. * If the zone was previously in an "all pages pinned" state then look to
  514. * see if this freeing clears that state.
  515. *
  516. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  517. * pinned" detection logic.
  518. */
  519. static void free_pcppages_bulk(struct zone *zone, int count,
  520. struct per_cpu_pages *pcp)
  521. {
  522. int migratetype = 0;
  523. int batch_free = 0;
  524. int to_free = count;
  525. spin_lock(&zone->lock);
  526. zone->all_unreclaimable = 0;
  527. zone->pages_scanned = 0;
  528. while (to_free) {
  529. struct page *page;
  530. struct list_head *list;
  531. /*
  532. * Remove pages from lists in a round-robin fashion. A
  533. * batch_free count is maintained that is incremented when an
  534. * empty list is encountered. This is so more pages are freed
  535. * off fuller lists instead of spinning excessively around empty
  536. * lists
  537. */
  538. do {
  539. batch_free++;
  540. if (++migratetype == MIGRATE_PCPTYPES)
  541. migratetype = 0;
  542. list = &pcp->lists[migratetype];
  543. } while (list_empty(list));
  544. do {
  545. page = list_entry(list->prev, struct page, lru);
  546. /* must delete as __free_one_page list manipulates */
  547. list_del(&page->lru);
  548. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  549. __free_one_page(page, zone, 0, page_private(page));
  550. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  551. } while (--to_free && --batch_free && !list_empty(list));
  552. }
  553. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  554. spin_unlock(&zone->lock);
  555. }
  556. static void free_one_page(struct zone *zone, struct page *page, int order,
  557. int migratetype)
  558. {
  559. spin_lock(&zone->lock);
  560. zone->all_unreclaimable = 0;
  561. zone->pages_scanned = 0;
  562. __free_one_page(page, zone, order, migratetype);
  563. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  564. spin_unlock(&zone->lock);
  565. }
  566. static bool free_pages_prepare(struct page *page, unsigned int order)
  567. {
  568. int i;
  569. int bad = 0;
  570. trace_mm_page_free_direct(page, order);
  571. kmemcheck_free_shadow(page, order);
  572. if (PageAnon(page))
  573. page->mapping = NULL;
  574. for (i = 0; i < (1 << order); i++)
  575. bad += free_pages_check(page + i);
  576. if (bad)
  577. return false;
  578. if (!PageHighMem(page)) {
  579. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  580. debug_check_no_obj_freed(page_address(page),
  581. PAGE_SIZE << order);
  582. }
  583. arch_free_page(page, order);
  584. kernel_map_pages(page, 1 << order, 0);
  585. return true;
  586. }
  587. static void __free_pages_ok(struct page *page, unsigned int order)
  588. {
  589. unsigned long flags;
  590. int wasMlocked = __TestClearPageMlocked(page);
  591. if (!free_pages_prepare(page, order))
  592. return;
  593. local_irq_save(flags);
  594. if (unlikely(wasMlocked))
  595. free_page_mlock(page);
  596. __count_vm_events(PGFREE, 1 << order);
  597. free_one_page(page_zone(page), page, order,
  598. get_pageblock_migratetype(page));
  599. local_irq_restore(flags);
  600. }
  601. /*
  602. * permit the bootmem allocator to evade page validation on high-order frees
  603. */
  604. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  605. {
  606. if (order == 0) {
  607. __ClearPageReserved(page);
  608. set_page_count(page, 0);
  609. set_page_refcounted(page);
  610. __free_page(page);
  611. } else {
  612. int loop;
  613. prefetchw(page);
  614. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  615. struct page *p = &page[loop];
  616. if (loop + 1 < BITS_PER_LONG)
  617. prefetchw(p + 1);
  618. __ClearPageReserved(p);
  619. set_page_count(p, 0);
  620. }
  621. set_page_refcounted(page);
  622. __free_pages(page, order);
  623. }
  624. }
  625. /*
  626. * The order of subdivision here is critical for the IO subsystem.
  627. * Please do not alter this order without good reasons and regression
  628. * testing. Specifically, as large blocks of memory are subdivided,
  629. * the order in which smaller blocks are delivered depends on the order
  630. * they're subdivided in this function. This is the primary factor
  631. * influencing the order in which pages are delivered to the IO
  632. * subsystem according to empirical testing, and this is also justified
  633. * by considering the behavior of a buddy system containing a single
  634. * large block of memory acted on by a series of small allocations.
  635. * This behavior is a critical factor in sglist merging's success.
  636. *
  637. * -- wli
  638. */
  639. static inline void expand(struct zone *zone, struct page *page,
  640. int low, int high, struct free_area *area,
  641. int migratetype)
  642. {
  643. unsigned long size = 1 << high;
  644. while (high > low) {
  645. area--;
  646. high--;
  647. size >>= 1;
  648. VM_BUG_ON(bad_range(zone, &page[size]));
  649. list_add(&page[size].lru, &area->free_list[migratetype]);
  650. area->nr_free++;
  651. set_page_order(&page[size], high);
  652. }
  653. }
  654. /*
  655. * This page is about to be returned from the page allocator
  656. */
  657. static inline int check_new_page(struct page *page)
  658. {
  659. if (unlikely(page_mapcount(page) |
  660. (page->mapping != NULL) |
  661. (atomic_read(&page->_count) != 0) |
  662. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  663. bad_page(page);
  664. return 1;
  665. }
  666. return 0;
  667. }
  668. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  669. {
  670. int i;
  671. for (i = 0; i < (1 << order); i++) {
  672. struct page *p = page + i;
  673. if (unlikely(check_new_page(p)))
  674. return 1;
  675. }
  676. set_page_private(page, 0);
  677. set_page_refcounted(page);
  678. arch_alloc_page(page, order);
  679. kernel_map_pages(page, 1 << order, 1);
  680. if (gfp_flags & __GFP_ZERO)
  681. prep_zero_page(page, order, gfp_flags);
  682. if (order && (gfp_flags & __GFP_COMP))
  683. prep_compound_page(page, order);
  684. return 0;
  685. }
  686. /*
  687. * Go through the free lists for the given migratetype and remove
  688. * the smallest available page from the freelists
  689. */
  690. static inline
  691. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  692. int migratetype)
  693. {
  694. unsigned int current_order;
  695. struct free_area * area;
  696. struct page *page;
  697. /* Find a page of the appropriate size in the preferred list */
  698. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  699. area = &(zone->free_area[current_order]);
  700. if (list_empty(&area->free_list[migratetype]))
  701. continue;
  702. page = list_entry(area->free_list[migratetype].next,
  703. struct page, lru);
  704. list_del(&page->lru);
  705. rmv_page_order(page);
  706. area->nr_free--;
  707. expand(zone, page, order, current_order, area, migratetype);
  708. return page;
  709. }
  710. return NULL;
  711. }
  712. /*
  713. * This array describes the order lists are fallen back to when
  714. * the free lists for the desirable migrate type are depleted
  715. */
  716. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  717. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  718. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  719. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  720. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  721. };
  722. /*
  723. * Move the free pages in a range to the free lists of the requested type.
  724. * Note that start_page and end_pages are not aligned on a pageblock
  725. * boundary. If alignment is required, use move_freepages_block()
  726. */
  727. static int move_freepages(struct zone *zone,
  728. struct page *start_page, struct page *end_page,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. unsigned long order;
  733. int pages_moved = 0;
  734. #ifndef CONFIG_HOLES_IN_ZONE
  735. /*
  736. * page_zone is not safe to call in this context when
  737. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  738. * anyway as we check zone boundaries in move_freepages_block().
  739. * Remove at a later date when no bug reports exist related to
  740. * grouping pages by mobility
  741. */
  742. BUG_ON(page_zone(start_page) != page_zone(end_page));
  743. #endif
  744. for (page = start_page; page <= end_page;) {
  745. /* Make sure we are not inadvertently changing nodes */
  746. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  747. if (!pfn_valid_within(page_to_pfn(page))) {
  748. page++;
  749. continue;
  750. }
  751. if (!PageBuddy(page)) {
  752. page++;
  753. continue;
  754. }
  755. order = page_order(page);
  756. list_del(&page->lru);
  757. list_add(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. page += 1 << order;
  760. pages_moved += 1 << order;
  761. }
  762. return pages_moved;
  763. }
  764. static int move_freepages_block(struct zone *zone, struct page *page,
  765. int migratetype)
  766. {
  767. unsigned long start_pfn, end_pfn;
  768. struct page *start_page, *end_page;
  769. start_pfn = page_to_pfn(page);
  770. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  771. start_page = pfn_to_page(start_pfn);
  772. end_page = start_page + pageblock_nr_pages - 1;
  773. end_pfn = start_pfn + pageblock_nr_pages - 1;
  774. /* Do not cross zone boundaries */
  775. if (start_pfn < zone->zone_start_pfn)
  776. start_page = page;
  777. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  778. return 0;
  779. return move_freepages(zone, start_page, end_page, migratetype);
  780. }
  781. static void change_pageblock_range(struct page *pageblock_page,
  782. int start_order, int migratetype)
  783. {
  784. int nr_pageblocks = 1 << (start_order - pageblock_order);
  785. while (nr_pageblocks--) {
  786. set_pageblock_migratetype(pageblock_page, migratetype);
  787. pageblock_page += pageblock_nr_pages;
  788. }
  789. }
  790. /* Remove an element from the buddy allocator from the fallback list */
  791. static inline struct page *
  792. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  793. {
  794. struct free_area * area;
  795. int current_order;
  796. struct page *page;
  797. int migratetype, i;
  798. /* Find the largest possible block of pages in the other list */
  799. for (current_order = MAX_ORDER-1; current_order >= order;
  800. --current_order) {
  801. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  802. migratetype = fallbacks[start_migratetype][i];
  803. /* MIGRATE_RESERVE handled later if necessary */
  804. if (migratetype == MIGRATE_RESERVE)
  805. continue;
  806. area = &(zone->free_area[current_order]);
  807. if (list_empty(&area->free_list[migratetype]))
  808. continue;
  809. page = list_entry(area->free_list[migratetype].next,
  810. struct page, lru);
  811. area->nr_free--;
  812. /*
  813. * If breaking a large block of pages, move all free
  814. * pages to the preferred allocation list. If falling
  815. * back for a reclaimable kernel allocation, be more
  816. * agressive about taking ownership of free pages
  817. */
  818. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  819. start_migratetype == MIGRATE_RECLAIMABLE ||
  820. page_group_by_mobility_disabled) {
  821. unsigned long pages;
  822. pages = move_freepages_block(zone, page,
  823. start_migratetype);
  824. /* Claim the whole block if over half of it is free */
  825. if (pages >= (1 << (pageblock_order-1)) ||
  826. page_group_by_mobility_disabled)
  827. set_pageblock_migratetype(page,
  828. start_migratetype);
  829. migratetype = start_migratetype;
  830. }
  831. /* Remove the page from the freelists */
  832. list_del(&page->lru);
  833. rmv_page_order(page);
  834. /* Take ownership for orders >= pageblock_order */
  835. if (current_order >= pageblock_order)
  836. change_pageblock_range(page, current_order,
  837. start_migratetype);
  838. expand(zone, page, order, current_order, area, migratetype);
  839. trace_mm_page_alloc_extfrag(page, order, current_order,
  840. start_migratetype, migratetype);
  841. return page;
  842. }
  843. }
  844. return NULL;
  845. }
  846. /*
  847. * Do the hard work of removing an element from the buddy allocator.
  848. * Call me with the zone->lock already held.
  849. */
  850. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  851. int migratetype)
  852. {
  853. struct page *page;
  854. retry_reserve:
  855. page = __rmqueue_smallest(zone, order, migratetype);
  856. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  857. page = __rmqueue_fallback(zone, order, migratetype);
  858. /*
  859. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  860. * is used because __rmqueue_smallest is an inline function
  861. * and we want just one call site
  862. */
  863. if (!page) {
  864. migratetype = MIGRATE_RESERVE;
  865. goto retry_reserve;
  866. }
  867. }
  868. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  869. return page;
  870. }
  871. /*
  872. * Obtain a specified number of elements from the buddy allocator, all under
  873. * a single hold of the lock, for efficiency. Add them to the supplied list.
  874. * Returns the number of new pages which were placed at *list.
  875. */
  876. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  877. unsigned long count, struct list_head *list,
  878. int migratetype, int cold)
  879. {
  880. int i;
  881. spin_lock(&zone->lock);
  882. for (i = 0; i < count; ++i) {
  883. struct page *page = __rmqueue(zone, order, migratetype);
  884. if (unlikely(page == NULL))
  885. break;
  886. /*
  887. * Split buddy pages returned by expand() are received here
  888. * in physical page order. The page is added to the callers and
  889. * list and the list head then moves forward. From the callers
  890. * perspective, the linked list is ordered by page number in
  891. * some conditions. This is useful for IO devices that can
  892. * merge IO requests if the physical pages are ordered
  893. * properly.
  894. */
  895. if (likely(cold == 0))
  896. list_add(&page->lru, list);
  897. else
  898. list_add_tail(&page->lru, list);
  899. set_page_private(page, migratetype);
  900. list = &page->lru;
  901. }
  902. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  903. spin_unlock(&zone->lock);
  904. return i;
  905. }
  906. #ifdef CONFIG_NUMA
  907. /*
  908. * Called from the vmstat counter updater to drain pagesets of this
  909. * currently executing processor on remote nodes after they have
  910. * expired.
  911. *
  912. * Note that this function must be called with the thread pinned to
  913. * a single processor.
  914. */
  915. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  916. {
  917. unsigned long flags;
  918. int to_drain;
  919. local_irq_save(flags);
  920. if (pcp->count >= pcp->batch)
  921. to_drain = pcp->batch;
  922. else
  923. to_drain = pcp->count;
  924. free_pcppages_bulk(zone, to_drain, pcp);
  925. pcp->count -= to_drain;
  926. local_irq_restore(flags);
  927. }
  928. #endif
  929. /*
  930. * Drain pages of the indicated processor.
  931. *
  932. * The processor must either be the current processor and the
  933. * thread pinned to the current processor or a processor that
  934. * is not online.
  935. */
  936. static void drain_pages(unsigned int cpu)
  937. {
  938. unsigned long flags;
  939. struct zone *zone;
  940. for_each_populated_zone(zone) {
  941. struct per_cpu_pageset *pset;
  942. struct per_cpu_pages *pcp;
  943. local_irq_save(flags);
  944. pset = per_cpu_ptr(zone->pageset, cpu);
  945. pcp = &pset->pcp;
  946. if (pcp->count) {
  947. free_pcppages_bulk(zone, pcp->count, pcp);
  948. pcp->count = 0;
  949. }
  950. local_irq_restore(flags);
  951. }
  952. }
  953. /*
  954. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  955. */
  956. void drain_local_pages(void *arg)
  957. {
  958. drain_pages(smp_processor_id());
  959. }
  960. /*
  961. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  962. */
  963. void drain_all_pages(void)
  964. {
  965. on_each_cpu(drain_local_pages, NULL, 1);
  966. }
  967. #ifdef CONFIG_HIBERNATION
  968. void mark_free_pages(struct zone *zone)
  969. {
  970. unsigned long pfn, max_zone_pfn;
  971. unsigned long flags;
  972. int order, t;
  973. struct list_head *curr;
  974. if (!zone->spanned_pages)
  975. return;
  976. spin_lock_irqsave(&zone->lock, flags);
  977. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  978. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  979. if (pfn_valid(pfn)) {
  980. struct page *page = pfn_to_page(pfn);
  981. if (!swsusp_page_is_forbidden(page))
  982. swsusp_unset_page_free(page);
  983. }
  984. for_each_migratetype_order(order, t) {
  985. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  986. unsigned long i;
  987. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  988. for (i = 0; i < (1UL << order); i++)
  989. swsusp_set_page_free(pfn_to_page(pfn + i));
  990. }
  991. }
  992. spin_unlock_irqrestore(&zone->lock, flags);
  993. }
  994. #endif /* CONFIG_PM */
  995. /*
  996. * Free a 0-order page
  997. * cold == 1 ? free a cold page : free a hot page
  998. */
  999. void free_hot_cold_page(struct page *page, int cold)
  1000. {
  1001. struct zone *zone = page_zone(page);
  1002. struct per_cpu_pages *pcp;
  1003. unsigned long flags;
  1004. int migratetype;
  1005. int wasMlocked = __TestClearPageMlocked(page);
  1006. if (!free_pages_prepare(page, 0))
  1007. return;
  1008. migratetype = get_pageblock_migratetype(page);
  1009. set_page_private(page, migratetype);
  1010. local_irq_save(flags);
  1011. if (unlikely(wasMlocked))
  1012. free_page_mlock(page);
  1013. __count_vm_event(PGFREE);
  1014. /*
  1015. * We only track unmovable, reclaimable and movable on pcp lists.
  1016. * Free ISOLATE pages back to the allocator because they are being
  1017. * offlined but treat RESERVE as movable pages so we can get those
  1018. * areas back if necessary. Otherwise, we may have to free
  1019. * excessively into the page allocator
  1020. */
  1021. if (migratetype >= MIGRATE_PCPTYPES) {
  1022. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1023. free_one_page(zone, page, 0, migratetype);
  1024. goto out;
  1025. }
  1026. migratetype = MIGRATE_MOVABLE;
  1027. }
  1028. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1029. if (cold)
  1030. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1031. else
  1032. list_add(&page->lru, &pcp->lists[migratetype]);
  1033. pcp->count++;
  1034. if (pcp->count >= pcp->high) {
  1035. free_pcppages_bulk(zone, pcp->batch, pcp);
  1036. pcp->count -= pcp->batch;
  1037. }
  1038. out:
  1039. local_irq_restore(flags);
  1040. }
  1041. /*
  1042. * split_page takes a non-compound higher-order page, and splits it into
  1043. * n (1<<order) sub-pages: page[0..n]
  1044. * Each sub-page must be freed individually.
  1045. *
  1046. * Note: this is probably too low level an operation for use in drivers.
  1047. * Please consult with lkml before using this in your driver.
  1048. */
  1049. void split_page(struct page *page, unsigned int order)
  1050. {
  1051. int i;
  1052. VM_BUG_ON(PageCompound(page));
  1053. VM_BUG_ON(!page_count(page));
  1054. #ifdef CONFIG_KMEMCHECK
  1055. /*
  1056. * Split shadow pages too, because free(page[0]) would
  1057. * otherwise free the whole shadow.
  1058. */
  1059. if (kmemcheck_page_is_tracked(page))
  1060. split_page(virt_to_page(page[0].shadow), order);
  1061. #endif
  1062. for (i = 1; i < (1 << order); i++)
  1063. set_page_refcounted(page + i);
  1064. }
  1065. /*
  1066. * Similar to split_page except the page is already free. As this is only
  1067. * being used for migration, the migratetype of the block also changes.
  1068. * As this is called with interrupts disabled, the caller is responsible
  1069. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1070. * are enabled.
  1071. *
  1072. * Note: this is probably too low level an operation for use in drivers.
  1073. * Please consult with lkml before using this in your driver.
  1074. */
  1075. int split_free_page(struct page *page)
  1076. {
  1077. unsigned int order;
  1078. unsigned long watermark;
  1079. struct zone *zone;
  1080. BUG_ON(!PageBuddy(page));
  1081. zone = page_zone(page);
  1082. order = page_order(page);
  1083. /* Obey watermarks as if the page was being allocated */
  1084. watermark = low_wmark_pages(zone) + (1 << order);
  1085. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1086. return 0;
  1087. /* Remove page from free list */
  1088. list_del(&page->lru);
  1089. zone->free_area[order].nr_free--;
  1090. rmv_page_order(page);
  1091. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1092. /* Split into individual pages */
  1093. set_page_refcounted(page);
  1094. split_page(page, order);
  1095. if (order >= pageblock_order - 1) {
  1096. struct page *endpage = page + (1 << order) - 1;
  1097. for (; page < endpage; page += pageblock_nr_pages)
  1098. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1099. }
  1100. return 1 << order;
  1101. }
  1102. /*
  1103. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1104. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1105. * or two.
  1106. */
  1107. static inline
  1108. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1109. struct zone *zone, int order, gfp_t gfp_flags,
  1110. int migratetype)
  1111. {
  1112. unsigned long flags;
  1113. struct page *page;
  1114. int cold = !!(gfp_flags & __GFP_COLD);
  1115. again:
  1116. if (likely(order == 0)) {
  1117. struct per_cpu_pages *pcp;
  1118. struct list_head *list;
  1119. local_irq_save(flags);
  1120. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1121. list = &pcp->lists[migratetype];
  1122. if (list_empty(list)) {
  1123. pcp->count += rmqueue_bulk(zone, 0,
  1124. pcp->batch, list,
  1125. migratetype, cold);
  1126. if (unlikely(list_empty(list)))
  1127. goto failed;
  1128. }
  1129. if (cold)
  1130. page = list_entry(list->prev, struct page, lru);
  1131. else
  1132. page = list_entry(list->next, struct page, lru);
  1133. list_del(&page->lru);
  1134. pcp->count--;
  1135. } else {
  1136. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1137. /*
  1138. * __GFP_NOFAIL is not to be used in new code.
  1139. *
  1140. * All __GFP_NOFAIL callers should be fixed so that they
  1141. * properly detect and handle allocation failures.
  1142. *
  1143. * We most definitely don't want callers attempting to
  1144. * allocate greater than order-1 page units with
  1145. * __GFP_NOFAIL.
  1146. */
  1147. WARN_ON_ONCE(order > 1);
  1148. }
  1149. spin_lock_irqsave(&zone->lock, flags);
  1150. page = __rmqueue(zone, order, migratetype);
  1151. spin_unlock(&zone->lock);
  1152. if (!page)
  1153. goto failed;
  1154. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1155. }
  1156. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1157. zone_statistics(preferred_zone, zone);
  1158. local_irq_restore(flags);
  1159. VM_BUG_ON(bad_range(zone, page));
  1160. if (prep_new_page(page, order, gfp_flags))
  1161. goto again;
  1162. return page;
  1163. failed:
  1164. local_irq_restore(flags);
  1165. return NULL;
  1166. }
  1167. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1168. #define ALLOC_WMARK_MIN WMARK_MIN
  1169. #define ALLOC_WMARK_LOW WMARK_LOW
  1170. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1171. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1172. /* Mask to get the watermark bits */
  1173. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1174. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1175. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1176. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1177. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1178. static struct fail_page_alloc_attr {
  1179. struct fault_attr attr;
  1180. u32 ignore_gfp_highmem;
  1181. u32 ignore_gfp_wait;
  1182. u32 min_order;
  1183. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1184. struct dentry *ignore_gfp_highmem_file;
  1185. struct dentry *ignore_gfp_wait_file;
  1186. struct dentry *min_order_file;
  1187. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1188. } fail_page_alloc = {
  1189. .attr = FAULT_ATTR_INITIALIZER,
  1190. .ignore_gfp_wait = 1,
  1191. .ignore_gfp_highmem = 1,
  1192. .min_order = 1,
  1193. };
  1194. static int __init setup_fail_page_alloc(char *str)
  1195. {
  1196. return setup_fault_attr(&fail_page_alloc.attr, str);
  1197. }
  1198. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1199. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1200. {
  1201. if (order < fail_page_alloc.min_order)
  1202. return 0;
  1203. if (gfp_mask & __GFP_NOFAIL)
  1204. return 0;
  1205. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1206. return 0;
  1207. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1208. return 0;
  1209. return should_fail(&fail_page_alloc.attr, 1 << order);
  1210. }
  1211. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1212. static int __init fail_page_alloc_debugfs(void)
  1213. {
  1214. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1215. struct dentry *dir;
  1216. int err;
  1217. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1218. "fail_page_alloc");
  1219. if (err)
  1220. return err;
  1221. dir = fail_page_alloc.attr.dentries.dir;
  1222. fail_page_alloc.ignore_gfp_wait_file =
  1223. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1224. &fail_page_alloc.ignore_gfp_wait);
  1225. fail_page_alloc.ignore_gfp_highmem_file =
  1226. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1227. &fail_page_alloc.ignore_gfp_highmem);
  1228. fail_page_alloc.min_order_file =
  1229. debugfs_create_u32("min-order", mode, dir,
  1230. &fail_page_alloc.min_order);
  1231. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1232. !fail_page_alloc.ignore_gfp_highmem_file ||
  1233. !fail_page_alloc.min_order_file) {
  1234. err = -ENOMEM;
  1235. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1236. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1237. debugfs_remove(fail_page_alloc.min_order_file);
  1238. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1239. }
  1240. return err;
  1241. }
  1242. late_initcall(fail_page_alloc_debugfs);
  1243. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1244. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1245. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1250. /*
  1251. * Return true if free pages are above 'mark'. This takes into account the order
  1252. * of the allocation.
  1253. */
  1254. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1255. int classzone_idx, int alloc_flags, long free_pages)
  1256. {
  1257. /* free_pages my go negative - that's OK */
  1258. long min = mark;
  1259. int o;
  1260. free_pages -= (1 << order) + 1;
  1261. if (alloc_flags & ALLOC_HIGH)
  1262. min -= min / 2;
  1263. if (alloc_flags & ALLOC_HARDER)
  1264. min -= min / 4;
  1265. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1266. return false;
  1267. for (o = 0; o < order; o++) {
  1268. /* At the next order, this order's pages become unavailable */
  1269. free_pages -= z->free_area[o].nr_free << o;
  1270. /* Require fewer higher order pages to be free */
  1271. min >>= 1;
  1272. if (free_pages <= min)
  1273. return false;
  1274. }
  1275. return true;
  1276. }
  1277. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1278. int classzone_idx, int alloc_flags)
  1279. {
  1280. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1281. zone_page_state(z, NR_FREE_PAGES));
  1282. }
  1283. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1284. int classzone_idx, int alloc_flags)
  1285. {
  1286. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1287. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1288. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1289. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1290. free_pages);
  1291. }
  1292. #ifdef CONFIG_NUMA
  1293. /*
  1294. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1295. * skip over zones that are not allowed by the cpuset, or that have
  1296. * been recently (in last second) found to be nearly full. See further
  1297. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1298. * that have to skip over a lot of full or unallowed zones.
  1299. *
  1300. * If the zonelist cache is present in the passed in zonelist, then
  1301. * returns a pointer to the allowed node mask (either the current
  1302. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1303. *
  1304. * If the zonelist cache is not available for this zonelist, does
  1305. * nothing and returns NULL.
  1306. *
  1307. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1308. * a second since last zap'd) then we zap it out (clear its bits.)
  1309. *
  1310. * We hold off even calling zlc_setup, until after we've checked the
  1311. * first zone in the zonelist, on the theory that most allocations will
  1312. * be satisfied from that first zone, so best to examine that zone as
  1313. * quickly as we can.
  1314. */
  1315. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1316. {
  1317. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1318. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1319. zlc = zonelist->zlcache_ptr;
  1320. if (!zlc)
  1321. return NULL;
  1322. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1323. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1324. zlc->last_full_zap = jiffies;
  1325. }
  1326. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1327. &cpuset_current_mems_allowed :
  1328. &node_states[N_HIGH_MEMORY];
  1329. return allowednodes;
  1330. }
  1331. /*
  1332. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1333. * if it is worth looking at further for free memory:
  1334. * 1) Check that the zone isn't thought to be full (doesn't have its
  1335. * bit set in the zonelist_cache fullzones BITMAP).
  1336. * 2) Check that the zones node (obtained from the zonelist_cache
  1337. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1338. * Return true (non-zero) if zone is worth looking at further, or
  1339. * else return false (zero) if it is not.
  1340. *
  1341. * This check -ignores- the distinction between various watermarks,
  1342. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1343. * found to be full for any variation of these watermarks, it will
  1344. * be considered full for up to one second by all requests, unless
  1345. * we are so low on memory on all allowed nodes that we are forced
  1346. * into the second scan of the zonelist.
  1347. *
  1348. * In the second scan we ignore this zonelist cache and exactly
  1349. * apply the watermarks to all zones, even it is slower to do so.
  1350. * We are low on memory in the second scan, and should leave no stone
  1351. * unturned looking for a free page.
  1352. */
  1353. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1354. nodemask_t *allowednodes)
  1355. {
  1356. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1357. int i; /* index of *z in zonelist zones */
  1358. int n; /* node that zone *z is on */
  1359. zlc = zonelist->zlcache_ptr;
  1360. if (!zlc)
  1361. return 1;
  1362. i = z - zonelist->_zonerefs;
  1363. n = zlc->z_to_n[i];
  1364. /* This zone is worth trying if it is allowed but not full */
  1365. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1366. }
  1367. /*
  1368. * Given 'z' scanning a zonelist, set the corresponding bit in
  1369. * zlc->fullzones, so that subsequent attempts to allocate a page
  1370. * from that zone don't waste time re-examining it.
  1371. */
  1372. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1373. {
  1374. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1375. int i; /* index of *z in zonelist zones */
  1376. zlc = zonelist->zlcache_ptr;
  1377. if (!zlc)
  1378. return;
  1379. i = z - zonelist->_zonerefs;
  1380. set_bit(i, zlc->fullzones);
  1381. }
  1382. #else /* CONFIG_NUMA */
  1383. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1384. {
  1385. return NULL;
  1386. }
  1387. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1388. nodemask_t *allowednodes)
  1389. {
  1390. return 1;
  1391. }
  1392. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1393. {
  1394. }
  1395. #endif /* CONFIG_NUMA */
  1396. /*
  1397. * get_page_from_freelist goes through the zonelist trying to allocate
  1398. * a page.
  1399. */
  1400. static struct page *
  1401. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1402. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1403. struct zone *preferred_zone, int migratetype)
  1404. {
  1405. struct zoneref *z;
  1406. struct page *page = NULL;
  1407. int classzone_idx;
  1408. struct zone *zone;
  1409. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1410. int zlc_active = 0; /* set if using zonelist_cache */
  1411. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1412. classzone_idx = zone_idx(preferred_zone);
  1413. zonelist_scan:
  1414. /*
  1415. * Scan zonelist, looking for a zone with enough free.
  1416. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1417. */
  1418. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1419. high_zoneidx, nodemask) {
  1420. if (NUMA_BUILD && zlc_active &&
  1421. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1422. continue;
  1423. if ((alloc_flags & ALLOC_CPUSET) &&
  1424. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1425. goto try_next_zone;
  1426. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1427. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1428. unsigned long mark;
  1429. int ret;
  1430. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1431. if (zone_watermark_ok(zone, order, mark,
  1432. classzone_idx, alloc_flags))
  1433. goto try_this_zone;
  1434. if (zone_reclaim_mode == 0)
  1435. goto this_zone_full;
  1436. ret = zone_reclaim(zone, gfp_mask, order);
  1437. switch (ret) {
  1438. case ZONE_RECLAIM_NOSCAN:
  1439. /* did not scan */
  1440. goto try_next_zone;
  1441. case ZONE_RECLAIM_FULL:
  1442. /* scanned but unreclaimable */
  1443. goto this_zone_full;
  1444. default:
  1445. /* did we reclaim enough */
  1446. if (!zone_watermark_ok(zone, order, mark,
  1447. classzone_idx, alloc_flags))
  1448. goto this_zone_full;
  1449. }
  1450. }
  1451. try_this_zone:
  1452. page = buffered_rmqueue(preferred_zone, zone, order,
  1453. gfp_mask, migratetype);
  1454. if (page)
  1455. break;
  1456. this_zone_full:
  1457. if (NUMA_BUILD)
  1458. zlc_mark_zone_full(zonelist, z);
  1459. try_next_zone:
  1460. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1461. /*
  1462. * we do zlc_setup after the first zone is tried but only
  1463. * if there are multiple nodes make it worthwhile
  1464. */
  1465. allowednodes = zlc_setup(zonelist, alloc_flags);
  1466. zlc_active = 1;
  1467. did_zlc_setup = 1;
  1468. }
  1469. }
  1470. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1471. /* Disable zlc cache for second zonelist scan */
  1472. zlc_active = 0;
  1473. goto zonelist_scan;
  1474. }
  1475. return page;
  1476. }
  1477. static inline int
  1478. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1479. unsigned long pages_reclaimed)
  1480. {
  1481. /* Do not loop if specifically requested */
  1482. if (gfp_mask & __GFP_NORETRY)
  1483. return 0;
  1484. /*
  1485. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1486. * means __GFP_NOFAIL, but that may not be true in other
  1487. * implementations.
  1488. */
  1489. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1490. return 1;
  1491. /*
  1492. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1493. * specified, then we retry until we no longer reclaim any pages
  1494. * (above), or we've reclaimed an order of pages at least as
  1495. * large as the allocation's order. In both cases, if the
  1496. * allocation still fails, we stop retrying.
  1497. */
  1498. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1499. return 1;
  1500. /*
  1501. * Don't let big-order allocations loop unless the caller
  1502. * explicitly requests that.
  1503. */
  1504. if (gfp_mask & __GFP_NOFAIL)
  1505. return 1;
  1506. return 0;
  1507. }
  1508. static inline struct page *
  1509. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1510. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1511. nodemask_t *nodemask, struct zone *preferred_zone,
  1512. int migratetype)
  1513. {
  1514. struct page *page;
  1515. /* Acquire the OOM killer lock for the zones in zonelist */
  1516. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1517. schedule_timeout_uninterruptible(1);
  1518. return NULL;
  1519. }
  1520. /*
  1521. * Go through the zonelist yet one more time, keep very high watermark
  1522. * here, this is only to catch a parallel oom killing, we must fail if
  1523. * we're still under heavy pressure.
  1524. */
  1525. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1526. order, zonelist, high_zoneidx,
  1527. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1528. preferred_zone, migratetype);
  1529. if (page)
  1530. goto out;
  1531. if (!(gfp_mask & __GFP_NOFAIL)) {
  1532. /* The OOM killer will not help higher order allocs */
  1533. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1534. goto out;
  1535. /* The OOM killer does not needlessly kill tasks for lowmem */
  1536. if (high_zoneidx < ZONE_NORMAL)
  1537. goto out;
  1538. /*
  1539. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1540. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1541. * The caller should handle page allocation failure by itself if
  1542. * it specifies __GFP_THISNODE.
  1543. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1544. */
  1545. if (gfp_mask & __GFP_THISNODE)
  1546. goto out;
  1547. }
  1548. /* Exhausted what can be done so it's blamo time */
  1549. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1550. out:
  1551. clear_zonelist_oom(zonelist, gfp_mask);
  1552. return page;
  1553. }
  1554. #ifdef CONFIG_COMPACTION
  1555. /* Try memory compaction for high-order allocations before reclaim */
  1556. static struct page *
  1557. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1558. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1559. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1560. int migratetype, unsigned long *did_some_progress,
  1561. bool sync_migration)
  1562. {
  1563. struct page *page;
  1564. if (!order || compaction_deferred(preferred_zone))
  1565. return NULL;
  1566. current->flags |= PF_MEMALLOC;
  1567. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1568. nodemask, sync_migration);
  1569. current->flags &= ~PF_MEMALLOC;
  1570. if (*did_some_progress != COMPACT_SKIPPED) {
  1571. /* Page migration frees to the PCP lists but we want merging */
  1572. drain_pages(get_cpu());
  1573. put_cpu();
  1574. page = get_page_from_freelist(gfp_mask, nodemask,
  1575. order, zonelist, high_zoneidx,
  1576. alloc_flags, preferred_zone,
  1577. migratetype);
  1578. if (page) {
  1579. preferred_zone->compact_considered = 0;
  1580. preferred_zone->compact_defer_shift = 0;
  1581. count_vm_event(COMPACTSUCCESS);
  1582. return page;
  1583. }
  1584. /*
  1585. * It's bad if compaction run occurs and fails.
  1586. * The most likely reason is that pages exist,
  1587. * but not enough to satisfy watermarks.
  1588. */
  1589. count_vm_event(COMPACTFAIL);
  1590. defer_compaction(preferred_zone);
  1591. cond_resched();
  1592. }
  1593. return NULL;
  1594. }
  1595. #else
  1596. static inline struct page *
  1597. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1598. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1599. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1600. int migratetype, unsigned long *did_some_progress,
  1601. bool sync_migration)
  1602. {
  1603. return NULL;
  1604. }
  1605. #endif /* CONFIG_COMPACTION */
  1606. /* The really slow allocator path where we enter direct reclaim */
  1607. static inline struct page *
  1608. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1609. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1610. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1611. int migratetype, unsigned long *did_some_progress)
  1612. {
  1613. struct page *page = NULL;
  1614. struct reclaim_state reclaim_state;
  1615. bool drained = false;
  1616. cond_resched();
  1617. /* We now go into synchronous reclaim */
  1618. cpuset_memory_pressure_bump();
  1619. current->flags |= PF_MEMALLOC;
  1620. lockdep_set_current_reclaim_state(gfp_mask);
  1621. reclaim_state.reclaimed_slab = 0;
  1622. current->reclaim_state = &reclaim_state;
  1623. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1624. current->reclaim_state = NULL;
  1625. lockdep_clear_current_reclaim_state();
  1626. current->flags &= ~PF_MEMALLOC;
  1627. cond_resched();
  1628. if (unlikely(!(*did_some_progress)))
  1629. return NULL;
  1630. retry:
  1631. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1632. zonelist, high_zoneidx,
  1633. alloc_flags, preferred_zone,
  1634. migratetype);
  1635. /*
  1636. * If an allocation failed after direct reclaim, it could be because
  1637. * pages are pinned on the per-cpu lists. Drain them and try again
  1638. */
  1639. if (!page && !drained) {
  1640. drain_all_pages();
  1641. drained = true;
  1642. goto retry;
  1643. }
  1644. return page;
  1645. }
  1646. /*
  1647. * This is called in the allocator slow-path if the allocation request is of
  1648. * sufficient urgency to ignore watermarks and take other desperate measures
  1649. */
  1650. static inline struct page *
  1651. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1652. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1653. nodemask_t *nodemask, struct zone *preferred_zone,
  1654. int migratetype)
  1655. {
  1656. struct page *page;
  1657. do {
  1658. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1659. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1660. preferred_zone, migratetype);
  1661. if (!page && gfp_mask & __GFP_NOFAIL)
  1662. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1663. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1664. return page;
  1665. }
  1666. static inline
  1667. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1668. enum zone_type high_zoneidx,
  1669. enum zone_type classzone_idx)
  1670. {
  1671. struct zoneref *z;
  1672. struct zone *zone;
  1673. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1674. wakeup_kswapd(zone, order, classzone_idx);
  1675. }
  1676. static inline int
  1677. gfp_to_alloc_flags(gfp_t gfp_mask)
  1678. {
  1679. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1680. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1681. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1682. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1683. /*
  1684. * The caller may dip into page reserves a bit more if the caller
  1685. * cannot run direct reclaim, or if the caller has realtime scheduling
  1686. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1687. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1688. */
  1689. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1690. if (!wait) {
  1691. /*
  1692. * Not worth trying to allocate harder for
  1693. * __GFP_NOMEMALLOC even if it can't schedule.
  1694. */
  1695. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1696. alloc_flags |= ALLOC_HARDER;
  1697. /*
  1698. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1699. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1700. */
  1701. alloc_flags &= ~ALLOC_CPUSET;
  1702. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1703. alloc_flags |= ALLOC_HARDER;
  1704. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1705. if (!in_interrupt() &&
  1706. ((current->flags & PF_MEMALLOC) ||
  1707. unlikely(test_thread_flag(TIF_MEMDIE))))
  1708. alloc_flags |= ALLOC_NO_WATERMARKS;
  1709. }
  1710. return alloc_flags;
  1711. }
  1712. static inline struct page *
  1713. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1714. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1715. nodemask_t *nodemask, struct zone *preferred_zone,
  1716. int migratetype)
  1717. {
  1718. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1719. struct page *page = NULL;
  1720. int alloc_flags;
  1721. unsigned long pages_reclaimed = 0;
  1722. unsigned long did_some_progress;
  1723. bool sync_migration = false;
  1724. /*
  1725. * In the slowpath, we sanity check order to avoid ever trying to
  1726. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1727. * be using allocators in order of preference for an area that is
  1728. * too large.
  1729. */
  1730. if (order >= MAX_ORDER) {
  1731. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1732. return NULL;
  1733. }
  1734. /*
  1735. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1736. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1737. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1738. * using a larger set of nodes after it has established that the
  1739. * allowed per node queues are empty and that nodes are
  1740. * over allocated.
  1741. */
  1742. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1743. goto nopage;
  1744. restart:
  1745. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1746. wake_all_kswapd(order, zonelist, high_zoneidx,
  1747. zone_idx(preferred_zone));
  1748. /*
  1749. * OK, we're below the kswapd watermark and have kicked background
  1750. * reclaim. Now things get more complex, so set up alloc_flags according
  1751. * to how we want to proceed.
  1752. */
  1753. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1754. /*
  1755. * Find the true preferred zone if the allocation is unconstrained by
  1756. * cpusets.
  1757. */
  1758. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1759. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1760. &preferred_zone);
  1761. /* This is the last chance, in general, before the goto nopage. */
  1762. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1763. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1764. preferred_zone, migratetype);
  1765. if (page)
  1766. goto got_pg;
  1767. rebalance:
  1768. /* Allocate without watermarks if the context allows */
  1769. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1770. page = __alloc_pages_high_priority(gfp_mask, order,
  1771. zonelist, high_zoneidx, nodemask,
  1772. preferred_zone, migratetype);
  1773. if (page)
  1774. goto got_pg;
  1775. }
  1776. /* Atomic allocations - we can't balance anything */
  1777. if (!wait)
  1778. goto nopage;
  1779. /* Avoid recursion of direct reclaim */
  1780. if (current->flags & PF_MEMALLOC)
  1781. goto nopage;
  1782. /* Avoid allocations with no watermarks from looping endlessly */
  1783. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1784. goto nopage;
  1785. /*
  1786. * Try direct compaction. The first pass is asynchronous. Subsequent
  1787. * attempts after direct reclaim are synchronous
  1788. */
  1789. page = __alloc_pages_direct_compact(gfp_mask, order,
  1790. zonelist, high_zoneidx,
  1791. nodemask,
  1792. alloc_flags, preferred_zone,
  1793. migratetype, &did_some_progress,
  1794. sync_migration);
  1795. if (page)
  1796. goto got_pg;
  1797. sync_migration = true;
  1798. /* Try direct reclaim and then allocating */
  1799. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1800. zonelist, high_zoneidx,
  1801. nodemask,
  1802. alloc_flags, preferred_zone,
  1803. migratetype, &did_some_progress);
  1804. if (page)
  1805. goto got_pg;
  1806. /*
  1807. * If we failed to make any progress reclaiming, then we are
  1808. * running out of options and have to consider going OOM
  1809. */
  1810. if (!did_some_progress) {
  1811. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1812. if (oom_killer_disabled)
  1813. goto nopage;
  1814. page = __alloc_pages_may_oom(gfp_mask, order,
  1815. zonelist, high_zoneidx,
  1816. nodemask, preferred_zone,
  1817. migratetype);
  1818. if (page)
  1819. goto got_pg;
  1820. if (!(gfp_mask & __GFP_NOFAIL)) {
  1821. /*
  1822. * The oom killer is not called for high-order
  1823. * allocations that may fail, so if no progress
  1824. * is being made, there are no other options and
  1825. * retrying is unlikely to help.
  1826. */
  1827. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1828. goto nopage;
  1829. /*
  1830. * The oom killer is not called for lowmem
  1831. * allocations to prevent needlessly killing
  1832. * innocent tasks.
  1833. */
  1834. if (high_zoneidx < ZONE_NORMAL)
  1835. goto nopage;
  1836. }
  1837. goto restart;
  1838. }
  1839. }
  1840. /* Check if we should retry the allocation */
  1841. pages_reclaimed += did_some_progress;
  1842. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1843. /* Wait for some write requests to complete then retry */
  1844. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1845. goto rebalance;
  1846. } else {
  1847. /*
  1848. * High-order allocations do not necessarily loop after
  1849. * direct reclaim and reclaim/compaction depends on compaction
  1850. * being called after reclaim so call directly if necessary
  1851. */
  1852. page = __alloc_pages_direct_compact(gfp_mask, order,
  1853. zonelist, high_zoneidx,
  1854. nodemask,
  1855. alloc_flags, preferred_zone,
  1856. migratetype, &did_some_progress,
  1857. sync_migration);
  1858. if (page)
  1859. goto got_pg;
  1860. }
  1861. nopage:
  1862. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1863. printk(KERN_WARNING "%s: page allocation failure."
  1864. " order:%d, mode:0x%x\n",
  1865. current->comm, order, gfp_mask);
  1866. dump_stack();
  1867. show_mem();
  1868. }
  1869. return page;
  1870. got_pg:
  1871. if (kmemcheck_enabled)
  1872. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1873. return page;
  1874. }
  1875. /*
  1876. * This is the 'heart' of the zoned buddy allocator.
  1877. */
  1878. struct page *
  1879. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1880. struct zonelist *zonelist, nodemask_t *nodemask)
  1881. {
  1882. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1883. struct zone *preferred_zone;
  1884. struct page *page;
  1885. int migratetype = allocflags_to_migratetype(gfp_mask);
  1886. gfp_mask &= gfp_allowed_mask;
  1887. lockdep_trace_alloc(gfp_mask);
  1888. might_sleep_if(gfp_mask & __GFP_WAIT);
  1889. if (should_fail_alloc_page(gfp_mask, order))
  1890. return NULL;
  1891. /*
  1892. * Check the zones suitable for the gfp_mask contain at least one
  1893. * valid zone. It's possible to have an empty zonelist as a result
  1894. * of GFP_THISNODE and a memoryless node
  1895. */
  1896. if (unlikely(!zonelist->_zonerefs->zone))
  1897. return NULL;
  1898. get_mems_allowed();
  1899. /* The preferred zone is used for statistics later */
  1900. first_zones_zonelist(zonelist, high_zoneidx,
  1901. nodemask ? : &cpuset_current_mems_allowed,
  1902. &preferred_zone);
  1903. if (!preferred_zone) {
  1904. put_mems_allowed();
  1905. return NULL;
  1906. }
  1907. /* First allocation attempt */
  1908. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1909. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1910. preferred_zone, migratetype);
  1911. if (unlikely(!page))
  1912. page = __alloc_pages_slowpath(gfp_mask, order,
  1913. zonelist, high_zoneidx, nodemask,
  1914. preferred_zone, migratetype);
  1915. put_mems_allowed();
  1916. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1917. return page;
  1918. }
  1919. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1920. /*
  1921. * Common helper functions.
  1922. */
  1923. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1924. {
  1925. struct page *page;
  1926. /*
  1927. * __get_free_pages() returns a 32-bit address, which cannot represent
  1928. * a highmem page
  1929. */
  1930. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1931. page = alloc_pages(gfp_mask, order);
  1932. if (!page)
  1933. return 0;
  1934. return (unsigned long) page_address(page);
  1935. }
  1936. EXPORT_SYMBOL(__get_free_pages);
  1937. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1938. {
  1939. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1940. }
  1941. EXPORT_SYMBOL(get_zeroed_page);
  1942. void __pagevec_free(struct pagevec *pvec)
  1943. {
  1944. int i = pagevec_count(pvec);
  1945. while (--i >= 0) {
  1946. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1947. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1948. }
  1949. }
  1950. void __free_pages(struct page *page, unsigned int order)
  1951. {
  1952. if (put_page_testzero(page)) {
  1953. if (order == 0)
  1954. free_hot_cold_page(page, 0);
  1955. else
  1956. __free_pages_ok(page, order);
  1957. }
  1958. }
  1959. EXPORT_SYMBOL(__free_pages);
  1960. void free_pages(unsigned long addr, unsigned int order)
  1961. {
  1962. if (addr != 0) {
  1963. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1964. __free_pages(virt_to_page((void *)addr), order);
  1965. }
  1966. }
  1967. EXPORT_SYMBOL(free_pages);
  1968. /**
  1969. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1970. * @size: the number of bytes to allocate
  1971. * @gfp_mask: GFP flags for the allocation
  1972. *
  1973. * This function is similar to alloc_pages(), except that it allocates the
  1974. * minimum number of pages to satisfy the request. alloc_pages() can only
  1975. * allocate memory in power-of-two pages.
  1976. *
  1977. * This function is also limited by MAX_ORDER.
  1978. *
  1979. * Memory allocated by this function must be released by free_pages_exact().
  1980. */
  1981. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1982. {
  1983. unsigned int order = get_order(size);
  1984. unsigned long addr;
  1985. addr = __get_free_pages(gfp_mask, order);
  1986. if (addr) {
  1987. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1988. unsigned long used = addr + PAGE_ALIGN(size);
  1989. split_page(virt_to_page((void *)addr), order);
  1990. while (used < alloc_end) {
  1991. free_page(used);
  1992. used += PAGE_SIZE;
  1993. }
  1994. }
  1995. return (void *)addr;
  1996. }
  1997. EXPORT_SYMBOL(alloc_pages_exact);
  1998. /**
  1999. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2000. * @virt: the value returned by alloc_pages_exact.
  2001. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2002. *
  2003. * Release the memory allocated by a previous call to alloc_pages_exact.
  2004. */
  2005. void free_pages_exact(void *virt, size_t size)
  2006. {
  2007. unsigned long addr = (unsigned long)virt;
  2008. unsigned long end = addr + PAGE_ALIGN(size);
  2009. while (addr < end) {
  2010. free_page(addr);
  2011. addr += PAGE_SIZE;
  2012. }
  2013. }
  2014. EXPORT_SYMBOL(free_pages_exact);
  2015. static unsigned int nr_free_zone_pages(int offset)
  2016. {
  2017. struct zoneref *z;
  2018. struct zone *zone;
  2019. /* Just pick one node, since fallback list is circular */
  2020. unsigned int sum = 0;
  2021. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2022. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2023. unsigned long size = zone->present_pages;
  2024. unsigned long high = high_wmark_pages(zone);
  2025. if (size > high)
  2026. sum += size - high;
  2027. }
  2028. return sum;
  2029. }
  2030. /*
  2031. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2032. */
  2033. unsigned int nr_free_buffer_pages(void)
  2034. {
  2035. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2036. }
  2037. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2038. /*
  2039. * Amount of free RAM allocatable within all zones
  2040. */
  2041. unsigned int nr_free_pagecache_pages(void)
  2042. {
  2043. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2044. }
  2045. static inline void show_node(struct zone *zone)
  2046. {
  2047. if (NUMA_BUILD)
  2048. printk("Node %d ", zone_to_nid(zone));
  2049. }
  2050. void si_meminfo(struct sysinfo *val)
  2051. {
  2052. val->totalram = totalram_pages;
  2053. val->sharedram = 0;
  2054. val->freeram = global_page_state(NR_FREE_PAGES);
  2055. val->bufferram = nr_blockdev_pages();
  2056. val->totalhigh = totalhigh_pages;
  2057. val->freehigh = nr_free_highpages();
  2058. val->mem_unit = PAGE_SIZE;
  2059. }
  2060. EXPORT_SYMBOL(si_meminfo);
  2061. #ifdef CONFIG_NUMA
  2062. void si_meminfo_node(struct sysinfo *val, int nid)
  2063. {
  2064. pg_data_t *pgdat = NODE_DATA(nid);
  2065. val->totalram = pgdat->node_present_pages;
  2066. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2067. #ifdef CONFIG_HIGHMEM
  2068. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2069. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2070. NR_FREE_PAGES);
  2071. #else
  2072. val->totalhigh = 0;
  2073. val->freehigh = 0;
  2074. #endif
  2075. val->mem_unit = PAGE_SIZE;
  2076. }
  2077. #endif
  2078. #define K(x) ((x) << (PAGE_SHIFT-10))
  2079. /*
  2080. * Show free area list (used inside shift_scroll-lock stuff)
  2081. * We also calculate the percentage fragmentation. We do this by counting the
  2082. * memory on each free list with the exception of the first item on the list.
  2083. */
  2084. void show_free_areas(void)
  2085. {
  2086. int cpu;
  2087. struct zone *zone;
  2088. for_each_populated_zone(zone) {
  2089. show_node(zone);
  2090. printk("%s per-cpu:\n", zone->name);
  2091. for_each_online_cpu(cpu) {
  2092. struct per_cpu_pageset *pageset;
  2093. pageset = per_cpu_ptr(zone->pageset, cpu);
  2094. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2095. cpu, pageset->pcp.high,
  2096. pageset->pcp.batch, pageset->pcp.count);
  2097. }
  2098. }
  2099. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2100. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2101. " unevictable:%lu"
  2102. " dirty:%lu writeback:%lu unstable:%lu\n"
  2103. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2104. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2105. global_page_state(NR_ACTIVE_ANON),
  2106. global_page_state(NR_INACTIVE_ANON),
  2107. global_page_state(NR_ISOLATED_ANON),
  2108. global_page_state(NR_ACTIVE_FILE),
  2109. global_page_state(NR_INACTIVE_FILE),
  2110. global_page_state(NR_ISOLATED_FILE),
  2111. global_page_state(NR_UNEVICTABLE),
  2112. global_page_state(NR_FILE_DIRTY),
  2113. global_page_state(NR_WRITEBACK),
  2114. global_page_state(NR_UNSTABLE_NFS),
  2115. global_page_state(NR_FREE_PAGES),
  2116. global_page_state(NR_SLAB_RECLAIMABLE),
  2117. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2118. global_page_state(NR_FILE_MAPPED),
  2119. global_page_state(NR_SHMEM),
  2120. global_page_state(NR_PAGETABLE),
  2121. global_page_state(NR_BOUNCE));
  2122. for_each_populated_zone(zone) {
  2123. int i;
  2124. show_node(zone);
  2125. printk("%s"
  2126. " free:%lukB"
  2127. " min:%lukB"
  2128. " low:%lukB"
  2129. " high:%lukB"
  2130. " active_anon:%lukB"
  2131. " inactive_anon:%lukB"
  2132. " active_file:%lukB"
  2133. " inactive_file:%lukB"
  2134. " unevictable:%lukB"
  2135. " isolated(anon):%lukB"
  2136. " isolated(file):%lukB"
  2137. " present:%lukB"
  2138. " mlocked:%lukB"
  2139. " dirty:%lukB"
  2140. " writeback:%lukB"
  2141. " mapped:%lukB"
  2142. " shmem:%lukB"
  2143. " slab_reclaimable:%lukB"
  2144. " slab_unreclaimable:%lukB"
  2145. " kernel_stack:%lukB"
  2146. " pagetables:%lukB"
  2147. " unstable:%lukB"
  2148. " bounce:%lukB"
  2149. " writeback_tmp:%lukB"
  2150. " pages_scanned:%lu"
  2151. " all_unreclaimable? %s"
  2152. "\n",
  2153. zone->name,
  2154. K(zone_page_state(zone, NR_FREE_PAGES)),
  2155. K(min_wmark_pages(zone)),
  2156. K(low_wmark_pages(zone)),
  2157. K(high_wmark_pages(zone)),
  2158. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2159. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2160. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2161. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2162. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2163. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2164. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2165. K(zone->present_pages),
  2166. K(zone_page_state(zone, NR_MLOCK)),
  2167. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2168. K(zone_page_state(zone, NR_WRITEBACK)),
  2169. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2170. K(zone_page_state(zone, NR_SHMEM)),
  2171. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2172. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2173. zone_page_state(zone, NR_KERNEL_STACK) *
  2174. THREAD_SIZE / 1024,
  2175. K(zone_page_state(zone, NR_PAGETABLE)),
  2176. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2177. K(zone_page_state(zone, NR_BOUNCE)),
  2178. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2179. zone->pages_scanned,
  2180. (zone->all_unreclaimable ? "yes" : "no")
  2181. );
  2182. printk("lowmem_reserve[]:");
  2183. for (i = 0; i < MAX_NR_ZONES; i++)
  2184. printk(" %lu", zone->lowmem_reserve[i]);
  2185. printk("\n");
  2186. }
  2187. for_each_populated_zone(zone) {
  2188. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2189. show_node(zone);
  2190. printk("%s: ", zone->name);
  2191. spin_lock_irqsave(&zone->lock, flags);
  2192. for (order = 0; order < MAX_ORDER; order++) {
  2193. nr[order] = zone->free_area[order].nr_free;
  2194. total += nr[order] << order;
  2195. }
  2196. spin_unlock_irqrestore(&zone->lock, flags);
  2197. for (order = 0; order < MAX_ORDER; order++)
  2198. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2199. printk("= %lukB\n", K(total));
  2200. }
  2201. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2202. show_swap_cache_info();
  2203. }
  2204. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2205. {
  2206. zoneref->zone = zone;
  2207. zoneref->zone_idx = zone_idx(zone);
  2208. }
  2209. /*
  2210. * Builds allocation fallback zone lists.
  2211. *
  2212. * Add all populated zones of a node to the zonelist.
  2213. */
  2214. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2215. int nr_zones, enum zone_type zone_type)
  2216. {
  2217. struct zone *zone;
  2218. BUG_ON(zone_type >= MAX_NR_ZONES);
  2219. zone_type++;
  2220. do {
  2221. zone_type--;
  2222. zone = pgdat->node_zones + zone_type;
  2223. if (populated_zone(zone)) {
  2224. zoneref_set_zone(zone,
  2225. &zonelist->_zonerefs[nr_zones++]);
  2226. check_highest_zone(zone_type);
  2227. }
  2228. } while (zone_type);
  2229. return nr_zones;
  2230. }
  2231. /*
  2232. * zonelist_order:
  2233. * 0 = automatic detection of better ordering.
  2234. * 1 = order by ([node] distance, -zonetype)
  2235. * 2 = order by (-zonetype, [node] distance)
  2236. *
  2237. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2238. * the same zonelist. So only NUMA can configure this param.
  2239. */
  2240. #define ZONELIST_ORDER_DEFAULT 0
  2241. #define ZONELIST_ORDER_NODE 1
  2242. #define ZONELIST_ORDER_ZONE 2
  2243. /* zonelist order in the kernel.
  2244. * set_zonelist_order() will set this to NODE or ZONE.
  2245. */
  2246. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2247. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2248. #ifdef CONFIG_NUMA
  2249. /* The value user specified ....changed by config */
  2250. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2251. /* string for sysctl */
  2252. #define NUMA_ZONELIST_ORDER_LEN 16
  2253. char numa_zonelist_order[16] = "default";
  2254. /*
  2255. * interface for configure zonelist ordering.
  2256. * command line option "numa_zonelist_order"
  2257. * = "[dD]efault - default, automatic configuration.
  2258. * = "[nN]ode - order by node locality, then by zone within node
  2259. * = "[zZ]one - order by zone, then by locality within zone
  2260. */
  2261. static int __parse_numa_zonelist_order(char *s)
  2262. {
  2263. if (*s == 'd' || *s == 'D') {
  2264. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2265. } else if (*s == 'n' || *s == 'N') {
  2266. user_zonelist_order = ZONELIST_ORDER_NODE;
  2267. } else if (*s == 'z' || *s == 'Z') {
  2268. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2269. } else {
  2270. printk(KERN_WARNING
  2271. "Ignoring invalid numa_zonelist_order value: "
  2272. "%s\n", s);
  2273. return -EINVAL;
  2274. }
  2275. return 0;
  2276. }
  2277. static __init int setup_numa_zonelist_order(char *s)
  2278. {
  2279. int ret;
  2280. if (!s)
  2281. return 0;
  2282. ret = __parse_numa_zonelist_order(s);
  2283. if (ret == 0)
  2284. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2285. return ret;
  2286. }
  2287. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2288. /*
  2289. * sysctl handler for numa_zonelist_order
  2290. */
  2291. int numa_zonelist_order_handler(ctl_table *table, int write,
  2292. void __user *buffer, size_t *length,
  2293. loff_t *ppos)
  2294. {
  2295. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2296. int ret;
  2297. static DEFINE_MUTEX(zl_order_mutex);
  2298. mutex_lock(&zl_order_mutex);
  2299. if (write)
  2300. strcpy(saved_string, (char*)table->data);
  2301. ret = proc_dostring(table, write, buffer, length, ppos);
  2302. if (ret)
  2303. goto out;
  2304. if (write) {
  2305. int oldval = user_zonelist_order;
  2306. if (__parse_numa_zonelist_order((char*)table->data)) {
  2307. /*
  2308. * bogus value. restore saved string
  2309. */
  2310. strncpy((char*)table->data, saved_string,
  2311. NUMA_ZONELIST_ORDER_LEN);
  2312. user_zonelist_order = oldval;
  2313. } else if (oldval != user_zonelist_order) {
  2314. mutex_lock(&zonelists_mutex);
  2315. build_all_zonelists(NULL);
  2316. mutex_unlock(&zonelists_mutex);
  2317. }
  2318. }
  2319. out:
  2320. mutex_unlock(&zl_order_mutex);
  2321. return ret;
  2322. }
  2323. #define MAX_NODE_LOAD (nr_online_nodes)
  2324. static int node_load[MAX_NUMNODES];
  2325. /**
  2326. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2327. * @node: node whose fallback list we're appending
  2328. * @used_node_mask: nodemask_t of already used nodes
  2329. *
  2330. * We use a number of factors to determine which is the next node that should
  2331. * appear on a given node's fallback list. The node should not have appeared
  2332. * already in @node's fallback list, and it should be the next closest node
  2333. * according to the distance array (which contains arbitrary distance values
  2334. * from each node to each node in the system), and should also prefer nodes
  2335. * with no CPUs, since presumably they'll have very little allocation pressure
  2336. * on them otherwise.
  2337. * It returns -1 if no node is found.
  2338. */
  2339. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2340. {
  2341. int n, val;
  2342. int min_val = INT_MAX;
  2343. int best_node = -1;
  2344. const struct cpumask *tmp = cpumask_of_node(0);
  2345. /* Use the local node if we haven't already */
  2346. if (!node_isset(node, *used_node_mask)) {
  2347. node_set(node, *used_node_mask);
  2348. return node;
  2349. }
  2350. for_each_node_state(n, N_HIGH_MEMORY) {
  2351. /* Don't want a node to appear more than once */
  2352. if (node_isset(n, *used_node_mask))
  2353. continue;
  2354. /* Use the distance array to find the distance */
  2355. val = node_distance(node, n);
  2356. /* Penalize nodes under us ("prefer the next node") */
  2357. val += (n < node);
  2358. /* Give preference to headless and unused nodes */
  2359. tmp = cpumask_of_node(n);
  2360. if (!cpumask_empty(tmp))
  2361. val += PENALTY_FOR_NODE_WITH_CPUS;
  2362. /* Slight preference for less loaded node */
  2363. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2364. val += node_load[n];
  2365. if (val < min_val) {
  2366. min_val = val;
  2367. best_node = n;
  2368. }
  2369. }
  2370. if (best_node >= 0)
  2371. node_set(best_node, *used_node_mask);
  2372. return best_node;
  2373. }
  2374. /*
  2375. * Build zonelists ordered by node and zones within node.
  2376. * This results in maximum locality--normal zone overflows into local
  2377. * DMA zone, if any--but risks exhausting DMA zone.
  2378. */
  2379. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2380. {
  2381. int j;
  2382. struct zonelist *zonelist;
  2383. zonelist = &pgdat->node_zonelists[0];
  2384. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2385. ;
  2386. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2387. MAX_NR_ZONES - 1);
  2388. zonelist->_zonerefs[j].zone = NULL;
  2389. zonelist->_zonerefs[j].zone_idx = 0;
  2390. }
  2391. /*
  2392. * Build gfp_thisnode zonelists
  2393. */
  2394. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2395. {
  2396. int j;
  2397. struct zonelist *zonelist;
  2398. zonelist = &pgdat->node_zonelists[1];
  2399. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2400. zonelist->_zonerefs[j].zone = NULL;
  2401. zonelist->_zonerefs[j].zone_idx = 0;
  2402. }
  2403. /*
  2404. * Build zonelists ordered by zone and nodes within zones.
  2405. * This results in conserving DMA zone[s] until all Normal memory is
  2406. * exhausted, but results in overflowing to remote node while memory
  2407. * may still exist in local DMA zone.
  2408. */
  2409. static int node_order[MAX_NUMNODES];
  2410. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2411. {
  2412. int pos, j, node;
  2413. int zone_type; /* needs to be signed */
  2414. struct zone *z;
  2415. struct zonelist *zonelist;
  2416. zonelist = &pgdat->node_zonelists[0];
  2417. pos = 0;
  2418. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2419. for (j = 0; j < nr_nodes; j++) {
  2420. node = node_order[j];
  2421. z = &NODE_DATA(node)->node_zones[zone_type];
  2422. if (populated_zone(z)) {
  2423. zoneref_set_zone(z,
  2424. &zonelist->_zonerefs[pos++]);
  2425. check_highest_zone(zone_type);
  2426. }
  2427. }
  2428. }
  2429. zonelist->_zonerefs[pos].zone = NULL;
  2430. zonelist->_zonerefs[pos].zone_idx = 0;
  2431. }
  2432. static int default_zonelist_order(void)
  2433. {
  2434. int nid, zone_type;
  2435. unsigned long low_kmem_size,total_size;
  2436. struct zone *z;
  2437. int average_size;
  2438. /*
  2439. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2440. * If they are really small and used heavily, the system can fall
  2441. * into OOM very easily.
  2442. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2443. */
  2444. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2445. low_kmem_size = 0;
  2446. total_size = 0;
  2447. for_each_online_node(nid) {
  2448. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2449. z = &NODE_DATA(nid)->node_zones[zone_type];
  2450. if (populated_zone(z)) {
  2451. if (zone_type < ZONE_NORMAL)
  2452. low_kmem_size += z->present_pages;
  2453. total_size += z->present_pages;
  2454. } else if (zone_type == ZONE_NORMAL) {
  2455. /*
  2456. * If any node has only lowmem, then node order
  2457. * is preferred to allow kernel allocations
  2458. * locally; otherwise, they can easily infringe
  2459. * on other nodes when there is an abundance of
  2460. * lowmem available to allocate from.
  2461. */
  2462. return ZONELIST_ORDER_NODE;
  2463. }
  2464. }
  2465. }
  2466. if (!low_kmem_size || /* there are no DMA area. */
  2467. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2468. return ZONELIST_ORDER_NODE;
  2469. /*
  2470. * look into each node's config.
  2471. * If there is a node whose DMA/DMA32 memory is very big area on
  2472. * local memory, NODE_ORDER may be suitable.
  2473. */
  2474. average_size = total_size /
  2475. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2476. for_each_online_node(nid) {
  2477. low_kmem_size = 0;
  2478. total_size = 0;
  2479. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2480. z = &NODE_DATA(nid)->node_zones[zone_type];
  2481. if (populated_zone(z)) {
  2482. if (zone_type < ZONE_NORMAL)
  2483. low_kmem_size += z->present_pages;
  2484. total_size += z->present_pages;
  2485. }
  2486. }
  2487. if (low_kmem_size &&
  2488. total_size > average_size && /* ignore small node */
  2489. low_kmem_size > total_size * 70/100)
  2490. return ZONELIST_ORDER_NODE;
  2491. }
  2492. return ZONELIST_ORDER_ZONE;
  2493. }
  2494. static void set_zonelist_order(void)
  2495. {
  2496. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2497. current_zonelist_order = default_zonelist_order();
  2498. else
  2499. current_zonelist_order = user_zonelist_order;
  2500. }
  2501. static void build_zonelists(pg_data_t *pgdat)
  2502. {
  2503. int j, node, load;
  2504. enum zone_type i;
  2505. nodemask_t used_mask;
  2506. int local_node, prev_node;
  2507. struct zonelist *zonelist;
  2508. int order = current_zonelist_order;
  2509. /* initialize zonelists */
  2510. for (i = 0; i < MAX_ZONELISTS; i++) {
  2511. zonelist = pgdat->node_zonelists + i;
  2512. zonelist->_zonerefs[0].zone = NULL;
  2513. zonelist->_zonerefs[0].zone_idx = 0;
  2514. }
  2515. /* NUMA-aware ordering of nodes */
  2516. local_node = pgdat->node_id;
  2517. load = nr_online_nodes;
  2518. prev_node = local_node;
  2519. nodes_clear(used_mask);
  2520. memset(node_order, 0, sizeof(node_order));
  2521. j = 0;
  2522. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2523. int distance = node_distance(local_node, node);
  2524. /*
  2525. * If another node is sufficiently far away then it is better
  2526. * to reclaim pages in a zone before going off node.
  2527. */
  2528. if (distance > RECLAIM_DISTANCE)
  2529. zone_reclaim_mode = 1;
  2530. /*
  2531. * We don't want to pressure a particular node.
  2532. * So adding penalty to the first node in same
  2533. * distance group to make it round-robin.
  2534. */
  2535. if (distance != node_distance(local_node, prev_node))
  2536. node_load[node] = load;
  2537. prev_node = node;
  2538. load--;
  2539. if (order == ZONELIST_ORDER_NODE)
  2540. build_zonelists_in_node_order(pgdat, node);
  2541. else
  2542. node_order[j++] = node; /* remember order */
  2543. }
  2544. if (order == ZONELIST_ORDER_ZONE) {
  2545. /* calculate node order -- i.e., DMA last! */
  2546. build_zonelists_in_zone_order(pgdat, j);
  2547. }
  2548. build_thisnode_zonelists(pgdat);
  2549. }
  2550. /* Construct the zonelist performance cache - see further mmzone.h */
  2551. static void build_zonelist_cache(pg_data_t *pgdat)
  2552. {
  2553. struct zonelist *zonelist;
  2554. struct zonelist_cache *zlc;
  2555. struct zoneref *z;
  2556. zonelist = &pgdat->node_zonelists[0];
  2557. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2558. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2559. for (z = zonelist->_zonerefs; z->zone; z++)
  2560. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2561. }
  2562. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2563. /*
  2564. * Return node id of node used for "local" allocations.
  2565. * I.e., first node id of first zone in arg node's generic zonelist.
  2566. * Used for initializing percpu 'numa_mem', which is used primarily
  2567. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2568. */
  2569. int local_memory_node(int node)
  2570. {
  2571. struct zone *zone;
  2572. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2573. gfp_zone(GFP_KERNEL),
  2574. NULL,
  2575. &zone);
  2576. return zone->node;
  2577. }
  2578. #endif
  2579. #else /* CONFIG_NUMA */
  2580. static void set_zonelist_order(void)
  2581. {
  2582. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2583. }
  2584. static void build_zonelists(pg_data_t *pgdat)
  2585. {
  2586. int node, local_node;
  2587. enum zone_type j;
  2588. struct zonelist *zonelist;
  2589. local_node = pgdat->node_id;
  2590. zonelist = &pgdat->node_zonelists[0];
  2591. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2592. /*
  2593. * Now we build the zonelist so that it contains the zones
  2594. * of all the other nodes.
  2595. * We don't want to pressure a particular node, so when
  2596. * building the zones for node N, we make sure that the
  2597. * zones coming right after the local ones are those from
  2598. * node N+1 (modulo N)
  2599. */
  2600. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2601. if (!node_online(node))
  2602. continue;
  2603. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2604. MAX_NR_ZONES - 1);
  2605. }
  2606. for (node = 0; node < local_node; node++) {
  2607. if (!node_online(node))
  2608. continue;
  2609. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2610. MAX_NR_ZONES - 1);
  2611. }
  2612. zonelist->_zonerefs[j].zone = NULL;
  2613. zonelist->_zonerefs[j].zone_idx = 0;
  2614. }
  2615. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2616. static void build_zonelist_cache(pg_data_t *pgdat)
  2617. {
  2618. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2619. }
  2620. #endif /* CONFIG_NUMA */
  2621. /*
  2622. * Boot pageset table. One per cpu which is going to be used for all
  2623. * zones and all nodes. The parameters will be set in such a way
  2624. * that an item put on a list will immediately be handed over to
  2625. * the buddy list. This is safe since pageset manipulation is done
  2626. * with interrupts disabled.
  2627. *
  2628. * The boot_pagesets must be kept even after bootup is complete for
  2629. * unused processors and/or zones. They do play a role for bootstrapping
  2630. * hotplugged processors.
  2631. *
  2632. * zoneinfo_show() and maybe other functions do
  2633. * not check if the processor is online before following the pageset pointer.
  2634. * Other parts of the kernel may not check if the zone is available.
  2635. */
  2636. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2637. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2638. static void setup_zone_pageset(struct zone *zone);
  2639. /*
  2640. * Global mutex to protect against size modification of zonelists
  2641. * as well as to serialize pageset setup for the new populated zone.
  2642. */
  2643. DEFINE_MUTEX(zonelists_mutex);
  2644. /* return values int ....just for stop_machine() */
  2645. static __init_refok int __build_all_zonelists(void *data)
  2646. {
  2647. int nid;
  2648. int cpu;
  2649. #ifdef CONFIG_NUMA
  2650. memset(node_load, 0, sizeof(node_load));
  2651. #endif
  2652. for_each_online_node(nid) {
  2653. pg_data_t *pgdat = NODE_DATA(nid);
  2654. build_zonelists(pgdat);
  2655. build_zonelist_cache(pgdat);
  2656. }
  2657. /*
  2658. * Initialize the boot_pagesets that are going to be used
  2659. * for bootstrapping processors. The real pagesets for
  2660. * each zone will be allocated later when the per cpu
  2661. * allocator is available.
  2662. *
  2663. * boot_pagesets are used also for bootstrapping offline
  2664. * cpus if the system is already booted because the pagesets
  2665. * are needed to initialize allocators on a specific cpu too.
  2666. * F.e. the percpu allocator needs the page allocator which
  2667. * needs the percpu allocator in order to allocate its pagesets
  2668. * (a chicken-egg dilemma).
  2669. */
  2670. for_each_possible_cpu(cpu) {
  2671. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2672. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2673. /*
  2674. * We now know the "local memory node" for each node--
  2675. * i.e., the node of the first zone in the generic zonelist.
  2676. * Set up numa_mem percpu variable for on-line cpus. During
  2677. * boot, only the boot cpu should be on-line; we'll init the
  2678. * secondary cpus' numa_mem as they come on-line. During
  2679. * node/memory hotplug, we'll fixup all on-line cpus.
  2680. */
  2681. if (cpu_online(cpu))
  2682. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2683. #endif
  2684. }
  2685. return 0;
  2686. }
  2687. /*
  2688. * Called with zonelists_mutex held always
  2689. * unless system_state == SYSTEM_BOOTING.
  2690. */
  2691. void build_all_zonelists(void *data)
  2692. {
  2693. set_zonelist_order();
  2694. if (system_state == SYSTEM_BOOTING) {
  2695. __build_all_zonelists(NULL);
  2696. mminit_verify_zonelist();
  2697. cpuset_init_current_mems_allowed();
  2698. } else {
  2699. /* we have to stop all cpus to guarantee there is no user
  2700. of zonelist */
  2701. #ifdef CONFIG_MEMORY_HOTPLUG
  2702. if (data)
  2703. setup_zone_pageset((struct zone *)data);
  2704. #endif
  2705. stop_machine(__build_all_zonelists, NULL, NULL);
  2706. /* cpuset refresh routine should be here */
  2707. }
  2708. vm_total_pages = nr_free_pagecache_pages();
  2709. /*
  2710. * Disable grouping by mobility if the number of pages in the
  2711. * system is too low to allow the mechanism to work. It would be
  2712. * more accurate, but expensive to check per-zone. This check is
  2713. * made on memory-hotadd so a system can start with mobility
  2714. * disabled and enable it later
  2715. */
  2716. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2717. page_group_by_mobility_disabled = 1;
  2718. else
  2719. page_group_by_mobility_disabled = 0;
  2720. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2721. "Total pages: %ld\n",
  2722. nr_online_nodes,
  2723. zonelist_order_name[current_zonelist_order],
  2724. page_group_by_mobility_disabled ? "off" : "on",
  2725. vm_total_pages);
  2726. #ifdef CONFIG_NUMA
  2727. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2728. #endif
  2729. }
  2730. /*
  2731. * Helper functions to size the waitqueue hash table.
  2732. * Essentially these want to choose hash table sizes sufficiently
  2733. * large so that collisions trying to wait on pages are rare.
  2734. * But in fact, the number of active page waitqueues on typical
  2735. * systems is ridiculously low, less than 200. So this is even
  2736. * conservative, even though it seems large.
  2737. *
  2738. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2739. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2740. */
  2741. #define PAGES_PER_WAITQUEUE 256
  2742. #ifndef CONFIG_MEMORY_HOTPLUG
  2743. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2744. {
  2745. unsigned long size = 1;
  2746. pages /= PAGES_PER_WAITQUEUE;
  2747. while (size < pages)
  2748. size <<= 1;
  2749. /*
  2750. * Once we have dozens or even hundreds of threads sleeping
  2751. * on IO we've got bigger problems than wait queue collision.
  2752. * Limit the size of the wait table to a reasonable size.
  2753. */
  2754. size = min(size, 4096UL);
  2755. return max(size, 4UL);
  2756. }
  2757. #else
  2758. /*
  2759. * A zone's size might be changed by hot-add, so it is not possible to determine
  2760. * a suitable size for its wait_table. So we use the maximum size now.
  2761. *
  2762. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2763. *
  2764. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2765. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2766. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2767. *
  2768. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2769. * or more by the traditional way. (See above). It equals:
  2770. *
  2771. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2772. * ia64(16K page size) : = ( 8G + 4M)byte.
  2773. * powerpc (64K page size) : = (32G +16M)byte.
  2774. */
  2775. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2776. {
  2777. return 4096UL;
  2778. }
  2779. #endif
  2780. /*
  2781. * This is an integer logarithm so that shifts can be used later
  2782. * to extract the more random high bits from the multiplicative
  2783. * hash function before the remainder is taken.
  2784. */
  2785. static inline unsigned long wait_table_bits(unsigned long size)
  2786. {
  2787. return ffz(~size);
  2788. }
  2789. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2790. /*
  2791. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2792. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2793. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2794. * higher will lead to a bigger reserve which will get freed as contiguous
  2795. * blocks as reclaim kicks in
  2796. */
  2797. static void setup_zone_migrate_reserve(struct zone *zone)
  2798. {
  2799. unsigned long start_pfn, pfn, end_pfn;
  2800. struct page *page;
  2801. unsigned long block_migratetype;
  2802. int reserve;
  2803. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2804. start_pfn = zone->zone_start_pfn;
  2805. end_pfn = start_pfn + zone->spanned_pages;
  2806. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2807. pageblock_order;
  2808. /*
  2809. * Reserve blocks are generally in place to help high-order atomic
  2810. * allocations that are short-lived. A min_free_kbytes value that
  2811. * would result in more than 2 reserve blocks for atomic allocations
  2812. * is assumed to be in place to help anti-fragmentation for the
  2813. * future allocation of hugepages at runtime.
  2814. */
  2815. reserve = min(2, reserve);
  2816. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2817. if (!pfn_valid(pfn))
  2818. continue;
  2819. page = pfn_to_page(pfn);
  2820. /* Watch out for overlapping nodes */
  2821. if (page_to_nid(page) != zone_to_nid(zone))
  2822. continue;
  2823. /* Blocks with reserved pages will never free, skip them. */
  2824. if (PageReserved(page))
  2825. continue;
  2826. block_migratetype = get_pageblock_migratetype(page);
  2827. /* If this block is reserved, account for it */
  2828. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2829. reserve--;
  2830. continue;
  2831. }
  2832. /* Suitable for reserving if this block is movable */
  2833. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2834. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2835. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2836. reserve--;
  2837. continue;
  2838. }
  2839. /*
  2840. * If the reserve is met and this is a previous reserved block,
  2841. * take it back
  2842. */
  2843. if (block_migratetype == MIGRATE_RESERVE) {
  2844. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2845. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2846. }
  2847. }
  2848. }
  2849. /*
  2850. * Initially all pages are reserved - free ones are freed
  2851. * up by free_all_bootmem() once the early boot process is
  2852. * done. Non-atomic initialization, single-pass.
  2853. */
  2854. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2855. unsigned long start_pfn, enum memmap_context context)
  2856. {
  2857. struct page *page;
  2858. unsigned long end_pfn = start_pfn + size;
  2859. unsigned long pfn;
  2860. struct zone *z;
  2861. if (highest_memmap_pfn < end_pfn - 1)
  2862. highest_memmap_pfn = end_pfn - 1;
  2863. z = &NODE_DATA(nid)->node_zones[zone];
  2864. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2865. /*
  2866. * There can be holes in boot-time mem_map[]s
  2867. * handed to this function. They do not
  2868. * exist on hotplugged memory.
  2869. */
  2870. if (context == MEMMAP_EARLY) {
  2871. if (!early_pfn_valid(pfn))
  2872. continue;
  2873. if (!early_pfn_in_nid(pfn, nid))
  2874. continue;
  2875. }
  2876. page = pfn_to_page(pfn);
  2877. set_page_links(page, zone, nid, pfn);
  2878. mminit_verify_page_links(page, zone, nid, pfn);
  2879. init_page_count(page);
  2880. reset_page_mapcount(page);
  2881. SetPageReserved(page);
  2882. /*
  2883. * Mark the block movable so that blocks are reserved for
  2884. * movable at startup. This will force kernel allocations
  2885. * to reserve their blocks rather than leaking throughout
  2886. * the address space during boot when many long-lived
  2887. * kernel allocations are made. Later some blocks near
  2888. * the start are marked MIGRATE_RESERVE by
  2889. * setup_zone_migrate_reserve()
  2890. *
  2891. * bitmap is created for zone's valid pfn range. but memmap
  2892. * can be created for invalid pages (for alignment)
  2893. * check here not to call set_pageblock_migratetype() against
  2894. * pfn out of zone.
  2895. */
  2896. if ((z->zone_start_pfn <= pfn)
  2897. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2898. && !(pfn & (pageblock_nr_pages - 1)))
  2899. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2900. INIT_LIST_HEAD(&page->lru);
  2901. #ifdef WANT_PAGE_VIRTUAL
  2902. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2903. if (!is_highmem_idx(zone))
  2904. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2905. #endif
  2906. }
  2907. }
  2908. static void __meminit zone_init_free_lists(struct zone *zone)
  2909. {
  2910. int order, t;
  2911. for_each_migratetype_order(order, t) {
  2912. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2913. zone->free_area[order].nr_free = 0;
  2914. }
  2915. }
  2916. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2917. #define memmap_init(size, nid, zone, start_pfn) \
  2918. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2919. #endif
  2920. static int zone_batchsize(struct zone *zone)
  2921. {
  2922. #ifdef CONFIG_MMU
  2923. int batch;
  2924. /*
  2925. * The per-cpu-pages pools are set to around 1000th of the
  2926. * size of the zone. But no more than 1/2 of a meg.
  2927. *
  2928. * OK, so we don't know how big the cache is. So guess.
  2929. */
  2930. batch = zone->present_pages / 1024;
  2931. if (batch * PAGE_SIZE > 512 * 1024)
  2932. batch = (512 * 1024) / PAGE_SIZE;
  2933. batch /= 4; /* We effectively *= 4 below */
  2934. if (batch < 1)
  2935. batch = 1;
  2936. /*
  2937. * Clamp the batch to a 2^n - 1 value. Having a power
  2938. * of 2 value was found to be more likely to have
  2939. * suboptimal cache aliasing properties in some cases.
  2940. *
  2941. * For example if 2 tasks are alternately allocating
  2942. * batches of pages, one task can end up with a lot
  2943. * of pages of one half of the possible page colors
  2944. * and the other with pages of the other colors.
  2945. */
  2946. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2947. return batch;
  2948. #else
  2949. /* The deferral and batching of frees should be suppressed under NOMMU
  2950. * conditions.
  2951. *
  2952. * The problem is that NOMMU needs to be able to allocate large chunks
  2953. * of contiguous memory as there's no hardware page translation to
  2954. * assemble apparent contiguous memory from discontiguous pages.
  2955. *
  2956. * Queueing large contiguous runs of pages for batching, however,
  2957. * causes the pages to actually be freed in smaller chunks. As there
  2958. * can be a significant delay between the individual batches being
  2959. * recycled, this leads to the once large chunks of space being
  2960. * fragmented and becoming unavailable for high-order allocations.
  2961. */
  2962. return 0;
  2963. #endif
  2964. }
  2965. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2966. {
  2967. struct per_cpu_pages *pcp;
  2968. int migratetype;
  2969. memset(p, 0, sizeof(*p));
  2970. pcp = &p->pcp;
  2971. pcp->count = 0;
  2972. pcp->high = 6 * batch;
  2973. pcp->batch = max(1UL, 1 * batch);
  2974. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  2975. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  2976. }
  2977. /*
  2978. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2979. * to the value high for the pageset p.
  2980. */
  2981. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2982. unsigned long high)
  2983. {
  2984. struct per_cpu_pages *pcp;
  2985. pcp = &p->pcp;
  2986. pcp->high = high;
  2987. pcp->batch = max(1UL, high/4);
  2988. if ((high/4) > (PAGE_SHIFT * 8))
  2989. pcp->batch = PAGE_SHIFT * 8;
  2990. }
  2991. static __meminit void setup_zone_pageset(struct zone *zone)
  2992. {
  2993. int cpu;
  2994. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  2995. for_each_possible_cpu(cpu) {
  2996. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  2997. setup_pageset(pcp, zone_batchsize(zone));
  2998. if (percpu_pagelist_fraction)
  2999. setup_pagelist_highmark(pcp,
  3000. (zone->present_pages /
  3001. percpu_pagelist_fraction));
  3002. }
  3003. }
  3004. /*
  3005. * Allocate per cpu pagesets and initialize them.
  3006. * Before this call only boot pagesets were available.
  3007. */
  3008. void __init setup_per_cpu_pageset(void)
  3009. {
  3010. struct zone *zone;
  3011. for_each_populated_zone(zone)
  3012. setup_zone_pageset(zone);
  3013. }
  3014. static noinline __init_refok
  3015. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3016. {
  3017. int i;
  3018. struct pglist_data *pgdat = zone->zone_pgdat;
  3019. size_t alloc_size;
  3020. /*
  3021. * The per-page waitqueue mechanism uses hashed waitqueues
  3022. * per zone.
  3023. */
  3024. zone->wait_table_hash_nr_entries =
  3025. wait_table_hash_nr_entries(zone_size_pages);
  3026. zone->wait_table_bits =
  3027. wait_table_bits(zone->wait_table_hash_nr_entries);
  3028. alloc_size = zone->wait_table_hash_nr_entries
  3029. * sizeof(wait_queue_head_t);
  3030. if (!slab_is_available()) {
  3031. zone->wait_table = (wait_queue_head_t *)
  3032. alloc_bootmem_node(pgdat, alloc_size);
  3033. } else {
  3034. /*
  3035. * This case means that a zone whose size was 0 gets new memory
  3036. * via memory hot-add.
  3037. * But it may be the case that a new node was hot-added. In
  3038. * this case vmalloc() will not be able to use this new node's
  3039. * memory - this wait_table must be initialized to use this new
  3040. * node itself as well.
  3041. * To use this new node's memory, further consideration will be
  3042. * necessary.
  3043. */
  3044. zone->wait_table = vmalloc(alloc_size);
  3045. }
  3046. if (!zone->wait_table)
  3047. return -ENOMEM;
  3048. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3049. init_waitqueue_head(zone->wait_table + i);
  3050. return 0;
  3051. }
  3052. static int __zone_pcp_update(void *data)
  3053. {
  3054. struct zone *zone = data;
  3055. int cpu;
  3056. unsigned long batch = zone_batchsize(zone), flags;
  3057. for_each_possible_cpu(cpu) {
  3058. struct per_cpu_pageset *pset;
  3059. struct per_cpu_pages *pcp;
  3060. pset = per_cpu_ptr(zone->pageset, cpu);
  3061. pcp = &pset->pcp;
  3062. local_irq_save(flags);
  3063. free_pcppages_bulk(zone, pcp->count, pcp);
  3064. setup_pageset(pset, batch);
  3065. local_irq_restore(flags);
  3066. }
  3067. return 0;
  3068. }
  3069. void zone_pcp_update(struct zone *zone)
  3070. {
  3071. stop_machine(__zone_pcp_update, zone, NULL);
  3072. }
  3073. static __meminit void zone_pcp_init(struct zone *zone)
  3074. {
  3075. /*
  3076. * per cpu subsystem is not up at this point. The following code
  3077. * relies on the ability of the linker to provide the
  3078. * offset of a (static) per cpu variable into the per cpu area.
  3079. */
  3080. zone->pageset = &boot_pageset;
  3081. if (zone->present_pages)
  3082. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3083. zone->name, zone->present_pages,
  3084. zone_batchsize(zone));
  3085. }
  3086. __meminit int init_currently_empty_zone(struct zone *zone,
  3087. unsigned long zone_start_pfn,
  3088. unsigned long size,
  3089. enum memmap_context context)
  3090. {
  3091. struct pglist_data *pgdat = zone->zone_pgdat;
  3092. int ret;
  3093. ret = zone_wait_table_init(zone, size);
  3094. if (ret)
  3095. return ret;
  3096. pgdat->nr_zones = zone_idx(zone) + 1;
  3097. zone->zone_start_pfn = zone_start_pfn;
  3098. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3099. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3100. pgdat->node_id,
  3101. (unsigned long)zone_idx(zone),
  3102. zone_start_pfn, (zone_start_pfn + size));
  3103. zone_init_free_lists(zone);
  3104. return 0;
  3105. }
  3106. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3107. /*
  3108. * Basic iterator support. Return the first range of PFNs for a node
  3109. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3110. */
  3111. static int __meminit first_active_region_index_in_nid(int nid)
  3112. {
  3113. int i;
  3114. for (i = 0; i < nr_nodemap_entries; i++)
  3115. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3116. return i;
  3117. return -1;
  3118. }
  3119. /*
  3120. * Basic iterator support. Return the next active range of PFNs for a node
  3121. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3122. */
  3123. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3124. {
  3125. for (index = index + 1; index < nr_nodemap_entries; index++)
  3126. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3127. return index;
  3128. return -1;
  3129. }
  3130. /*
  3131. * Basic iterator support. Return the last range of PFNs for a node
  3132. * Note: nid == MAX_NUMNODES returns last region regardless of node
  3133. */
  3134. static int __meminit last_active_region_index_in_nid(int nid)
  3135. {
  3136. int i;
  3137. for (i = nr_nodemap_entries - 1; i >= 0; i--)
  3138. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3139. return i;
  3140. return -1;
  3141. }
  3142. /*
  3143. * Basic iterator support. Return the previous active range of PFNs for a node
  3144. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3145. */
  3146. static int __meminit previous_active_region_index_in_nid(int index, int nid)
  3147. {
  3148. for (index = index - 1; index >= 0; index--)
  3149. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3150. return index;
  3151. return -1;
  3152. }
  3153. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3154. /*
  3155. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3156. * Architectures may implement their own version but if add_active_range()
  3157. * was used and there are no special requirements, this is a convenient
  3158. * alternative
  3159. */
  3160. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3161. {
  3162. int i;
  3163. for (i = 0; i < nr_nodemap_entries; i++) {
  3164. unsigned long start_pfn = early_node_map[i].start_pfn;
  3165. unsigned long end_pfn = early_node_map[i].end_pfn;
  3166. if (start_pfn <= pfn && pfn < end_pfn)
  3167. return early_node_map[i].nid;
  3168. }
  3169. /* This is a memory hole */
  3170. return -1;
  3171. }
  3172. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3173. int __meminit early_pfn_to_nid(unsigned long pfn)
  3174. {
  3175. int nid;
  3176. nid = __early_pfn_to_nid(pfn);
  3177. if (nid >= 0)
  3178. return nid;
  3179. /* just returns 0 */
  3180. return 0;
  3181. }
  3182. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3183. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3184. {
  3185. int nid;
  3186. nid = __early_pfn_to_nid(pfn);
  3187. if (nid >= 0 && nid != node)
  3188. return false;
  3189. return true;
  3190. }
  3191. #endif
  3192. /* Basic iterator support to walk early_node_map[] */
  3193. #define for_each_active_range_index_in_nid(i, nid) \
  3194. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3195. i = next_active_region_index_in_nid(i, nid))
  3196. #define for_each_active_range_index_in_nid_reverse(i, nid) \
  3197. for (i = last_active_region_index_in_nid(nid); i != -1; \
  3198. i = previous_active_region_index_in_nid(i, nid))
  3199. /**
  3200. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3201. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3202. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3203. *
  3204. * If an architecture guarantees that all ranges registered with
  3205. * add_active_ranges() contain no holes and may be freed, this
  3206. * this function may be used instead of calling free_bootmem() manually.
  3207. */
  3208. void __init free_bootmem_with_active_regions(int nid,
  3209. unsigned long max_low_pfn)
  3210. {
  3211. int i;
  3212. for_each_active_range_index_in_nid(i, nid) {
  3213. unsigned long size_pages = 0;
  3214. unsigned long end_pfn = early_node_map[i].end_pfn;
  3215. if (early_node_map[i].start_pfn >= max_low_pfn)
  3216. continue;
  3217. if (end_pfn > max_low_pfn)
  3218. end_pfn = max_low_pfn;
  3219. size_pages = end_pfn - early_node_map[i].start_pfn;
  3220. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3221. PFN_PHYS(early_node_map[i].start_pfn),
  3222. size_pages << PAGE_SHIFT);
  3223. }
  3224. }
  3225. #ifdef CONFIG_HAVE_MEMBLOCK
  3226. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3227. u64 goal, u64 limit)
  3228. {
  3229. int i;
  3230. /* Need to go over early_node_map to find out good range for node */
  3231. for_each_active_range_index_in_nid_reverse(i, nid) {
  3232. u64 addr;
  3233. u64 ei_start, ei_last;
  3234. u64 final_start, final_end;
  3235. ei_last = early_node_map[i].end_pfn;
  3236. ei_last <<= PAGE_SHIFT;
  3237. ei_start = early_node_map[i].start_pfn;
  3238. ei_start <<= PAGE_SHIFT;
  3239. final_start = max(ei_start, goal);
  3240. final_end = min(ei_last, limit);
  3241. if (final_start >= final_end)
  3242. continue;
  3243. addr = memblock_find_in_range(final_start, final_end, size, align);
  3244. if (addr == MEMBLOCK_ERROR)
  3245. continue;
  3246. return addr;
  3247. }
  3248. return MEMBLOCK_ERROR;
  3249. }
  3250. #endif
  3251. int __init add_from_early_node_map(struct range *range, int az,
  3252. int nr_range, int nid)
  3253. {
  3254. int i;
  3255. u64 start, end;
  3256. /* need to go over early_node_map to find out good range for node */
  3257. for_each_active_range_index_in_nid(i, nid) {
  3258. start = early_node_map[i].start_pfn;
  3259. end = early_node_map[i].end_pfn;
  3260. nr_range = add_range(range, az, nr_range, start, end);
  3261. }
  3262. return nr_range;
  3263. }
  3264. #ifdef CONFIG_NO_BOOTMEM
  3265. void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  3266. u64 goal, u64 limit)
  3267. {
  3268. void *ptr;
  3269. u64 addr;
  3270. if (limit > memblock.current_limit)
  3271. limit = memblock.current_limit;
  3272. addr = find_memory_core_early(nid, size, align, goal, limit);
  3273. if (addr == MEMBLOCK_ERROR)
  3274. return NULL;
  3275. ptr = phys_to_virt(addr);
  3276. memset(ptr, 0, size);
  3277. memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
  3278. /*
  3279. * The min_count is set to 0 so that bootmem allocated blocks
  3280. * are never reported as leaks.
  3281. */
  3282. kmemleak_alloc(ptr, size, 0, 0);
  3283. return ptr;
  3284. }
  3285. #endif
  3286. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3287. {
  3288. int i;
  3289. int ret;
  3290. for_each_active_range_index_in_nid(i, nid) {
  3291. ret = work_fn(early_node_map[i].start_pfn,
  3292. early_node_map[i].end_pfn, data);
  3293. if (ret)
  3294. break;
  3295. }
  3296. }
  3297. /**
  3298. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3299. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3300. *
  3301. * If an architecture guarantees that all ranges registered with
  3302. * add_active_ranges() contain no holes and may be freed, this
  3303. * function may be used instead of calling memory_present() manually.
  3304. */
  3305. void __init sparse_memory_present_with_active_regions(int nid)
  3306. {
  3307. int i;
  3308. for_each_active_range_index_in_nid(i, nid)
  3309. memory_present(early_node_map[i].nid,
  3310. early_node_map[i].start_pfn,
  3311. early_node_map[i].end_pfn);
  3312. }
  3313. /**
  3314. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3315. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3316. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3317. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3318. *
  3319. * It returns the start and end page frame of a node based on information
  3320. * provided by an arch calling add_active_range(). If called for a node
  3321. * with no available memory, a warning is printed and the start and end
  3322. * PFNs will be 0.
  3323. */
  3324. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3325. unsigned long *start_pfn, unsigned long *end_pfn)
  3326. {
  3327. int i;
  3328. *start_pfn = -1UL;
  3329. *end_pfn = 0;
  3330. for_each_active_range_index_in_nid(i, nid) {
  3331. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3332. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3333. }
  3334. if (*start_pfn == -1UL)
  3335. *start_pfn = 0;
  3336. }
  3337. /*
  3338. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3339. * assumption is made that zones within a node are ordered in monotonic
  3340. * increasing memory addresses so that the "highest" populated zone is used
  3341. */
  3342. static void __init find_usable_zone_for_movable(void)
  3343. {
  3344. int zone_index;
  3345. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3346. if (zone_index == ZONE_MOVABLE)
  3347. continue;
  3348. if (arch_zone_highest_possible_pfn[zone_index] >
  3349. arch_zone_lowest_possible_pfn[zone_index])
  3350. break;
  3351. }
  3352. VM_BUG_ON(zone_index == -1);
  3353. movable_zone = zone_index;
  3354. }
  3355. /*
  3356. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3357. * because it is sized independant of architecture. Unlike the other zones,
  3358. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3359. * in each node depending on the size of each node and how evenly kernelcore
  3360. * is distributed. This helper function adjusts the zone ranges
  3361. * provided by the architecture for a given node by using the end of the
  3362. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3363. * zones within a node are in order of monotonic increases memory addresses
  3364. */
  3365. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3366. unsigned long zone_type,
  3367. unsigned long node_start_pfn,
  3368. unsigned long node_end_pfn,
  3369. unsigned long *zone_start_pfn,
  3370. unsigned long *zone_end_pfn)
  3371. {
  3372. /* Only adjust if ZONE_MOVABLE is on this node */
  3373. if (zone_movable_pfn[nid]) {
  3374. /* Size ZONE_MOVABLE */
  3375. if (zone_type == ZONE_MOVABLE) {
  3376. *zone_start_pfn = zone_movable_pfn[nid];
  3377. *zone_end_pfn = min(node_end_pfn,
  3378. arch_zone_highest_possible_pfn[movable_zone]);
  3379. /* Adjust for ZONE_MOVABLE starting within this range */
  3380. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3381. *zone_end_pfn > zone_movable_pfn[nid]) {
  3382. *zone_end_pfn = zone_movable_pfn[nid];
  3383. /* Check if this whole range is within ZONE_MOVABLE */
  3384. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3385. *zone_start_pfn = *zone_end_pfn;
  3386. }
  3387. }
  3388. /*
  3389. * Return the number of pages a zone spans in a node, including holes
  3390. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3391. */
  3392. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3393. unsigned long zone_type,
  3394. unsigned long *ignored)
  3395. {
  3396. unsigned long node_start_pfn, node_end_pfn;
  3397. unsigned long zone_start_pfn, zone_end_pfn;
  3398. /* Get the start and end of the node and zone */
  3399. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3400. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3401. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3402. adjust_zone_range_for_zone_movable(nid, zone_type,
  3403. node_start_pfn, node_end_pfn,
  3404. &zone_start_pfn, &zone_end_pfn);
  3405. /* Check that this node has pages within the zone's required range */
  3406. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3407. return 0;
  3408. /* Move the zone boundaries inside the node if necessary */
  3409. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3410. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3411. /* Return the spanned pages */
  3412. return zone_end_pfn - zone_start_pfn;
  3413. }
  3414. /*
  3415. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3416. * then all holes in the requested range will be accounted for.
  3417. */
  3418. unsigned long __meminit __absent_pages_in_range(int nid,
  3419. unsigned long range_start_pfn,
  3420. unsigned long range_end_pfn)
  3421. {
  3422. int i = 0;
  3423. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3424. unsigned long start_pfn;
  3425. /* Find the end_pfn of the first active range of pfns in the node */
  3426. i = first_active_region_index_in_nid(nid);
  3427. if (i == -1)
  3428. return 0;
  3429. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3430. /* Account for ranges before physical memory on this node */
  3431. if (early_node_map[i].start_pfn > range_start_pfn)
  3432. hole_pages = prev_end_pfn - range_start_pfn;
  3433. /* Find all holes for the zone within the node */
  3434. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3435. /* No need to continue if prev_end_pfn is outside the zone */
  3436. if (prev_end_pfn >= range_end_pfn)
  3437. break;
  3438. /* Make sure the end of the zone is not within the hole */
  3439. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3440. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3441. /* Update the hole size cound and move on */
  3442. if (start_pfn > range_start_pfn) {
  3443. BUG_ON(prev_end_pfn > start_pfn);
  3444. hole_pages += start_pfn - prev_end_pfn;
  3445. }
  3446. prev_end_pfn = early_node_map[i].end_pfn;
  3447. }
  3448. /* Account for ranges past physical memory on this node */
  3449. if (range_end_pfn > prev_end_pfn)
  3450. hole_pages += range_end_pfn -
  3451. max(range_start_pfn, prev_end_pfn);
  3452. return hole_pages;
  3453. }
  3454. /**
  3455. * absent_pages_in_range - Return number of page frames in holes within a range
  3456. * @start_pfn: The start PFN to start searching for holes
  3457. * @end_pfn: The end PFN to stop searching for holes
  3458. *
  3459. * It returns the number of pages frames in memory holes within a range.
  3460. */
  3461. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3462. unsigned long end_pfn)
  3463. {
  3464. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3465. }
  3466. /* Return the number of page frames in holes in a zone on a node */
  3467. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3468. unsigned long zone_type,
  3469. unsigned long *ignored)
  3470. {
  3471. unsigned long node_start_pfn, node_end_pfn;
  3472. unsigned long zone_start_pfn, zone_end_pfn;
  3473. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3474. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3475. node_start_pfn);
  3476. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3477. node_end_pfn);
  3478. adjust_zone_range_for_zone_movable(nid, zone_type,
  3479. node_start_pfn, node_end_pfn,
  3480. &zone_start_pfn, &zone_end_pfn);
  3481. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3482. }
  3483. #else
  3484. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3485. unsigned long zone_type,
  3486. unsigned long *zones_size)
  3487. {
  3488. return zones_size[zone_type];
  3489. }
  3490. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3491. unsigned long zone_type,
  3492. unsigned long *zholes_size)
  3493. {
  3494. if (!zholes_size)
  3495. return 0;
  3496. return zholes_size[zone_type];
  3497. }
  3498. #endif
  3499. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3500. unsigned long *zones_size, unsigned long *zholes_size)
  3501. {
  3502. unsigned long realtotalpages, totalpages = 0;
  3503. enum zone_type i;
  3504. for (i = 0; i < MAX_NR_ZONES; i++)
  3505. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3506. zones_size);
  3507. pgdat->node_spanned_pages = totalpages;
  3508. realtotalpages = totalpages;
  3509. for (i = 0; i < MAX_NR_ZONES; i++)
  3510. realtotalpages -=
  3511. zone_absent_pages_in_node(pgdat->node_id, i,
  3512. zholes_size);
  3513. pgdat->node_present_pages = realtotalpages;
  3514. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3515. realtotalpages);
  3516. }
  3517. #ifndef CONFIG_SPARSEMEM
  3518. /*
  3519. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3520. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3521. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3522. * round what is now in bits to nearest long in bits, then return it in
  3523. * bytes.
  3524. */
  3525. static unsigned long __init usemap_size(unsigned long zonesize)
  3526. {
  3527. unsigned long usemapsize;
  3528. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3529. usemapsize = usemapsize >> pageblock_order;
  3530. usemapsize *= NR_PAGEBLOCK_BITS;
  3531. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3532. return usemapsize / 8;
  3533. }
  3534. static void __init setup_usemap(struct pglist_data *pgdat,
  3535. struct zone *zone, unsigned long zonesize)
  3536. {
  3537. unsigned long usemapsize = usemap_size(zonesize);
  3538. zone->pageblock_flags = NULL;
  3539. if (usemapsize)
  3540. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3541. }
  3542. #else
  3543. static inline void setup_usemap(struct pglist_data *pgdat,
  3544. struct zone *zone, unsigned long zonesize) {}
  3545. #endif /* CONFIG_SPARSEMEM */
  3546. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3547. /* Return a sensible default order for the pageblock size. */
  3548. static inline int pageblock_default_order(void)
  3549. {
  3550. if (HPAGE_SHIFT > PAGE_SHIFT)
  3551. return HUGETLB_PAGE_ORDER;
  3552. return MAX_ORDER-1;
  3553. }
  3554. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3555. static inline void __init set_pageblock_order(unsigned int order)
  3556. {
  3557. /* Check that pageblock_nr_pages has not already been setup */
  3558. if (pageblock_order)
  3559. return;
  3560. /*
  3561. * Assume the largest contiguous order of interest is a huge page.
  3562. * This value may be variable depending on boot parameters on IA64
  3563. */
  3564. pageblock_order = order;
  3565. }
  3566. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3567. /*
  3568. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3569. * and pageblock_default_order() are unused as pageblock_order is set
  3570. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3571. * pageblock_order based on the kernel config
  3572. */
  3573. static inline int pageblock_default_order(unsigned int order)
  3574. {
  3575. return MAX_ORDER-1;
  3576. }
  3577. #define set_pageblock_order(x) do {} while (0)
  3578. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3579. /*
  3580. * Set up the zone data structures:
  3581. * - mark all pages reserved
  3582. * - mark all memory queues empty
  3583. * - clear the memory bitmaps
  3584. */
  3585. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3586. unsigned long *zones_size, unsigned long *zholes_size)
  3587. {
  3588. enum zone_type j;
  3589. int nid = pgdat->node_id;
  3590. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3591. int ret;
  3592. pgdat_resize_init(pgdat);
  3593. pgdat->nr_zones = 0;
  3594. init_waitqueue_head(&pgdat->kswapd_wait);
  3595. pgdat->kswapd_max_order = 0;
  3596. pgdat_page_cgroup_init(pgdat);
  3597. for (j = 0; j < MAX_NR_ZONES; j++) {
  3598. struct zone *zone = pgdat->node_zones + j;
  3599. unsigned long size, realsize, memmap_pages;
  3600. enum lru_list l;
  3601. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3602. realsize = size - zone_absent_pages_in_node(nid, j,
  3603. zholes_size);
  3604. /*
  3605. * Adjust realsize so that it accounts for how much memory
  3606. * is used by this zone for memmap. This affects the watermark
  3607. * and per-cpu initialisations
  3608. */
  3609. memmap_pages =
  3610. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3611. if (realsize >= memmap_pages) {
  3612. realsize -= memmap_pages;
  3613. if (memmap_pages)
  3614. printk(KERN_DEBUG
  3615. " %s zone: %lu pages used for memmap\n",
  3616. zone_names[j], memmap_pages);
  3617. } else
  3618. printk(KERN_WARNING
  3619. " %s zone: %lu pages exceeds realsize %lu\n",
  3620. zone_names[j], memmap_pages, realsize);
  3621. /* Account for reserved pages */
  3622. if (j == 0 && realsize > dma_reserve) {
  3623. realsize -= dma_reserve;
  3624. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3625. zone_names[0], dma_reserve);
  3626. }
  3627. if (!is_highmem_idx(j))
  3628. nr_kernel_pages += realsize;
  3629. nr_all_pages += realsize;
  3630. zone->spanned_pages = size;
  3631. zone->present_pages = realsize;
  3632. #ifdef CONFIG_NUMA
  3633. zone->node = nid;
  3634. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3635. / 100;
  3636. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3637. #endif
  3638. zone->name = zone_names[j];
  3639. spin_lock_init(&zone->lock);
  3640. spin_lock_init(&zone->lru_lock);
  3641. zone_seqlock_init(zone);
  3642. zone->zone_pgdat = pgdat;
  3643. zone_pcp_init(zone);
  3644. for_each_lru(l) {
  3645. INIT_LIST_HEAD(&zone->lru[l].list);
  3646. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3647. }
  3648. zone->reclaim_stat.recent_rotated[0] = 0;
  3649. zone->reclaim_stat.recent_rotated[1] = 0;
  3650. zone->reclaim_stat.recent_scanned[0] = 0;
  3651. zone->reclaim_stat.recent_scanned[1] = 0;
  3652. zap_zone_vm_stats(zone);
  3653. zone->flags = 0;
  3654. if (!size)
  3655. continue;
  3656. set_pageblock_order(pageblock_default_order());
  3657. setup_usemap(pgdat, zone, size);
  3658. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3659. size, MEMMAP_EARLY);
  3660. BUG_ON(ret);
  3661. memmap_init(size, nid, j, zone_start_pfn);
  3662. zone_start_pfn += size;
  3663. }
  3664. }
  3665. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3666. {
  3667. /* Skip empty nodes */
  3668. if (!pgdat->node_spanned_pages)
  3669. return;
  3670. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3671. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3672. if (!pgdat->node_mem_map) {
  3673. unsigned long size, start, end;
  3674. struct page *map;
  3675. /*
  3676. * The zone's endpoints aren't required to be MAX_ORDER
  3677. * aligned but the node_mem_map endpoints must be in order
  3678. * for the buddy allocator to function correctly.
  3679. */
  3680. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3681. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3682. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3683. size = (end - start) * sizeof(struct page);
  3684. map = alloc_remap(pgdat->node_id, size);
  3685. if (!map)
  3686. map = alloc_bootmem_node(pgdat, size);
  3687. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3688. }
  3689. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3690. /*
  3691. * With no DISCONTIG, the global mem_map is just set as node 0's
  3692. */
  3693. if (pgdat == NODE_DATA(0)) {
  3694. mem_map = NODE_DATA(0)->node_mem_map;
  3695. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3696. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3697. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3698. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3699. }
  3700. #endif
  3701. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3702. }
  3703. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3704. unsigned long node_start_pfn, unsigned long *zholes_size)
  3705. {
  3706. pg_data_t *pgdat = NODE_DATA(nid);
  3707. pgdat->node_id = nid;
  3708. pgdat->node_start_pfn = node_start_pfn;
  3709. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3710. alloc_node_mem_map(pgdat);
  3711. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3712. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3713. nid, (unsigned long)pgdat,
  3714. (unsigned long)pgdat->node_mem_map);
  3715. #endif
  3716. free_area_init_core(pgdat, zones_size, zholes_size);
  3717. }
  3718. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3719. #if MAX_NUMNODES > 1
  3720. /*
  3721. * Figure out the number of possible node ids.
  3722. */
  3723. static void __init setup_nr_node_ids(void)
  3724. {
  3725. unsigned int node;
  3726. unsigned int highest = 0;
  3727. for_each_node_mask(node, node_possible_map)
  3728. highest = node;
  3729. nr_node_ids = highest + 1;
  3730. }
  3731. #else
  3732. static inline void setup_nr_node_ids(void)
  3733. {
  3734. }
  3735. #endif
  3736. /**
  3737. * add_active_range - Register a range of PFNs backed by physical memory
  3738. * @nid: The node ID the range resides on
  3739. * @start_pfn: The start PFN of the available physical memory
  3740. * @end_pfn: The end PFN of the available physical memory
  3741. *
  3742. * These ranges are stored in an early_node_map[] and later used by
  3743. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3744. * range spans a memory hole, it is up to the architecture to ensure
  3745. * the memory is not freed by the bootmem allocator. If possible
  3746. * the range being registered will be merged with existing ranges.
  3747. */
  3748. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3749. unsigned long end_pfn)
  3750. {
  3751. int i;
  3752. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3753. "Entering add_active_range(%d, %#lx, %#lx) "
  3754. "%d entries of %d used\n",
  3755. nid, start_pfn, end_pfn,
  3756. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3757. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3758. /* Merge with existing active regions if possible */
  3759. for (i = 0; i < nr_nodemap_entries; i++) {
  3760. if (early_node_map[i].nid != nid)
  3761. continue;
  3762. /* Skip if an existing region covers this new one */
  3763. if (start_pfn >= early_node_map[i].start_pfn &&
  3764. end_pfn <= early_node_map[i].end_pfn)
  3765. return;
  3766. /* Merge forward if suitable */
  3767. if (start_pfn <= early_node_map[i].end_pfn &&
  3768. end_pfn > early_node_map[i].end_pfn) {
  3769. early_node_map[i].end_pfn = end_pfn;
  3770. return;
  3771. }
  3772. /* Merge backward if suitable */
  3773. if (start_pfn < early_node_map[i].start_pfn &&
  3774. end_pfn >= early_node_map[i].start_pfn) {
  3775. early_node_map[i].start_pfn = start_pfn;
  3776. return;
  3777. }
  3778. }
  3779. /* Check that early_node_map is large enough */
  3780. if (i >= MAX_ACTIVE_REGIONS) {
  3781. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3782. MAX_ACTIVE_REGIONS);
  3783. return;
  3784. }
  3785. early_node_map[i].nid = nid;
  3786. early_node_map[i].start_pfn = start_pfn;
  3787. early_node_map[i].end_pfn = end_pfn;
  3788. nr_nodemap_entries = i + 1;
  3789. }
  3790. /**
  3791. * remove_active_range - Shrink an existing registered range of PFNs
  3792. * @nid: The node id the range is on that should be shrunk
  3793. * @start_pfn: The new PFN of the range
  3794. * @end_pfn: The new PFN of the range
  3795. *
  3796. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3797. * The map is kept near the end physical page range that has already been
  3798. * registered. This function allows an arch to shrink an existing registered
  3799. * range.
  3800. */
  3801. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3802. unsigned long end_pfn)
  3803. {
  3804. int i, j;
  3805. int removed = 0;
  3806. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3807. nid, start_pfn, end_pfn);
  3808. /* Find the old active region end and shrink */
  3809. for_each_active_range_index_in_nid(i, nid) {
  3810. if (early_node_map[i].start_pfn >= start_pfn &&
  3811. early_node_map[i].end_pfn <= end_pfn) {
  3812. /* clear it */
  3813. early_node_map[i].start_pfn = 0;
  3814. early_node_map[i].end_pfn = 0;
  3815. removed = 1;
  3816. continue;
  3817. }
  3818. if (early_node_map[i].start_pfn < start_pfn &&
  3819. early_node_map[i].end_pfn > start_pfn) {
  3820. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3821. early_node_map[i].end_pfn = start_pfn;
  3822. if (temp_end_pfn > end_pfn)
  3823. add_active_range(nid, end_pfn, temp_end_pfn);
  3824. continue;
  3825. }
  3826. if (early_node_map[i].start_pfn >= start_pfn &&
  3827. early_node_map[i].end_pfn > end_pfn &&
  3828. early_node_map[i].start_pfn < end_pfn) {
  3829. early_node_map[i].start_pfn = end_pfn;
  3830. continue;
  3831. }
  3832. }
  3833. if (!removed)
  3834. return;
  3835. /* remove the blank ones */
  3836. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3837. if (early_node_map[i].nid != nid)
  3838. continue;
  3839. if (early_node_map[i].end_pfn)
  3840. continue;
  3841. /* we found it, get rid of it */
  3842. for (j = i; j < nr_nodemap_entries - 1; j++)
  3843. memcpy(&early_node_map[j], &early_node_map[j+1],
  3844. sizeof(early_node_map[j]));
  3845. j = nr_nodemap_entries - 1;
  3846. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3847. nr_nodemap_entries--;
  3848. }
  3849. }
  3850. /**
  3851. * remove_all_active_ranges - Remove all currently registered regions
  3852. *
  3853. * During discovery, it may be found that a table like SRAT is invalid
  3854. * and an alternative discovery method must be used. This function removes
  3855. * all currently registered regions.
  3856. */
  3857. void __init remove_all_active_ranges(void)
  3858. {
  3859. memset(early_node_map, 0, sizeof(early_node_map));
  3860. nr_nodemap_entries = 0;
  3861. }
  3862. /* Compare two active node_active_regions */
  3863. static int __init cmp_node_active_region(const void *a, const void *b)
  3864. {
  3865. struct node_active_region *arange = (struct node_active_region *)a;
  3866. struct node_active_region *brange = (struct node_active_region *)b;
  3867. /* Done this way to avoid overflows */
  3868. if (arange->start_pfn > brange->start_pfn)
  3869. return 1;
  3870. if (arange->start_pfn < brange->start_pfn)
  3871. return -1;
  3872. return 0;
  3873. }
  3874. /* sort the node_map by start_pfn */
  3875. void __init sort_node_map(void)
  3876. {
  3877. sort(early_node_map, (size_t)nr_nodemap_entries,
  3878. sizeof(struct node_active_region),
  3879. cmp_node_active_region, NULL);
  3880. }
  3881. /* Find the lowest pfn for a node */
  3882. static unsigned long __init find_min_pfn_for_node(int nid)
  3883. {
  3884. int i;
  3885. unsigned long min_pfn = ULONG_MAX;
  3886. /* Assuming a sorted map, the first range found has the starting pfn */
  3887. for_each_active_range_index_in_nid(i, nid)
  3888. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3889. if (min_pfn == ULONG_MAX) {
  3890. printk(KERN_WARNING
  3891. "Could not find start_pfn for node %d\n", nid);
  3892. return 0;
  3893. }
  3894. return min_pfn;
  3895. }
  3896. /**
  3897. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3898. *
  3899. * It returns the minimum PFN based on information provided via
  3900. * add_active_range().
  3901. */
  3902. unsigned long __init find_min_pfn_with_active_regions(void)
  3903. {
  3904. return find_min_pfn_for_node(MAX_NUMNODES);
  3905. }
  3906. /*
  3907. * early_calculate_totalpages()
  3908. * Sum pages in active regions for movable zone.
  3909. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3910. */
  3911. static unsigned long __init early_calculate_totalpages(void)
  3912. {
  3913. int i;
  3914. unsigned long totalpages = 0;
  3915. for (i = 0; i < nr_nodemap_entries; i++) {
  3916. unsigned long pages = early_node_map[i].end_pfn -
  3917. early_node_map[i].start_pfn;
  3918. totalpages += pages;
  3919. if (pages)
  3920. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3921. }
  3922. return totalpages;
  3923. }
  3924. /*
  3925. * Find the PFN the Movable zone begins in each node. Kernel memory
  3926. * is spread evenly between nodes as long as the nodes have enough
  3927. * memory. When they don't, some nodes will have more kernelcore than
  3928. * others
  3929. */
  3930. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3931. {
  3932. int i, nid;
  3933. unsigned long usable_startpfn;
  3934. unsigned long kernelcore_node, kernelcore_remaining;
  3935. /* save the state before borrow the nodemask */
  3936. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3937. unsigned long totalpages = early_calculate_totalpages();
  3938. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3939. /*
  3940. * If movablecore was specified, calculate what size of
  3941. * kernelcore that corresponds so that memory usable for
  3942. * any allocation type is evenly spread. If both kernelcore
  3943. * and movablecore are specified, then the value of kernelcore
  3944. * will be used for required_kernelcore if it's greater than
  3945. * what movablecore would have allowed.
  3946. */
  3947. if (required_movablecore) {
  3948. unsigned long corepages;
  3949. /*
  3950. * Round-up so that ZONE_MOVABLE is at least as large as what
  3951. * was requested by the user
  3952. */
  3953. required_movablecore =
  3954. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3955. corepages = totalpages - required_movablecore;
  3956. required_kernelcore = max(required_kernelcore, corepages);
  3957. }
  3958. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3959. if (!required_kernelcore)
  3960. goto out;
  3961. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3962. find_usable_zone_for_movable();
  3963. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3964. restart:
  3965. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3966. kernelcore_node = required_kernelcore / usable_nodes;
  3967. for_each_node_state(nid, N_HIGH_MEMORY) {
  3968. /*
  3969. * Recalculate kernelcore_node if the division per node
  3970. * now exceeds what is necessary to satisfy the requested
  3971. * amount of memory for the kernel
  3972. */
  3973. if (required_kernelcore < kernelcore_node)
  3974. kernelcore_node = required_kernelcore / usable_nodes;
  3975. /*
  3976. * As the map is walked, we track how much memory is usable
  3977. * by the kernel using kernelcore_remaining. When it is
  3978. * 0, the rest of the node is usable by ZONE_MOVABLE
  3979. */
  3980. kernelcore_remaining = kernelcore_node;
  3981. /* Go through each range of PFNs within this node */
  3982. for_each_active_range_index_in_nid(i, nid) {
  3983. unsigned long start_pfn, end_pfn;
  3984. unsigned long size_pages;
  3985. start_pfn = max(early_node_map[i].start_pfn,
  3986. zone_movable_pfn[nid]);
  3987. end_pfn = early_node_map[i].end_pfn;
  3988. if (start_pfn >= end_pfn)
  3989. continue;
  3990. /* Account for what is only usable for kernelcore */
  3991. if (start_pfn < usable_startpfn) {
  3992. unsigned long kernel_pages;
  3993. kernel_pages = min(end_pfn, usable_startpfn)
  3994. - start_pfn;
  3995. kernelcore_remaining -= min(kernel_pages,
  3996. kernelcore_remaining);
  3997. required_kernelcore -= min(kernel_pages,
  3998. required_kernelcore);
  3999. /* Continue if range is now fully accounted */
  4000. if (end_pfn <= usable_startpfn) {
  4001. /*
  4002. * Push zone_movable_pfn to the end so
  4003. * that if we have to rebalance
  4004. * kernelcore across nodes, we will
  4005. * not double account here
  4006. */
  4007. zone_movable_pfn[nid] = end_pfn;
  4008. continue;
  4009. }
  4010. start_pfn = usable_startpfn;
  4011. }
  4012. /*
  4013. * The usable PFN range for ZONE_MOVABLE is from
  4014. * start_pfn->end_pfn. Calculate size_pages as the
  4015. * number of pages used as kernelcore
  4016. */
  4017. size_pages = end_pfn - start_pfn;
  4018. if (size_pages > kernelcore_remaining)
  4019. size_pages = kernelcore_remaining;
  4020. zone_movable_pfn[nid] = start_pfn + size_pages;
  4021. /*
  4022. * Some kernelcore has been met, update counts and
  4023. * break if the kernelcore for this node has been
  4024. * satisified
  4025. */
  4026. required_kernelcore -= min(required_kernelcore,
  4027. size_pages);
  4028. kernelcore_remaining -= size_pages;
  4029. if (!kernelcore_remaining)
  4030. break;
  4031. }
  4032. }
  4033. /*
  4034. * If there is still required_kernelcore, we do another pass with one
  4035. * less node in the count. This will push zone_movable_pfn[nid] further
  4036. * along on the nodes that still have memory until kernelcore is
  4037. * satisified
  4038. */
  4039. usable_nodes--;
  4040. if (usable_nodes && required_kernelcore > usable_nodes)
  4041. goto restart;
  4042. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4043. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4044. zone_movable_pfn[nid] =
  4045. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4046. out:
  4047. /* restore the node_state */
  4048. node_states[N_HIGH_MEMORY] = saved_node_state;
  4049. }
  4050. /* Any regular memory on that node ? */
  4051. static void check_for_regular_memory(pg_data_t *pgdat)
  4052. {
  4053. #ifdef CONFIG_HIGHMEM
  4054. enum zone_type zone_type;
  4055. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4056. struct zone *zone = &pgdat->node_zones[zone_type];
  4057. if (zone->present_pages)
  4058. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4059. }
  4060. #endif
  4061. }
  4062. /**
  4063. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4064. * @max_zone_pfn: an array of max PFNs for each zone
  4065. *
  4066. * This will call free_area_init_node() for each active node in the system.
  4067. * Using the page ranges provided by add_active_range(), the size of each
  4068. * zone in each node and their holes is calculated. If the maximum PFN
  4069. * between two adjacent zones match, it is assumed that the zone is empty.
  4070. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4071. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4072. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4073. * at arch_max_dma_pfn.
  4074. */
  4075. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4076. {
  4077. unsigned long nid;
  4078. int i;
  4079. /* Sort early_node_map as initialisation assumes it is sorted */
  4080. sort_node_map();
  4081. /* Record where the zone boundaries are */
  4082. memset(arch_zone_lowest_possible_pfn, 0,
  4083. sizeof(arch_zone_lowest_possible_pfn));
  4084. memset(arch_zone_highest_possible_pfn, 0,
  4085. sizeof(arch_zone_highest_possible_pfn));
  4086. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4087. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4088. for (i = 1; i < MAX_NR_ZONES; i++) {
  4089. if (i == ZONE_MOVABLE)
  4090. continue;
  4091. arch_zone_lowest_possible_pfn[i] =
  4092. arch_zone_highest_possible_pfn[i-1];
  4093. arch_zone_highest_possible_pfn[i] =
  4094. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4095. }
  4096. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4097. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4098. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4099. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4100. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4101. /* Print out the zone ranges */
  4102. printk("Zone PFN ranges:\n");
  4103. for (i = 0; i < MAX_NR_ZONES; i++) {
  4104. if (i == ZONE_MOVABLE)
  4105. continue;
  4106. printk(" %-8s ", zone_names[i]);
  4107. if (arch_zone_lowest_possible_pfn[i] ==
  4108. arch_zone_highest_possible_pfn[i])
  4109. printk("empty\n");
  4110. else
  4111. printk("%0#10lx -> %0#10lx\n",
  4112. arch_zone_lowest_possible_pfn[i],
  4113. arch_zone_highest_possible_pfn[i]);
  4114. }
  4115. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4116. printk("Movable zone start PFN for each node\n");
  4117. for (i = 0; i < MAX_NUMNODES; i++) {
  4118. if (zone_movable_pfn[i])
  4119. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4120. }
  4121. /* Print out the early_node_map[] */
  4122. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4123. for (i = 0; i < nr_nodemap_entries; i++)
  4124. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4125. early_node_map[i].start_pfn,
  4126. early_node_map[i].end_pfn);
  4127. /* Initialise every node */
  4128. mminit_verify_pageflags_layout();
  4129. setup_nr_node_ids();
  4130. for_each_online_node(nid) {
  4131. pg_data_t *pgdat = NODE_DATA(nid);
  4132. free_area_init_node(nid, NULL,
  4133. find_min_pfn_for_node(nid), NULL);
  4134. /* Any memory on that node */
  4135. if (pgdat->node_present_pages)
  4136. node_set_state(nid, N_HIGH_MEMORY);
  4137. check_for_regular_memory(pgdat);
  4138. }
  4139. }
  4140. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4141. {
  4142. unsigned long long coremem;
  4143. if (!p)
  4144. return -EINVAL;
  4145. coremem = memparse(p, &p);
  4146. *core = coremem >> PAGE_SHIFT;
  4147. /* Paranoid check that UL is enough for the coremem value */
  4148. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4149. return 0;
  4150. }
  4151. /*
  4152. * kernelcore=size sets the amount of memory for use for allocations that
  4153. * cannot be reclaimed or migrated.
  4154. */
  4155. static int __init cmdline_parse_kernelcore(char *p)
  4156. {
  4157. return cmdline_parse_core(p, &required_kernelcore);
  4158. }
  4159. /*
  4160. * movablecore=size sets the amount of memory for use for allocations that
  4161. * can be reclaimed or migrated.
  4162. */
  4163. static int __init cmdline_parse_movablecore(char *p)
  4164. {
  4165. return cmdline_parse_core(p, &required_movablecore);
  4166. }
  4167. early_param("kernelcore", cmdline_parse_kernelcore);
  4168. early_param("movablecore", cmdline_parse_movablecore);
  4169. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4170. /**
  4171. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4172. * @new_dma_reserve: The number of pages to mark reserved
  4173. *
  4174. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4175. * In the DMA zone, a significant percentage may be consumed by kernel image
  4176. * and other unfreeable allocations which can skew the watermarks badly. This
  4177. * function may optionally be used to account for unfreeable pages in the
  4178. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4179. * smaller per-cpu batchsize.
  4180. */
  4181. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4182. {
  4183. dma_reserve = new_dma_reserve;
  4184. }
  4185. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4186. struct pglist_data __refdata contig_page_data = {
  4187. #ifndef CONFIG_NO_BOOTMEM
  4188. .bdata = &bootmem_node_data[0]
  4189. #endif
  4190. };
  4191. EXPORT_SYMBOL(contig_page_data);
  4192. #endif
  4193. void __init free_area_init(unsigned long *zones_size)
  4194. {
  4195. free_area_init_node(0, zones_size,
  4196. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4197. }
  4198. static int page_alloc_cpu_notify(struct notifier_block *self,
  4199. unsigned long action, void *hcpu)
  4200. {
  4201. int cpu = (unsigned long)hcpu;
  4202. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4203. drain_pages(cpu);
  4204. /*
  4205. * Spill the event counters of the dead processor
  4206. * into the current processors event counters.
  4207. * This artificially elevates the count of the current
  4208. * processor.
  4209. */
  4210. vm_events_fold_cpu(cpu);
  4211. /*
  4212. * Zero the differential counters of the dead processor
  4213. * so that the vm statistics are consistent.
  4214. *
  4215. * This is only okay since the processor is dead and cannot
  4216. * race with what we are doing.
  4217. */
  4218. refresh_cpu_vm_stats(cpu);
  4219. }
  4220. return NOTIFY_OK;
  4221. }
  4222. void __init page_alloc_init(void)
  4223. {
  4224. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4225. }
  4226. /*
  4227. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4228. * or min_free_kbytes changes.
  4229. */
  4230. static void calculate_totalreserve_pages(void)
  4231. {
  4232. struct pglist_data *pgdat;
  4233. unsigned long reserve_pages = 0;
  4234. enum zone_type i, j;
  4235. for_each_online_pgdat(pgdat) {
  4236. for (i = 0; i < MAX_NR_ZONES; i++) {
  4237. struct zone *zone = pgdat->node_zones + i;
  4238. unsigned long max = 0;
  4239. /* Find valid and maximum lowmem_reserve in the zone */
  4240. for (j = i; j < MAX_NR_ZONES; j++) {
  4241. if (zone->lowmem_reserve[j] > max)
  4242. max = zone->lowmem_reserve[j];
  4243. }
  4244. /* we treat the high watermark as reserved pages. */
  4245. max += high_wmark_pages(zone);
  4246. if (max > zone->present_pages)
  4247. max = zone->present_pages;
  4248. reserve_pages += max;
  4249. }
  4250. }
  4251. totalreserve_pages = reserve_pages;
  4252. }
  4253. /*
  4254. * setup_per_zone_lowmem_reserve - called whenever
  4255. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4256. * has a correct pages reserved value, so an adequate number of
  4257. * pages are left in the zone after a successful __alloc_pages().
  4258. */
  4259. static void setup_per_zone_lowmem_reserve(void)
  4260. {
  4261. struct pglist_data *pgdat;
  4262. enum zone_type j, idx;
  4263. for_each_online_pgdat(pgdat) {
  4264. for (j = 0; j < MAX_NR_ZONES; j++) {
  4265. struct zone *zone = pgdat->node_zones + j;
  4266. unsigned long present_pages = zone->present_pages;
  4267. zone->lowmem_reserve[j] = 0;
  4268. idx = j;
  4269. while (idx) {
  4270. struct zone *lower_zone;
  4271. idx--;
  4272. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4273. sysctl_lowmem_reserve_ratio[idx] = 1;
  4274. lower_zone = pgdat->node_zones + idx;
  4275. lower_zone->lowmem_reserve[j] = present_pages /
  4276. sysctl_lowmem_reserve_ratio[idx];
  4277. present_pages += lower_zone->present_pages;
  4278. }
  4279. }
  4280. }
  4281. /* update totalreserve_pages */
  4282. calculate_totalreserve_pages();
  4283. }
  4284. /**
  4285. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4286. * or when memory is hot-{added|removed}
  4287. *
  4288. * Ensures that the watermark[min,low,high] values for each zone are set
  4289. * correctly with respect to min_free_kbytes.
  4290. */
  4291. void setup_per_zone_wmarks(void)
  4292. {
  4293. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4294. unsigned long lowmem_pages = 0;
  4295. struct zone *zone;
  4296. unsigned long flags;
  4297. /* Calculate total number of !ZONE_HIGHMEM pages */
  4298. for_each_zone(zone) {
  4299. if (!is_highmem(zone))
  4300. lowmem_pages += zone->present_pages;
  4301. }
  4302. for_each_zone(zone) {
  4303. u64 tmp;
  4304. spin_lock_irqsave(&zone->lock, flags);
  4305. tmp = (u64)pages_min * zone->present_pages;
  4306. do_div(tmp, lowmem_pages);
  4307. if (is_highmem(zone)) {
  4308. /*
  4309. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4310. * need highmem pages, so cap pages_min to a small
  4311. * value here.
  4312. *
  4313. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4314. * deltas controls asynch page reclaim, and so should
  4315. * not be capped for highmem.
  4316. */
  4317. int min_pages;
  4318. min_pages = zone->present_pages / 1024;
  4319. if (min_pages < SWAP_CLUSTER_MAX)
  4320. min_pages = SWAP_CLUSTER_MAX;
  4321. if (min_pages > 128)
  4322. min_pages = 128;
  4323. zone->watermark[WMARK_MIN] = min_pages;
  4324. } else {
  4325. /*
  4326. * If it's a lowmem zone, reserve a number of pages
  4327. * proportionate to the zone's size.
  4328. */
  4329. zone->watermark[WMARK_MIN] = tmp;
  4330. }
  4331. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4332. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4333. setup_zone_migrate_reserve(zone);
  4334. spin_unlock_irqrestore(&zone->lock, flags);
  4335. }
  4336. /* update totalreserve_pages */
  4337. calculate_totalreserve_pages();
  4338. }
  4339. /*
  4340. * The inactive anon list should be small enough that the VM never has to
  4341. * do too much work, but large enough that each inactive page has a chance
  4342. * to be referenced again before it is swapped out.
  4343. *
  4344. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4345. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4346. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4347. * the anonymous pages are kept on the inactive list.
  4348. *
  4349. * total target max
  4350. * memory ratio inactive anon
  4351. * -------------------------------------
  4352. * 10MB 1 5MB
  4353. * 100MB 1 50MB
  4354. * 1GB 3 250MB
  4355. * 10GB 10 0.9GB
  4356. * 100GB 31 3GB
  4357. * 1TB 101 10GB
  4358. * 10TB 320 32GB
  4359. */
  4360. void calculate_zone_inactive_ratio(struct zone *zone)
  4361. {
  4362. unsigned int gb, ratio;
  4363. /* Zone size in gigabytes */
  4364. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4365. if (gb)
  4366. ratio = int_sqrt(10 * gb);
  4367. else
  4368. ratio = 1;
  4369. zone->inactive_ratio = ratio;
  4370. }
  4371. static void __init setup_per_zone_inactive_ratio(void)
  4372. {
  4373. struct zone *zone;
  4374. for_each_zone(zone)
  4375. calculate_zone_inactive_ratio(zone);
  4376. }
  4377. /*
  4378. * Initialise min_free_kbytes.
  4379. *
  4380. * For small machines we want it small (128k min). For large machines
  4381. * we want it large (64MB max). But it is not linear, because network
  4382. * bandwidth does not increase linearly with machine size. We use
  4383. *
  4384. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4385. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4386. *
  4387. * which yields
  4388. *
  4389. * 16MB: 512k
  4390. * 32MB: 724k
  4391. * 64MB: 1024k
  4392. * 128MB: 1448k
  4393. * 256MB: 2048k
  4394. * 512MB: 2896k
  4395. * 1024MB: 4096k
  4396. * 2048MB: 5792k
  4397. * 4096MB: 8192k
  4398. * 8192MB: 11584k
  4399. * 16384MB: 16384k
  4400. */
  4401. static int __init init_per_zone_wmark_min(void)
  4402. {
  4403. unsigned long lowmem_kbytes;
  4404. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4405. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4406. if (min_free_kbytes < 128)
  4407. min_free_kbytes = 128;
  4408. if (min_free_kbytes > 65536)
  4409. min_free_kbytes = 65536;
  4410. setup_per_zone_wmarks();
  4411. setup_per_zone_lowmem_reserve();
  4412. setup_per_zone_inactive_ratio();
  4413. return 0;
  4414. }
  4415. module_init(init_per_zone_wmark_min)
  4416. /*
  4417. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4418. * that we can call two helper functions whenever min_free_kbytes
  4419. * changes.
  4420. */
  4421. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4422. void __user *buffer, size_t *length, loff_t *ppos)
  4423. {
  4424. proc_dointvec(table, write, buffer, length, ppos);
  4425. if (write)
  4426. setup_per_zone_wmarks();
  4427. return 0;
  4428. }
  4429. #ifdef CONFIG_NUMA
  4430. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4431. void __user *buffer, size_t *length, loff_t *ppos)
  4432. {
  4433. struct zone *zone;
  4434. int rc;
  4435. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4436. if (rc)
  4437. return rc;
  4438. for_each_zone(zone)
  4439. zone->min_unmapped_pages = (zone->present_pages *
  4440. sysctl_min_unmapped_ratio) / 100;
  4441. return 0;
  4442. }
  4443. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4444. void __user *buffer, size_t *length, loff_t *ppos)
  4445. {
  4446. struct zone *zone;
  4447. int rc;
  4448. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4449. if (rc)
  4450. return rc;
  4451. for_each_zone(zone)
  4452. zone->min_slab_pages = (zone->present_pages *
  4453. sysctl_min_slab_ratio) / 100;
  4454. return 0;
  4455. }
  4456. #endif
  4457. /*
  4458. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4459. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4460. * whenever sysctl_lowmem_reserve_ratio changes.
  4461. *
  4462. * The reserve ratio obviously has absolutely no relation with the
  4463. * minimum watermarks. The lowmem reserve ratio can only make sense
  4464. * if in function of the boot time zone sizes.
  4465. */
  4466. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4467. void __user *buffer, size_t *length, loff_t *ppos)
  4468. {
  4469. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4470. setup_per_zone_lowmem_reserve();
  4471. return 0;
  4472. }
  4473. /*
  4474. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4475. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4476. * can have before it gets flushed back to buddy allocator.
  4477. */
  4478. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4479. void __user *buffer, size_t *length, loff_t *ppos)
  4480. {
  4481. struct zone *zone;
  4482. unsigned int cpu;
  4483. int ret;
  4484. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4485. if (!write || (ret == -EINVAL))
  4486. return ret;
  4487. for_each_populated_zone(zone) {
  4488. for_each_possible_cpu(cpu) {
  4489. unsigned long high;
  4490. high = zone->present_pages / percpu_pagelist_fraction;
  4491. setup_pagelist_highmark(
  4492. per_cpu_ptr(zone->pageset, cpu), high);
  4493. }
  4494. }
  4495. return 0;
  4496. }
  4497. int hashdist = HASHDIST_DEFAULT;
  4498. #ifdef CONFIG_NUMA
  4499. static int __init set_hashdist(char *str)
  4500. {
  4501. if (!str)
  4502. return 0;
  4503. hashdist = simple_strtoul(str, &str, 0);
  4504. return 1;
  4505. }
  4506. __setup("hashdist=", set_hashdist);
  4507. #endif
  4508. /*
  4509. * allocate a large system hash table from bootmem
  4510. * - it is assumed that the hash table must contain an exact power-of-2
  4511. * quantity of entries
  4512. * - limit is the number of hash buckets, not the total allocation size
  4513. */
  4514. void *__init alloc_large_system_hash(const char *tablename,
  4515. unsigned long bucketsize,
  4516. unsigned long numentries,
  4517. int scale,
  4518. int flags,
  4519. unsigned int *_hash_shift,
  4520. unsigned int *_hash_mask,
  4521. unsigned long limit)
  4522. {
  4523. unsigned long long max = limit;
  4524. unsigned long log2qty, size;
  4525. void *table = NULL;
  4526. /* allow the kernel cmdline to have a say */
  4527. if (!numentries) {
  4528. /* round applicable memory size up to nearest megabyte */
  4529. numentries = nr_kernel_pages;
  4530. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4531. numentries >>= 20 - PAGE_SHIFT;
  4532. numentries <<= 20 - PAGE_SHIFT;
  4533. /* limit to 1 bucket per 2^scale bytes of low memory */
  4534. if (scale > PAGE_SHIFT)
  4535. numentries >>= (scale - PAGE_SHIFT);
  4536. else
  4537. numentries <<= (PAGE_SHIFT - scale);
  4538. /* Make sure we've got at least a 0-order allocation.. */
  4539. if (unlikely(flags & HASH_SMALL)) {
  4540. /* Makes no sense without HASH_EARLY */
  4541. WARN_ON(!(flags & HASH_EARLY));
  4542. if (!(numentries >> *_hash_shift)) {
  4543. numentries = 1UL << *_hash_shift;
  4544. BUG_ON(!numentries);
  4545. }
  4546. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4547. numentries = PAGE_SIZE / bucketsize;
  4548. }
  4549. numentries = roundup_pow_of_two(numentries);
  4550. /* limit allocation size to 1/16 total memory by default */
  4551. if (max == 0) {
  4552. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4553. do_div(max, bucketsize);
  4554. }
  4555. if (numentries > max)
  4556. numentries = max;
  4557. log2qty = ilog2(numentries);
  4558. do {
  4559. size = bucketsize << log2qty;
  4560. if (flags & HASH_EARLY)
  4561. table = alloc_bootmem_nopanic(size);
  4562. else if (hashdist)
  4563. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4564. else {
  4565. /*
  4566. * If bucketsize is not a power-of-two, we may free
  4567. * some pages at the end of hash table which
  4568. * alloc_pages_exact() automatically does
  4569. */
  4570. if (get_order(size) < MAX_ORDER) {
  4571. table = alloc_pages_exact(size, GFP_ATOMIC);
  4572. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4573. }
  4574. }
  4575. } while (!table && size > PAGE_SIZE && --log2qty);
  4576. if (!table)
  4577. panic("Failed to allocate %s hash table\n", tablename);
  4578. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4579. tablename,
  4580. (1UL << log2qty),
  4581. ilog2(size) - PAGE_SHIFT,
  4582. size);
  4583. if (_hash_shift)
  4584. *_hash_shift = log2qty;
  4585. if (_hash_mask)
  4586. *_hash_mask = (1 << log2qty) - 1;
  4587. return table;
  4588. }
  4589. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4590. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4591. unsigned long pfn)
  4592. {
  4593. #ifdef CONFIG_SPARSEMEM
  4594. return __pfn_to_section(pfn)->pageblock_flags;
  4595. #else
  4596. return zone->pageblock_flags;
  4597. #endif /* CONFIG_SPARSEMEM */
  4598. }
  4599. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4600. {
  4601. #ifdef CONFIG_SPARSEMEM
  4602. pfn &= (PAGES_PER_SECTION-1);
  4603. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4604. #else
  4605. pfn = pfn - zone->zone_start_pfn;
  4606. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4607. #endif /* CONFIG_SPARSEMEM */
  4608. }
  4609. /**
  4610. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4611. * @page: The page within the block of interest
  4612. * @start_bitidx: The first bit of interest to retrieve
  4613. * @end_bitidx: The last bit of interest
  4614. * returns pageblock_bits flags
  4615. */
  4616. unsigned long get_pageblock_flags_group(struct page *page,
  4617. int start_bitidx, int end_bitidx)
  4618. {
  4619. struct zone *zone;
  4620. unsigned long *bitmap;
  4621. unsigned long pfn, bitidx;
  4622. unsigned long flags = 0;
  4623. unsigned long value = 1;
  4624. zone = page_zone(page);
  4625. pfn = page_to_pfn(page);
  4626. bitmap = get_pageblock_bitmap(zone, pfn);
  4627. bitidx = pfn_to_bitidx(zone, pfn);
  4628. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4629. if (test_bit(bitidx + start_bitidx, bitmap))
  4630. flags |= value;
  4631. return flags;
  4632. }
  4633. /**
  4634. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4635. * @page: The page within the block of interest
  4636. * @start_bitidx: The first bit of interest
  4637. * @end_bitidx: The last bit of interest
  4638. * @flags: The flags to set
  4639. */
  4640. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4641. int start_bitidx, int end_bitidx)
  4642. {
  4643. struct zone *zone;
  4644. unsigned long *bitmap;
  4645. unsigned long pfn, bitidx;
  4646. unsigned long value = 1;
  4647. zone = page_zone(page);
  4648. pfn = page_to_pfn(page);
  4649. bitmap = get_pageblock_bitmap(zone, pfn);
  4650. bitidx = pfn_to_bitidx(zone, pfn);
  4651. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4652. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4653. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4654. if (flags & value)
  4655. __set_bit(bitidx + start_bitidx, bitmap);
  4656. else
  4657. __clear_bit(bitidx + start_bitidx, bitmap);
  4658. }
  4659. /*
  4660. * This is designed as sub function...plz see page_isolation.c also.
  4661. * set/clear page block's type to be ISOLATE.
  4662. * page allocater never alloc memory from ISOLATE block.
  4663. */
  4664. static int
  4665. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4666. {
  4667. unsigned long pfn, iter, found;
  4668. /*
  4669. * For avoiding noise data, lru_add_drain_all() should be called
  4670. * If ZONE_MOVABLE, the zone never contains immobile pages
  4671. */
  4672. if (zone_idx(zone) == ZONE_MOVABLE)
  4673. return true;
  4674. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4675. return true;
  4676. pfn = page_to_pfn(page);
  4677. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4678. unsigned long check = pfn + iter;
  4679. if (!pfn_valid_within(check)) {
  4680. iter++;
  4681. continue;
  4682. }
  4683. page = pfn_to_page(check);
  4684. if (!page_count(page)) {
  4685. if (PageBuddy(page))
  4686. iter += (1 << page_order(page)) - 1;
  4687. continue;
  4688. }
  4689. if (!PageLRU(page))
  4690. found++;
  4691. /*
  4692. * If there are RECLAIMABLE pages, we need to check it.
  4693. * But now, memory offline itself doesn't call shrink_slab()
  4694. * and it still to be fixed.
  4695. */
  4696. /*
  4697. * If the page is not RAM, page_count()should be 0.
  4698. * we don't need more check. This is an _used_ not-movable page.
  4699. *
  4700. * The problematic thing here is PG_reserved pages. PG_reserved
  4701. * is set to both of a memory hole page and a _used_ kernel
  4702. * page at boot.
  4703. */
  4704. if (found > count)
  4705. return false;
  4706. }
  4707. return true;
  4708. }
  4709. bool is_pageblock_removable_nolock(struct page *page)
  4710. {
  4711. struct zone *zone = page_zone(page);
  4712. return __count_immobile_pages(zone, page, 0);
  4713. }
  4714. int set_migratetype_isolate(struct page *page)
  4715. {
  4716. struct zone *zone;
  4717. unsigned long flags, pfn;
  4718. struct memory_isolate_notify arg;
  4719. int notifier_ret;
  4720. int ret = -EBUSY;
  4721. int zone_idx;
  4722. zone = page_zone(page);
  4723. zone_idx = zone_idx(zone);
  4724. spin_lock_irqsave(&zone->lock, flags);
  4725. pfn = page_to_pfn(page);
  4726. arg.start_pfn = pfn;
  4727. arg.nr_pages = pageblock_nr_pages;
  4728. arg.pages_found = 0;
  4729. /*
  4730. * It may be possible to isolate a pageblock even if the
  4731. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4732. * notifier chain is used by balloon drivers to return the
  4733. * number of pages in a range that are held by the balloon
  4734. * driver to shrink memory. If all the pages are accounted for
  4735. * by balloons, are free, or on the LRU, isolation can continue.
  4736. * Later, for example, when memory hotplug notifier runs, these
  4737. * pages reported as "can be isolated" should be isolated(freed)
  4738. * by the balloon driver through the memory notifier chain.
  4739. */
  4740. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4741. notifier_ret = notifier_to_errno(notifier_ret);
  4742. if (notifier_ret)
  4743. goto out;
  4744. /*
  4745. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4746. * We just check MOVABLE pages.
  4747. */
  4748. if (__count_immobile_pages(zone, page, arg.pages_found))
  4749. ret = 0;
  4750. /*
  4751. * immobile means "not-on-lru" paes. If immobile is larger than
  4752. * removable-by-driver pages reported by notifier, we'll fail.
  4753. */
  4754. out:
  4755. if (!ret) {
  4756. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4757. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4758. }
  4759. spin_unlock_irqrestore(&zone->lock, flags);
  4760. if (!ret)
  4761. drain_all_pages();
  4762. return ret;
  4763. }
  4764. void unset_migratetype_isolate(struct page *page)
  4765. {
  4766. struct zone *zone;
  4767. unsigned long flags;
  4768. zone = page_zone(page);
  4769. spin_lock_irqsave(&zone->lock, flags);
  4770. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4771. goto out;
  4772. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4773. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4774. out:
  4775. spin_unlock_irqrestore(&zone->lock, flags);
  4776. }
  4777. #ifdef CONFIG_MEMORY_HOTREMOVE
  4778. /*
  4779. * All pages in the range must be isolated before calling this.
  4780. */
  4781. void
  4782. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4783. {
  4784. struct page *page;
  4785. struct zone *zone;
  4786. int order, i;
  4787. unsigned long pfn;
  4788. unsigned long flags;
  4789. /* find the first valid pfn */
  4790. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4791. if (pfn_valid(pfn))
  4792. break;
  4793. if (pfn == end_pfn)
  4794. return;
  4795. zone = page_zone(pfn_to_page(pfn));
  4796. spin_lock_irqsave(&zone->lock, flags);
  4797. pfn = start_pfn;
  4798. while (pfn < end_pfn) {
  4799. if (!pfn_valid(pfn)) {
  4800. pfn++;
  4801. continue;
  4802. }
  4803. page = pfn_to_page(pfn);
  4804. BUG_ON(page_count(page));
  4805. BUG_ON(!PageBuddy(page));
  4806. order = page_order(page);
  4807. #ifdef CONFIG_DEBUG_VM
  4808. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4809. pfn, 1 << order, end_pfn);
  4810. #endif
  4811. list_del(&page->lru);
  4812. rmv_page_order(page);
  4813. zone->free_area[order].nr_free--;
  4814. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4815. - (1UL << order));
  4816. for (i = 0; i < (1 << order); i++)
  4817. SetPageReserved((page+i));
  4818. pfn += (1 << order);
  4819. }
  4820. spin_unlock_irqrestore(&zone->lock, flags);
  4821. }
  4822. #endif
  4823. #ifdef CONFIG_MEMORY_FAILURE
  4824. bool is_free_buddy_page(struct page *page)
  4825. {
  4826. struct zone *zone = page_zone(page);
  4827. unsigned long pfn = page_to_pfn(page);
  4828. unsigned long flags;
  4829. int order;
  4830. spin_lock_irqsave(&zone->lock, flags);
  4831. for (order = 0; order < MAX_ORDER; order++) {
  4832. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4833. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4834. break;
  4835. }
  4836. spin_unlock_irqrestore(&zone->lock, flags);
  4837. return order < MAX_ORDER;
  4838. }
  4839. #endif
  4840. static struct trace_print_flags pageflag_names[] = {
  4841. {1UL << PG_locked, "locked" },
  4842. {1UL << PG_error, "error" },
  4843. {1UL << PG_referenced, "referenced" },
  4844. {1UL << PG_uptodate, "uptodate" },
  4845. {1UL << PG_dirty, "dirty" },
  4846. {1UL << PG_lru, "lru" },
  4847. {1UL << PG_active, "active" },
  4848. {1UL << PG_slab, "slab" },
  4849. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4850. {1UL << PG_arch_1, "arch_1" },
  4851. {1UL << PG_reserved, "reserved" },
  4852. {1UL << PG_private, "private" },
  4853. {1UL << PG_private_2, "private_2" },
  4854. {1UL << PG_writeback, "writeback" },
  4855. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4856. {1UL << PG_head, "head" },
  4857. {1UL << PG_tail, "tail" },
  4858. #else
  4859. {1UL << PG_compound, "compound" },
  4860. #endif
  4861. {1UL << PG_swapcache, "swapcache" },
  4862. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4863. {1UL << PG_reclaim, "reclaim" },
  4864. {1UL << PG_swapbacked, "swapbacked" },
  4865. {1UL << PG_unevictable, "unevictable" },
  4866. #ifdef CONFIG_MMU
  4867. {1UL << PG_mlocked, "mlocked" },
  4868. #endif
  4869. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4870. {1UL << PG_uncached, "uncached" },
  4871. #endif
  4872. #ifdef CONFIG_MEMORY_FAILURE
  4873. {1UL << PG_hwpoison, "hwpoison" },
  4874. #endif
  4875. {-1UL, NULL },
  4876. };
  4877. static void dump_page_flags(unsigned long flags)
  4878. {
  4879. const char *delim = "";
  4880. unsigned long mask;
  4881. int i;
  4882. printk(KERN_ALERT "page flags: %#lx(", flags);
  4883. /* remove zone id */
  4884. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4885. for (i = 0; pageflag_names[i].name && flags; i++) {
  4886. mask = pageflag_names[i].mask;
  4887. if ((flags & mask) != mask)
  4888. continue;
  4889. flags &= ~mask;
  4890. printk("%s%s", delim, pageflag_names[i].name);
  4891. delim = "|";
  4892. }
  4893. /* check for left over flags */
  4894. if (flags)
  4895. printk("%s%#lx", delim, flags);
  4896. printk(")\n");
  4897. }
  4898. void dump_page(struct page *page)
  4899. {
  4900. printk(KERN_ALERT
  4901. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4902. page, atomic_read(&page->_count), page_mapcount(page),
  4903. page->mapping, page->index);
  4904. dump_page_flags(page->flags);
  4905. }