sched_fair.c 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  349. unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  645. static void
  646. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  647. {
  648. cfs_rq->task_weight += weight;
  649. }
  650. #else
  651. static inline void
  652. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  653. {
  654. }
  655. #endif
  656. static void
  657. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_add(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se)) {
  663. add_cfs_task_weight(cfs_rq, se->load.weight);
  664. list_add(&se->group_node, &cfs_rq->tasks);
  665. }
  666. cfs_rq->nr_running++;
  667. }
  668. static void
  669. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  670. {
  671. update_load_sub(&cfs_rq->load, se->load.weight);
  672. if (!parent_entity(se))
  673. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  674. if (entity_is_task(se)) {
  675. add_cfs_task_weight(cfs_rq, -se->load.weight);
  676. list_del_init(&se->group_node);
  677. }
  678. cfs_rq->nr_running--;
  679. }
  680. #ifdef CONFIG_FAIR_GROUP_SCHED
  681. /* we need this in update_cfs_load and load-balance functions below */
  682. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  683. # ifdef CONFIG_SMP
  684. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  685. int global_update)
  686. {
  687. struct task_group *tg = cfs_rq->tg;
  688. long load_avg;
  689. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  690. load_avg -= cfs_rq->load_contribution;
  691. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  692. atomic_add(load_avg, &tg->load_weight);
  693. cfs_rq->load_contribution += load_avg;
  694. }
  695. }
  696. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  697. {
  698. u64 period = sysctl_sched_shares_window;
  699. u64 now, delta;
  700. unsigned long load = cfs_rq->load.weight;
  701. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  702. return;
  703. now = rq_of(cfs_rq)->clock_task;
  704. delta = now - cfs_rq->load_stamp;
  705. /* truncate load history at 4 idle periods */
  706. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  707. now - cfs_rq->load_last > 4 * period) {
  708. cfs_rq->load_period = 0;
  709. cfs_rq->load_avg = 0;
  710. delta = period - 1;
  711. }
  712. cfs_rq->load_stamp = now;
  713. cfs_rq->load_unacc_exec_time = 0;
  714. cfs_rq->load_period += delta;
  715. if (load) {
  716. cfs_rq->load_last = now;
  717. cfs_rq->load_avg += delta * load;
  718. }
  719. /* consider updating load contribution on each fold or truncate */
  720. if (global_update || cfs_rq->load_period > period
  721. || !cfs_rq->load_period)
  722. update_cfs_rq_load_contribution(cfs_rq, global_update);
  723. while (cfs_rq->load_period > period) {
  724. /*
  725. * Inline assembly required to prevent the compiler
  726. * optimising this loop into a divmod call.
  727. * See __iter_div_u64_rem() for another example of this.
  728. */
  729. asm("" : "+rm" (cfs_rq->load_period));
  730. cfs_rq->load_period /= 2;
  731. cfs_rq->load_avg /= 2;
  732. }
  733. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  734. list_del_leaf_cfs_rq(cfs_rq);
  735. }
  736. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  737. {
  738. long tg_weight;
  739. /*
  740. * Use this CPU's actual weight instead of the last load_contribution
  741. * to gain a more accurate current total weight. See
  742. * update_cfs_rq_load_contribution().
  743. */
  744. tg_weight = atomic_read(&tg->load_weight);
  745. tg_weight -= cfs_rq->load_contribution;
  746. tg_weight += cfs_rq->load.weight;
  747. return tg_weight;
  748. }
  749. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  750. {
  751. long tg_weight, load, shares;
  752. tg_weight = calc_tg_weight(tg, cfs_rq);
  753. load = cfs_rq->load.weight;
  754. shares = (tg->shares * load);
  755. if (tg_weight)
  756. shares /= tg_weight;
  757. if (shares < MIN_SHARES)
  758. shares = MIN_SHARES;
  759. if (shares > tg->shares)
  760. shares = tg->shares;
  761. return shares;
  762. }
  763. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  764. {
  765. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  766. update_cfs_load(cfs_rq, 0);
  767. update_cfs_shares(cfs_rq);
  768. }
  769. }
  770. # else /* CONFIG_SMP */
  771. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  772. {
  773. }
  774. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  775. {
  776. return tg->shares;
  777. }
  778. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  779. {
  780. }
  781. # endif /* CONFIG_SMP */
  782. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  783. unsigned long weight)
  784. {
  785. if (se->on_rq) {
  786. /* commit outstanding execution time */
  787. if (cfs_rq->curr == se)
  788. update_curr(cfs_rq);
  789. account_entity_dequeue(cfs_rq, se);
  790. }
  791. update_load_set(&se->load, weight);
  792. if (se->on_rq)
  793. account_entity_enqueue(cfs_rq, se);
  794. }
  795. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  796. {
  797. struct task_group *tg;
  798. struct sched_entity *se;
  799. long shares;
  800. tg = cfs_rq->tg;
  801. se = tg->se[cpu_of(rq_of(cfs_rq))];
  802. if (!se || throttled_hierarchy(cfs_rq))
  803. return;
  804. #ifndef CONFIG_SMP
  805. if (likely(se->load.weight == tg->shares))
  806. return;
  807. #endif
  808. shares = calc_cfs_shares(cfs_rq, tg);
  809. reweight_entity(cfs_rq_of(se), se, shares);
  810. }
  811. #else /* CONFIG_FAIR_GROUP_SCHED */
  812. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  813. {
  814. }
  815. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  816. {
  817. }
  818. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  819. {
  820. }
  821. #endif /* CONFIG_FAIR_GROUP_SCHED */
  822. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  823. {
  824. #ifdef CONFIG_SCHEDSTATS
  825. struct task_struct *tsk = NULL;
  826. if (entity_is_task(se))
  827. tsk = task_of(se);
  828. if (se->statistics.sleep_start) {
  829. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  830. if ((s64)delta < 0)
  831. delta = 0;
  832. if (unlikely(delta > se->statistics.sleep_max))
  833. se->statistics.sleep_max = delta;
  834. se->statistics.sleep_start = 0;
  835. se->statistics.sum_sleep_runtime += delta;
  836. if (tsk) {
  837. account_scheduler_latency(tsk, delta >> 10, 1);
  838. trace_sched_stat_sleep(tsk, delta);
  839. }
  840. }
  841. if (se->statistics.block_start) {
  842. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  843. if ((s64)delta < 0)
  844. delta = 0;
  845. if (unlikely(delta > se->statistics.block_max))
  846. se->statistics.block_max = delta;
  847. se->statistics.block_start = 0;
  848. se->statistics.sum_sleep_runtime += delta;
  849. if (tsk) {
  850. if (tsk->in_iowait) {
  851. se->statistics.iowait_sum += delta;
  852. se->statistics.iowait_count++;
  853. trace_sched_stat_iowait(tsk, delta);
  854. }
  855. /*
  856. * Blocking time is in units of nanosecs, so shift by
  857. * 20 to get a milliseconds-range estimation of the
  858. * amount of time that the task spent sleeping:
  859. */
  860. if (unlikely(prof_on == SLEEP_PROFILING)) {
  861. profile_hits(SLEEP_PROFILING,
  862. (void *)get_wchan(tsk),
  863. delta >> 20);
  864. }
  865. account_scheduler_latency(tsk, delta >> 10, 0);
  866. }
  867. }
  868. #endif
  869. }
  870. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  871. {
  872. #ifdef CONFIG_SCHED_DEBUG
  873. s64 d = se->vruntime - cfs_rq->min_vruntime;
  874. if (d < 0)
  875. d = -d;
  876. if (d > 3*sysctl_sched_latency)
  877. schedstat_inc(cfs_rq, nr_spread_over);
  878. #endif
  879. }
  880. static void
  881. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  882. {
  883. u64 vruntime = cfs_rq->min_vruntime;
  884. /*
  885. * The 'current' period is already promised to the current tasks,
  886. * however the extra weight of the new task will slow them down a
  887. * little, place the new task so that it fits in the slot that
  888. * stays open at the end.
  889. */
  890. if (initial && sched_feat(START_DEBIT))
  891. vruntime += sched_vslice(cfs_rq, se);
  892. /* sleeps up to a single latency don't count. */
  893. if (!initial) {
  894. unsigned long thresh = sysctl_sched_latency;
  895. /*
  896. * Halve their sleep time's effect, to allow
  897. * for a gentler effect of sleepers:
  898. */
  899. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  900. thresh >>= 1;
  901. vruntime -= thresh;
  902. }
  903. /* ensure we never gain time by being placed backwards. */
  904. vruntime = max_vruntime(se->vruntime, vruntime);
  905. se->vruntime = vruntime;
  906. }
  907. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  908. static void
  909. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  910. {
  911. /*
  912. * Update the normalized vruntime before updating min_vruntime
  913. * through callig update_curr().
  914. */
  915. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  916. se->vruntime += cfs_rq->min_vruntime;
  917. /*
  918. * Update run-time statistics of the 'current'.
  919. */
  920. update_curr(cfs_rq);
  921. update_cfs_load(cfs_rq, 0);
  922. account_entity_enqueue(cfs_rq, se);
  923. update_cfs_shares(cfs_rq);
  924. if (flags & ENQUEUE_WAKEUP) {
  925. place_entity(cfs_rq, se, 0);
  926. enqueue_sleeper(cfs_rq, se);
  927. }
  928. update_stats_enqueue(cfs_rq, se);
  929. check_spread(cfs_rq, se);
  930. if (se != cfs_rq->curr)
  931. __enqueue_entity(cfs_rq, se);
  932. se->on_rq = 1;
  933. if (cfs_rq->nr_running == 1) {
  934. list_add_leaf_cfs_rq(cfs_rq);
  935. check_enqueue_throttle(cfs_rq);
  936. }
  937. }
  938. static void __clear_buddies_last(struct sched_entity *se)
  939. {
  940. for_each_sched_entity(se) {
  941. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  942. if (cfs_rq->last == se)
  943. cfs_rq->last = NULL;
  944. else
  945. break;
  946. }
  947. }
  948. static void __clear_buddies_next(struct sched_entity *se)
  949. {
  950. for_each_sched_entity(se) {
  951. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  952. if (cfs_rq->next == se)
  953. cfs_rq->next = NULL;
  954. else
  955. break;
  956. }
  957. }
  958. static void __clear_buddies_skip(struct sched_entity *se)
  959. {
  960. for_each_sched_entity(se) {
  961. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  962. if (cfs_rq->skip == se)
  963. cfs_rq->skip = NULL;
  964. else
  965. break;
  966. }
  967. }
  968. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  969. {
  970. if (cfs_rq->last == se)
  971. __clear_buddies_last(se);
  972. if (cfs_rq->next == se)
  973. __clear_buddies_next(se);
  974. if (cfs_rq->skip == se)
  975. __clear_buddies_skip(se);
  976. }
  977. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  978. static void
  979. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  980. {
  981. /*
  982. * Update run-time statistics of the 'current'.
  983. */
  984. update_curr(cfs_rq);
  985. update_stats_dequeue(cfs_rq, se);
  986. if (flags & DEQUEUE_SLEEP) {
  987. #ifdef CONFIG_SCHEDSTATS
  988. if (entity_is_task(se)) {
  989. struct task_struct *tsk = task_of(se);
  990. if (tsk->state & TASK_INTERRUPTIBLE)
  991. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  992. if (tsk->state & TASK_UNINTERRUPTIBLE)
  993. se->statistics.block_start = rq_of(cfs_rq)->clock;
  994. }
  995. #endif
  996. }
  997. clear_buddies(cfs_rq, se);
  998. if (se != cfs_rq->curr)
  999. __dequeue_entity(cfs_rq, se);
  1000. se->on_rq = 0;
  1001. update_cfs_load(cfs_rq, 0);
  1002. account_entity_dequeue(cfs_rq, se);
  1003. /*
  1004. * Normalize the entity after updating the min_vruntime because the
  1005. * update can refer to the ->curr item and we need to reflect this
  1006. * movement in our normalized position.
  1007. */
  1008. if (!(flags & DEQUEUE_SLEEP))
  1009. se->vruntime -= cfs_rq->min_vruntime;
  1010. /* return excess runtime on last dequeue */
  1011. return_cfs_rq_runtime(cfs_rq);
  1012. update_min_vruntime(cfs_rq);
  1013. update_cfs_shares(cfs_rq);
  1014. }
  1015. /*
  1016. * Preempt the current task with a newly woken task if needed:
  1017. */
  1018. static void
  1019. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1020. {
  1021. unsigned long ideal_runtime, delta_exec;
  1022. struct sched_entity *se;
  1023. s64 delta;
  1024. ideal_runtime = sched_slice(cfs_rq, curr);
  1025. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1026. if (delta_exec > ideal_runtime) {
  1027. resched_task(rq_of(cfs_rq)->curr);
  1028. /*
  1029. * The current task ran long enough, ensure it doesn't get
  1030. * re-elected due to buddy favours.
  1031. */
  1032. clear_buddies(cfs_rq, curr);
  1033. return;
  1034. }
  1035. /*
  1036. * Ensure that a task that missed wakeup preemption by a
  1037. * narrow margin doesn't have to wait for a full slice.
  1038. * This also mitigates buddy induced latencies under load.
  1039. */
  1040. if (delta_exec < sysctl_sched_min_granularity)
  1041. return;
  1042. se = __pick_first_entity(cfs_rq);
  1043. delta = curr->vruntime - se->vruntime;
  1044. if (delta < 0)
  1045. return;
  1046. if (delta > ideal_runtime)
  1047. resched_task(rq_of(cfs_rq)->curr);
  1048. }
  1049. static void
  1050. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1051. {
  1052. /* 'current' is not kept within the tree. */
  1053. if (se->on_rq) {
  1054. /*
  1055. * Any task has to be enqueued before it get to execute on
  1056. * a CPU. So account for the time it spent waiting on the
  1057. * runqueue.
  1058. */
  1059. update_stats_wait_end(cfs_rq, se);
  1060. __dequeue_entity(cfs_rq, se);
  1061. }
  1062. update_stats_curr_start(cfs_rq, se);
  1063. cfs_rq->curr = se;
  1064. #ifdef CONFIG_SCHEDSTATS
  1065. /*
  1066. * Track our maximum slice length, if the CPU's load is at
  1067. * least twice that of our own weight (i.e. dont track it
  1068. * when there are only lesser-weight tasks around):
  1069. */
  1070. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1071. se->statistics.slice_max = max(se->statistics.slice_max,
  1072. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1073. }
  1074. #endif
  1075. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1076. }
  1077. static int
  1078. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1079. /*
  1080. * Pick the next process, keeping these things in mind, in this order:
  1081. * 1) keep things fair between processes/task groups
  1082. * 2) pick the "next" process, since someone really wants that to run
  1083. * 3) pick the "last" process, for cache locality
  1084. * 4) do not run the "skip" process, if something else is available
  1085. */
  1086. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1087. {
  1088. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1089. struct sched_entity *left = se;
  1090. /*
  1091. * Avoid running the skip buddy, if running something else can
  1092. * be done without getting too unfair.
  1093. */
  1094. if (cfs_rq->skip == se) {
  1095. struct sched_entity *second = __pick_next_entity(se);
  1096. if (second && wakeup_preempt_entity(second, left) < 1)
  1097. se = second;
  1098. }
  1099. /*
  1100. * Prefer last buddy, try to return the CPU to a preempted task.
  1101. */
  1102. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1103. se = cfs_rq->last;
  1104. /*
  1105. * Someone really wants this to run. If it's not unfair, run it.
  1106. */
  1107. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1108. se = cfs_rq->next;
  1109. clear_buddies(cfs_rq, se);
  1110. return se;
  1111. }
  1112. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1113. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1114. {
  1115. /*
  1116. * If still on the runqueue then deactivate_task()
  1117. * was not called and update_curr() has to be done:
  1118. */
  1119. if (prev->on_rq)
  1120. update_curr(cfs_rq);
  1121. /* throttle cfs_rqs exceeding runtime */
  1122. check_cfs_rq_runtime(cfs_rq);
  1123. check_spread(cfs_rq, prev);
  1124. if (prev->on_rq) {
  1125. update_stats_wait_start(cfs_rq, prev);
  1126. /* Put 'current' back into the tree. */
  1127. __enqueue_entity(cfs_rq, prev);
  1128. }
  1129. cfs_rq->curr = NULL;
  1130. }
  1131. static void
  1132. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1133. {
  1134. /*
  1135. * Update run-time statistics of the 'current'.
  1136. */
  1137. update_curr(cfs_rq);
  1138. /*
  1139. * Update share accounting for long-running entities.
  1140. */
  1141. update_entity_shares_tick(cfs_rq);
  1142. #ifdef CONFIG_SCHED_HRTICK
  1143. /*
  1144. * queued ticks are scheduled to match the slice, so don't bother
  1145. * validating it and just reschedule.
  1146. */
  1147. if (queued) {
  1148. resched_task(rq_of(cfs_rq)->curr);
  1149. return;
  1150. }
  1151. /*
  1152. * don't let the period tick interfere with the hrtick preemption
  1153. */
  1154. if (!sched_feat(DOUBLE_TICK) &&
  1155. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1156. return;
  1157. #endif
  1158. if (cfs_rq->nr_running > 1)
  1159. check_preempt_tick(cfs_rq, curr);
  1160. }
  1161. /**************************************************
  1162. * CFS bandwidth control machinery
  1163. */
  1164. #ifdef CONFIG_CFS_BANDWIDTH
  1165. #ifdef HAVE_JUMP_LABEL
  1166. static struct jump_label_key __cfs_bandwidth_used;
  1167. static inline bool cfs_bandwidth_used(void)
  1168. {
  1169. return static_branch(&__cfs_bandwidth_used);
  1170. }
  1171. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1172. {
  1173. /* only need to count groups transitioning between enabled/!enabled */
  1174. if (enabled && !was_enabled)
  1175. jump_label_inc(&__cfs_bandwidth_used);
  1176. else if (!enabled && was_enabled)
  1177. jump_label_dec(&__cfs_bandwidth_used);
  1178. }
  1179. #else /* HAVE_JUMP_LABEL */
  1180. static bool cfs_bandwidth_used(void)
  1181. {
  1182. return true;
  1183. }
  1184. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1185. #endif /* HAVE_JUMP_LABEL */
  1186. /*
  1187. * default period for cfs group bandwidth.
  1188. * default: 0.1s, units: nanoseconds
  1189. */
  1190. static inline u64 default_cfs_period(void)
  1191. {
  1192. return 100000000ULL;
  1193. }
  1194. static inline u64 sched_cfs_bandwidth_slice(void)
  1195. {
  1196. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1197. }
  1198. /*
  1199. * Replenish runtime according to assigned quota and update expiration time.
  1200. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1201. * additional synchronization around rq->lock.
  1202. *
  1203. * requires cfs_b->lock
  1204. */
  1205. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1206. {
  1207. u64 now;
  1208. if (cfs_b->quota == RUNTIME_INF)
  1209. return;
  1210. now = sched_clock_cpu(smp_processor_id());
  1211. cfs_b->runtime = cfs_b->quota;
  1212. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1213. }
  1214. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1215. {
  1216. return &tg->cfs_bandwidth;
  1217. }
  1218. /* returns 0 on failure to allocate runtime */
  1219. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1220. {
  1221. struct task_group *tg = cfs_rq->tg;
  1222. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1223. u64 amount = 0, min_amount, expires;
  1224. /* note: this is a positive sum as runtime_remaining <= 0 */
  1225. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1226. raw_spin_lock(&cfs_b->lock);
  1227. if (cfs_b->quota == RUNTIME_INF)
  1228. amount = min_amount;
  1229. else {
  1230. /*
  1231. * If the bandwidth pool has become inactive, then at least one
  1232. * period must have elapsed since the last consumption.
  1233. * Refresh the global state and ensure bandwidth timer becomes
  1234. * active.
  1235. */
  1236. if (!cfs_b->timer_active) {
  1237. __refill_cfs_bandwidth_runtime(cfs_b);
  1238. __start_cfs_bandwidth(cfs_b);
  1239. }
  1240. if (cfs_b->runtime > 0) {
  1241. amount = min(cfs_b->runtime, min_amount);
  1242. cfs_b->runtime -= amount;
  1243. cfs_b->idle = 0;
  1244. }
  1245. }
  1246. expires = cfs_b->runtime_expires;
  1247. raw_spin_unlock(&cfs_b->lock);
  1248. cfs_rq->runtime_remaining += amount;
  1249. /*
  1250. * we may have advanced our local expiration to account for allowed
  1251. * spread between our sched_clock and the one on which runtime was
  1252. * issued.
  1253. */
  1254. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1255. cfs_rq->runtime_expires = expires;
  1256. return cfs_rq->runtime_remaining > 0;
  1257. }
  1258. /*
  1259. * Note: This depends on the synchronization provided by sched_clock and the
  1260. * fact that rq->clock snapshots this value.
  1261. */
  1262. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1263. {
  1264. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1265. struct rq *rq = rq_of(cfs_rq);
  1266. /* if the deadline is ahead of our clock, nothing to do */
  1267. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1268. return;
  1269. if (cfs_rq->runtime_remaining < 0)
  1270. return;
  1271. /*
  1272. * If the local deadline has passed we have to consider the
  1273. * possibility that our sched_clock is 'fast' and the global deadline
  1274. * has not truly expired.
  1275. *
  1276. * Fortunately we can check determine whether this the case by checking
  1277. * whether the global deadline has advanced.
  1278. */
  1279. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1280. /* extend local deadline, drift is bounded above by 2 ticks */
  1281. cfs_rq->runtime_expires += TICK_NSEC;
  1282. } else {
  1283. /* global deadline is ahead, expiration has passed */
  1284. cfs_rq->runtime_remaining = 0;
  1285. }
  1286. }
  1287. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1288. unsigned long delta_exec)
  1289. {
  1290. /* dock delta_exec before expiring quota (as it could span periods) */
  1291. cfs_rq->runtime_remaining -= delta_exec;
  1292. expire_cfs_rq_runtime(cfs_rq);
  1293. if (likely(cfs_rq->runtime_remaining > 0))
  1294. return;
  1295. /*
  1296. * if we're unable to extend our runtime we resched so that the active
  1297. * hierarchy can be throttled
  1298. */
  1299. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1300. resched_task(rq_of(cfs_rq)->curr);
  1301. }
  1302. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1303. unsigned long delta_exec)
  1304. {
  1305. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1306. return;
  1307. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1308. }
  1309. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1310. {
  1311. return cfs_bandwidth_used() && cfs_rq->throttled;
  1312. }
  1313. /* check whether cfs_rq, or any parent, is throttled */
  1314. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1315. {
  1316. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1317. }
  1318. /*
  1319. * Ensure that neither of the group entities corresponding to src_cpu or
  1320. * dest_cpu are members of a throttled hierarchy when performing group
  1321. * load-balance operations.
  1322. */
  1323. static inline int throttled_lb_pair(struct task_group *tg,
  1324. int src_cpu, int dest_cpu)
  1325. {
  1326. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1327. src_cfs_rq = tg->cfs_rq[src_cpu];
  1328. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1329. return throttled_hierarchy(src_cfs_rq) ||
  1330. throttled_hierarchy(dest_cfs_rq);
  1331. }
  1332. /* updated child weight may affect parent so we have to do this bottom up */
  1333. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1334. {
  1335. struct rq *rq = data;
  1336. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1337. cfs_rq->throttle_count--;
  1338. #ifdef CONFIG_SMP
  1339. if (!cfs_rq->throttle_count) {
  1340. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1341. /* leaving throttled state, advance shares averaging windows */
  1342. cfs_rq->load_stamp += delta;
  1343. cfs_rq->load_last += delta;
  1344. /* update entity weight now that we are on_rq again */
  1345. update_cfs_shares(cfs_rq);
  1346. }
  1347. #endif
  1348. return 0;
  1349. }
  1350. static int tg_throttle_down(struct task_group *tg, void *data)
  1351. {
  1352. struct rq *rq = data;
  1353. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1354. /* group is entering throttled state, record last load */
  1355. if (!cfs_rq->throttle_count)
  1356. update_cfs_load(cfs_rq, 0);
  1357. cfs_rq->throttle_count++;
  1358. return 0;
  1359. }
  1360. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1361. {
  1362. struct rq *rq = rq_of(cfs_rq);
  1363. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1364. struct sched_entity *se;
  1365. long task_delta, dequeue = 1;
  1366. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1367. /* account load preceding throttle */
  1368. rcu_read_lock();
  1369. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1370. rcu_read_unlock();
  1371. task_delta = cfs_rq->h_nr_running;
  1372. for_each_sched_entity(se) {
  1373. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1374. /* throttled entity or throttle-on-deactivate */
  1375. if (!se->on_rq)
  1376. break;
  1377. if (dequeue)
  1378. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1379. qcfs_rq->h_nr_running -= task_delta;
  1380. if (qcfs_rq->load.weight)
  1381. dequeue = 0;
  1382. }
  1383. if (!se)
  1384. rq->nr_running -= task_delta;
  1385. cfs_rq->throttled = 1;
  1386. cfs_rq->throttled_timestamp = rq->clock;
  1387. raw_spin_lock(&cfs_b->lock);
  1388. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1389. raw_spin_unlock(&cfs_b->lock);
  1390. }
  1391. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1392. {
  1393. struct rq *rq = rq_of(cfs_rq);
  1394. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1395. struct sched_entity *se;
  1396. int enqueue = 1;
  1397. long task_delta;
  1398. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1399. cfs_rq->throttled = 0;
  1400. raw_spin_lock(&cfs_b->lock);
  1401. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1402. list_del_rcu(&cfs_rq->throttled_list);
  1403. raw_spin_unlock(&cfs_b->lock);
  1404. cfs_rq->throttled_timestamp = 0;
  1405. update_rq_clock(rq);
  1406. /* update hierarchical throttle state */
  1407. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1408. if (!cfs_rq->load.weight)
  1409. return;
  1410. task_delta = cfs_rq->h_nr_running;
  1411. for_each_sched_entity(se) {
  1412. if (se->on_rq)
  1413. enqueue = 0;
  1414. cfs_rq = cfs_rq_of(se);
  1415. if (enqueue)
  1416. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1417. cfs_rq->h_nr_running += task_delta;
  1418. if (cfs_rq_throttled(cfs_rq))
  1419. break;
  1420. }
  1421. if (!se)
  1422. rq->nr_running += task_delta;
  1423. /* determine whether we need to wake up potentially idle cpu */
  1424. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1425. resched_task(rq->curr);
  1426. }
  1427. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1428. u64 remaining, u64 expires)
  1429. {
  1430. struct cfs_rq *cfs_rq;
  1431. u64 runtime = remaining;
  1432. rcu_read_lock();
  1433. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1434. throttled_list) {
  1435. struct rq *rq = rq_of(cfs_rq);
  1436. raw_spin_lock(&rq->lock);
  1437. if (!cfs_rq_throttled(cfs_rq))
  1438. goto next;
  1439. runtime = -cfs_rq->runtime_remaining + 1;
  1440. if (runtime > remaining)
  1441. runtime = remaining;
  1442. remaining -= runtime;
  1443. cfs_rq->runtime_remaining += runtime;
  1444. cfs_rq->runtime_expires = expires;
  1445. /* we check whether we're throttled above */
  1446. if (cfs_rq->runtime_remaining > 0)
  1447. unthrottle_cfs_rq(cfs_rq);
  1448. next:
  1449. raw_spin_unlock(&rq->lock);
  1450. if (!remaining)
  1451. break;
  1452. }
  1453. rcu_read_unlock();
  1454. return remaining;
  1455. }
  1456. /*
  1457. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1458. * cfs_rqs as appropriate. If there has been no activity within the last
  1459. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1460. * used to track this state.
  1461. */
  1462. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1463. {
  1464. u64 runtime, runtime_expires;
  1465. int idle = 1, throttled;
  1466. raw_spin_lock(&cfs_b->lock);
  1467. /* no need to continue the timer with no bandwidth constraint */
  1468. if (cfs_b->quota == RUNTIME_INF)
  1469. goto out_unlock;
  1470. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1471. /* idle depends on !throttled (for the case of a large deficit) */
  1472. idle = cfs_b->idle && !throttled;
  1473. cfs_b->nr_periods += overrun;
  1474. /* if we're going inactive then everything else can be deferred */
  1475. if (idle)
  1476. goto out_unlock;
  1477. __refill_cfs_bandwidth_runtime(cfs_b);
  1478. if (!throttled) {
  1479. /* mark as potentially idle for the upcoming period */
  1480. cfs_b->idle = 1;
  1481. goto out_unlock;
  1482. }
  1483. /* account preceding periods in which throttling occurred */
  1484. cfs_b->nr_throttled += overrun;
  1485. /*
  1486. * There are throttled entities so we must first use the new bandwidth
  1487. * to unthrottle them before making it generally available. This
  1488. * ensures that all existing debts will be paid before a new cfs_rq is
  1489. * allowed to run.
  1490. */
  1491. runtime = cfs_b->runtime;
  1492. runtime_expires = cfs_b->runtime_expires;
  1493. cfs_b->runtime = 0;
  1494. /*
  1495. * This check is repeated as we are holding onto the new bandwidth
  1496. * while we unthrottle. This can potentially race with an unthrottled
  1497. * group trying to acquire new bandwidth from the global pool.
  1498. */
  1499. while (throttled && runtime > 0) {
  1500. raw_spin_unlock(&cfs_b->lock);
  1501. /* we can't nest cfs_b->lock while distributing bandwidth */
  1502. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1503. runtime_expires);
  1504. raw_spin_lock(&cfs_b->lock);
  1505. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1506. }
  1507. /* return (any) remaining runtime */
  1508. cfs_b->runtime = runtime;
  1509. /*
  1510. * While we are ensured activity in the period following an
  1511. * unthrottle, this also covers the case in which the new bandwidth is
  1512. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1513. * timer to remain active while there are any throttled entities.)
  1514. */
  1515. cfs_b->idle = 0;
  1516. out_unlock:
  1517. if (idle)
  1518. cfs_b->timer_active = 0;
  1519. raw_spin_unlock(&cfs_b->lock);
  1520. return idle;
  1521. }
  1522. /* a cfs_rq won't donate quota below this amount */
  1523. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1524. /* minimum remaining period time to redistribute slack quota */
  1525. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1526. /* how long we wait to gather additional slack before distributing */
  1527. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1528. /* are we near the end of the current quota period? */
  1529. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1530. {
  1531. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1532. u64 remaining;
  1533. /* if the call-back is running a quota refresh is already occurring */
  1534. if (hrtimer_callback_running(refresh_timer))
  1535. return 1;
  1536. /* is a quota refresh about to occur? */
  1537. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1538. if (remaining < min_expire)
  1539. return 1;
  1540. return 0;
  1541. }
  1542. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1543. {
  1544. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1545. /* if there's a quota refresh soon don't bother with slack */
  1546. if (runtime_refresh_within(cfs_b, min_left))
  1547. return;
  1548. start_bandwidth_timer(&cfs_b->slack_timer,
  1549. ns_to_ktime(cfs_bandwidth_slack_period));
  1550. }
  1551. /* we know any runtime found here is valid as update_curr() precedes return */
  1552. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1553. {
  1554. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1555. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1556. if (slack_runtime <= 0)
  1557. return;
  1558. raw_spin_lock(&cfs_b->lock);
  1559. if (cfs_b->quota != RUNTIME_INF &&
  1560. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1561. cfs_b->runtime += slack_runtime;
  1562. /* we are under rq->lock, defer unthrottling using a timer */
  1563. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1564. !list_empty(&cfs_b->throttled_cfs_rq))
  1565. start_cfs_slack_bandwidth(cfs_b);
  1566. }
  1567. raw_spin_unlock(&cfs_b->lock);
  1568. /* even if it's not valid for return we don't want to try again */
  1569. cfs_rq->runtime_remaining -= slack_runtime;
  1570. }
  1571. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1572. {
  1573. if (!cfs_bandwidth_used())
  1574. return;
  1575. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1576. return;
  1577. __return_cfs_rq_runtime(cfs_rq);
  1578. }
  1579. /*
  1580. * This is done with a timer (instead of inline with bandwidth return) since
  1581. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1582. */
  1583. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1584. {
  1585. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1586. u64 expires;
  1587. /* confirm we're still not at a refresh boundary */
  1588. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1589. return;
  1590. raw_spin_lock(&cfs_b->lock);
  1591. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1592. runtime = cfs_b->runtime;
  1593. cfs_b->runtime = 0;
  1594. }
  1595. expires = cfs_b->runtime_expires;
  1596. raw_spin_unlock(&cfs_b->lock);
  1597. if (!runtime)
  1598. return;
  1599. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1600. raw_spin_lock(&cfs_b->lock);
  1601. if (expires == cfs_b->runtime_expires)
  1602. cfs_b->runtime = runtime;
  1603. raw_spin_unlock(&cfs_b->lock);
  1604. }
  1605. /*
  1606. * When a group wakes up we want to make sure that its quota is not already
  1607. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1608. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1609. */
  1610. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1611. {
  1612. if (!cfs_bandwidth_used())
  1613. return;
  1614. /* an active group must be handled by the update_curr()->put() path */
  1615. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1616. return;
  1617. /* ensure the group is not already throttled */
  1618. if (cfs_rq_throttled(cfs_rq))
  1619. return;
  1620. /* update runtime allocation */
  1621. account_cfs_rq_runtime(cfs_rq, 0);
  1622. if (cfs_rq->runtime_remaining <= 0)
  1623. throttle_cfs_rq(cfs_rq);
  1624. }
  1625. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1626. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1627. {
  1628. if (!cfs_bandwidth_used())
  1629. return;
  1630. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1631. return;
  1632. /*
  1633. * it's possible for a throttled entity to be forced into a running
  1634. * state (e.g. set_curr_task), in this case we're finished.
  1635. */
  1636. if (cfs_rq_throttled(cfs_rq))
  1637. return;
  1638. throttle_cfs_rq(cfs_rq);
  1639. }
  1640. static inline u64 default_cfs_period(void);
  1641. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1642. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1643. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1644. {
  1645. struct cfs_bandwidth *cfs_b =
  1646. container_of(timer, struct cfs_bandwidth, slack_timer);
  1647. do_sched_cfs_slack_timer(cfs_b);
  1648. return HRTIMER_NORESTART;
  1649. }
  1650. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1651. {
  1652. struct cfs_bandwidth *cfs_b =
  1653. container_of(timer, struct cfs_bandwidth, period_timer);
  1654. ktime_t now;
  1655. int overrun;
  1656. int idle = 0;
  1657. for (;;) {
  1658. now = hrtimer_cb_get_time(timer);
  1659. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1660. if (!overrun)
  1661. break;
  1662. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1663. }
  1664. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1665. }
  1666. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1667. {
  1668. raw_spin_lock_init(&cfs_b->lock);
  1669. cfs_b->runtime = 0;
  1670. cfs_b->quota = RUNTIME_INF;
  1671. cfs_b->period = ns_to_ktime(default_cfs_period());
  1672. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1673. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1674. cfs_b->period_timer.function = sched_cfs_period_timer;
  1675. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1676. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1677. }
  1678. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1679. {
  1680. cfs_rq->runtime_enabled = 0;
  1681. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1682. }
  1683. /* requires cfs_b->lock, may release to reprogram timer */
  1684. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1685. {
  1686. /*
  1687. * The timer may be active because we're trying to set a new bandwidth
  1688. * period or because we're racing with the tear-down path
  1689. * (timer_active==0 becomes visible before the hrtimer call-back
  1690. * terminates). In either case we ensure that it's re-programmed
  1691. */
  1692. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1693. raw_spin_unlock(&cfs_b->lock);
  1694. /* ensure cfs_b->lock is available while we wait */
  1695. hrtimer_cancel(&cfs_b->period_timer);
  1696. raw_spin_lock(&cfs_b->lock);
  1697. /* if someone else restarted the timer then we're done */
  1698. if (cfs_b->timer_active)
  1699. return;
  1700. }
  1701. cfs_b->timer_active = 1;
  1702. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1703. }
  1704. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1705. {
  1706. hrtimer_cancel(&cfs_b->period_timer);
  1707. hrtimer_cancel(&cfs_b->slack_timer);
  1708. }
  1709. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1710. {
  1711. struct cfs_rq *cfs_rq;
  1712. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1713. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1714. if (!cfs_rq->runtime_enabled)
  1715. continue;
  1716. /*
  1717. * clock_task is not advancing so we just need to make sure
  1718. * there's some valid quota amount
  1719. */
  1720. cfs_rq->runtime_remaining = cfs_b->quota;
  1721. if (cfs_rq_throttled(cfs_rq))
  1722. unthrottle_cfs_rq(cfs_rq);
  1723. }
  1724. }
  1725. #else /* CONFIG_CFS_BANDWIDTH */
  1726. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1727. unsigned long delta_exec) {}
  1728. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1729. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1730. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1731. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1732. {
  1733. return 0;
  1734. }
  1735. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1736. {
  1737. return 0;
  1738. }
  1739. static inline int throttled_lb_pair(struct task_group *tg,
  1740. int src_cpu, int dest_cpu)
  1741. {
  1742. return 0;
  1743. }
  1744. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1745. #ifdef CONFIG_FAIR_GROUP_SCHED
  1746. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1747. #endif
  1748. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1749. {
  1750. return NULL;
  1751. }
  1752. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1753. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1754. #endif /* CONFIG_CFS_BANDWIDTH */
  1755. /**************************************************
  1756. * CFS operations on tasks:
  1757. */
  1758. #ifdef CONFIG_SCHED_HRTICK
  1759. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1760. {
  1761. struct sched_entity *se = &p->se;
  1762. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1763. WARN_ON(task_rq(p) != rq);
  1764. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1765. u64 slice = sched_slice(cfs_rq, se);
  1766. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1767. s64 delta = slice - ran;
  1768. if (delta < 0) {
  1769. if (rq->curr == p)
  1770. resched_task(p);
  1771. return;
  1772. }
  1773. /*
  1774. * Don't schedule slices shorter than 10000ns, that just
  1775. * doesn't make sense. Rely on vruntime for fairness.
  1776. */
  1777. if (rq->curr != p)
  1778. delta = max_t(s64, 10000LL, delta);
  1779. hrtick_start(rq, delta);
  1780. }
  1781. }
  1782. /*
  1783. * called from enqueue/dequeue and updates the hrtick when the
  1784. * current task is from our class and nr_running is low enough
  1785. * to matter.
  1786. */
  1787. static void hrtick_update(struct rq *rq)
  1788. {
  1789. struct task_struct *curr = rq->curr;
  1790. if (curr->sched_class != &fair_sched_class)
  1791. return;
  1792. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1793. hrtick_start_fair(rq, curr);
  1794. }
  1795. #else /* !CONFIG_SCHED_HRTICK */
  1796. static inline void
  1797. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1798. {
  1799. }
  1800. static inline void hrtick_update(struct rq *rq)
  1801. {
  1802. }
  1803. #endif
  1804. /*
  1805. * The enqueue_task method is called before nr_running is
  1806. * increased. Here we update the fair scheduling stats and
  1807. * then put the task into the rbtree:
  1808. */
  1809. static void
  1810. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1811. {
  1812. struct cfs_rq *cfs_rq;
  1813. struct sched_entity *se = &p->se;
  1814. for_each_sched_entity(se) {
  1815. if (se->on_rq)
  1816. break;
  1817. cfs_rq = cfs_rq_of(se);
  1818. enqueue_entity(cfs_rq, se, flags);
  1819. /*
  1820. * end evaluation on encountering a throttled cfs_rq
  1821. *
  1822. * note: in the case of encountering a throttled cfs_rq we will
  1823. * post the final h_nr_running increment below.
  1824. */
  1825. if (cfs_rq_throttled(cfs_rq))
  1826. break;
  1827. cfs_rq->h_nr_running++;
  1828. flags = ENQUEUE_WAKEUP;
  1829. }
  1830. for_each_sched_entity(se) {
  1831. cfs_rq = cfs_rq_of(se);
  1832. cfs_rq->h_nr_running++;
  1833. if (cfs_rq_throttled(cfs_rq))
  1834. break;
  1835. update_cfs_load(cfs_rq, 0);
  1836. update_cfs_shares(cfs_rq);
  1837. }
  1838. if (!se)
  1839. inc_nr_running(rq);
  1840. hrtick_update(rq);
  1841. }
  1842. static void set_next_buddy(struct sched_entity *se);
  1843. /*
  1844. * The dequeue_task method is called before nr_running is
  1845. * decreased. We remove the task from the rbtree and
  1846. * update the fair scheduling stats:
  1847. */
  1848. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1849. {
  1850. struct cfs_rq *cfs_rq;
  1851. struct sched_entity *se = &p->se;
  1852. int task_sleep = flags & DEQUEUE_SLEEP;
  1853. for_each_sched_entity(se) {
  1854. cfs_rq = cfs_rq_of(se);
  1855. dequeue_entity(cfs_rq, se, flags);
  1856. /*
  1857. * end evaluation on encountering a throttled cfs_rq
  1858. *
  1859. * note: in the case of encountering a throttled cfs_rq we will
  1860. * post the final h_nr_running decrement below.
  1861. */
  1862. if (cfs_rq_throttled(cfs_rq))
  1863. break;
  1864. cfs_rq->h_nr_running--;
  1865. /* Don't dequeue parent if it has other entities besides us */
  1866. if (cfs_rq->load.weight) {
  1867. /*
  1868. * Bias pick_next to pick a task from this cfs_rq, as
  1869. * p is sleeping when it is within its sched_slice.
  1870. */
  1871. if (task_sleep && parent_entity(se))
  1872. set_next_buddy(parent_entity(se));
  1873. /* avoid re-evaluating load for this entity */
  1874. se = parent_entity(se);
  1875. break;
  1876. }
  1877. flags |= DEQUEUE_SLEEP;
  1878. }
  1879. for_each_sched_entity(se) {
  1880. cfs_rq = cfs_rq_of(se);
  1881. cfs_rq->h_nr_running--;
  1882. if (cfs_rq_throttled(cfs_rq))
  1883. break;
  1884. update_cfs_load(cfs_rq, 0);
  1885. update_cfs_shares(cfs_rq);
  1886. }
  1887. if (!se)
  1888. dec_nr_running(rq);
  1889. hrtick_update(rq);
  1890. }
  1891. #ifdef CONFIG_SMP
  1892. /* Used instead of source_load when we know the type == 0 */
  1893. static unsigned long weighted_cpuload(const int cpu)
  1894. {
  1895. return cpu_rq(cpu)->load.weight;
  1896. }
  1897. /*
  1898. * Return a low guess at the load of a migration-source cpu weighted
  1899. * according to the scheduling class and "nice" value.
  1900. *
  1901. * We want to under-estimate the load of migration sources, to
  1902. * balance conservatively.
  1903. */
  1904. static unsigned long source_load(int cpu, int type)
  1905. {
  1906. struct rq *rq = cpu_rq(cpu);
  1907. unsigned long total = weighted_cpuload(cpu);
  1908. if (type == 0 || !sched_feat(LB_BIAS))
  1909. return total;
  1910. return min(rq->cpu_load[type-1], total);
  1911. }
  1912. /*
  1913. * Return a high guess at the load of a migration-target cpu weighted
  1914. * according to the scheduling class and "nice" value.
  1915. */
  1916. static unsigned long target_load(int cpu, int type)
  1917. {
  1918. struct rq *rq = cpu_rq(cpu);
  1919. unsigned long total = weighted_cpuload(cpu);
  1920. if (type == 0 || !sched_feat(LB_BIAS))
  1921. return total;
  1922. return max(rq->cpu_load[type-1], total);
  1923. }
  1924. static unsigned long power_of(int cpu)
  1925. {
  1926. return cpu_rq(cpu)->cpu_power;
  1927. }
  1928. static unsigned long cpu_avg_load_per_task(int cpu)
  1929. {
  1930. struct rq *rq = cpu_rq(cpu);
  1931. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1932. if (nr_running)
  1933. return rq->load.weight / nr_running;
  1934. return 0;
  1935. }
  1936. static void task_waking_fair(struct task_struct *p)
  1937. {
  1938. struct sched_entity *se = &p->se;
  1939. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1940. u64 min_vruntime;
  1941. #ifndef CONFIG_64BIT
  1942. u64 min_vruntime_copy;
  1943. do {
  1944. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1945. smp_rmb();
  1946. min_vruntime = cfs_rq->min_vruntime;
  1947. } while (min_vruntime != min_vruntime_copy);
  1948. #else
  1949. min_vruntime = cfs_rq->min_vruntime;
  1950. #endif
  1951. se->vruntime -= min_vruntime;
  1952. }
  1953. #ifdef CONFIG_FAIR_GROUP_SCHED
  1954. /*
  1955. * effective_load() calculates the load change as seen from the root_task_group
  1956. *
  1957. * Adding load to a group doesn't make a group heavier, but can cause movement
  1958. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1959. * can calculate the shift in shares.
  1960. *
  1961. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1962. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1963. * total group weight.
  1964. *
  1965. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1966. * distribution (s_i) using:
  1967. *
  1968. * s_i = rw_i / \Sum rw_j (1)
  1969. *
  1970. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1971. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1972. * shares distribution (s_i):
  1973. *
  1974. * rw_i = { 2, 4, 1, 0 }
  1975. * s_i = { 2/7, 4/7, 1/7, 0 }
  1976. *
  1977. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1978. * task used to run on and the CPU the waker is running on), we need to
  1979. * compute the effect of waking a task on either CPU and, in case of a sync
  1980. * wakeup, compute the effect of the current task going to sleep.
  1981. *
  1982. * So for a change of @wl to the local @cpu with an overall group weight change
  1983. * of @wl we can compute the new shares distribution (s'_i) using:
  1984. *
  1985. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1986. *
  1987. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1988. * differences in waking a task to CPU 0. The additional task changes the
  1989. * weight and shares distributions like:
  1990. *
  1991. * rw'_i = { 3, 4, 1, 0 }
  1992. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1993. *
  1994. * We can then compute the difference in effective weight by using:
  1995. *
  1996. * dw_i = S * (s'_i - s_i) (3)
  1997. *
  1998. * Where 'S' is the group weight as seen by its parent.
  1999. *
  2000. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2001. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2002. * 4/7) times the weight of the group.
  2003. */
  2004. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2005. {
  2006. struct sched_entity *se = tg->se[cpu];
  2007. if (!tg->parent) /* the trivial, non-cgroup case */
  2008. return wl;
  2009. for_each_sched_entity(se) {
  2010. long w, W;
  2011. tg = se->my_q->tg;
  2012. /*
  2013. * W = @wg + \Sum rw_j
  2014. */
  2015. W = wg + calc_tg_weight(tg, se->my_q);
  2016. /*
  2017. * w = rw_i + @wl
  2018. */
  2019. w = se->my_q->load.weight + wl;
  2020. /*
  2021. * wl = S * s'_i; see (2)
  2022. */
  2023. if (W > 0 && w < W)
  2024. wl = (w * tg->shares) / W;
  2025. else
  2026. wl = tg->shares;
  2027. /*
  2028. * Per the above, wl is the new se->load.weight value; since
  2029. * those are clipped to [MIN_SHARES, ...) do so now. See
  2030. * calc_cfs_shares().
  2031. */
  2032. if (wl < MIN_SHARES)
  2033. wl = MIN_SHARES;
  2034. /*
  2035. * wl = dw_i = S * (s'_i - s_i); see (3)
  2036. */
  2037. wl -= se->load.weight;
  2038. /*
  2039. * Recursively apply this logic to all parent groups to compute
  2040. * the final effective load change on the root group. Since
  2041. * only the @tg group gets extra weight, all parent groups can
  2042. * only redistribute existing shares. @wl is the shift in shares
  2043. * resulting from this level per the above.
  2044. */
  2045. wg = 0;
  2046. }
  2047. return wl;
  2048. }
  2049. #else
  2050. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2051. unsigned long wl, unsigned long wg)
  2052. {
  2053. return wl;
  2054. }
  2055. #endif
  2056. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2057. {
  2058. s64 this_load, load;
  2059. int idx, this_cpu, prev_cpu;
  2060. unsigned long tl_per_task;
  2061. struct task_group *tg;
  2062. unsigned long weight;
  2063. int balanced;
  2064. idx = sd->wake_idx;
  2065. this_cpu = smp_processor_id();
  2066. prev_cpu = task_cpu(p);
  2067. load = source_load(prev_cpu, idx);
  2068. this_load = target_load(this_cpu, idx);
  2069. /*
  2070. * If sync wakeup then subtract the (maximum possible)
  2071. * effect of the currently running task from the load
  2072. * of the current CPU:
  2073. */
  2074. if (sync) {
  2075. tg = task_group(current);
  2076. weight = current->se.load.weight;
  2077. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2078. load += effective_load(tg, prev_cpu, 0, -weight);
  2079. }
  2080. tg = task_group(p);
  2081. weight = p->se.load.weight;
  2082. /*
  2083. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2084. * due to the sync cause above having dropped this_load to 0, we'll
  2085. * always have an imbalance, but there's really nothing you can do
  2086. * about that, so that's good too.
  2087. *
  2088. * Otherwise check if either cpus are near enough in load to allow this
  2089. * task to be woken on this_cpu.
  2090. */
  2091. if (this_load > 0) {
  2092. s64 this_eff_load, prev_eff_load;
  2093. this_eff_load = 100;
  2094. this_eff_load *= power_of(prev_cpu);
  2095. this_eff_load *= this_load +
  2096. effective_load(tg, this_cpu, weight, weight);
  2097. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2098. prev_eff_load *= power_of(this_cpu);
  2099. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2100. balanced = this_eff_load <= prev_eff_load;
  2101. } else
  2102. balanced = true;
  2103. /*
  2104. * If the currently running task will sleep within
  2105. * a reasonable amount of time then attract this newly
  2106. * woken task:
  2107. */
  2108. if (sync && balanced)
  2109. return 1;
  2110. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2111. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2112. if (balanced ||
  2113. (this_load <= load &&
  2114. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2115. /*
  2116. * This domain has SD_WAKE_AFFINE and
  2117. * p is cache cold in this domain, and
  2118. * there is no bad imbalance.
  2119. */
  2120. schedstat_inc(sd, ttwu_move_affine);
  2121. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2122. return 1;
  2123. }
  2124. return 0;
  2125. }
  2126. /*
  2127. * find_idlest_group finds and returns the least busy CPU group within the
  2128. * domain.
  2129. */
  2130. static struct sched_group *
  2131. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2132. int this_cpu, int load_idx)
  2133. {
  2134. struct sched_group *idlest = NULL, *group = sd->groups;
  2135. unsigned long min_load = ULONG_MAX, this_load = 0;
  2136. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2137. do {
  2138. unsigned long load, avg_load;
  2139. int local_group;
  2140. int i;
  2141. /* Skip over this group if it has no CPUs allowed */
  2142. if (!cpumask_intersects(sched_group_cpus(group),
  2143. tsk_cpus_allowed(p)))
  2144. continue;
  2145. local_group = cpumask_test_cpu(this_cpu,
  2146. sched_group_cpus(group));
  2147. /* Tally up the load of all CPUs in the group */
  2148. avg_load = 0;
  2149. for_each_cpu(i, sched_group_cpus(group)) {
  2150. /* Bias balancing toward cpus of our domain */
  2151. if (local_group)
  2152. load = source_load(i, load_idx);
  2153. else
  2154. load = target_load(i, load_idx);
  2155. avg_load += load;
  2156. }
  2157. /* Adjust by relative CPU power of the group */
  2158. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2159. if (local_group) {
  2160. this_load = avg_load;
  2161. } else if (avg_load < min_load) {
  2162. min_load = avg_load;
  2163. idlest = group;
  2164. }
  2165. } while (group = group->next, group != sd->groups);
  2166. if (!idlest || 100*this_load < imbalance*min_load)
  2167. return NULL;
  2168. return idlest;
  2169. }
  2170. /*
  2171. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2172. */
  2173. static int
  2174. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2175. {
  2176. unsigned long load, min_load = ULONG_MAX;
  2177. int idlest = -1;
  2178. int i;
  2179. /* Traverse only the allowed CPUs */
  2180. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2181. load = weighted_cpuload(i);
  2182. if (load < min_load || (load == min_load && i == this_cpu)) {
  2183. min_load = load;
  2184. idlest = i;
  2185. }
  2186. }
  2187. return idlest;
  2188. }
  2189. /*
  2190. * Try and locate an idle CPU in the sched_domain.
  2191. */
  2192. static int select_idle_sibling(struct task_struct *p, int target)
  2193. {
  2194. int cpu = smp_processor_id();
  2195. int prev_cpu = task_cpu(p);
  2196. struct sched_domain *sd;
  2197. struct sched_group *sg;
  2198. int i, smt = 0;
  2199. /*
  2200. * If the task is going to be woken-up on this cpu and if it is
  2201. * already idle, then it is the right target.
  2202. */
  2203. if (target == cpu && idle_cpu(cpu))
  2204. return cpu;
  2205. /*
  2206. * If the task is going to be woken-up on the cpu where it previously
  2207. * ran and if it is currently idle, then it the right target.
  2208. */
  2209. if (target == prev_cpu && idle_cpu(prev_cpu))
  2210. return prev_cpu;
  2211. /*
  2212. * Otherwise, iterate the domains and find an elegible idle cpu.
  2213. */
  2214. rcu_read_lock();
  2215. again:
  2216. for_each_domain(target, sd) {
  2217. if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
  2218. continue;
  2219. if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
  2220. if (!smt) {
  2221. smt = 1;
  2222. goto again;
  2223. }
  2224. break;
  2225. }
  2226. sg = sd->groups;
  2227. do {
  2228. if (!cpumask_intersects(sched_group_cpus(sg),
  2229. tsk_cpus_allowed(p)))
  2230. goto next;
  2231. for_each_cpu(i, sched_group_cpus(sg)) {
  2232. if (!idle_cpu(i))
  2233. goto next;
  2234. }
  2235. target = cpumask_first_and(sched_group_cpus(sg),
  2236. tsk_cpus_allowed(p));
  2237. goto done;
  2238. next:
  2239. sg = sg->next;
  2240. } while (sg != sd->groups);
  2241. }
  2242. done:
  2243. rcu_read_unlock();
  2244. return target;
  2245. }
  2246. /*
  2247. * sched_balance_self: balance the current task (running on cpu) in domains
  2248. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2249. * SD_BALANCE_EXEC.
  2250. *
  2251. * Balance, ie. select the least loaded group.
  2252. *
  2253. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2254. *
  2255. * preempt must be disabled.
  2256. */
  2257. static int
  2258. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2259. {
  2260. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2261. int cpu = smp_processor_id();
  2262. int prev_cpu = task_cpu(p);
  2263. int new_cpu = cpu;
  2264. int want_affine = 0;
  2265. int want_sd = 1;
  2266. int sync = wake_flags & WF_SYNC;
  2267. if (sd_flag & SD_BALANCE_WAKE) {
  2268. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2269. want_affine = 1;
  2270. new_cpu = prev_cpu;
  2271. }
  2272. rcu_read_lock();
  2273. for_each_domain(cpu, tmp) {
  2274. if (!(tmp->flags & SD_LOAD_BALANCE))
  2275. continue;
  2276. /*
  2277. * If power savings logic is enabled for a domain, see if we
  2278. * are not overloaded, if so, don't balance wider.
  2279. */
  2280. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2281. unsigned long power = 0;
  2282. unsigned long nr_running = 0;
  2283. unsigned long capacity;
  2284. int i;
  2285. for_each_cpu(i, sched_domain_span(tmp)) {
  2286. power += power_of(i);
  2287. nr_running += cpu_rq(i)->cfs.nr_running;
  2288. }
  2289. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2290. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2291. nr_running /= 2;
  2292. if (nr_running < capacity)
  2293. want_sd = 0;
  2294. }
  2295. /*
  2296. * If both cpu and prev_cpu are part of this domain,
  2297. * cpu is a valid SD_WAKE_AFFINE target.
  2298. */
  2299. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2300. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2301. affine_sd = tmp;
  2302. want_affine = 0;
  2303. }
  2304. if (!want_sd && !want_affine)
  2305. break;
  2306. if (!(tmp->flags & sd_flag))
  2307. continue;
  2308. if (want_sd)
  2309. sd = tmp;
  2310. }
  2311. if (affine_sd) {
  2312. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2313. prev_cpu = cpu;
  2314. new_cpu = select_idle_sibling(p, prev_cpu);
  2315. goto unlock;
  2316. }
  2317. while (sd) {
  2318. int load_idx = sd->forkexec_idx;
  2319. struct sched_group *group;
  2320. int weight;
  2321. if (!(sd->flags & sd_flag)) {
  2322. sd = sd->child;
  2323. continue;
  2324. }
  2325. if (sd_flag & SD_BALANCE_WAKE)
  2326. load_idx = sd->wake_idx;
  2327. group = find_idlest_group(sd, p, cpu, load_idx);
  2328. if (!group) {
  2329. sd = sd->child;
  2330. continue;
  2331. }
  2332. new_cpu = find_idlest_cpu(group, p, cpu);
  2333. if (new_cpu == -1 || new_cpu == cpu) {
  2334. /* Now try balancing at a lower domain level of cpu */
  2335. sd = sd->child;
  2336. continue;
  2337. }
  2338. /* Now try balancing at a lower domain level of new_cpu */
  2339. cpu = new_cpu;
  2340. weight = sd->span_weight;
  2341. sd = NULL;
  2342. for_each_domain(cpu, tmp) {
  2343. if (weight <= tmp->span_weight)
  2344. break;
  2345. if (tmp->flags & sd_flag)
  2346. sd = tmp;
  2347. }
  2348. /* while loop will break here if sd == NULL */
  2349. }
  2350. unlock:
  2351. rcu_read_unlock();
  2352. return new_cpu;
  2353. }
  2354. #endif /* CONFIG_SMP */
  2355. static unsigned long
  2356. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2357. {
  2358. unsigned long gran = sysctl_sched_wakeup_granularity;
  2359. /*
  2360. * Since its curr running now, convert the gran from real-time
  2361. * to virtual-time in his units.
  2362. *
  2363. * By using 'se' instead of 'curr' we penalize light tasks, so
  2364. * they get preempted easier. That is, if 'se' < 'curr' then
  2365. * the resulting gran will be larger, therefore penalizing the
  2366. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2367. * be smaller, again penalizing the lighter task.
  2368. *
  2369. * This is especially important for buddies when the leftmost
  2370. * task is higher priority than the buddy.
  2371. */
  2372. return calc_delta_fair(gran, se);
  2373. }
  2374. /*
  2375. * Should 'se' preempt 'curr'.
  2376. *
  2377. * |s1
  2378. * |s2
  2379. * |s3
  2380. * g
  2381. * |<--->|c
  2382. *
  2383. * w(c, s1) = -1
  2384. * w(c, s2) = 0
  2385. * w(c, s3) = 1
  2386. *
  2387. */
  2388. static int
  2389. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2390. {
  2391. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2392. if (vdiff <= 0)
  2393. return -1;
  2394. gran = wakeup_gran(curr, se);
  2395. if (vdiff > gran)
  2396. return 1;
  2397. return 0;
  2398. }
  2399. static void set_last_buddy(struct sched_entity *se)
  2400. {
  2401. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2402. return;
  2403. for_each_sched_entity(se)
  2404. cfs_rq_of(se)->last = se;
  2405. }
  2406. static void set_next_buddy(struct sched_entity *se)
  2407. {
  2408. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2409. return;
  2410. for_each_sched_entity(se)
  2411. cfs_rq_of(se)->next = se;
  2412. }
  2413. static void set_skip_buddy(struct sched_entity *se)
  2414. {
  2415. for_each_sched_entity(se)
  2416. cfs_rq_of(se)->skip = se;
  2417. }
  2418. /*
  2419. * Preempt the current task with a newly woken task if needed:
  2420. */
  2421. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2422. {
  2423. struct task_struct *curr = rq->curr;
  2424. struct sched_entity *se = &curr->se, *pse = &p->se;
  2425. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2426. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2427. int next_buddy_marked = 0;
  2428. if (unlikely(se == pse))
  2429. return;
  2430. /*
  2431. * This is possible from callers such as pull_task(), in which we
  2432. * unconditionally check_prempt_curr() after an enqueue (which may have
  2433. * lead to a throttle). This both saves work and prevents false
  2434. * next-buddy nomination below.
  2435. */
  2436. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2437. return;
  2438. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2439. set_next_buddy(pse);
  2440. next_buddy_marked = 1;
  2441. }
  2442. /*
  2443. * We can come here with TIF_NEED_RESCHED already set from new task
  2444. * wake up path.
  2445. *
  2446. * Note: this also catches the edge-case of curr being in a throttled
  2447. * group (e.g. via set_curr_task), since update_curr() (in the
  2448. * enqueue of curr) will have resulted in resched being set. This
  2449. * prevents us from potentially nominating it as a false LAST_BUDDY
  2450. * below.
  2451. */
  2452. if (test_tsk_need_resched(curr))
  2453. return;
  2454. /* Idle tasks are by definition preempted by non-idle tasks. */
  2455. if (unlikely(curr->policy == SCHED_IDLE) &&
  2456. likely(p->policy != SCHED_IDLE))
  2457. goto preempt;
  2458. /*
  2459. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2460. * is driven by the tick):
  2461. */
  2462. if (unlikely(p->policy != SCHED_NORMAL))
  2463. return;
  2464. find_matching_se(&se, &pse);
  2465. update_curr(cfs_rq_of(se));
  2466. BUG_ON(!pse);
  2467. if (wakeup_preempt_entity(se, pse) == 1) {
  2468. /*
  2469. * Bias pick_next to pick the sched entity that is
  2470. * triggering this preemption.
  2471. */
  2472. if (!next_buddy_marked)
  2473. set_next_buddy(pse);
  2474. goto preempt;
  2475. }
  2476. return;
  2477. preempt:
  2478. resched_task(curr);
  2479. /*
  2480. * Only set the backward buddy when the current task is still
  2481. * on the rq. This can happen when a wakeup gets interleaved
  2482. * with schedule on the ->pre_schedule() or idle_balance()
  2483. * point, either of which can * drop the rq lock.
  2484. *
  2485. * Also, during early boot the idle thread is in the fair class,
  2486. * for obvious reasons its a bad idea to schedule back to it.
  2487. */
  2488. if (unlikely(!se->on_rq || curr == rq->idle))
  2489. return;
  2490. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2491. set_last_buddy(se);
  2492. }
  2493. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2494. {
  2495. struct task_struct *p;
  2496. struct cfs_rq *cfs_rq = &rq->cfs;
  2497. struct sched_entity *se;
  2498. if (!cfs_rq->nr_running)
  2499. return NULL;
  2500. do {
  2501. se = pick_next_entity(cfs_rq);
  2502. set_next_entity(cfs_rq, se);
  2503. cfs_rq = group_cfs_rq(se);
  2504. } while (cfs_rq);
  2505. p = task_of(se);
  2506. hrtick_start_fair(rq, p);
  2507. return p;
  2508. }
  2509. /*
  2510. * Account for a descheduled task:
  2511. */
  2512. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2513. {
  2514. struct sched_entity *se = &prev->se;
  2515. struct cfs_rq *cfs_rq;
  2516. for_each_sched_entity(se) {
  2517. cfs_rq = cfs_rq_of(se);
  2518. put_prev_entity(cfs_rq, se);
  2519. }
  2520. }
  2521. /*
  2522. * sched_yield() is very simple
  2523. *
  2524. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2525. */
  2526. static void yield_task_fair(struct rq *rq)
  2527. {
  2528. struct task_struct *curr = rq->curr;
  2529. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2530. struct sched_entity *se = &curr->se;
  2531. /*
  2532. * Are we the only task in the tree?
  2533. */
  2534. if (unlikely(rq->nr_running == 1))
  2535. return;
  2536. clear_buddies(cfs_rq, se);
  2537. if (curr->policy != SCHED_BATCH) {
  2538. update_rq_clock(rq);
  2539. /*
  2540. * Update run-time statistics of the 'current'.
  2541. */
  2542. update_curr(cfs_rq);
  2543. }
  2544. set_skip_buddy(se);
  2545. }
  2546. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2547. {
  2548. struct sched_entity *se = &p->se;
  2549. /* throttled hierarchies are not runnable */
  2550. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2551. return false;
  2552. /* Tell the scheduler that we'd really like pse to run next. */
  2553. set_next_buddy(se);
  2554. yield_task_fair(rq);
  2555. return true;
  2556. }
  2557. #ifdef CONFIG_SMP
  2558. /**************************************************
  2559. * Fair scheduling class load-balancing methods:
  2560. */
  2561. /*
  2562. * pull_task - move a task from a remote runqueue to the local runqueue.
  2563. * Both runqueues must be locked.
  2564. */
  2565. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2566. struct rq *this_rq, int this_cpu)
  2567. {
  2568. deactivate_task(src_rq, p, 0);
  2569. set_task_cpu(p, this_cpu);
  2570. activate_task(this_rq, p, 0);
  2571. check_preempt_curr(this_rq, p, 0);
  2572. }
  2573. /*
  2574. * Is this task likely cache-hot:
  2575. */
  2576. static int
  2577. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2578. {
  2579. s64 delta;
  2580. if (p->sched_class != &fair_sched_class)
  2581. return 0;
  2582. if (unlikely(p->policy == SCHED_IDLE))
  2583. return 0;
  2584. /*
  2585. * Buddy candidates are cache hot:
  2586. */
  2587. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2588. (&p->se == cfs_rq_of(&p->se)->next ||
  2589. &p->se == cfs_rq_of(&p->se)->last))
  2590. return 1;
  2591. if (sysctl_sched_migration_cost == -1)
  2592. return 1;
  2593. if (sysctl_sched_migration_cost == 0)
  2594. return 0;
  2595. delta = now - p->se.exec_start;
  2596. return delta < (s64)sysctl_sched_migration_cost;
  2597. }
  2598. /*
  2599. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2600. */
  2601. static
  2602. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2603. struct sched_domain *sd, enum cpu_idle_type idle,
  2604. int *all_pinned)
  2605. {
  2606. int tsk_cache_hot = 0;
  2607. /*
  2608. * We do not migrate tasks that are:
  2609. * 1) running (obviously), or
  2610. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2611. * 3) are cache-hot on their current CPU.
  2612. */
  2613. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2614. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2615. return 0;
  2616. }
  2617. *all_pinned = 0;
  2618. if (task_running(rq, p)) {
  2619. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2620. return 0;
  2621. }
  2622. /*
  2623. * Aggressive migration if:
  2624. * 1) task is cache cold, or
  2625. * 2) too many balance attempts have failed.
  2626. */
  2627. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2628. if (!tsk_cache_hot ||
  2629. sd->nr_balance_failed > sd->cache_nice_tries) {
  2630. #ifdef CONFIG_SCHEDSTATS
  2631. if (tsk_cache_hot) {
  2632. schedstat_inc(sd, lb_hot_gained[idle]);
  2633. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2634. }
  2635. #endif
  2636. return 1;
  2637. }
  2638. if (tsk_cache_hot) {
  2639. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2640. return 0;
  2641. }
  2642. return 1;
  2643. }
  2644. /*
  2645. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2646. * part of active balancing operations within "domain".
  2647. * Returns 1 if successful and 0 otherwise.
  2648. *
  2649. * Called with both runqueues locked.
  2650. */
  2651. static int
  2652. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2653. struct sched_domain *sd, enum cpu_idle_type idle)
  2654. {
  2655. struct task_struct *p, *n;
  2656. struct cfs_rq *cfs_rq;
  2657. int pinned = 0;
  2658. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2659. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2660. if (throttled_lb_pair(task_group(p),
  2661. busiest->cpu, this_cpu))
  2662. break;
  2663. if (!can_migrate_task(p, busiest, this_cpu,
  2664. sd, idle, &pinned))
  2665. continue;
  2666. pull_task(busiest, p, this_rq, this_cpu);
  2667. /*
  2668. * Right now, this is only the second place pull_task()
  2669. * is called, so we can safely collect pull_task()
  2670. * stats here rather than inside pull_task().
  2671. */
  2672. schedstat_inc(sd, lb_gained[idle]);
  2673. return 1;
  2674. }
  2675. }
  2676. return 0;
  2677. }
  2678. static unsigned long
  2679. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2680. unsigned long max_load_move, struct sched_domain *sd,
  2681. enum cpu_idle_type idle, int *all_pinned,
  2682. struct cfs_rq *busiest_cfs_rq)
  2683. {
  2684. int loops = 0, pulled = 0;
  2685. long rem_load_move = max_load_move;
  2686. struct task_struct *p, *n;
  2687. if (max_load_move == 0)
  2688. goto out;
  2689. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2690. if (loops++ > sysctl_sched_nr_migrate)
  2691. break;
  2692. if ((p->se.load.weight >> 1) > rem_load_move ||
  2693. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2694. all_pinned))
  2695. continue;
  2696. pull_task(busiest, p, this_rq, this_cpu);
  2697. pulled++;
  2698. rem_load_move -= p->se.load.weight;
  2699. #ifdef CONFIG_PREEMPT
  2700. /*
  2701. * NEWIDLE balancing is a source of latency, so preemptible
  2702. * kernels will stop after the first task is pulled to minimize
  2703. * the critical section.
  2704. */
  2705. if (idle == CPU_NEWLY_IDLE)
  2706. break;
  2707. #endif
  2708. /*
  2709. * We only want to steal up to the prescribed amount of
  2710. * weighted load.
  2711. */
  2712. if (rem_load_move <= 0)
  2713. break;
  2714. }
  2715. out:
  2716. /*
  2717. * Right now, this is one of only two places pull_task() is called,
  2718. * so we can safely collect pull_task() stats here rather than
  2719. * inside pull_task().
  2720. */
  2721. schedstat_add(sd, lb_gained[idle], pulled);
  2722. return max_load_move - rem_load_move;
  2723. }
  2724. #ifdef CONFIG_FAIR_GROUP_SCHED
  2725. /*
  2726. * update tg->load_weight by folding this cpu's load_avg
  2727. */
  2728. static int update_shares_cpu(struct task_group *tg, int cpu)
  2729. {
  2730. struct cfs_rq *cfs_rq;
  2731. unsigned long flags;
  2732. struct rq *rq;
  2733. if (!tg->se[cpu])
  2734. return 0;
  2735. rq = cpu_rq(cpu);
  2736. cfs_rq = tg->cfs_rq[cpu];
  2737. raw_spin_lock_irqsave(&rq->lock, flags);
  2738. update_rq_clock(rq);
  2739. update_cfs_load(cfs_rq, 1);
  2740. /*
  2741. * We need to update shares after updating tg->load_weight in
  2742. * order to adjust the weight of groups with long running tasks.
  2743. */
  2744. update_cfs_shares(cfs_rq);
  2745. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2746. return 0;
  2747. }
  2748. static void update_shares(int cpu)
  2749. {
  2750. struct cfs_rq *cfs_rq;
  2751. struct rq *rq = cpu_rq(cpu);
  2752. rcu_read_lock();
  2753. /*
  2754. * Iterates the task_group tree in a bottom up fashion, see
  2755. * list_add_leaf_cfs_rq() for details.
  2756. */
  2757. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2758. /* throttled entities do not contribute to load */
  2759. if (throttled_hierarchy(cfs_rq))
  2760. continue;
  2761. update_shares_cpu(cfs_rq->tg, cpu);
  2762. }
  2763. rcu_read_unlock();
  2764. }
  2765. /*
  2766. * Compute the cpu's hierarchical load factor for each task group.
  2767. * This needs to be done in a top-down fashion because the load of a child
  2768. * group is a fraction of its parents load.
  2769. */
  2770. static int tg_load_down(struct task_group *tg, void *data)
  2771. {
  2772. unsigned long load;
  2773. long cpu = (long)data;
  2774. if (!tg->parent) {
  2775. load = cpu_rq(cpu)->load.weight;
  2776. } else {
  2777. load = tg->parent->cfs_rq[cpu]->h_load;
  2778. load *= tg->se[cpu]->load.weight;
  2779. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2780. }
  2781. tg->cfs_rq[cpu]->h_load = load;
  2782. return 0;
  2783. }
  2784. static void update_h_load(long cpu)
  2785. {
  2786. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2787. }
  2788. static unsigned long
  2789. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2790. unsigned long max_load_move,
  2791. struct sched_domain *sd, enum cpu_idle_type idle,
  2792. int *all_pinned)
  2793. {
  2794. long rem_load_move = max_load_move;
  2795. struct cfs_rq *busiest_cfs_rq;
  2796. rcu_read_lock();
  2797. update_h_load(cpu_of(busiest));
  2798. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2799. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2800. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2801. u64 rem_load, moved_load;
  2802. /*
  2803. * empty group or part of a throttled hierarchy
  2804. */
  2805. if (!busiest_cfs_rq->task_weight ||
  2806. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2807. continue;
  2808. rem_load = (u64)rem_load_move * busiest_weight;
  2809. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2810. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2811. rem_load, sd, idle, all_pinned,
  2812. busiest_cfs_rq);
  2813. if (!moved_load)
  2814. continue;
  2815. moved_load *= busiest_h_load;
  2816. moved_load = div_u64(moved_load, busiest_weight + 1);
  2817. rem_load_move -= moved_load;
  2818. if (rem_load_move < 0)
  2819. break;
  2820. }
  2821. rcu_read_unlock();
  2822. return max_load_move - rem_load_move;
  2823. }
  2824. #else
  2825. static inline void update_shares(int cpu)
  2826. {
  2827. }
  2828. static unsigned long
  2829. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2830. unsigned long max_load_move,
  2831. struct sched_domain *sd, enum cpu_idle_type idle,
  2832. int *all_pinned)
  2833. {
  2834. return balance_tasks(this_rq, this_cpu, busiest,
  2835. max_load_move, sd, idle, all_pinned,
  2836. &busiest->cfs);
  2837. }
  2838. #endif
  2839. /*
  2840. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2841. * this_rq, as part of a balancing operation within domain "sd".
  2842. * Returns 1 if successful and 0 otherwise.
  2843. *
  2844. * Called with both runqueues locked.
  2845. */
  2846. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2847. unsigned long max_load_move,
  2848. struct sched_domain *sd, enum cpu_idle_type idle,
  2849. int *all_pinned)
  2850. {
  2851. unsigned long total_load_moved = 0, load_moved;
  2852. do {
  2853. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2854. max_load_move - total_load_moved,
  2855. sd, idle, all_pinned);
  2856. total_load_moved += load_moved;
  2857. #ifdef CONFIG_PREEMPT
  2858. /*
  2859. * NEWIDLE balancing is a source of latency, so preemptible
  2860. * kernels will stop after the first task is pulled to minimize
  2861. * the critical section.
  2862. */
  2863. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2864. break;
  2865. if (raw_spin_is_contended(&this_rq->lock) ||
  2866. raw_spin_is_contended(&busiest->lock))
  2867. break;
  2868. #endif
  2869. } while (load_moved && max_load_move > total_load_moved);
  2870. return total_load_moved > 0;
  2871. }
  2872. /********** Helpers for find_busiest_group ************************/
  2873. /*
  2874. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2875. * during load balancing.
  2876. */
  2877. struct sd_lb_stats {
  2878. struct sched_group *busiest; /* Busiest group in this sd */
  2879. struct sched_group *this; /* Local group in this sd */
  2880. unsigned long total_load; /* Total load of all groups in sd */
  2881. unsigned long total_pwr; /* Total power of all groups in sd */
  2882. unsigned long avg_load; /* Average load across all groups in sd */
  2883. /** Statistics of this group */
  2884. unsigned long this_load;
  2885. unsigned long this_load_per_task;
  2886. unsigned long this_nr_running;
  2887. unsigned long this_has_capacity;
  2888. unsigned int this_idle_cpus;
  2889. /* Statistics of the busiest group */
  2890. unsigned int busiest_idle_cpus;
  2891. unsigned long max_load;
  2892. unsigned long busiest_load_per_task;
  2893. unsigned long busiest_nr_running;
  2894. unsigned long busiest_group_capacity;
  2895. unsigned long busiest_has_capacity;
  2896. unsigned int busiest_group_weight;
  2897. int group_imb; /* Is there imbalance in this sd */
  2898. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2899. int power_savings_balance; /* Is powersave balance needed for this sd */
  2900. struct sched_group *group_min; /* Least loaded group in sd */
  2901. struct sched_group *group_leader; /* Group which relieves group_min */
  2902. unsigned long min_load_per_task; /* load_per_task in group_min */
  2903. unsigned long leader_nr_running; /* Nr running of group_leader */
  2904. unsigned long min_nr_running; /* Nr running of group_min */
  2905. #endif
  2906. };
  2907. /*
  2908. * sg_lb_stats - stats of a sched_group required for load_balancing
  2909. */
  2910. struct sg_lb_stats {
  2911. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2912. unsigned long group_load; /* Total load over the CPUs of the group */
  2913. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2914. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2915. unsigned long group_capacity;
  2916. unsigned long idle_cpus;
  2917. unsigned long group_weight;
  2918. int group_imb; /* Is there an imbalance in the group ? */
  2919. int group_has_capacity; /* Is there extra capacity in the group? */
  2920. };
  2921. /**
  2922. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2923. * @sd: The sched_domain whose load_idx is to be obtained.
  2924. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2925. */
  2926. static inline int get_sd_load_idx(struct sched_domain *sd,
  2927. enum cpu_idle_type idle)
  2928. {
  2929. int load_idx;
  2930. switch (idle) {
  2931. case CPU_NOT_IDLE:
  2932. load_idx = sd->busy_idx;
  2933. break;
  2934. case CPU_NEWLY_IDLE:
  2935. load_idx = sd->newidle_idx;
  2936. break;
  2937. default:
  2938. load_idx = sd->idle_idx;
  2939. break;
  2940. }
  2941. return load_idx;
  2942. }
  2943. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2944. /**
  2945. * init_sd_power_savings_stats - Initialize power savings statistics for
  2946. * the given sched_domain, during load balancing.
  2947. *
  2948. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2949. * @sds: Variable containing the statistics for sd.
  2950. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2951. */
  2952. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2953. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2954. {
  2955. /*
  2956. * Busy processors will not participate in power savings
  2957. * balance.
  2958. */
  2959. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2960. sds->power_savings_balance = 0;
  2961. else {
  2962. sds->power_savings_balance = 1;
  2963. sds->min_nr_running = ULONG_MAX;
  2964. sds->leader_nr_running = 0;
  2965. }
  2966. }
  2967. /**
  2968. * update_sd_power_savings_stats - Update the power saving stats for a
  2969. * sched_domain while performing load balancing.
  2970. *
  2971. * @group: sched_group belonging to the sched_domain under consideration.
  2972. * @sds: Variable containing the statistics of the sched_domain
  2973. * @local_group: Does group contain the CPU for which we're performing
  2974. * load balancing ?
  2975. * @sgs: Variable containing the statistics of the group.
  2976. */
  2977. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2978. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2979. {
  2980. if (!sds->power_savings_balance)
  2981. return;
  2982. /*
  2983. * If the local group is idle or completely loaded
  2984. * no need to do power savings balance at this domain
  2985. */
  2986. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2987. !sds->this_nr_running))
  2988. sds->power_savings_balance = 0;
  2989. /*
  2990. * If a group is already running at full capacity or idle,
  2991. * don't include that group in power savings calculations
  2992. */
  2993. if (!sds->power_savings_balance ||
  2994. sgs->sum_nr_running >= sgs->group_capacity ||
  2995. !sgs->sum_nr_running)
  2996. return;
  2997. /*
  2998. * Calculate the group which has the least non-idle load.
  2999. * This is the group from where we need to pick up the load
  3000. * for saving power
  3001. */
  3002. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3003. (sgs->sum_nr_running == sds->min_nr_running &&
  3004. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3005. sds->group_min = group;
  3006. sds->min_nr_running = sgs->sum_nr_running;
  3007. sds->min_load_per_task = sgs->sum_weighted_load /
  3008. sgs->sum_nr_running;
  3009. }
  3010. /*
  3011. * Calculate the group which is almost near its
  3012. * capacity but still has some space to pick up some load
  3013. * from other group and save more power
  3014. */
  3015. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3016. return;
  3017. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3018. (sgs->sum_nr_running == sds->leader_nr_running &&
  3019. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3020. sds->group_leader = group;
  3021. sds->leader_nr_running = sgs->sum_nr_running;
  3022. }
  3023. }
  3024. /**
  3025. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3026. * @sds: Variable containing the statistics of the sched_domain
  3027. * under consideration.
  3028. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3029. * @imbalance: Variable to store the imbalance.
  3030. *
  3031. * Description:
  3032. * Check if we have potential to perform some power-savings balance.
  3033. * If yes, set the busiest group to be the least loaded group in the
  3034. * sched_domain, so that it's CPUs can be put to idle.
  3035. *
  3036. * Returns 1 if there is potential to perform power-savings balance.
  3037. * Else returns 0.
  3038. */
  3039. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3040. int this_cpu, unsigned long *imbalance)
  3041. {
  3042. if (!sds->power_savings_balance)
  3043. return 0;
  3044. if (sds->this != sds->group_leader ||
  3045. sds->group_leader == sds->group_min)
  3046. return 0;
  3047. *imbalance = sds->min_load_per_task;
  3048. sds->busiest = sds->group_min;
  3049. return 1;
  3050. }
  3051. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3052. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3053. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3054. {
  3055. return;
  3056. }
  3057. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3058. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3059. {
  3060. return;
  3061. }
  3062. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3063. int this_cpu, unsigned long *imbalance)
  3064. {
  3065. return 0;
  3066. }
  3067. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3068. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3069. {
  3070. return SCHED_POWER_SCALE;
  3071. }
  3072. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3073. {
  3074. return default_scale_freq_power(sd, cpu);
  3075. }
  3076. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3077. {
  3078. unsigned long weight = sd->span_weight;
  3079. unsigned long smt_gain = sd->smt_gain;
  3080. smt_gain /= weight;
  3081. return smt_gain;
  3082. }
  3083. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3084. {
  3085. return default_scale_smt_power(sd, cpu);
  3086. }
  3087. unsigned long scale_rt_power(int cpu)
  3088. {
  3089. struct rq *rq = cpu_rq(cpu);
  3090. u64 total, available;
  3091. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3092. if (unlikely(total < rq->rt_avg)) {
  3093. /* Ensures that power won't end up being negative */
  3094. available = 0;
  3095. } else {
  3096. available = total - rq->rt_avg;
  3097. }
  3098. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3099. total = SCHED_POWER_SCALE;
  3100. total >>= SCHED_POWER_SHIFT;
  3101. return div_u64(available, total);
  3102. }
  3103. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3104. {
  3105. unsigned long weight = sd->span_weight;
  3106. unsigned long power = SCHED_POWER_SCALE;
  3107. struct sched_group *sdg = sd->groups;
  3108. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3109. if (sched_feat(ARCH_POWER))
  3110. power *= arch_scale_smt_power(sd, cpu);
  3111. else
  3112. power *= default_scale_smt_power(sd, cpu);
  3113. power >>= SCHED_POWER_SHIFT;
  3114. }
  3115. sdg->sgp->power_orig = power;
  3116. if (sched_feat(ARCH_POWER))
  3117. power *= arch_scale_freq_power(sd, cpu);
  3118. else
  3119. power *= default_scale_freq_power(sd, cpu);
  3120. power >>= SCHED_POWER_SHIFT;
  3121. power *= scale_rt_power(cpu);
  3122. power >>= SCHED_POWER_SHIFT;
  3123. if (!power)
  3124. power = 1;
  3125. cpu_rq(cpu)->cpu_power = power;
  3126. sdg->sgp->power = power;
  3127. }
  3128. void update_group_power(struct sched_domain *sd, int cpu)
  3129. {
  3130. struct sched_domain *child = sd->child;
  3131. struct sched_group *group, *sdg = sd->groups;
  3132. unsigned long power;
  3133. if (!child) {
  3134. update_cpu_power(sd, cpu);
  3135. return;
  3136. }
  3137. power = 0;
  3138. group = child->groups;
  3139. do {
  3140. power += group->sgp->power;
  3141. group = group->next;
  3142. } while (group != child->groups);
  3143. sdg->sgp->power = power;
  3144. }
  3145. /*
  3146. * Try and fix up capacity for tiny siblings, this is needed when
  3147. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3148. * which on its own isn't powerful enough.
  3149. *
  3150. * See update_sd_pick_busiest() and check_asym_packing().
  3151. */
  3152. static inline int
  3153. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3154. {
  3155. /*
  3156. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3157. */
  3158. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3159. return 0;
  3160. /*
  3161. * If ~90% of the cpu_power is still there, we're good.
  3162. */
  3163. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3164. return 1;
  3165. return 0;
  3166. }
  3167. /**
  3168. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3169. * @sd: The sched_domain whose statistics are to be updated.
  3170. * @group: sched_group whose statistics are to be updated.
  3171. * @this_cpu: Cpu for which load balance is currently performed.
  3172. * @idle: Idle status of this_cpu
  3173. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3174. * @local_group: Does group contain this_cpu.
  3175. * @cpus: Set of cpus considered for load balancing.
  3176. * @balance: Should we balance.
  3177. * @sgs: variable to hold the statistics for this group.
  3178. */
  3179. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3180. struct sched_group *group, int this_cpu,
  3181. enum cpu_idle_type idle, int load_idx,
  3182. int local_group, const struct cpumask *cpus,
  3183. int *balance, struct sg_lb_stats *sgs)
  3184. {
  3185. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  3186. int i;
  3187. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3188. unsigned long avg_load_per_task = 0;
  3189. if (local_group)
  3190. balance_cpu = group_first_cpu(group);
  3191. /* Tally up the load of all CPUs in the group */
  3192. max_cpu_load = 0;
  3193. min_cpu_load = ~0UL;
  3194. max_nr_running = 0;
  3195. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3196. struct rq *rq = cpu_rq(i);
  3197. /* Bias balancing toward cpus of our domain */
  3198. if (local_group) {
  3199. if (idle_cpu(i) && !first_idle_cpu) {
  3200. first_idle_cpu = 1;
  3201. balance_cpu = i;
  3202. }
  3203. load = target_load(i, load_idx);
  3204. } else {
  3205. load = source_load(i, load_idx);
  3206. if (load > max_cpu_load) {
  3207. max_cpu_load = load;
  3208. max_nr_running = rq->nr_running;
  3209. }
  3210. if (min_cpu_load > load)
  3211. min_cpu_load = load;
  3212. }
  3213. sgs->group_load += load;
  3214. sgs->sum_nr_running += rq->nr_running;
  3215. sgs->sum_weighted_load += weighted_cpuload(i);
  3216. if (idle_cpu(i))
  3217. sgs->idle_cpus++;
  3218. }
  3219. /*
  3220. * First idle cpu or the first cpu(busiest) in this sched group
  3221. * is eligible for doing load balancing at this and above
  3222. * domains. In the newly idle case, we will allow all the cpu's
  3223. * to do the newly idle load balance.
  3224. */
  3225. if (idle != CPU_NEWLY_IDLE && local_group) {
  3226. if (balance_cpu != this_cpu) {
  3227. *balance = 0;
  3228. return;
  3229. }
  3230. update_group_power(sd, this_cpu);
  3231. }
  3232. /* Adjust by relative CPU power of the group */
  3233. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3234. /*
  3235. * Consider the group unbalanced when the imbalance is larger
  3236. * than the average weight of a task.
  3237. *
  3238. * APZ: with cgroup the avg task weight can vary wildly and
  3239. * might not be a suitable number - should we keep a
  3240. * normalized nr_running number somewhere that negates
  3241. * the hierarchy?
  3242. */
  3243. if (sgs->sum_nr_running)
  3244. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3245. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  3246. sgs->group_imb = 1;
  3247. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3248. SCHED_POWER_SCALE);
  3249. if (!sgs->group_capacity)
  3250. sgs->group_capacity = fix_small_capacity(sd, group);
  3251. sgs->group_weight = group->group_weight;
  3252. if (sgs->group_capacity > sgs->sum_nr_running)
  3253. sgs->group_has_capacity = 1;
  3254. }
  3255. /**
  3256. * update_sd_pick_busiest - return 1 on busiest group
  3257. * @sd: sched_domain whose statistics are to be checked
  3258. * @sds: sched_domain statistics
  3259. * @sg: sched_group candidate to be checked for being the busiest
  3260. * @sgs: sched_group statistics
  3261. * @this_cpu: the current cpu
  3262. *
  3263. * Determine if @sg is a busier group than the previously selected
  3264. * busiest group.
  3265. */
  3266. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3267. struct sd_lb_stats *sds,
  3268. struct sched_group *sg,
  3269. struct sg_lb_stats *sgs,
  3270. int this_cpu)
  3271. {
  3272. if (sgs->avg_load <= sds->max_load)
  3273. return false;
  3274. if (sgs->sum_nr_running > sgs->group_capacity)
  3275. return true;
  3276. if (sgs->group_imb)
  3277. return true;
  3278. /*
  3279. * ASYM_PACKING needs to move all the work to the lowest
  3280. * numbered CPUs in the group, therefore mark all groups
  3281. * higher than ourself as busy.
  3282. */
  3283. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3284. this_cpu < group_first_cpu(sg)) {
  3285. if (!sds->busiest)
  3286. return true;
  3287. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3288. return true;
  3289. }
  3290. return false;
  3291. }
  3292. /**
  3293. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3294. * @sd: sched_domain whose statistics are to be updated.
  3295. * @this_cpu: Cpu for which load balance is currently performed.
  3296. * @idle: Idle status of this_cpu
  3297. * @cpus: Set of cpus considered for load balancing.
  3298. * @balance: Should we balance.
  3299. * @sds: variable to hold the statistics for this sched_domain.
  3300. */
  3301. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3302. enum cpu_idle_type idle, const struct cpumask *cpus,
  3303. int *balance, struct sd_lb_stats *sds)
  3304. {
  3305. struct sched_domain *child = sd->child;
  3306. struct sched_group *sg = sd->groups;
  3307. struct sg_lb_stats sgs;
  3308. int load_idx, prefer_sibling = 0;
  3309. if (child && child->flags & SD_PREFER_SIBLING)
  3310. prefer_sibling = 1;
  3311. init_sd_power_savings_stats(sd, sds, idle);
  3312. load_idx = get_sd_load_idx(sd, idle);
  3313. do {
  3314. int local_group;
  3315. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3316. memset(&sgs, 0, sizeof(sgs));
  3317. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3318. local_group, cpus, balance, &sgs);
  3319. if (local_group && !(*balance))
  3320. return;
  3321. sds->total_load += sgs.group_load;
  3322. sds->total_pwr += sg->sgp->power;
  3323. /*
  3324. * In case the child domain prefers tasks go to siblings
  3325. * first, lower the sg capacity to one so that we'll try
  3326. * and move all the excess tasks away. We lower the capacity
  3327. * of a group only if the local group has the capacity to fit
  3328. * these excess tasks, i.e. nr_running < group_capacity. The
  3329. * extra check prevents the case where you always pull from the
  3330. * heaviest group when it is already under-utilized (possible
  3331. * with a large weight task outweighs the tasks on the system).
  3332. */
  3333. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3334. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3335. if (local_group) {
  3336. sds->this_load = sgs.avg_load;
  3337. sds->this = sg;
  3338. sds->this_nr_running = sgs.sum_nr_running;
  3339. sds->this_load_per_task = sgs.sum_weighted_load;
  3340. sds->this_has_capacity = sgs.group_has_capacity;
  3341. sds->this_idle_cpus = sgs.idle_cpus;
  3342. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3343. sds->max_load = sgs.avg_load;
  3344. sds->busiest = sg;
  3345. sds->busiest_nr_running = sgs.sum_nr_running;
  3346. sds->busiest_idle_cpus = sgs.idle_cpus;
  3347. sds->busiest_group_capacity = sgs.group_capacity;
  3348. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3349. sds->busiest_has_capacity = sgs.group_has_capacity;
  3350. sds->busiest_group_weight = sgs.group_weight;
  3351. sds->group_imb = sgs.group_imb;
  3352. }
  3353. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3354. sg = sg->next;
  3355. } while (sg != sd->groups);
  3356. }
  3357. /**
  3358. * check_asym_packing - Check to see if the group is packed into the
  3359. * sched doman.
  3360. *
  3361. * This is primarily intended to used at the sibling level. Some
  3362. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3363. * case of POWER7, it can move to lower SMT modes only when higher
  3364. * threads are idle. When in lower SMT modes, the threads will
  3365. * perform better since they share less core resources. Hence when we
  3366. * have idle threads, we want them to be the higher ones.
  3367. *
  3368. * This packing function is run on idle threads. It checks to see if
  3369. * the busiest CPU in this domain (core in the P7 case) has a higher
  3370. * CPU number than the packing function is being run on. Here we are
  3371. * assuming lower CPU number will be equivalent to lower a SMT thread
  3372. * number.
  3373. *
  3374. * Returns 1 when packing is required and a task should be moved to
  3375. * this CPU. The amount of the imbalance is returned in *imbalance.
  3376. *
  3377. * @sd: The sched_domain whose packing is to be checked.
  3378. * @sds: Statistics of the sched_domain which is to be packed
  3379. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3380. * @imbalance: returns amount of imbalanced due to packing.
  3381. */
  3382. static int check_asym_packing(struct sched_domain *sd,
  3383. struct sd_lb_stats *sds,
  3384. int this_cpu, unsigned long *imbalance)
  3385. {
  3386. int busiest_cpu;
  3387. if (!(sd->flags & SD_ASYM_PACKING))
  3388. return 0;
  3389. if (!sds->busiest)
  3390. return 0;
  3391. busiest_cpu = group_first_cpu(sds->busiest);
  3392. if (this_cpu > busiest_cpu)
  3393. return 0;
  3394. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3395. SCHED_POWER_SCALE);
  3396. return 1;
  3397. }
  3398. /**
  3399. * fix_small_imbalance - Calculate the minor imbalance that exists
  3400. * amongst the groups of a sched_domain, during
  3401. * load balancing.
  3402. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3403. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3404. * @imbalance: Variable to store the imbalance.
  3405. */
  3406. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3407. int this_cpu, unsigned long *imbalance)
  3408. {
  3409. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3410. unsigned int imbn = 2;
  3411. unsigned long scaled_busy_load_per_task;
  3412. if (sds->this_nr_running) {
  3413. sds->this_load_per_task /= sds->this_nr_running;
  3414. if (sds->busiest_load_per_task >
  3415. sds->this_load_per_task)
  3416. imbn = 1;
  3417. } else
  3418. sds->this_load_per_task =
  3419. cpu_avg_load_per_task(this_cpu);
  3420. scaled_busy_load_per_task = sds->busiest_load_per_task
  3421. * SCHED_POWER_SCALE;
  3422. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3423. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3424. (scaled_busy_load_per_task * imbn)) {
  3425. *imbalance = sds->busiest_load_per_task;
  3426. return;
  3427. }
  3428. /*
  3429. * OK, we don't have enough imbalance to justify moving tasks,
  3430. * however we may be able to increase total CPU power used by
  3431. * moving them.
  3432. */
  3433. pwr_now += sds->busiest->sgp->power *
  3434. min(sds->busiest_load_per_task, sds->max_load);
  3435. pwr_now += sds->this->sgp->power *
  3436. min(sds->this_load_per_task, sds->this_load);
  3437. pwr_now /= SCHED_POWER_SCALE;
  3438. /* Amount of load we'd subtract */
  3439. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3440. sds->busiest->sgp->power;
  3441. if (sds->max_load > tmp)
  3442. pwr_move += sds->busiest->sgp->power *
  3443. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3444. /* Amount of load we'd add */
  3445. if (sds->max_load * sds->busiest->sgp->power <
  3446. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3447. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3448. sds->this->sgp->power;
  3449. else
  3450. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3451. sds->this->sgp->power;
  3452. pwr_move += sds->this->sgp->power *
  3453. min(sds->this_load_per_task, sds->this_load + tmp);
  3454. pwr_move /= SCHED_POWER_SCALE;
  3455. /* Move if we gain throughput */
  3456. if (pwr_move > pwr_now)
  3457. *imbalance = sds->busiest_load_per_task;
  3458. }
  3459. /**
  3460. * calculate_imbalance - Calculate the amount of imbalance present within the
  3461. * groups of a given sched_domain during load balance.
  3462. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3463. * @this_cpu: Cpu for which currently load balance is being performed.
  3464. * @imbalance: The variable to store the imbalance.
  3465. */
  3466. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3467. unsigned long *imbalance)
  3468. {
  3469. unsigned long max_pull, load_above_capacity = ~0UL;
  3470. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3471. if (sds->group_imb) {
  3472. sds->busiest_load_per_task =
  3473. min(sds->busiest_load_per_task, sds->avg_load);
  3474. }
  3475. /*
  3476. * In the presence of smp nice balancing, certain scenarios can have
  3477. * max load less than avg load(as we skip the groups at or below
  3478. * its cpu_power, while calculating max_load..)
  3479. */
  3480. if (sds->max_load < sds->avg_load) {
  3481. *imbalance = 0;
  3482. return fix_small_imbalance(sds, this_cpu, imbalance);
  3483. }
  3484. if (!sds->group_imb) {
  3485. /*
  3486. * Don't want to pull so many tasks that a group would go idle.
  3487. */
  3488. load_above_capacity = (sds->busiest_nr_running -
  3489. sds->busiest_group_capacity);
  3490. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3491. load_above_capacity /= sds->busiest->sgp->power;
  3492. }
  3493. /*
  3494. * We're trying to get all the cpus to the average_load, so we don't
  3495. * want to push ourselves above the average load, nor do we wish to
  3496. * reduce the max loaded cpu below the average load. At the same time,
  3497. * we also don't want to reduce the group load below the group capacity
  3498. * (so that we can implement power-savings policies etc). Thus we look
  3499. * for the minimum possible imbalance.
  3500. * Be careful of negative numbers as they'll appear as very large values
  3501. * with unsigned longs.
  3502. */
  3503. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3504. /* How much load to actually move to equalise the imbalance */
  3505. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3506. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3507. / SCHED_POWER_SCALE;
  3508. /*
  3509. * if *imbalance is less than the average load per runnable task
  3510. * there is no guarantee that any tasks will be moved so we'll have
  3511. * a think about bumping its value to force at least one task to be
  3512. * moved
  3513. */
  3514. if (*imbalance < sds->busiest_load_per_task)
  3515. return fix_small_imbalance(sds, this_cpu, imbalance);
  3516. }
  3517. /******* find_busiest_group() helpers end here *********************/
  3518. /**
  3519. * find_busiest_group - Returns the busiest group within the sched_domain
  3520. * if there is an imbalance. If there isn't an imbalance, and
  3521. * the user has opted for power-savings, it returns a group whose
  3522. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3523. * such a group exists.
  3524. *
  3525. * Also calculates the amount of weighted load which should be moved
  3526. * to restore balance.
  3527. *
  3528. * @sd: The sched_domain whose busiest group is to be returned.
  3529. * @this_cpu: The cpu for which load balancing is currently being performed.
  3530. * @imbalance: Variable which stores amount of weighted load which should
  3531. * be moved to restore balance/put a group to idle.
  3532. * @idle: The idle status of this_cpu.
  3533. * @cpus: The set of CPUs under consideration for load-balancing.
  3534. * @balance: Pointer to a variable indicating if this_cpu
  3535. * is the appropriate cpu to perform load balancing at this_level.
  3536. *
  3537. * Returns: - the busiest group if imbalance exists.
  3538. * - If no imbalance and user has opted for power-savings balance,
  3539. * return the least loaded group whose CPUs can be
  3540. * put to idle by rebalancing its tasks onto our group.
  3541. */
  3542. static struct sched_group *
  3543. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3544. unsigned long *imbalance, enum cpu_idle_type idle,
  3545. const struct cpumask *cpus, int *balance)
  3546. {
  3547. struct sd_lb_stats sds;
  3548. memset(&sds, 0, sizeof(sds));
  3549. /*
  3550. * Compute the various statistics relavent for load balancing at
  3551. * this level.
  3552. */
  3553. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3554. /*
  3555. * this_cpu is not the appropriate cpu to perform load balancing at
  3556. * this level.
  3557. */
  3558. if (!(*balance))
  3559. goto ret;
  3560. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3561. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3562. return sds.busiest;
  3563. /* There is no busy sibling group to pull tasks from */
  3564. if (!sds.busiest || sds.busiest_nr_running == 0)
  3565. goto out_balanced;
  3566. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3567. /*
  3568. * If the busiest group is imbalanced the below checks don't
  3569. * work because they assumes all things are equal, which typically
  3570. * isn't true due to cpus_allowed constraints and the like.
  3571. */
  3572. if (sds.group_imb)
  3573. goto force_balance;
  3574. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3575. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3576. !sds.busiest_has_capacity)
  3577. goto force_balance;
  3578. /*
  3579. * If the local group is more busy than the selected busiest group
  3580. * don't try and pull any tasks.
  3581. */
  3582. if (sds.this_load >= sds.max_load)
  3583. goto out_balanced;
  3584. /*
  3585. * Don't pull any tasks if this group is already above the domain
  3586. * average load.
  3587. */
  3588. if (sds.this_load >= sds.avg_load)
  3589. goto out_balanced;
  3590. if (idle == CPU_IDLE) {
  3591. /*
  3592. * This cpu is idle. If the busiest group load doesn't
  3593. * have more tasks than the number of available cpu's and
  3594. * there is no imbalance between this and busiest group
  3595. * wrt to idle cpu's, it is balanced.
  3596. */
  3597. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3598. sds.busiest_nr_running <= sds.busiest_group_weight)
  3599. goto out_balanced;
  3600. } else {
  3601. /*
  3602. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3603. * imbalance_pct to be conservative.
  3604. */
  3605. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3606. goto out_balanced;
  3607. }
  3608. force_balance:
  3609. /* Looks like there is an imbalance. Compute it */
  3610. calculate_imbalance(&sds, this_cpu, imbalance);
  3611. return sds.busiest;
  3612. out_balanced:
  3613. /*
  3614. * There is no obvious imbalance. But check if we can do some balancing
  3615. * to save power.
  3616. */
  3617. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3618. return sds.busiest;
  3619. ret:
  3620. *imbalance = 0;
  3621. return NULL;
  3622. }
  3623. /*
  3624. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3625. */
  3626. static struct rq *
  3627. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3628. enum cpu_idle_type idle, unsigned long imbalance,
  3629. const struct cpumask *cpus)
  3630. {
  3631. struct rq *busiest = NULL, *rq;
  3632. unsigned long max_load = 0;
  3633. int i;
  3634. for_each_cpu(i, sched_group_cpus(group)) {
  3635. unsigned long power = power_of(i);
  3636. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3637. SCHED_POWER_SCALE);
  3638. unsigned long wl;
  3639. if (!capacity)
  3640. capacity = fix_small_capacity(sd, group);
  3641. if (!cpumask_test_cpu(i, cpus))
  3642. continue;
  3643. rq = cpu_rq(i);
  3644. wl = weighted_cpuload(i);
  3645. /*
  3646. * When comparing with imbalance, use weighted_cpuload()
  3647. * which is not scaled with the cpu power.
  3648. */
  3649. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3650. continue;
  3651. /*
  3652. * For the load comparisons with the other cpu's, consider
  3653. * the weighted_cpuload() scaled with the cpu power, so that
  3654. * the load can be moved away from the cpu that is potentially
  3655. * running at a lower capacity.
  3656. */
  3657. wl = (wl * SCHED_POWER_SCALE) / power;
  3658. if (wl > max_load) {
  3659. max_load = wl;
  3660. busiest = rq;
  3661. }
  3662. }
  3663. return busiest;
  3664. }
  3665. /*
  3666. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3667. * so long as it is large enough.
  3668. */
  3669. #define MAX_PINNED_INTERVAL 512
  3670. /* Working cpumask for load_balance and load_balance_newidle. */
  3671. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3672. static int need_active_balance(struct sched_domain *sd, int idle,
  3673. int busiest_cpu, int this_cpu)
  3674. {
  3675. if (idle == CPU_NEWLY_IDLE) {
  3676. /*
  3677. * ASYM_PACKING needs to force migrate tasks from busy but
  3678. * higher numbered CPUs in order to pack all tasks in the
  3679. * lowest numbered CPUs.
  3680. */
  3681. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3682. return 1;
  3683. /*
  3684. * The only task running in a non-idle cpu can be moved to this
  3685. * cpu in an attempt to completely freeup the other CPU
  3686. * package.
  3687. *
  3688. * The package power saving logic comes from
  3689. * find_busiest_group(). If there are no imbalance, then
  3690. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3691. * f_b_g() will select a group from which a running task may be
  3692. * pulled to this cpu in order to make the other package idle.
  3693. * If there is no opportunity to make a package idle and if
  3694. * there are no imbalance, then f_b_g() will return NULL and no
  3695. * action will be taken in load_balance_newidle().
  3696. *
  3697. * Under normal task pull operation due to imbalance, there
  3698. * will be more than one task in the source run queue and
  3699. * move_tasks() will succeed. ld_moved will be true and this
  3700. * active balance code will not be triggered.
  3701. */
  3702. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3703. return 0;
  3704. }
  3705. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3706. }
  3707. static int active_load_balance_cpu_stop(void *data);
  3708. /*
  3709. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3710. * tasks if there is an imbalance.
  3711. */
  3712. static int load_balance(int this_cpu, struct rq *this_rq,
  3713. struct sched_domain *sd, enum cpu_idle_type idle,
  3714. int *balance)
  3715. {
  3716. int ld_moved, all_pinned = 0, active_balance = 0;
  3717. struct sched_group *group;
  3718. unsigned long imbalance;
  3719. struct rq *busiest;
  3720. unsigned long flags;
  3721. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3722. cpumask_copy(cpus, cpu_active_mask);
  3723. schedstat_inc(sd, lb_count[idle]);
  3724. redo:
  3725. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3726. cpus, balance);
  3727. if (*balance == 0)
  3728. goto out_balanced;
  3729. if (!group) {
  3730. schedstat_inc(sd, lb_nobusyg[idle]);
  3731. goto out_balanced;
  3732. }
  3733. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3734. if (!busiest) {
  3735. schedstat_inc(sd, lb_nobusyq[idle]);
  3736. goto out_balanced;
  3737. }
  3738. BUG_ON(busiest == this_rq);
  3739. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3740. ld_moved = 0;
  3741. if (busiest->nr_running > 1) {
  3742. /*
  3743. * Attempt to move tasks. If find_busiest_group has found
  3744. * an imbalance but busiest->nr_running <= 1, the group is
  3745. * still unbalanced. ld_moved simply stays zero, so it is
  3746. * correctly treated as an imbalance.
  3747. */
  3748. all_pinned = 1;
  3749. local_irq_save(flags);
  3750. double_rq_lock(this_rq, busiest);
  3751. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3752. imbalance, sd, idle, &all_pinned);
  3753. double_rq_unlock(this_rq, busiest);
  3754. local_irq_restore(flags);
  3755. /*
  3756. * some other cpu did the load balance for us.
  3757. */
  3758. if (ld_moved && this_cpu != smp_processor_id())
  3759. resched_cpu(this_cpu);
  3760. /* All tasks on this runqueue were pinned by CPU affinity */
  3761. if (unlikely(all_pinned)) {
  3762. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3763. if (!cpumask_empty(cpus))
  3764. goto redo;
  3765. goto out_balanced;
  3766. }
  3767. }
  3768. if (!ld_moved) {
  3769. schedstat_inc(sd, lb_failed[idle]);
  3770. /*
  3771. * Increment the failure counter only on periodic balance.
  3772. * We do not want newidle balance, which can be very
  3773. * frequent, pollute the failure counter causing
  3774. * excessive cache_hot migrations and active balances.
  3775. */
  3776. if (idle != CPU_NEWLY_IDLE)
  3777. sd->nr_balance_failed++;
  3778. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3779. raw_spin_lock_irqsave(&busiest->lock, flags);
  3780. /* don't kick the active_load_balance_cpu_stop,
  3781. * if the curr task on busiest cpu can't be
  3782. * moved to this_cpu
  3783. */
  3784. if (!cpumask_test_cpu(this_cpu,
  3785. tsk_cpus_allowed(busiest->curr))) {
  3786. raw_spin_unlock_irqrestore(&busiest->lock,
  3787. flags);
  3788. all_pinned = 1;
  3789. goto out_one_pinned;
  3790. }
  3791. /*
  3792. * ->active_balance synchronizes accesses to
  3793. * ->active_balance_work. Once set, it's cleared
  3794. * only after active load balance is finished.
  3795. */
  3796. if (!busiest->active_balance) {
  3797. busiest->active_balance = 1;
  3798. busiest->push_cpu = this_cpu;
  3799. active_balance = 1;
  3800. }
  3801. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3802. if (active_balance)
  3803. stop_one_cpu_nowait(cpu_of(busiest),
  3804. active_load_balance_cpu_stop, busiest,
  3805. &busiest->active_balance_work);
  3806. /*
  3807. * We've kicked active balancing, reset the failure
  3808. * counter.
  3809. */
  3810. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3811. }
  3812. } else
  3813. sd->nr_balance_failed = 0;
  3814. if (likely(!active_balance)) {
  3815. /* We were unbalanced, so reset the balancing interval */
  3816. sd->balance_interval = sd->min_interval;
  3817. } else {
  3818. /*
  3819. * If we've begun active balancing, start to back off. This
  3820. * case may not be covered by the all_pinned logic if there
  3821. * is only 1 task on the busy runqueue (because we don't call
  3822. * move_tasks).
  3823. */
  3824. if (sd->balance_interval < sd->max_interval)
  3825. sd->balance_interval *= 2;
  3826. }
  3827. goto out;
  3828. out_balanced:
  3829. schedstat_inc(sd, lb_balanced[idle]);
  3830. sd->nr_balance_failed = 0;
  3831. out_one_pinned:
  3832. /* tune up the balancing interval */
  3833. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3834. (sd->balance_interval < sd->max_interval))
  3835. sd->balance_interval *= 2;
  3836. ld_moved = 0;
  3837. out:
  3838. return ld_moved;
  3839. }
  3840. /*
  3841. * idle_balance is called by schedule() if this_cpu is about to become
  3842. * idle. Attempts to pull tasks from other CPUs.
  3843. */
  3844. void idle_balance(int this_cpu, struct rq *this_rq)
  3845. {
  3846. struct sched_domain *sd;
  3847. int pulled_task = 0;
  3848. unsigned long next_balance = jiffies + HZ;
  3849. this_rq->idle_stamp = this_rq->clock;
  3850. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3851. return;
  3852. /*
  3853. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3854. */
  3855. raw_spin_unlock(&this_rq->lock);
  3856. update_shares(this_cpu);
  3857. rcu_read_lock();
  3858. for_each_domain(this_cpu, sd) {
  3859. unsigned long interval;
  3860. int balance = 1;
  3861. if (!(sd->flags & SD_LOAD_BALANCE))
  3862. continue;
  3863. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3864. /* If we've pulled tasks over stop searching: */
  3865. pulled_task = load_balance(this_cpu, this_rq,
  3866. sd, CPU_NEWLY_IDLE, &balance);
  3867. }
  3868. interval = msecs_to_jiffies(sd->balance_interval);
  3869. if (time_after(next_balance, sd->last_balance + interval))
  3870. next_balance = sd->last_balance + interval;
  3871. if (pulled_task) {
  3872. this_rq->idle_stamp = 0;
  3873. break;
  3874. }
  3875. }
  3876. rcu_read_unlock();
  3877. raw_spin_lock(&this_rq->lock);
  3878. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3879. /*
  3880. * We are going idle. next_balance may be set based on
  3881. * a busy processor. So reset next_balance.
  3882. */
  3883. this_rq->next_balance = next_balance;
  3884. }
  3885. }
  3886. /*
  3887. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3888. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3889. * least 1 task to be running on each physical CPU where possible, and
  3890. * avoids physical / logical imbalances.
  3891. */
  3892. static int active_load_balance_cpu_stop(void *data)
  3893. {
  3894. struct rq *busiest_rq = data;
  3895. int busiest_cpu = cpu_of(busiest_rq);
  3896. int target_cpu = busiest_rq->push_cpu;
  3897. struct rq *target_rq = cpu_rq(target_cpu);
  3898. struct sched_domain *sd;
  3899. raw_spin_lock_irq(&busiest_rq->lock);
  3900. /* make sure the requested cpu hasn't gone down in the meantime */
  3901. if (unlikely(busiest_cpu != smp_processor_id() ||
  3902. !busiest_rq->active_balance))
  3903. goto out_unlock;
  3904. /* Is there any task to move? */
  3905. if (busiest_rq->nr_running <= 1)
  3906. goto out_unlock;
  3907. /*
  3908. * This condition is "impossible", if it occurs
  3909. * we need to fix it. Originally reported by
  3910. * Bjorn Helgaas on a 128-cpu setup.
  3911. */
  3912. BUG_ON(busiest_rq == target_rq);
  3913. /* move a task from busiest_rq to target_rq */
  3914. double_lock_balance(busiest_rq, target_rq);
  3915. /* Search for an sd spanning us and the target CPU. */
  3916. rcu_read_lock();
  3917. for_each_domain(target_cpu, sd) {
  3918. if ((sd->flags & SD_LOAD_BALANCE) &&
  3919. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3920. break;
  3921. }
  3922. if (likely(sd)) {
  3923. schedstat_inc(sd, alb_count);
  3924. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3925. sd, CPU_IDLE))
  3926. schedstat_inc(sd, alb_pushed);
  3927. else
  3928. schedstat_inc(sd, alb_failed);
  3929. }
  3930. rcu_read_unlock();
  3931. double_unlock_balance(busiest_rq, target_rq);
  3932. out_unlock:
  3933. busiest_rq->active_balance = 0;
  3934. raw_spin_unlock_irq(&busiest_rq->lock);
  3935. return 0;
  3936. }
  3937. #ifdef CONFIG_NO_HZ
  3938. /*
  3939. * idle load balancing details
  3940. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3941. * entering idle.
  3942. * - This idle load balancer CPU will also go into tickless mode when
  3943. * it is idle, just like all other idle CPUs
  3944. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3945. * needed, they will kick the idle load balancer, which then does idle
  3946. * load balancing for all the idle CPUs.
  3947. */
  3948. static struct {
  3949. atomic_t load_balancer;
  3950. atomic_t first_pick_cpu;
  3951. atomic_t second_pick_cpu;
  3952. cpumask_var_t idle_cpus_mask;
  3953. cpumask_var_t grp_idle_mask;
  3954. unsigned long next_balance; /* in jiffy units */
  3955. } nohz ____cacheline_aligned;
  3956. int get_nohz_load_balancer(void)
  3957. {
  3958. return atomic_read(&nohz.load_balancer);
  3959. }
  3960. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3961. /**
  3962. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3963. * @cpu: The cpu whose lowest level of sched domain is to
  3964. * be returned.
  3965. * @flag: The flag to check for the lowest sched_domain
  3966. * for the given cpu.
  3967. *
  3968. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3969. */
  3970. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3971. {
  3972. struct sched_domain *sd;
  3973. for_each_domain(cpu, sd)
  3974. if (sd->flags & flag)
  3975. break;
  3976. return sd;
  3977. }
  3978. /**
  3979. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3980. * @cpu: The cpu whose domains we're iterating over.
  3981. * @sd: variable holding the value of the power_savings_sd
  3982. * for cpu.
  3983. * @flag: The flag to filter the sched_domains to be iterated.
  3984. *
  3985. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3986. * set, starting from the lowest sched_domain to the highest.
  3987. */
  3988. #define for_each_flag_domain(cpu, sd, flag) \
  3989. for (sd = lowest_flag_domain(cpu, flag); \
  3990. (sd && (sd->flags & flag)); sd = sd->parent)
  3991. /**
  3992. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3993. * @ilb_group: group to be checked for semi-idleness
  3994. *
  3995. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3996. *
  3997. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3998. * and atleast one non-idle CPU. This helper function checks if the given
  3999. * sched_group is semi-idle or not.
  4000. */
  4001. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  4002. {
  4003. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  4004. sched_group_cpus(ilb_group));
  4005. /*
  4006. * A sched_group is semi-idle when it has atleast one busy cpu
  4007. * and atleast one idle cpu.
  4008. */
  4009. if (cpumask_empty(nohz.grp_idle_mask))
  4010. return 0;
  4011. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  4012. return 0;
  4013. return 1;
  4014. }
  4015. /**
  4016. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  4017. * @cpu: The cpu which is nominating a new idle_load_balancer.
  4018. *
  4019. * Returns: Returns the id of the idle load balancer if it exists,
  4020. * Else, returns >= nr_cpu_ids.
  4021. *
  4022. * This algorithm picks the idle load balancer such that it belongs to a
  4023. * semi-idle powersavings sched_domain. The idea is to try and avoid
  4024. * completely idle packages/cores just for the purpose of idle load balancing
  4025. * when there are other idle cpu's which are better suited for that job.
  4026. */
  4027. static int find_new_ilb(int cpu)
  4028. {
  4029. struct sched_domain *sd;
  4030. struct sched_group *ilb_group;
  4031. int ilb = nr_cpu_ids;
  4032. /*
  4033. * Have idle load balancer selection from semi-idle packages only
  4034. * when power-aware load balancing is enabled
  4035. */
  4036. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4037. goto out_done;
  4038. /*
  4039. * Optimize for the case when we have no idle CPUs or only one
  4040. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4041. */
  4042. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4043. goto out_done;
  4044. rcu_read_lock();
  4045. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4046. ilb_group = sd->groups;
  4047. do {
  4048. if (is_semi_idle_group(ilb_group)) {
  4049. ilb = cpumask_first(nohz.grp_idle_mask);
  4050. goto unlock;
  4051. }
  4052. ilb_group = ilb_group->next;
  4053. } while (ilb_group != sd->groups);
  4054. }
  4055. unlock:
  4056. rcu_read_unlock();
  4057. out_done:
  4058. return ilb;
  4059. }
  4060. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4061. static inline int find_new_ilb(int call_cpu)
  4062. {
  4063. return nr_cpu_ids;
  4064. }
  4065. #endif
  4066. /*
  4067. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4068. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4069. * CPU (if there is one).
  4070. */
  4071. static void nohz_balancer_kick(int cpu)
  4072. {
  4073. int ilb_cpu;
  4074. nohz.next_balance++;
  4075. ilb_cpu = get_nohz_load_balancer();
  4076. if (ilb_cpu >= nr_cpu_ids) {
  4077. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  4078. if (ilb_cpu >= nr_cpu_ids)
  4079. return;
  4080. }
  4081. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  4082. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  4083. smp_mb();
  4084. /*
  4085. * Use smp_send_reschedule() instead of resched_cpu().
  4086. * This way we generate a sched IPI on the target cpu which
  4087. * is idle. And the softirq performing nohz idle load balance
  4088. * will be run before returning from the IPI.
  4089. */
  4090. smp_send_reschedule(ilb_cpu);
  4091. }
  4092. return;
  4093. }
  4094. /*
  4095. * This routine will try to nominate the ilb (idle load balancing)
  4096. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  4097. * load balancing on behalf of all those cpus.
  4098. *
  4099. * When the ilb owner becomes busy, we will not have new ilb owner until some
  4100. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  4101. * idle load balancing by kicking one of the idle CPUs.
  4102. *
  4103. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  4104. * ilb owner CPU in future (when there is a need for idle load balancing on
  4105. * behalf of all idle CPUs).
  4106. */
  4107. void select_nohz_load_balancer(int stop_tick)
  4108. {
  4109. int cpu = smp_processor_id();
  4110. if (stop_tick) {
  4111. if (!cpu_active(cpu)) {
  4112. if (atomic_read(&nohz.load_balancer) != cpu)
  4113. return;
  4114. /*
  4115. * If we are going offline and still the leader,
  4116. * give up!
  4117. */
  4118. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  4119. nr_cpu_ids) != cpu)
  4120. BUG();
  4121. return;
  4122. }
  4123. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4124. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  4125. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  4126. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  4127. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  4128. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  4129. int new_ilb;
  4130. /* make me the ilb owner */
  4131. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  4132. cpu) != nr_cpu_ids)
  4133. return;
  4134. /*
  4135. * Check to see if there is a more power-efficient
  4136. * ilb.
  4137. */
  4138. new_ilb = find_new_ilb(cpu);
  4139. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4140. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  4141. resched_cpu(new_ilb);
  4142. return;
  4143. }
  4144. return;
  4145. }
  4146. } else {
  4147. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  4148. return;
  4149. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4150. if (atomic_read(&nohz.load_balancer) == cpu)
  4151. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  4152. nr_cpu_ids) != cpu)
  4153. BUG();
  4154. }
  4155. return;
  4156. }
  4157. #endif
  4158. static DEFINE_SPINLOCK(balancing);
  4159. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4160. /*
  4161. * Scale the max load_balance interval with the number of CPUs in the system.
  4162. * This trades load-balance latency on larger machines for less cross talk.
  4163. */
  4164. void update_max_interval(void)
  4165. {
  4166. max_load_balance_interval = HZ*num_online_cpus()/10;
  4167. }
  4168. /*
  4169. * It checks each scheduling domain to see if it is due to be balanced,
  4170. * and initiates a balancing operation if so.
  4171. *
  4172. * Balancing parameters are set up in arch_init_sched_domains.
  4173. */
  4174. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4175. {
  4176. int balance = 1;
  4177. struct rq *rq = cpu_rq(cpu);
  4178. unsigned long interval;
  4179. struct sched_domain *sd;
  4180. /* Earliest time when we have to do rebalance again */
  4181. unsigned long next_balance = jiffies + 60*HZ;
  4182. int update_next_balance = 0;
  4183. int need_serialize;
  4184. update_shares(cpu);
  4185. rcu_read_lock();
  4186. for_each_domain(cpu, sd) {
  4187. if (!(sd->flags & SD_LOAD_BALANCE))
  4188. continue;
  4189. interval = sd->balance_interval;
  4190. if (idle != CPU_IDLE)
  4191. interval *= sd->busy_factor;
  4192. /* scale ms to jiffies */
  4193. interval = msecs_to_jiffies(interval);
  4194. interval = clamp(interval, 1UL, max_load_balance_interval);
  4195. need_serialize = sd->flags & SD_SERIALIZE;
  4196. if (need_serialize) {
  4197. if (!spin_trylock(&balancing))
  4198. goto out;
  4199. }
  4200. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4201. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4202. /*
  4203. * We've pulled tasks over so either we're no
  4204. * longer idle.
  4205. */
  4206. idle = CPU_NOT_IDLE;
  4207. }
  4208. sd->last_balance = jiffies;
  4209. }
  4210. if (need_serialize)
  4211. spin_unlock(&balancing);
  4212. out:
  4213. if (time_after(next_balance, sd->last_balance + interval)) {
  4214. next_balance = sd->last_balance + interval;
  4215. update_next_balance = 1;
  4216. }
  4217. /*
  4218. * Stop the load balance at this level. There is another
  4219. * CPU in our sched group which is doing load balancing more
  4220. * actively.
  4221. */
  4222. if (!balance)
  4223. break;
  4224. }
  4225. rcu_read_unlock();
  4226. /*
  4227. * next_balance will be updated only when there is a need.
  4228. * When the cpu is attached to null domain for ex, it will not be
  4229. * updated.
  4230. */
  4231. if (likely(update_next_balance))
  4232. rq->next_balance = next_balance;
  4233. }
  4234. #ifdef CONFIG_NO_HZ
  4235. /*
  4236. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4237. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4238. */
  4239. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4240. {
  4241. struct rq *this_rq = cpu_rq(this_cpu);
  4242. struct rq *rq;
  4243. int balance_cpu;
  4244. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  4245. return;
  4246. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4247. if (balance_cpu == this_cpu)
  4248. continue;
  4249. /*
  4250. * If this cpu gets work to do, stop the load balancing
  4251. * work being done for other cpus. Next load
  4252. * balancing owner will pick it up.
  4253. */
  4254. if (need_resched()) {
  4255. this_rq->nohz_balance_kick = 0;
  4256. break;
  4257. }
  4258. raw_spin_lock_irq(&this_rq->lock);
  4259. update_rq_clock(this_rq);
  4260. update_cpu_load(this_rq);
  4261. raw_spin_unlock_irq(&this_rq->lock);
  4262. rebalance_domains(balance_cpu, CPU_IDLE);
  4263. rq = cpu_rq(balance_cpu);
  4264. if (time_after(this_rq->next_balance, rq->next_balance))
  4265. this_rq->next_balance = rq->next_balance;
  4266. }
  4267. nohz.next_balance = this_rq->next_balance;
  4268. this_rq->nohz_balance_kick = 0;
  4269. }
  4270. /*
  4271. * Current heuristic for kicking the idle load balancer
  4272. * - first_pick_cpu is the one of the busy CPUs. It will kick
  4273. * idle load balancer when it has more than one process active. This
  4274. * eliminates the need for idle load balancing altogether when we have
  4275. * only one running process in the system (common case).
  4276. * - If there are more than one busy CPU, idle load balancer may have
  4277. * to run for active_load_balance to happen (i.e., two busy CPUs are
  4278. * SMT or core siblings and can run better if they move to different
  4279. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  4280. * which will kick idle load balancer as soon as it has any load.
  4281. */
  4282. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4283. {
  4284. unsigned long now = jiffies;
  4285. int ret;
  4286. int first_pick_cpu, second_pick_cpu;
  4287. if (time_before(now, nohz.next_balance))
  4288. return 0;
  4289. if (idle_cpu(cpu))
  4290. return 0;
  4291. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  4292. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  4293. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  4294. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  4295. return 0;
  4296. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  4297. if (ret == nr_cpu_ids || ret == cpu) {
  4298. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  4299. if (rq->nr_running > 1)
  4300. return 1;
  4301. } else {
  4302. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  4303. if (ret == nr_cpu_ids || ret == cpu) {
  4304. if (rq->nr_running)
  4305. return 1;
  4306. }
  4307. }
  4308. return 0;
  4309. }
  4310. #else
  4311. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4312. #endif
  4313. /*
  4314. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4315. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4316. */
  4317. static void run_rebalance_domains(struct softirq_action *h)
  4318. {
  4319. int this_cpu = smp_processor_id();
  4320. struct rq *this_rq = cpu_rq(this_cpu);
  4321. enum cpu_idle_type idle = this_rq->idle_balance ?
  4322. CPU_IDLE : CPU_NOT_IDLE;
  4323. rebalance_domains(this_cpu, idle);
  4324. /*
  4325. * If this cpu has a pending nohz_balance_kick, then do the
  4326. * balancing on behalf of the other idle cpus whose ticks are
  4327. * stopped.
  4328. */
  4329. nohz_idle_balance(this_cpu, idle);
  4330. }
  4331. static inline int on_null_domain(int cpu)
  4332. {
  4333. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4334. }
  4335. /*
  4336. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4337. */
  4338. void trigger_load_balance(struct rq *rq, int cpu)
  4339. {
  4340. /* Don't need to rebalance while attached to NULL domain */
  4341. if (time_after_eq(jiffies, rq->next_balance) &&
  4342. likely(!on_null_domain(cpu)))
  4343. raise_softirq(SCHED_SOFTIRQ);
  4344. #ifdef CONFIG_NO_HZ
  4345. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4346. nohz_balancer_kick(cpu);
  4347. #endif
  4348. }
  4349. static void rq_online_fair(struct rq *rq)
  4350. {
  4351. update_sysctl();
  4352. }
  4353. static void rq_offline_fair(struct rq *rq)
  4354. {
  4355. update_sysctl();
  4356. }
  4357. #endif /* CONFIG_SMP */
  4358. /*
  4359. * scheduler tick hitting a task of our scheduling class:
  4360. */
  4361. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4362. {
  4363. struct cfs_rq *cfs_rq;
  4364. struct sched_entity *se = &curr->se;
  4365. for_each_sched_entity(se) {
  4366. cfs_rq = cfs_rq_of(se);
  4367. entity_tick(cfs_rq, se, queued);
  4368. }
  4369. }
  4370. /*
  4371. * called on fork with the child task as argument from the parent's context
  4372. * - child not yet on the tasklist
  4373. * - preemption disabled
  4374. */
  4375. static void task_fork_fair(struct task_struct *p)
  4376. {
  4377. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  4378. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  4379. int this_cpu = smp_processor_id();
  4380. struct rq *rq = this_rq();
  4381. unsigned long flags;
  4382. raw_spin_lock_irqsave(&rq->lock, flags);
  4383. update_rq_clock(rq);
  4384. if (unlikely(task_cpu(p) != this_cpu)) {
  4385. rcu_read_lock();
  4386. __set_task_cpu(p, this_cpu);
  4387. rcu_read_unlock();
  4388. }
  4389. update_curr(cfs_rq);
  4390. if (curr)
  4391. se->vruntime = curr->vruntime;
  4392. place_entity(cfs_rq, se, 1);
  4393. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4394. /*
  4395. * Upon rescheduling, sched_class::put_prev_task() will place
  4396. * 'current' within the tree based on its new key value.
  4397. */
  4398. swap(curr->vruntime, se->vruntime);
  4399. resched_task(rq->curr);
  4400. }
  4401. se->vruntime -= cfs_rq->min_vruntime;
  4402. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4403. }
  4404. /*
  4405. * Priority of the task has changed. Check to see if we preempt
  4406. * the current task.
  4407. */
  4408. static void
  4409. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4410. {
  4411. if (!p->se.on_rq)
  4412. return;
  4413. /*
  4414. * Reschedule if we are currently running on this runqueue and
  4415. * our priority decreased, or if we are not currently running on
  4416. * this runqueue and our priority is higher than the current's
  4417. */
  4418. if (rq->curr == p) {
  4419. if (p->prio > oldprio)
  4420. resched_task(rq->curr);
  4421. } else
  4422. check_preempt_curr(rq, p, 0);
  4423. }
  4424. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4425. {
  4426. struct sched_entity *se = &p->se;
  4427. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4428. /*
  4429. * Ensure the task's vruntime is normalized, so that when its
  4430. * switched back to the fair class the enqueue_entity(.flags=0) will
  4431. * do the right thing.
  4432. *
  4433. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4434. * have normalized the vruntime, if it was !on_rq, then only when
  4435. * the task is sleeping will it still have non-normalized vruntime.
  4436. */
  4437. if (!se->on_rq && p->state != TASK_RUNNING) {
  4438. /*
  4439. * Fix up our vruntime so that the current sleep doesn't
  4440. * cause 'unlimited' sleep bonus.
  4441. */
  4442. place_entity(cfs_rq, se, 0);
  4443. se->vruntime -= cfs_rq->min_vruntime;
  4444. }
  4445. }
  4446. /*
  4447. * We switched to the sched_fair class.
  4448. */
  4449. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4450. {
  4451. if (!p->se.on_rq)
  4452. return;
  4453. /*
  4454. * We were most likely switched from sched_rt, so
  4455. * kick off the schedule if running, otherwise just see
  4456. * if we can still preempt the current task.
  4457. */
  4458. if (rq->curr == p)
  4459. resched_task(rq->curr);
  4460. else
  4461. check_preempt_curr(rq, p, 0);
  4462. }
  4463. /* Account for a task changing its policy or group.
  4464. *
  4465. * This routine is mostly called to set cfs_rq->curr field when a task
  4466. * migrates between groups/classes.
  4467. */
  4468. static void set_curr_task_fair(struct rq *rq)
  4469. {
  4470. struct sched_entity *se = &rq->curr->se;
  4471. for_each_sched_entity(se) {
  4472. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4473. set_next_entity(cfs_rq, se);
  4474. /* ensure bandwidth has been allocated on our new cfs_rq */
  4475. account_cfs_rq_runtime(cfs_rq, 0);
  4476. }
  4477. }
  4478. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4479. {
  4480. cfs_rq->tasks_timeline = RB_ROOT;
  4481. INIT_LIST_HEAD(&cfs_rq->tasks);
  4482. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4483. #ifndef CONFIG_64BIT
  4484. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4485. #endif
  4486. }
  4487. #ifdef CONFIG_FAIR_GROUP_SCHED
  4488. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4489. {
  4490. /*
  4491. * If the task was not on the rq at the time of this cgroup movement
  4492. * it must have been asleep, sleeping tasks keep their ->vruntime
  4493. * absolute on their old rq until wakeup (needed for the fair sleeper
  4494. * bonus in place_entity()).
  4495. *
  4496. * If it was on the rq, we've just 'preempted' it, which does convert
  4497. * ->vruntime to a relative base.
  4498. *
  4499. * Make sure both cases convert their relative position when migrating
  4500. * to another cgroup's rq. This does somewhat interfere with the
  4501. * fair sleeper stuff for the first placement, but who cares.
  4502. */
  4503. if (!on_rq)
  4504. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4505. set_task_rq(p, task_cpu(p));
  4506. if (!on_rq)
  4507. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4508. }
  4509. void free_fair_sched_group(struct task_group *tg)
  4510. {
  4511. int i;
  4512. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4513. for_each_possible_cpu(i) {
  4514. if (tg->cfs_rq)
  4515. kfree(tg->cfs_rq[i]);
  4516. if (tg->se)
  4517. kfree(tg->se[i]);
  4518. }
  4519. kfree(tg->cfs_rq);
  4520. kfree(tg->se);
  4521. }
  4522. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4523. {
  4524. struct cfs_rq *cfs_rq;
  4525. struct sched_entity *se;
  4526. int i;
  4527. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4528. if (!tg->cfs_rq)
  4529. goto err;
  4530. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4531. if (!tg->se)
  4532. goto err;
  4533. tg->shares = NICE_0_LOAD;
  4534. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4535. for_each_possible_cpu(i) {
  4536. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4537. GFP_KERNEL, cpu_to_node(i));
  4538. if (!cfs_rq)
  4539. goto err;
  4540. se = kzalloc_node(sizeof(struct sched_entity),
  4541. GFP_KERNEL, cpu_to_node(i));
  4542. if (!se)
  4543. goto err_free_rq;
  4544. init_cfs_rq(cfs_rq);
  4545. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4546. }
  4547. return 1;
  4548. err_free_rq:
  4549. kfree(cfs_rq);
  4550. err:
  4551. return 0;
  4552. }
  4553. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4554. {
  4555. struct rq *rq = cpu_rq(cpu);
  4556. unsigned long flags;
  4557. /*
  4558. * Only empty task groups can be destroyed; so we can speculatively
  4559. * check on_list without danger of it being re-added.
  4560. */
  4561. if (!tg->cfs_rq[cpu]->on_list)
  4562. return;
  4563. raw_spin_lock_irqsave(&rq->lock, flags);
  4564. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4565. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4566. }
  4567. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4568. struct sched_entity *se, int cpu,
  4569. struct sched_entity *parent)
  4570. {
  4571. struct rq *rq = cpu_rq(cpu);
  4572. cfs_rq->tg = tg;
  4573. cfs_rq->rq = rq;
  4574. #ifdef CONFIG_SMP
  4575. /* allow initial update_cfs_load() to truncate */
  4576. cfs_rq->load_stamp = 1;
  4577. #endif
  4578. init_cfs_rq_runtime(cfs_rq);
  4579. tg->cfs_rq[cpu] = cfs_rq;
  4580. tg->se[cpu] = se;
  4581. /* se could be NULL for root_task_group */
  4582. if (!se)
  4583. return;
  4584. if (!parent)
  4585. se->cfs_rq = &rq->cfs;
  4586. else
  4587. se->cfs_rq = parent->my_q;
  4588. se->my_q = cfs_rq;
  4589. update_load_set(&se->load, 0);
  4590. se->parent = parent;
  4591. }
  4592. static DEFINE_MUTEX(shares_mutex);
  4593. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4594. {
  4595. int i;
  4596. unsigned long flags;
  4597. /*
  4598. * We can't change the weight of the root cgroup.
  4599. */
  4600. if (!tg->se[0])
  4601. return -EINVAL;
  4602. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4603. mutex_lock(&shares_mutex);
  4604. if (tg->shares == shares)
  4605. goto done;
  4606. tg->shares = shares;
  4607. for_each_possible_cpu(i) {
  4608. struct rq *rq = cpu_rq(i);
  4609. struct sched_entity *se;
  4610. se = tg->se[i];
  4611. /* Propagate contribution to hierarchy */
  4612. raw_spin_lock_irqsave(&rq->lock, flags);
  4613. for_each_sched_entity(se)
  4614. update_cfs_shares(group_cfs_rq(se));
  4615. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4616. }
  4617. done:
  4618. mutex_unlock(&shares_mutex);
  4619. return 0;
  4620. }
  4621. #else /* CONFIG_FAIR_GROUP_SCHED */
  4622. void free_fair_sched_group(struct task_group *tg) { }
  4623. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4624. {
  4625. return 1;
  4626. }
  4627. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4628. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4629. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4630. {
  4631. struct sched_entity *se = &task->se;
  4632. unsigned int rr_interval = 0;
  4633. /*
  4634. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4635. * idle runqueue:
  4636. */
  4637. if (rq->cfs.load.weight)
  4638. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4639. return rr_interval;
  4640. }
  4641. /*
  4642. * All the scheduling class methods:
  4643. */
  4644. const struct sched_class fair_sched_class = {
  4645. .next = &idle_sched_class,
  4646. .enqueue_task = enqueue_task_fair,
  4647. .dequeue_task = dequeue_task_fair,
  4648. .yield_task = yield_task_fair,
  4649. .yield_to_task = yield_to_task_fair,
  4650. .check_preempt_curr = check_preempt_wakeup,
  4651. .pick_next_task = pick_next_task_fair,
  4652. .put_prev_task = put_prev_task_fair,
  4653. #ifdef CONFIG_SMP
  4654. .select_task_rq = select_task_rq_fair,
  4655. .rq_online = rq_online_fair,
  4656. .rq_offline = rq_offline_fair,
  4657. .task_waking = task_waking_fair,
  4658. #endif
  4659. .set_curr_task = set_curr_task_fair,
  4660. .task_tick = task_tick_fair,
  4661. .task_fork = task_fork_fair,
  4662. .prio_changed = prio_changed_fair,
  4663. .switched_from = switched_from_fair,
  4664. .switched_to = switched_to_fair,
  4665. .get_rr_interval = get_rr_interval_fair,
  4666. #ifdef CONFIG_FAIR_GROUP_SCHED
  4667. .task_move_group = task_move_group_fair,
  4668. #endif
  4669. };
  4670. #ifdef CONFIG_SCHED_DEBUG
  4671. void print_cfs_stats(struct seq_file *m, int cpu)
  4672. {
  4673. struct cfs_rq *cfs_rq;
  4674. rcu_read_lock();
  4675. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4676. print_cfs_rq(m, cpu, cfs_rq);
  4677. rcu_read_unlock();
  4678. }
  4679. #endif
  4680. __init void init_sched_fair_class(void)
  4681. {
  4682. #ifdef CONFIG_SMP
  4683. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4684. #ifdef CONFIG_NO_HZ
  4685. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4686. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  4687. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  4688. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  4689. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  4690. #endif
  4691. #endif /* SMP */
  4692. }