cfq-iosched.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. /*
  18. * tunables
  19. */
  20. /* max queue in one round of service */
  21. static const int cfq_quantum = 4;
  22. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  23. /* maximum backwards seek, in KiB */
  24. static const int cfq_back_max = 16 * 1024;
  25. /* penalty of a backwards seek */
  26. static const int cfq_back_penalty = 2;
  27. static const int cfq_slice_sync = HZ / 10;
  28. static int cfq_slice_async = HZ / 25;
  29. static const int cfq_slice_async_rq = 2;
  30. static int cfq_slice_idle = HZ / 125;
  31. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  32. static const int cfq_hist_divisor = 4;
  33. /*
  34. * offset from end of service tree
  35. */
  36. #define CFQ_IDLE_DELAY (HZ / 5)
  37. /*
  38. * below this threshold, we consider thinktime immediate
  39. */
  40. #define CFQ_MIN_TT (2)
  41. #define CFQ_SLICE_SCALE (5)
  42. #define CFQ_HW_QUEUE_MIN (5)
  43. #define CFQ_SERVICE_SHIFT 12
  44. #define CFQQ_SEEK_THR 8 * 1024
  45. #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
  46. #define RQ_CIC(rq) \
  47. ((struct cfq_io_context *) (rq)->elevator_private)
  48. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  49. static struct kmem_cache *cfq_pool;
  50. static struct kmem_cache *cfq_ioc_pool;
  51. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  52. static struct completion *ioc_gone;
  53. static DEFINE_SPINLOCK(ioc_gone_lock);
  54. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  55. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  56. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  57. #define sample_valid(samples) ((samples) > 80)
  58. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  59. /*
  60. * Most of our rbtree usage is for sorting with min extraction, so
  61. * if we cache the leftmost node we don't have to walk down the tree
  62. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  63. * move this into the elevator for the rq sorting as well.
  64. */
  65. struct cfq_rb_root {
  66. struct rb_root rb;
  67. struct rb_node *left;
  68. unsigned count;
  69. u64 min_vdisktime;
  70. struct rb_node *active;
  71. unsigned total_weight;
  72. };
  73. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  74. /*
  75. * Per process-grouping structure
  76. */
  77. struct cfq_queue {
  78. /* reference count */
  79. atomic_t ref;
  80. /* various state flags, see below */
  81. unsigned int flags;
  82. /* parent cfq_data */
  83. struct cfq_data *cfqd;
  84. /* service_tree member */
  85. struct rb_node rb_node;
  86. /* service_tree key */
  87. unsigned long rb_key;
  88. /* prio tree member */
  89. struct rb_node p_node;
  90. /* prio tree root we belong to, if any */
  91. struct rb_root *p_root;
  92. /* sorted list of pending requests */
  93. struct rb_root sort_list;
  94. /* if fifo isn't expired, next request to serve */
  95. struct request *next_rq;
  96. /* requests queued in sort_list */
  97. int queued[2];
  98. /* currently allocated requests */
  99. int allocated[2];
  100. /* fifo list of requests in sort_list */
  101. struct list_head fifo;
  102. /* time when queue got scheduled in to dispatch first request. */
  103. unsigned long dispatch_start;
  104. unsigned int allocated_slice;
  105. /* time when first request from queue completed and slice started. */
  106. unsigned long slice_start;
  107. unsigned long slice_end;
  108. long slice_resid;
  109. unsigned int slice_dispatch;
  110. /* pending metadata requests */
  111. int meta_pending;
  112. /* number of requests that are on the dispatch list or inside driver */
  113. int dispatched;
  114. /* io prio of this group */
  115. unsigned short ioprio, org_ioprio;
  116. unsigned short ioprio_class, org_ioprio_class;
  117. unsigned int seek_samples;
  118. u64 seek_total;
  119. sector_t seek_mean;
  120. sector_t last_request_pos;
  121. pid_t pid;
  122. struct cfq_rb_root *service_tree;
  123. struct cfq_queue *new_cfqq;
  124. struct cfq_group *cfqg;
  125. struct cfq_group *orig_cfqg;
  126. /* Sectors dispatched in current dispatch round */
  127. unsigned long nr_sectors;
  128. };
  129. /*
  130. * First index in the service_trees.
  131. * IDLE is handled separately, so it has negative index
  132. */
  133. enum wl_prio_t {
  134. BE_WORKLOAD = 0,
  135. RT_WORKLOAD = 1,
  136. IDLE_WORKLOAD = 2,
  137. };
  138. /*
  139. * Second index in the service_trees.
  140. */
  141. enum wl_type_t {
  142. ASYNC_WORKLOAD = 0,
  143. SYNC_NOIDLE_WORKLOAD = 1,
  144. SYNC_WORKLOAD = 2
  145. };
  146. /* This is per cgroup per device grouping structure */
  147. struct cfq_group {
  148. /* group service_tree member */
  149. struct rb_node rb_node;
  150. /* group service_tree key */
  151. u64 vdisktime;
  152. unsigned int weight;
  153. bool on_st;
  154. /* number of cfqq currently on this group */
  155. int nr_cfqq;
  156. /* Per group busy queus average. Useful for workload slice calc. */
  157. unsigned int busy_queues_avg[2];
  158. /*
  159. * rr lists of queues with requests, onle rr for each priority class.
  160. * Counts are embedded in the cfq_rb_root
  161. */
  162. struct cfq_rb_root service_trees[2][3];
  163. struct cfq_rb_root service_tree_idle;
  164. unsigned long saved_workload_slice;
  165. enum wl_type_t saved_workload;
  166. enum wl_prio_t saved_serving_prio;
  167. struct blkio_group blkg;
  168. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  169. struct hlist_node cfqd_node;
  170. atomic_t ref;
  171. #endif
  172. };
  173. /*
  174. * Per block device queue structure
  175. */
  176. struct cfq_data {
  177. struct request_queue *queue;
  178. /* Root service tree for cfq_groups */
  179. struct cfq_rb_root grp_service_tree;
  180. struct cfq_group root_group;
  181. /*
  182. * The priority currently being served
  183. */
  184. enum wl_prio_t serving_prio;
  185. enum wl_type_t serving_type;
  186. unsigned long workload_expires;
  187. struct cfq_group *serving_group;
  188. bool noidle_tree_requires_idle;
  189. /*
  190. * Each priority tree is sorted by next_request position. These
  191. * trees are used when determining if two or more queues are
  192. * interleaving requests (see cfq_close_cooperator).
  193. */
  194. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  195. unsigned int busy_queues;
  196. int rq_in_driver[2];
  197. int sync_flight;
  198. /*
  199. * queue-depth detection
  200. */
  201. int rq_queued;
  202. int hw_tag;
  203. /*
  204. * hw_tag can be
  205. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  206. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  207. * 0 => no NCQ
  208. */
  209. int hw_tag_est_depth;
  210. unsigned int hw_tag_samples;
  211. /*
  212. * idle window management
  213. */
  214. struct timer_list idle_slice_timer;
  215. struct work_struct unplug_work;
  216. struct cfq_queue *active_queue;
  217. struct cfq_io_context *active_cic;
  218. /*
  219. * async queue for each priority case
  220. */
  221. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  222. struct cfq_queue *async_idle_cfqq;
  223. sector_t last_position;
  224. /*
  225. * tunables, see top of file
  226. */
  227. unsigned int cfq_quantum;
  228. unsigned int cfq_fifo_expire[2];
  229. unsigned int cfq_back_penalty;
  230. unsigned int cfq_back_max;
  231. unsigned int cfq_slice[2];
  232. unsigned int cfq_slice_async_rq;
  233. unsigned int cfq_slice_idle;
  234. unsigned int cfq_latency;
  235. unsigned int cfq_group_isolation;
  236. struct list_head cic_list;
  237. /*
  238. * Fallback dummy cfqq for extreme OOM conditions
  239. */
  240. struct cfq_queue oom_cfqq;
  241. unsigned long last_delayed_sync;
  242. /* List of cfq groups being managed on this device*/
  243. struct hlist_head cfqg_list;
  244. struct rcu_head rcu;
  245. };
  246. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  247. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  248. enum wl_prio_t prio,
  249. enum wl_type_t type)
  250. {
  251. if (!cfqg)
  252. return NULL;
  253. if (prio == IDLE_WORKLOAD)
  254. return &cfqg->service_tree_idle;
  255. return &cfqg->service_trees[prio][type];
  256. }
  257. enum cfqq_state_flags {
  258. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  259. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  260. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  261. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  262. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  263. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  264. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  265. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  266. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  267. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  268. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  269. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  270. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  271. };
  272. #define CFQ_CFQQ_FNS(name) \
  273. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  274. { \
  275. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  276. } \
  277. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  278. { \
  279. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  280. } \
  281. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  282. { \
  283. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  284. }
  285. CFQ_CFQQ_FNS(on_rr);
  286. CFQ_CFQQ_FNS(wait_request);
  287. CFQ_CFQQ_FNS(must_dispatch);
  288. CFQ_CFQQ_FNS(must_alloc_slice);
  289. CFQ_CFQQ_FNS(fifo_expire);
  290. CFQ_CFQQ_FNS(idle_window);
  291. CFQ_CFQQ_FNS(prio_changed);
  292. CFQ_CFQQ_FNS(slice_new);
  293. CFQ_CFQQ_FNS(sync);
  294. CFQ_CFQQ_FNS(coop);
  295. CFQ_CFQQ_FNS(split_coop);
  296. CFQ_CFQQ_FNS(deep);
  297. CFQ_CFQQ_FNS(wait_busy);
  298. #undef CFQ_CFQQ_FNS
  299. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  300. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  301. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  302. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  303. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  304. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  305. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  306. blkg_path(&(cfqg)->blkg), ##args); \
  307. #else
  308. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  309. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  310. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  311. #endif
  312. #define cfq_log(cfqd, fmt, args...) \
  313. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  314. /* Traverses through cfq group service trees */
  315. #define for_each_cfqg_st(cfqg, i, j, st) \
  316. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  317. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  318. : &cfqg->service_tree_idle; \
  319. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  320. (i == IDLE_WORKLOAD && j == 0); \
  321. j++, st = i < IDLE_WORKLOAD ? \
  322. &cfqg->service_trees[i][j]: NULL) \
  323. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  324. {
  325. if (cfq_class_idle(cfqq))
  326. return IDLE_WORKLOAD;
  327. if (cfq_class_rt(cfqq))
  328. return RT_WORKLOAD;
  329. return BE_WORKLOAD;
  330. }
  331. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  332. {
  333. if (!cfq_cfqq_sync(cfqq))
  334. return ASYNC_WORKLOAD;
  335. if (!cfq_cfqq_idle_window(cfqq))
  336. return SYNC_NOIDLE_WORKLOAD;
  337. return SYNC_WORKLOAD;
  338. }
  339. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  340. struct cfq_data *cfqd,
  341. struct cfq_group *cfqg)
  342. {
  343. if (wl == IDLE_WORKLOAD)
  344. return cfqg->service_tree_idle.count;
  345. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  346. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  347. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  348. }
  349. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  350. struct cfq_group *cfqg)
  351. {
  352. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  353. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  354. }
  355. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  356. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  357. struct io_context *, gfp_t);
  358. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  359. struct io_context *);
  360. static inline int rq_in_driver(struct cfq_data *cfqd)
  361. {
  362. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  363. }
  364. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  365. bool is_sync)
  366. {
  367. return cic->cfqq[is_sync];
  368. }
  369. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  370. struct cfq_queue *cfqq, bool is_sync)
  371. {
  372. cic->cfqq[is_sync] = cfqq;
  373. }
  374. /*
  375. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  376. * set (in which case it could also be direct WRITE).
  377. */
  378. static inline bool cfq_bio_sync(struct bio *bio)
  379. {
  380. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  381. }
  382. /*
  383. * scheduler run of queue, if there are requests pending and no one in the
  384. * driver that will restart queueing
  385. */
  386. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  387. {
  388. if (cfqd->busy_queues) {
  389. cfq_log(cfqd, "schedule dispatch");
  390. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  391. }
  392. }
  393. static int cfq_queue_empty(struct request_queue *q)
  394. {
  395. struct cfq_data *cfqd = q->elevator->elevator_data;
  396. return !cfqd->rq_queued;
  397. }
  398. /*
  399. * Scale schedule slice based on io priority. Use the sync time slice only
  400. * if a queue is marked sync and has sync io queued. A sync queue with async
  401. * io only, should not get full sync slice length.
  402. */
  403. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  404. unsigned short prio)
  405. {
  406. const int base_slice = cfqd->cfq_slice[sync];
  407. WARN_ON(prio >= IOPRIO_BE_NR);
  408. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  409. }
  410. static inline int
  411. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  412. {
  413. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  414. }
  415. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  416. {
  417. u64 d = delta << CFQ_SERVICE_SHIFT;
  418. d = d * BLKIO_WEIGHT_DEFAULT;
  419. do_div(d, cfqg->weight);
  420. return d;
  421. }
  422. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  423. {
  424. s64 delta = (s64)(vdisktime - min_vdisktime);
  425. if (delta > 0)
  426. min_vdisktime = vdisktime;
  427. return min_vdisktime;
  428. }
  429. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  430. {
  431. s64 delta = (s64)(vdisktime - min_vdisktime);
  432. if (delta < 0)
  433. min_vdisktime = vdisktime;
  434. return min_vdisktime;
  435. }
  436. static void update_min_vdisktime(struct cfq_rb_root *st)
  437. {
  438. u64 vdisktime = st->min_vdisktime;
  439. struct cfq_group *cfqg;
  440. if (st->active) {
  441. cfqg = rb_entry_cfqg(st->active);
  442. vdisktime = cfqg->vdisktime;
  443. }
  444. if (st->left) {
  445. cfqg = rb_entry_cfqg(st->left);
  446. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  447. }
  448. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  449. }
  450. /*
  451. * get averaged number of queues of RT/BE priority.
  452. * average is updated, with a formula that gives more weight to higher numbers,
  453. * to quickly follows sudden increases and decrease slowly
  454. */
  455. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  456. struct cfq_group *cfqg, bool rt)
  457. {
  458. unsigned min_q, max_q;
  459. unsigned mult = cfq_hist_divisor - 1;
  460. unsigned round = cfq_hist_divisor / 2;
  461. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  462. min_q = min(cfqg->busy_queues_avg[rt], busy);
  463. max_q = max(cfqg->busy_queues_avg[rt], busy);
  464. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  465. cfq_hist_divisor;
  466. return cfqg->busy_queues_avg[rt];
  467. }
  468. static inline unsigned
  469. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  470. {
  471. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  472. return cfq_target_latency * cfqg->weight / st->total_weight;
  473. }
  474. static inline void
  475. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  476. {
  477. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  478. if (cfqd->cfq_latency) {
  479. /*
  480. * interested queues (we consider only the ones with the same
  481. * priority class in the cfq group)
  482. */
  483. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  484. cfq_class_rt(cfqq));
  485. unsigned sync_slice = cfqd->cfq_slice[1];
  486. unsigned expect_latency = sync_slice * iq;
  487. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  488. if (expect_latency > group_slice) {
  489. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  490. /* scale low_slice according to IO priority
  491. * and sync vs async */
  492. unsigned low_slice =
  493. min(slice, base_low_slice * slice / sync_slice);
  494. /* the adapted slice value is scaled to fit all iqs
  495. * into the target latency */
  496. slice = max(slice * group_slice / expect_latency,
  497. low_slice);
  498. }
  499. }
  500. cfqq->slice_start = jiffies;
  501. cfqq->slice_end = jiffies + slice;
  502. cfqq->allocated_slice = slice;
  503. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  504. }
  505. /*
  506. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  507. * isn't valid until the first request from the dispatch is activated
  508. * and the slice time set.
  509. */
  510. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  511. {
  512. if (cfq_cfqq_slice_new(cfqq))
  513. return 0;
  514. if (time_before(jiffies, cfqq->slice_end))
  515. return 0;
  516. return 1;
  517. }
  518. /*
  519. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  520. * We choose the request that is closest to the head right now. Distance
  521. * behind the head is penalized and only allowed to a certain extent.
  522. */
  523. static struct request *
  524. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  525. {
  526. sector_t s1, s2, d1 = 0, d2 = 0;
  527. unsigned long back_max;
  528. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  529. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  530. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  531. if (rq1 == NULL || rq1 == rq2)
  532. return rq2;
  533. if (rq2 == NULL)
  534. return rq1;
  535. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  536. return rq1;
  537. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  538. return rq2;
  539. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  540. return rq1;
  541. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  542. return rq2;
  543. s1 = blk_rq_pos(rq1);
  544. s2 = blk_rq_pos(rq2);
  545. /*
  546. * by definition, 1KiB is 2 sectors
  547. */
  548. back_max = cfqd->cfq_back_max * 2;
  549. /*
  550. * Strict one way elevator _except_ in the case where we allow
  551. * short backward seeks which are biased as twice the cost of a
  552. * similar forward seek.
  553. */
  554. if (s1 >= last)
  555. d1 = s1 - last;
  556. else if (s1 + back_max >= last)
  557. d1 = (last - s1) * cfqd->cfq_back_penalty;
  558. else
  559. wrap |= CFQ_RQ1_WRAP;
  560. if (s2 >= last)
  561. d2 = s2 - last;
  562. else if (s2 + back_max >= last)
  563. d2 = (last - s2) * cfqd->cfq_back_penalty;
  564. else
  565. wrap |= CFQ_RQ2_WRAP;
  566. /* Found required data */
  567. /*
  568. * By doing switch() on the bit mask "wrap" we avoid having to
  569. * check two variables for all permutations: --> faster!
  570. */
  571. switch (wrap) {
  572. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  573. if (d1 < d2)
  574. return rq1;
  575. else if (d2 < d1)
  576. return rq2;
  577. else {
  578. if (s1 >= s2)
  579. return rq1;
  580. else
  581. return rq2;
  582. }
  583. case CFQ_RQ2_WRAP:
  584. return rq1;
  585. case CFQ_RQ1_WRAP:
  586. return rq2;
  587. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  588. default:
  589. /*
  590. * Since both rqs are wrapped,
  591. * start with the one that's further behind head
  592. * (--> only *one* back seek required),
  593. * since back seek takes more time than forward.
  594. */
  595. if (s1 <= s2)
  596. return rq1;
  597. else
  598. return rq2;
  599. }
  600. }
  601. /*
  602. * The below is leftmost cache rbtree addon
  603. */
  604. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  605. {
  606. /* Service tree is empty */
  607. if (!root->count)
  608. return NULL;
  609. if (!root->left)
  610. root->left = rb_first(&root->rb);
  611. if (root->left)
  612. return rb_entry(root->left, struct cfq_queue, rb_node);
  613. return NULL;
  614. }
  615. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  616. {
  617. if (!root->left)
  618. root->left = rb_first(&root->rb);
  619. if (root->left)
  620. return rb_entry_cfqg(root->left);
  621. return NULL;
  622. }
  623. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  624. {
  625. rb_erase(n, root);
  626. RB_CLEAR_NODE(n);
  627. }
  628. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  629. {
  630. if (root->left == n)
  631. root->left = NULL;
  632. rb_erase_init(n, &root->rb);
  633. --root->count;
  634. }
  635. /*
  636. * would be nice to take fifo expire time into account as well
  637. */
  638. static struct request *
  639. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  640. struct request *last)
  641. {
  642. struct rb_node *rbnext = rb_next(&last->rb_node);
  643. struct rb_node *rbprev = rb_prev(&last->rb_node);
  644. struct request *next = NULL, *prev = NULL;
  645. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  646. if (rbprev)
  647. prev = rb_entry_rq(rbprev);
  648. if (rbnext)
  649. next = rb_entry_rq(rbnext);
  650. else {
  651. rbnext = rb_first(&cfqq->sort_list);
  652. if (rbnext && rbnext != &last->rb_node)
  653. next = rb_entry_rq(rbnext);
  654. }
  655. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  656. }
  657. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  658. struct cfq_queue *cfqq)
  659. {
  660. /*
  661. * just an approximation, should be ok.
  662. */
  663. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  664. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  665. }
  666. static inline s64
  667. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  668. {
  669. return cfqg->vdisktime - st->min_vdisktime;
  670. }
  671. static void
  672. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  673. {
  674. struct rb_node **node = &st->rb.rb_node;
  675. struct rb_node *parent = NULL;
  676. struct cfq_group *__cfqg;
  677. s64 key = cfqg_key(st, cfqg);
  678. int left = 1;
  679. while (*node != NULL) {
  680. parent = *node;
  681. __cfqg = rb_entry_cfqg(parent);
  682. if (key < cfqg_key(st, __cfqg))
  683. node = &parent->rb_left;
  684. else {
  685. node = &parent->rb_right;
  686. left = 0;
  687. }
  688. }
  689. if (left)
  690. st->left = &cfqg->rb_node;
  691. rb_link_node(&cfqg->rb_node, parent, node);
  692. rb_insert_color(&cfqg->rb_node, &st->rb);
  693. }
  694. static void
  695. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  696. {
  697. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  698. struct cfq_group *__cfqg;
  699. struct rb_node *n;
  700. cfqg->nr_cfqq++;
  701. if (cfqg->on_st)
  702. return;
  703. /*
  704. * Currently put the group at the end. Later implement something
  705. * so that groups get lesser vtime based on their weights, so that
  706. * if group does not loose all if it was not continously backlogged.
  707. */
  708. n = rb_last(&st->rb);
  709. if (n) {
  710. __cfqg = rb_entry_cfqg(n);
  711. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  712. } else
  713. cfqg->vdisktime = st->min_vdisktime;
  714. __cfq_group_service_tree_add(st, cfqg);
  715. cfqg->on_st = true;
  716. st->total_weight += cfqg->weight;
  717. }
  718. static void
  719. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  720. {
  721. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  722. if (st->active == &cfqg->rb_node)
  723. st->active = NULL;
  724. BUG_ON(cfqg->nr_cfqq < 1);
  725. cfqg->nr_cfqq--;
  726. /* If there are other cfq queues under this group, don't delete it */
  727. if (cfqg->nr_cfqq)
  728. return;
  729. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  730. cfqg->on_st = false;
  731. st->total_weight -= cfqg->weight;
  732. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  733. cfq_rb_erase(&cfqg->rb_node, st);
  734. cfqg->saved_workload_slice = 0;
  735. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  736. }
  737. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  738. {
  739. unsigned int slice_used;
  740. /*
  741. * Queue got expired before even a single request completed or
  742. * got expired immediately after first request completion.
  743. */
  744. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  745. /*
  746. * Also charge the seek time incurred to the group, otherwise
  747. * if there are mutiple queues in the group, each can dispatch
  748. * a single request on seeky media and cause lots of seek time
  749. * and group will never know it.
  750. */
  751. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  752. 1);
  753. } else {
  754. slice_used = jiffies - cfqq->slice_start;
  755. if (slice_used > cfqq->allocated_slice)
  756. slice_used = cfqq->allocated_slice;
  757. }
  758. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  759. cfqq->nr_sectors);
  760. return slice_used;
  761. }
  762. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  763. struct cfq_queue *cfqq)
  764. {
  765. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  766. unsigned int used_sl, charge_sl;
  767. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  768. - cfqg->service_tree_idle.count;
  769. BUG_ON(nr_sync < 0);
  770. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  771. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  772. charge_sl = cfqq->allocated_slice;
  773. /* Can't update vdisktime while group is on service tree */
  774. cfq_rb_erase(&cfqg->rb_node, st);
  775. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  776. __cfq_group_service_tree_add(st, cfqg);
  777. /* This group is being expired. Save the context */
  778. if (time_after(cfqd->workload_expires, jiffies)) {
  779. cfqg->saved_workload_slice = cfqd->workload_expires
  780. - jiffies;
  781. cfqg->saved_workload = cfqd->serving_type;
  782. cfqg->saved_serving_prio = cfqd->serving_prio;
  783. } else
  784. cfqg->saved_workload_slice = 0;
  785. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  786. st->min_vdisktime);
  787. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  788. cfqq->nr_sectors);
  789. }
  790. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  791. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  792. {
  793. if (blkg)
  794. return container_of(blkg, struct cfq_group, blkg);
  795. return NULL;
  796. }
  797. void
  798. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  799. {
  800. cfqg_of_blkg(blkg)->weight = weight;
  801. }
  802. static struct cfq_group *
  803. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  804. {
  805. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  806. struct cfq_group *cfqg = NULL;
  807. void *key = cfqd;
  808. int i, j;
  809. struct cfq_rb_root *st;
  810. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  811. unsigned int major, minor;
  812. /* Do we need to take this reference */
  813. if (!blkiocg_css_tryget(blkcg))
  814. return NULL;;
  815. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  816. if (cfqg || !create)
  817. goto done;
  818. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  819. if (!cfqg)
  820. goto done;
  821. cfqg->weight = blkcg->weight;
  822. for_each_cfqg_st(cfqg, i, j, st)
  823. *st = CFQ_RB_ROOT;
  824. RB_CLEAR_NODE(&cfqg->rb_node);
  825. /*
  826. * Take the initial reference that will be released on destroy
  827. * This can be thought of a joint reference by cgroup and
  828. * elevator which will be dropped by either elevator exit
  829. * or cgroup deletion path depending on who is exiting first.
  830. */
  831. atomic_set(&cfqg->ref, 1);
  832. /* Add group onto cgroup list */
  833. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  834. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  835. MKDEV(major, minor));
  836. /* Add group on cfqd list */
  837. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  838. done:
  839. blkiocg_css_put(blkcg);
  840. return cfqg;
  841. }
  842. /*
  843. * Search for the cfq group current task belongs to. If create = 1, then also
  844. * create the cfq group if it does not exist. request_queue lock must be held.
  845. */
  846. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  847. {
  848. struct cgroup *cgroup;
  849. struct cfq_group *cfqg = NULL;
  850. rcu_read_lock();
  851. cgroup = task_cgroup(current, blkio_subsys_id);
  852. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  853. if (!cfqg && create)
  854. cfqg = &cfqd->root_group;
  855. rcu_read_unlock();
  856. return cfqg;
  857. }
  858. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  859. {
  860. /* Currently, all async queues are mapped to root group */
  861. if (!cfq_cfqq_sync(cfqq))
  862. cfqg = &cfqq->cfqd->root_group;
  863. cfqq->cfqg = cfqg;
  864. /* cfqq reference on cfqg */
  865. atomic_inc(&cfqq->cfqg->ref);
  866. }
  867. static void cfq_put_cfqg(struct cfq_group *cfqg)
  868. {
  869. struct cfq_rb_root *st;
  870. int i, j;
  871. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  872. if (!atomic_dec_and_test(&cfqg->ref))
  873. return;
  874. for_each_cfqg_st(cfqg, i, j, st)
  875. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  876. kfree(cfqg);
  877. }
  878. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  879. {
  880. /* Something wrong if we are trying to remove same group twice */
  881. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  882. hlist_del_init(&cfqg->cfqd_node);
  883. /*
  884. * Put the reference taken at the time of creation so that when all
  885. * queues are gone, group can be destroyed.
  886. */
  887. cfq_put_cfqg(cfqg);
  888. }
  889. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  890. {
  891. struct hlist_node *pos, *n;
  892. struct cfq_group *cfqg;
  893. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  894. /*
  895. * If cgroup removal path got to blk_group first and removed
  896. * it from cgroup list, then it will take care of destroying
  897. * cfqg also.
  898. */
  899. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  900. cfq_destroy_cfqg(cfqd, cfqg);
  901. }
  902. }
  903. /*
  904. * Blk cgroup controller notification saying that blkio_group object is being
  905. * delinked as associated cgroup object is going away. That also means that
  906. * no new IO will come in this group. So get rid of this group as soon as
  907. * any pending IO in the group is finished.
  908. *
  909. * This function is called under rcu_read_lock(). key is the rcu protected
  910. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  911. * read lock.
  912. *
  913. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  914. * it should not be NULL as even if elevator was exiting, cgroup deltion
  915. * path got to it first.
  916. */
  917. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  918. {
  919. unsigned long flags;
  920. struct cfq_data *cfqd = key;
  921. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  922. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  923. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  924. }
  925. #else /* GROUP_IOSCHED */
  926. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  927. {
  928. return &cfqd->root_group;
  929. }
  930. static inline void
  931. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  932. cfqq->cfqg = cfqg;
  933. }
  934. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  935. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  936. #endif /* GROUP_IOSCHED */
  937. /*
  938. * The cfqd->service_trees holds all pending cfq_queue's that have
  939. * requests waiting to be processed. It is sorted in the order that
  940. * we will service the queues.
  941. */
  942. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  943. bool add_front)
  944. {
  945. struct rb_node **p, *parent;
  946. struct cfq_queue *__cfqq;
  947. unsigned long rb_key;
  948. struct cfq_rb_root *service_tree;
  949. int left;
  950. int new_cfqq = 1;
  951. int group_changed = 0;
  952. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  953. if (!cfqd->cfq_group_isolation
  954. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  955. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  956. /* Move this cfq to root group */
  957. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  958. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  959. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  960. cfqq->orig_cfqg = cfqq->cfqg;
  961. cfqq->cfqg = &cfqd->root_group;
  962. atomic_inc(&cfqd->root_group.ref);
  963. group_changed = 1;
  964. } else if (!cfqd->cfq_group_isolation
  965. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  966. /* cfqq is sequential now needs to go to its original group */
  967. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  968. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  969. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  970. cfq_put_cfqg(cfqq->cfqg);
  971. cfqq->cfqg = cfqq->orig_cfqg;
  972. cfqq->orig_cfqg = NULL;
  973. group_changed = 1;
  974. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  975. }
  976. #endif
  977. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  978. cfqq_type(cfqq));
  979. if (cfq_class_idle(cfqq)) {
  980. rb_key = CFQ_IDLE_DELAY;
  981. parent = rb_last(&service_tree->rb);
  982. if (parent && parent != &cfqq->rb_node) {
  983. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  984. rb_key += __cfqq->rb_key;
  985. } else
  986. rb_key += jiffies;
  987. } else if (!add_front) {
  988. /*
  989. * Get our rb key offset. Subtract any residual slice
  990. * value carried from last service. A negative resid
  991. * count indicates slice overrun, and this should position
  992. * the next service time further away in the tree.
  993. */
  994. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  995. rb_key -= cfqq->slice_resid;
  996. cfqq->slice_resid = 0;
  997. } else {
  998. rb_key = -HZ;
  999. __cfqq = cfq_rb_first(service_tree);
  1000. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1001. }
  1002. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1003. new_cfqq = 0;
  1004. /*
  1005. * same position, nothing more to do
  1006. */
  1007. if (rb_key == cfqq->rb_key &&
  1008. cfqq->service_tree == service_tree)
  1009. return;
  1010. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1011. cfqq->service_tree = NULL;
  1012. }
  1013. left = 1;
  1014. parent = NULL;
  1015. cfqq->service_tree = service_tree;
  1016. p = &service_tree->rb.rb_node;
  1017. while (*p) {
  1018. struct rb_node **n;
  1019. parent = *p;
  1020. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1021. /*
  1022. * sort by key, that represents service time.
  1023. */
  1024. if (time_before(rb_key, __cfqq->rb_key))
  1025. n = &(*p)->rb_left;
  1026. else {
  1027. n = &(*p)->rb_right;
  1028. left = 0;
  1029. }
  1030. p = n;
  1031. }
  1032. if (left)
  1033. service_tree->left = &cfqq->rb_node;
  1034. cfqq->rb_key = rb_key;
  1035. rb_link_node(&cfqq->rb_node, parent, p);
  1036. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1037. service_tree->count++;
  1038. if ((add_front || !new_cfqq) && !group_changed)
  1039. return;
  1040. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1041. }
  1042. static struct cfq_queue *
  1043. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1044. sector_t sector, struct rb_node **ret_parent,
  1045. struct rb_node ***rb_link)
  1046. {
  1047. struct rb_node **p, *parent;
  1048. struct cfq_queue *cfqq = NULL;
  1049. parent = NULL;
  1050. p = &root->rb_node;
  1051. while (*p) {
  1052. struct rb_node **n;
  1053. parent = *p;
  1054. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1055. /*
  1056. * Sort strictly based on sector. Smallest to the left,
  1057. * largest to the right.
  1058. */
  1059. if (sector > blk_rq_pos(cfqq->next_rq))
  1060. n = &(*p)->rb_right;
  1061. else if (sector < blk_rq_pos(cfqq->next_rq))
  1062. n = &(*p)->rb_left;
  1063. else
  1064. break;
  1065. p = n;
  1066. cfqq = NULL;
  1067. }
  1068. *ret_parent = parent;
  1069. if (rb_link)
  1070. *rb_link = p;
  1071. return cfqq;
  1072. }
  1073. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1074. {
  1075. struct rb_node **p, *parent;
  1076. struct cfq_queue *__cfqq;
  1077. if (cfqq->p_root) {
  1078. rb_erase(&cfqq->p_node, cfqq->p_root);
  1079. cfqq->p_root = NULL;
  1080. }
  1081. if (cfq_class_idle(cfqq))
  1082. return;
  1083. if (!cfqq->next_rq)
  1084. return;
  1085. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1086. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1087. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1088. if (!__cfqq) {
  1089. rb_link_node(&cfqq->p_node, parent, p);
  1090. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1091. } else
  1092. cfqq->p_root = NULL;
  1093. }
  1094. /*
  1095. * Update cfqq's position in the service tree.
  1096. */
  1097. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1098. {
  1099. /*
  1100. * Resorting requires the cfqq to be on the RR list already.
  1101. */
  1102. if (cfq_cfqq_on_rr(cfqq)) {
  1103. cfq_service_tree_add(cfqd, cfqq, 0);
  1104. cfq_prio_tree_add(cfqd, cfqq);
  1105. }
  1106. }
  1107. /*
  1108. * add to busy list of queues for service, trying to be fair in ordering
  1109. * the pending list according to last request service
  1110. */
  1111. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1112. {
  1113. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1114. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1115. cfq_mark_cfqq_on_rr(cfqq);
  1116. cfqd->busy_queues++;
  1117. cfq_resort_rr_list(cfqd, cfqq);
  1118. }
  1119. /*
  1120. * Called when the cfqq no longer has requests pending, remove it from
  1121. * the service tree.
  1122. */
  1123. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1124. {
  1125. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1126. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1127. cfq_clear_cfqq_on_rr(cfqq);
  1128. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1129. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1130. cfqq->service_tree = NULL;
  1131. }
  1132. if (cfqq->p_root) {
  1133. rb_erase(&cfqq->p_node, cfqq->p_root);
  1134. cfqq->p_root = NULL;
  1135. }
  1136. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1137. BUG_ON(!cfqd->busy_queues);
  1138. cfqd->busy_queues--;
  1139. }
  1140. /*
  1141. * rb tree support functions
  1142. */
  1143. static void cfq_del_rq_rb(struct request *rq)
  1144. {
  1145. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1146. const int sync = rq_is_sync(rq);
  1147. BUG_ON(!cfqq->queued[sync]);
  1148. cfqq->queued[sync]--;
  1149. elv_rb_del(&cfqq->sort_list, rq);
  1150. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1151. /*
  1152. * Queue will be deleted from service tree when we actually
  1153. * expire it later. Right now just remove it from prio tree
  1154. * as it is empty.
  1155. */
  1156. if (cfqq->p_root) {
  1157. rb_erase(&cfqq->p_node, cfqq->p_root);
  1158. cfqq->p_root = NULL;
  1159. }
  1160. }
  1161. }
  1162. static void cfq_add_rq_rb(struct request *rq)
  1163. {
  1164. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1165. struct cfq_data *cfqd = cfqq->cfqd;
  1166. struct request *__alias, *prev;
  1167. cfqq->queued[rq_is_sync(rq)]++;
  1168. /*
  1169. * looks a little odd, but the first insert might return an alias.
  1170. * if that happens, put the alias on the dispatch list
  1171. */
  1172. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1173. cfq_dispatch_insert(cfqd->queue, __alias);
  1174. if (!cfq_cfqq_on_rr(cfqq))
  1175. cfq_add_cfqq_rr(cfqd, cfqq);
  1176. /*
  1177. * check if this request is a better next-serve candidate
  1178. */
  1179. prev = cfqq->next_rq;
  1180. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1181. /*
  1182. * adjust priority tree position, if ->next_rq changes
  1183. */
  1184. if (prev != cfqq->next_rq)
  1185. cfq_prio_tree_add(cfqd, cfqq);
  1186. BUG_ON(!cfqq->next_rq);
  1187. }
  1188. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1189. {
  1190. elv_rb_del(&cfqq->sort_list, rq);
  1191. cfqq->queued[rq_is_sync(rq)]--;
  1192. cfq_add_rq_rb(rq);
  1193. }
  1194. static struct request *
  1195. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1196. {
  1197. struct task_struct *tsk = current;
  1198. struct cfq_io_context *cic;
  1199. struct cfq_queue *cfqq;
  1200. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1201. if (!cic)
  1202. return NULL;
  1203. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1204. if (cfqq) {
  1205. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1206. return elv_rb_find(&cfqq->sort_list, sector);
  1207. }
  1208. return NULL;
  1209. }
  1210. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1211. {
  1212. struct cfq_data *cfqd = q->elevator->elevator_data;
  1213. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  1214. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1215. rq_in_driver(cfqd));
  1216. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1217. }
  1218. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1219. {
  1220. struct cfq_data *cfqd = q->elevator->elevator_data;
  1221. const int sync = rq_is_sync(rq);
  1222. WARN_ON(!cfqd->rq_in_driver[sync]);
  1223. cfqd->rq_in_driver[sync]--;
  1224. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1225. rq_in_driver(cfqd));
  1226. }
  1227. static void cfq_remove_request(struct request *rq)
  1228. {
  1229. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1230. if (cfqq->next_rq == rq)
  1231. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1232. list_del_init(&rq->queuelist);
  1233. cfq_del_rq_rb(rq);
  1234. cfqq->cfqd->rq_queued--;
  1235. if (rq_is_meta(rq)) {
  1236. WARN_ON(!cfqq->meta_pending);
  1237. cfqq->meta_pending--;
  1238. }
  1239. }
  1240. static int cfq_merge(struct request_queue *q, struct request **req,
  1241. struct bio *bio)
  1242. {
  1243. struct cfq_data *cfqd = q->elevator->elevator_data;
  1244. struct request *__rq;
  1245. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1246. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1247. *req = __rq;
  1248. return ELEVATOR_FRONT_MERGE;
  1249. }
  1250. return ELEVATOR_NO_MERGE;
  1251. }
  1252. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1253. int type)
  1254. {
  1255. if (type == ELEVATOR_FRONT_MERGE) {
  1256. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1257. cfq_reposition_rq_rb(cfqq, req);
  1258. }
  1259. }
  1260. static void
  1261. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1262. struct request *next)
  1263. {
  1264. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1265. /*
  1266. * reposition in fifo if next is older than rq
  1267. */
  1268. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1269. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1270. list_move(&rq->queuelist, &next->queuelist);
  1271. rq_set_fifo_time(rq, rq_fifo_time(next));
  1272. }
  1273. if (cfqq->next_rq == next)
  1274. cfqq->next_rq = rq;
  1275. cfq_remove_request(next);
  1276. }
  1277. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1278. struct bio *bio)
  1279. {
  1280. struct cfq_data *cfqd = q->elevator->elevator_data;
  1281. struct cfq_io_context *cic;
  1282. struct cfq_queue *cfqq;
  1283. /*
  1284. * Disallow merge of a sync bio into an async request.
  1285. */
  1286. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1287. return false;
  1288. /*
  1289. * Lookup the cfqq that this bio will be queued with. Allow
  1290. * merge only if rq is queued there.
  1291. */
  1292. cic = cfq_cic_lookup(cfqd, current->io_context);
  1293. if (!cic)
  1294. return false;
  1295. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1296. return cfqq == RQ_CFQQ(rq);
  1297. }
  1298. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1299. struct cfq_queue *cfqq)
  1300. {
  1301. if (cfqq) {
  1302. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1303. cfqq->slice_start = 0;
  1304. cfqq->dispatch_start = jiffies;
  1305. cfqq->allocated_slice = 0;
  1306. cfqq->slice_end = 0;
  1307. cfqq->slice_dispatch = 0;
  1308. cfqq->nr_sectors = 0;
  1309. cfq_clear_cfqq_wait_request(cfqq);
  1310. cfq_clear_cfqq_must_dispatch(cfqq);
  1311. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1312. cfq_clear_cfqq_fifo_expire(cfqq);
  1313. cfq_mark_cfqq_slice_new(cfqq);
  1314. del_timer(&cfqd->idle_slice_timer);
  1315. }
  1316. cfqd->active_queue = cfqq;
  1317. }
  1318. /*
  1319. * current cfqq expired its slice (or was too idle), select new one
  1320. */
  1321. static void
  1322. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1323. bool timed_out)
  1324. {
  1325. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1326. if (cfq_cfqq_wait_request(cfqq))
  1327. del_timer(&cfqd->idle_slice_timer);
  1328. cfq_clear_cfqq_wait_request(cfqq);
  1329. cfq_clear_cfqq_wait_busy(cfqq);
  1330. /*
  1331. * If this cfqq is shared between multiple processes, check to
  1332. * make sure that those processes are still issuing I/Os within
  1333. * the mean seek distance. If not, it may be time to break the
  1334. * queues apart again.
  1335. */
  1336. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1337. cfq_mark_cfqq_split_coop(cfqq);
  1338. /*
  1339. * store what was left of this slice, if the queue idled/timed out
  1340. */
  1341. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1342. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1343. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1344. }
  1345. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1346. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1347. cfq_del_cfqq_rr(cfqd, cfqq);
  1348. cfq_resort_rr_list(cfqd, cfqq);
  1349. if (cfqq == cfqd->active_queue)
  1350. cfqd->active_queue = NULL;
  1351. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1352. cfqd->grp_service_tree.active = NULL;
  1353. if (cfqd->active_cic) {
  1354. put_io_context(cfqd->active_cic->ioc);
  1355. cfqd->active_cic = NULL;
  1356. }
  1357. }
  1358. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1359. {
  1360. struct cfq_queue *cfqq = cfqd->active_queue;
  1361. if (cfqq)
  1362. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1363. }
  1364. /*
  1365. * Get next queue for service. Unless we have a queue preemption,
  1366. * we'll simply select the first cfqq in the service tree.
  1367. */
  1368. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1369. {
  1370. struct cfq_rb_root *service_tree =
  1371. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1372. cfqd->serving_type);
  1373. if (!cfqd->rq_queued)
  1374. return NULL;
  1375. /* There is nothing to dispatch */
  1376. if (!service_tree)
  1377. return NULL;
  1378. if (RB_EMPTY_ROOT(&service_tree->rb))
  1379. return NULL;
  1380. return cfq_rb_first(service_tree);
  1381. }
  1382. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1383. {
  1384. struct cfq_group *cfqg;
  1385. struct cfq_queue *cfqq;
  1386. int i, j;
  1387. struct cfq_rb_root *st;
  1388. if (!cfqd->rq_queued)
  1389. return NULL;
  1390. cfqg = cfq_get_next_cfqg(cfqd);
  1391. if (!cfqg)
  1392. return NULL;
  1393. for_each_cfqg_st(cfqg, i, j, st)
  1394. if ((cfqq = cfq_rb_first(st)) != NULL)
  1395. return cfqq;
  1396. return NULL;
  1397. }
  1398. /*
  1399. * Get and set a new active queue for service.
  1400. */
  1401. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1402. struct cfq_queue *cfqq)
  1403. {
  1404. if (!cfqq)
  1405. cfqq = cfq_get_next_queue(cfqd);
  1406. __cfq_set_active_queue(cfqd, cfqq);
  1407. return cfqq;
  1408. }
  1409. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1410. struct request *rq)
  1411. {
  1412. if (blk_rq_pos(rq) >= cfqd->last_position)
  1413. return blk_rq_pos(rq) - cfqd->last_position;
  1414. else
  1415. return cfqd->last_position - blk_rq_pos(rq);
  1416. }
  1417. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1418. struct request *rq, bool for_preempt)
  1419. {
  1420. sector_t sdist = cfqq->seek_mean;
  1421. if (!sample_valid(cfqq->seek_samples))
  1422. sdist = CFQQ_SEEK_THR;
  1423. /* if seek_mean is big, using it as close criteria is meaningless */
  1424. if (sdist > CFQQ_SEEK_THR && !for_preempt)
  1425. sdist = CFQQ_SEEK_THR;
  1426. return cfq_dist_from_last(cfqd, rq) <= sdist;
  1427. }
  1428. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1429. struct cfq_queue *cur_cfqq)
  1430. {
  1431. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1432. struct rb_node *parent, *node;
  1433. struct cfq_queue *__cfqq;
  1434. sector_t sector = cfqd->last_position;
  1435. if (RB_EMPTY_ROOT(root))
  1436. return NULL;
  1437. /*
  1438. * First, if we find a request starting at the end of the last
  1439. * request, choose it.
  1440. */
  1441. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1442. if (__cfqq)
  1443. return __cfqq;
  1444. /*
  1445. * If the exact sector wasn't found, the parent of the NULL leaf
  1446. * will contain the closest sector.
  1447. */
  1448. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1449. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1450. return __cfqq;
  1451. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1452. node = rb_next(&__cfqq->p_node);
  1453. else
  1454. node = rb_prev(&__cfqq->p_node);
  1455. if (!node)
  1456. return NULL;
  1457. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1458. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
  1459. return __cfqq;
  1460. return NULL;
  1461. }
  1462. /*
  1463. * cfqd - obvious
  1464. * cur_cfqq - passed in so that we don't decide that the current queue is
  1465. * closely cooperating with itself.
  1466. *
  1467. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1468. * one request, and that cfqd->last_position reflects a position on the disk
  1469. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1470. * assumption.
  1471. */
  1472. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1473. struct cfq_queue *cur_cfqq)
  1474. {
  1475. struct cfq_queue *cfqq;
  1476. if (!cfq_cfqq_sync(cur_cfqq))
  1477. return NULL;
  1478. if (CFQQ_SEEKY(cur_cfqq))
  1479. return NULL;
  1480. /*
  1481. * Don't search priority tree if it's the only queue in the group.
  1482. */
  1483. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1484. return NULL;
  1485. /*
  1486. * We should notice if some of the queues are cooperating, eg
  1487. * working closely on the same area of the disk. In that case,
  1488. * we can group them together and don't waste time idling.
  1489. */
  1490. cfqq = cfqq_close(cfqd, cur_cfqq);
  1491. if (!cfqq)
  1492. return NULL;
  1493. /* If new queue belongs to different cfq_group, don't choose it */
  1494. if (cur_cfqq->cfqg != cfqq->cfqg)
  1495. return NULL;
  1496. /*
  1497. * It only makes sense to merge sync queues.
  1498. */
  1499. if (!cfq_cfqq_sync(cfqq))
  1500. return NULL;
  1501. if (CFQQ_SEEKY(cfqq))
  1502. return NULL;
  1503. /*
  1504. * Do not merge queues of different priority classes
  1505. */
  1506. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1507. return NULL;
  1508. return cfqq;
  1509. }
  1510. /*
  1511. * Determine whether we should enforce idle window for this queue.
  1512. */
  1513. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1514. {
  1515. enum wl_prio_t prio = cfqq_prio(cfqq);
  1516. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1517. BUG_ON(!service_tree);
  1518. BUG_ON(!service_tree->count);
  1519. /* We never do for idle class queues. */
  1520. if (prio == IDLE_WORKLOAD)
  1521. return false;
  1522. /* We do for queues that were marked with idle window flag. */
  1523. if (cfq_cfqq_idle_window(cfqq) &&
  1524. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1525. return true;
  1526. /*
  1527. * Otherwise, we do only if they are the last ones
  1528. * in their service tree.
  1529. */
  1530. return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
  1531. }
  1532. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1533. {
  1534. struct cfq_queue *cfqq = cfqd->active_queue;
  1535. struct cfq_io_context *cic;
  1536. unsigned long sl;
  1537. /*
  1538. * SSD device without seek penalty, disable idling. But only do so
  1539. * for devices that support queuing, otherwise we still have a problem
  1540. * with sync vs async workloads.
  1541. */
  1542. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1543. return;
  1544. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1545. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1546. /*
  1547. * idle is disabled, either manually or by past process history
  1548. */
  1549. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1550. return;
  1551. /*
  1552. * still active requests from this queue, don't idle
  1553. */
  1554. if (cfqq->dispatched)
  1555. return;
  1556. /*
  1557. * task has exited, don't wait
  1558. */
  1559. cic = cfqd->active_cic;
  1560. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1561. return;
  1562. /*
  1563. * If our average think time is larger than the remaining time
  1564. * slice, then don't idle. This avoids overrunning the allotted
  1565. * time slice.
  1566. */
  1567. if (sample_valid(cic->ttime_samples) &&
  1568. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1569. return;
  1570. cfq_mark_cfqq_wait_request(cfqq);
  1571. sl = cfqd->cfq_slice_idle;
  1572. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1573. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1574. }
  1575. /*
  1576. * Move request from internal lists to the request queue dispatch list.
  1577. */
  1578. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1579. {
  1580. struct cfq_data *cfqd = q->elevator->elevator_data;
  1581. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1582. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1583. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1584. cfq_remove_request(rq);
  1585. cfqq->dispatched++;
  1586. elv_dispatch_sort(q, rq);
  1587. if (cfq_cfqq_sync(cfqq))
  1588. cfqd->sync_flight++;
  1589. cfqq->nr_sectors += blk_rq_sectors(rq);
  1590. }
  1591. /*
  1592. * return expired entry, or NULL to just start from scratch in rbtree
  1593. */
  1594. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1595. {
  1596. struct request *rq = NULL;
  1597. if (cfq_cfqq_fifo_expire(cfqq))
  1598. return NULL;
  1599. cfq_mark_cfqq_fifo_expire(cfqq);
  1600. if (list_empty(&cfqq->fifo))
  1601. return NULL;
  1602. rq = rq_entry_fifo(cfqq->fifo.next);
  1603. if (time_before(jiffies, rq_fifo_time(rq)))
  1604. rq = NULL;
  1605. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1606. return rq;
  1607. }
  1608. static inline int
  1609. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1610. {
  1611. const int base_rq = cfqd->cfq_slice_async_rq;
  1612. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1613. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1614. }
  1615. /*
  1616. * Must be called with the queue_lock held.
  1617. */
  1618. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1619. {
  1620. int process_refs, io_refs;
  1621. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1622. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1623. BUG_ON(process_refs < 0);
  1624. return process_refs;
  1625. }
  1626. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1627. {
  1628. int process_refs, new_process_refs;
  1629. struct cfq_queue *__cfqq;
  1630. /* Avoid a circular list and skip interim queue merges */
  1631. while ((__cfqq = new_cfqq->new_cfqq)) {
  1632. if (__cfqq == cfqq)
  1633. return;
  1634. new_cfqq = __cfqq;
  1635. }
  1636. process_refs = cfqq_process_refs(cfqq);
  1637. /*
  1638. * If the process for the cfqq has gone away, there is no
  1639. * sense in merging the queues.
  1640. */
  1641. if (process_refs == 0)
  1642. return;
  1643. /*
  1644. * Merge in the direction of the lesser amount of work.
  1645. */
  1646. new_process_refs = cfqq_process_refs(new_cfqq);
  1647. if (new_process_refs >= process_refs) {
  1648. cfqq->new_cfqq = new_cfqq;
  1649. atomic_add(process_refs, &new_cfqq->ref);
  1650. } else {
  1651. new_cfqq->new_cfqq = cfqq;
  1652. atomic_add(new_process_refs, &cfqq->ref);
  1653. }
  1654. }
  1655. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1656. struct cfq_group *cfqg, enum wl_prio_t prio)
  1657. {
  1658. struct cfq_queue *queue;
  1659. int i;
  1660. bool key_valid = false;
  1661. unsigned long lowest_key = 0;
  1662. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1663. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1664. /* select the one with lowest rb_key */
  1665. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1666. if (queue &&
  1667. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1668. lowest_key = queue->rb_key;
  1669. cur_best = i;
  1670. key_valid = true;
  1671. }
  1672. }
  1673. return cur_best;
  1674. }
  1675. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1676. {
  1677. unsigned slice;
  1678. unsigned count;
  1679. struct cfq_rb_root *st;
  1680. unsigned group_slice;
  1681. if (!cfqg) {
  1682. cfqd->serving_prio = IDLE_WORKLOAD;
  1683. cfqd->workload_expires = jiffies + 1;
  1684. return;
  1685. }
  1686. /* Choose next priority. RT > BE > IDLE */
  1687. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1688. cfqd->serving_prio = RT_WORKLOAD;
  1689. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1690. cfqd->serving_prio = BE_WORKLOAD;
  1691. else {
  1692. cfqd->serving_prio = IDLE_WORKLOAD;
  1693. cfqd->workload_expires = jiffies + 1;
  1694. return;
  1695. }
  1696. /*
  1697. * For RT and BE, we have to choose also the type
  1698. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1699. * expiration time
  1700. */
  1701. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1702. count = st->count;
  1703. /*
  1704. * check workload expiration, and that we still have other queues ready
  1705. */
  1706. if (count && !time_after(jiffies, cfqd->workload_expires))
  1707. return;
  1708. /* otherwise select new workload type */
  1709. cfqd->serving_type =
  1710. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1711. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1712. count = st->count;
  1713. /*
  1714. * the workload slice is computed as a fraction of target latency
  1715. * proportional to the number of queues in that workload, over
  1716. * all the queues in the same priority class
  1717. */
  1718. group_slice = cfq_group_slice(cfqd, cfqg);
  1719. slice = group_slice * count /
  1720. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1721. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1722. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1723. unsigned int tmp;
  1724. /*
  1725. * Async queues are currently system wide. Just taking
  1726. * proportion of queues with-in same group will lead to higher
  1727. * async ratio system wide as generally root group is going
  1728. * to have higher weight. A more accurate thing would be to
  1729. * calculate system wide asnc/sync ratio.
  1730. */
  1731. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1732. tmp = tmp/cfqd->busy_queues;
  1733. slice = min_t(unsigned, slice, tmp);
  1734. /* async workload slice is scaled down according to
  1735. * the sync/async slice ratio. */
  1736. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1737. } else
  1738. /* sync workload slice is at least 2 * cfq_slice_idle */
  1739. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1740. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1741. cfqd->workload_expires = jiffies + slice;
  1742. cfqd->noidle_tree_requires_idle = false;
  1743. }
  1744. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1745. {
  1746. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1747. struct cfq_group *cfqg;
  1748. if (RB_EMPTY_ROOT(&st->rb))
  1749. return NULL;
  1750. cfqg = cfq_rb_first_group(st);
  1751. st->active = &cfqg->rb_node;
  1752. update_min_vdisktime(st);
  1753. return cfqg;
  1754. }
  1755. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1756. {
  1757. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1758. cfqd->serving_group = cfqg;
  1759. /* Restore the workload type data */
  1760. if (cfqg->saved_workload_slice) {
  1761. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1762. cfqd->serving_type = cfqg->saved_workload;
  1763. cfqd->serving_prio = cfqg->saved_serving_prio;
  1764. } else
  1765. cfqd->workload_expires = jiffies - 1;
  1766. choose_service_tree(cfqd, cfqg);
  1767. }
  1768. /*
  1769. * Select a queue for service. If we have a current active queue,
  1770. * check whether to continue servicing it, or retrieve and set a new one.
  1771. */
  1772. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1773. {
  1774. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1775. cfqq = cfqd->active_queue;
  1776. if (!cfqq)
  1777. goto new_queue;
  1778. if (!cfqd->rq_queued)
  1779. return NULL;
  1780. /*
  1781. * We were waiting for group to get backlogged. Expire the queue
  1782. */
  1783. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1784. goto expire;
  1785. /*
  1786. * The active queue has run out of time, expire it and select new.
  1787. */
  1788. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1789. /*
  1790. * If slice had not expired at the completion of last request
  1791. * we might not have turned on wait_busy flag. Don't expire
  1792. * the queue yet. Allow the group to get backlogged.
  1793. *
  1794. * The very fact that we have used the slice, that means we
  1795. * have been idling all along on this queue and it should be
  1796. * ok to wait for this request to complete.
  1797. */
  1798. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1799. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1800. cfqq = NULL;
  1801. goto keep_queue;
  1802. } else
  1803. goto expire;
  1804. }
  1805. /*
  1806. * The active queue has requests and isn't expired, allow it to
  1807. * dispatch.
  1808. */
  1809. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1810. goto keep_queue;
  1811. /*
  1812. * If another queue has a request waiting within our mean seek
  1813. * distance, let it run. The expire code will check for close
  1814. * cooperators and put the close queue at the front of the service
  1815. * tree. If possible, merge the expiring queue with the new cfqq.
  1816. */
  1817. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1818. if (new_cfqq) {
  1819. if (!cfqq->new_cfqq)
  1820. cfq_setup_merge(cfqq, new_cfqq);
  1821. goto expire;
  1822. }
  1823. /*
  1824. * No requests pending. If the active queue still has requests in
  1825. * flight or is idling for a new request, allow either of these
  1826. * conditions to happen (or time out) before selecting a new queue.
  1827. */
  1828. if (timer_pending(&cfqd->idle_slice_timer) ||
  1829. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1830. cfqq = NULL;
  1831. goto keep_queue;
  1832. }
  1833. expire:
  1834. cfq_slice_expired(cfqd, 0);
  1835. new_queue:
  1836. /*
  1837. * Current queue expired. Check if we have to switch to a new
  1838. * service tree
  1839. */
  1840. if (!new_cfqq)
  1841. cfq_choose_cfqg(cfqd);
  1842. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1843. keep_queue:
  1844. return cfqq;
  1845. }
  1846. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1847. {
  1848. int dispatched = 0;
  1849. while (cfqq->next_rq) {
  1850. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1851. dispatched++;
  1852. }
  1853. BUG_ON(!list_empty(&cfqq->fifo));
  1854. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1855. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1856. return dispatched;
  1857. }
  1858. /*
  1859. * Drain our current requests. Used for barriers and when switching
  1860. * io schedulers on-the-fly.
  1861. */
  1862. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1863. {
  1864. struct cfq_queue *cfqq;
  1865. int dispatched = 0;
  1866. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1867. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1868. cfq_slice_expired(cfqd, 0);
  1869. BUG_ON(cfqd->busy_queues);
  1870. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1871. return dispatched;
  1872. }
  1873. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1874. {
  1875. unsigned int max_dispatch;
  1876. /*
  1877. * Drain async requests before we start sync IO
  1878. */
  1879. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1880. return false;
  1881. /*
  1882. * If this is an async queue and we have sync IO in flight, let it wait
  1883. */
  1884. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1885. return false;
  1886. max_dispatch = cfqd->cfq_quantum;
  1887. if (cfq_class_idle(cfqq))
  1888. max_dispatch = 1;
  1889. /*
  1890. * Does this cfqq already have too much IO in flight?
  1891. */
  1892. if (cfqq->dispatched >= max_dispatch) {
  1893. /*
  1894. * idle queue must always only have a single IO in flight
  1895. */
  1896. if (cfq_class_idle(cfqq))
  1897. return false;
  1898. /*
  1899. * We have other queues, don't allow more IO from this one
  1900. */
  1901. if (cfqd->busy_queues > 1)
  1902. return false;
  1903. /*
  1904. * Sole queue user, no limit
  1905. */
  1906. max_dispatch = -1;
  1907. }
  1908. /*
  1909. * Async queues must wait a bit before being allowed dispatch.
  1910. * We also ramp up the dispatch depth gradually for async IO,
  1911. * based on the last sync IO we serviced
  1912. */
  1913. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1914. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  1915. unsigned int depth;
  1916. depth = last_sync / cfqd->cfq_slice[1];
  1917. if (!depth && !cfqq->dispatched)
  1918. depth = 1;
  1919. if (depth < max_dispatch)
  1920. max_dispatch = depth;
  1921. }
  1922. /*
  1923. * If we're below the current max, allow a dispatch
  1924. */
  1925. return cfqq->dispatched < max_dispatch;
  1926. }
  1927. /*
  1928. * Dispatch a request from cfqq, moving them to the request queue
  1929. * dispatch list.
  1930. */
  1931. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1932. {
  1933. struct request *rq;
  1934. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1935. if (!cfq_may_dispatch(cfqd, cfqq))
  1936. return false;
  1937. /*
  1938. * follow expired path, else get first next available
  1939. */
  1940. rq = cfq_check_fifo(cfqq);
  1941. if (!rq)
  1942. rq = cfqq->next_rq;
  1943. /*
  1944. * insert request into driver dispatch list
  1945. */
  1946. cfq_dispatch_insert(cfqd->queue, rq);
  1947. if (!cfqd->active_cic) {
  1948. struct cfq_io_context *cic = RQ_CIC(rq);
  1949. atomic_long_inc(&cic->ioc->refcount);
  1950. cfqd->active_cic = cic;
  1951. }
  1952. return true;
  1953. }
  1954. /*
  1955. * Find the cfqq that we need to service and move a request from that to the
  1956. * dispatch list
  1957. */
  1958. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1959. {
  1960. struct cfq_data *cfqd = q->elevator->elevator_data;
  1961. struct cfq_queue *cfqq;
  1962. if (!cfqd->busy_queues)
  1963. return 0;
  1964. if (unlikely(force))
  1965. return cfq_forced_dispatch(cfqd);
  1966. cfqq = cfq_select_queue(cfqd);
  1967. if (!cfqq)
  1968. return 0;
  1969. /*
  1970. * Dispatch a request from this cfqq, if it is allowed
  1971. */
  1972. if (!cfq_dispatch_request(cfqd, cfqq))
  1973. return 0;
  1974. cfqq->slice_dispatch++;
  1975. cfq_clear_cfqq_must_dispatch(cfqq);
  1976. /*
  1977. * expire an async queue immediately if it has used up its slice. idle
  1978. * queue always expire after 1 dispatch round.
  1979. */
  1980. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1981. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1982. cfq_class_idle(cfqq))) {
  1983. cfqq->slice_end = jiffies + 1;
  1984. cfq_slice_expired(cfqd, 0);
  1985. }
  1986. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1987. return 1;
  1988. }
  1989. /*
  1990. * task holds one reference to the queue, dropped when task exits. each rq
  1991. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1992. *
  1993. * Each cfq queue took a reference on the parent group. Drop it now.
  1994. * queue lock must be held here.
  1995. */
  1996. static void cfq_put_queue(struct cfq_queue *cfqq)
  1997. {
  1998. struct cfq_data *cfqd = cfqq->cfqd;
  1999. struct cfq_group *cfqg, *orig_cfqg;
  2000. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2001. if (!atomic_dec_and_test(&cfqq->ref))
  2002. return;
  2003. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2004. BUG_ON(rb_first(&cfqq->sort_list));
  2005. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2006. cfqg = cfqq->cfqg;
  2007. orig_cfqg = cfqq->orig_cfqg;
  2008. if (unlikely(cfqd->active_queue == cfqq)) {
  2009. __cfq_slice_expired(cfqd, cfqq, 0);
  2010. cfq_schedule_dispatch(cfqd);
  2011. }
  2012. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2013. kmem_cache_free(cfq_pool, cfqq);
  2014. cfq_put_cfqg(cfqg);
  2015. if (orig_cfqg)
  2016. cfq_put_cfqg(orig_cfqg);
  2017. }
  2018. /*
  2019. * Must always be called with the rcu_read_lock() held
  2020. */
  2021. static void
  2022. __call_for_each_cic(struct io_context *ioc,
  2023. void (*func)(struct io_context *, struct cfq_io_context *))
  2024. {
  2025. struct cfq_io_context *cic;
  2026. struct hlist_node *n;
  2027. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2028. func(ioc, cic);
  2029. }
  2030. /*
  2031. * Call func for each cic attached to this ioc.
  2032. */
  2033. static void
  2034. call_for_each_cic(struct io_context *ioc,
  2035. void (*func)(struct io_context *, struct cfq_io_context *))
  2036. {
  2037. rcu_read_lock();
  2038. __call_for_each_cic(ioc, func);
  2039. rcu_read_unlock();
  2040. }
  2041. static void cfq_cic_free_rcu(struct rcu_head *head)
  2042. {
  2043. struct cfq_io_context *cic;
  2044. cic = container_of(head, struct cfq_io_context, rcu_head);
  2045. kmem_cache_free(cfq_ioc_pool, cic);
  2046. elv_ioc_count_dec(cfq_ioc_count);
  2047. if (ioc_gone) {
  2048. /*
  2049. * CFQ scheduler is exiting, grab exit lock and check
  2050. * the pending io context count. If it hits zero,
  2051. * complete ioc_gone and set it back to NULL
  2052. */
  2053. spin_lock(&ioc_gone_lock);
  2054. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2055. complete(ioc_gone);
  2056. ioc_gone = NULL;
  2057. }
  2058. spin_unlock(&ioc_gone_lock);
  2059. }
  2060. }
  2061. static void cfq_cic_free(struct cfq_io_context *cic)
  2062. {
  2063. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2064. }
  2065. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2066. {
  2067. unsigned long flags;
  2068. BUG_ON(!cic->dead_key);
  2069. spin_lock_irqsave(&ioc->lock, flags);
  2070. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2071. hlist_del_rcu(&cic->cic_list);
  2072. spin_unlock_irqrestore(&ioc->lock, flags);
  2073. cfq_cic_free(cic);
  2074. }
  2075. /*
  2076. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2077. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2078. * and ->trim() which is called with the task lock held
  2079. */
  2080. static void cfq_free_io_context(struct io_context *ioc)
  2081. {
  2082. /*
  2083. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2084. * so no more cic's are allowed to be linked into this ioc. So it
  2085. * should be ok to iterate over the known list, we will see all cic's
  2086. * since no new ones are added.
  2087. */
  2088. __call_for_each_cic(ioc, cic_free_func);
  2089. }
  2090. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2091. {
  2092. struct cfq_queue *__cfqq, *next;
  2093. if (unlikely(cfqq == cfqd->active_queue)) {
  2094. __cfq_slice_expired(cfqd, cfqq, 0);
  2095. cfq_schedule_dispatch(cfqd);
  2096. }
  2097. /*
  2098. * If this queue was scheduled to merge with another queue, be
  2099. * sure to drop the reference taken on that queue (and others in
  2100. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2101. */
  2102. __cfqq = cfqq->new_cfqq;
  2103. while (__cfqq) {
  2104. if (__cfqq == cfqq) {
  2105. WARN(1, "cfqq->new_cfqq loop detected\n");
  2106. break;
  2107. }
  2108. next = __cfqq->new_cfqq;
  2109. cfq_put_queue(__cfqq);
  2110. __cfqq = next;
  2111. }
  2112. cfq_put_queue(cfqq);
  2113. }
  2114. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2115. struct cfq_io_context *cic)
  2116. {
  2117. struct io_context *ioc = cic->ioc;
  2118. list_del_init(&cic->queue_list);
  2119. /*
  2120. * Make sure key == NULL is seen for dead queues
  2121. */
  2122. smp_wmb();
  2123. cic->dead_key = (unsigned long) cic->key;
  2124. cic->key = NULL;
  2125. if (ioc->ioc_data == cic)
  2126. rcu_assign_pointer(ioc->ioc_data, NULL);
  2127. if (cic->cfqq[BLK_RW_ASYNC]) {
  2128. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2129. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2130. }
  2131. if (cic->cfqq[BLK_RW_SYNC]) {
  2132. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2133. cic->cfqq[BLK_RW_SYNC] = NULL;
  2134. }
  2135. }
  2136. static void cfq_exit_single_io_context(struct io_context *ioc,
  2137. struct cfq_io_context *cic)
  2138. {
  2139. struct cfq_data *cfqd = cic->key;
  2140. if (cfqd) {
  2141. struct request_queue *q = cfqd->queue;
  2142. unsigned long flags;
  2143. spin_lock_irqsave(q->queue_lock, flags);
  2144. /*
  2145. * Ensure we get a fresh copy of the ->key to prevent
  2146. * race between exiting task and queue
  2147. */
  2148. smp_read_barrier_depends();
  2149. if (cic->key)
  2150. __cfq_exit_single_io_context(cfqd, cic);
  2151. spin_unlock_irqrestore(q->queue_lock, flags);
  2152. }
  2153. }
  2154. /*
  2155. * The process that ioc belongs to has exited, we need to clean up
  2156. * and put the internal structures we have that belongs to that process.
  2157. */
  2158. static void cfq_exit_io_context(struct io_context *ioc)
  2159. {
  2160. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2161. }
  2162. static struct cfq_io_context *
  2163. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2164. {
  2165. struct cfq_io_context *cic;
  2166. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2167. cfqd->queue->node);
  2168. if (cic) {
  2169. cic->last_end_request = jiffies;
  2170. INIT_LIST_HEAD(&cic->queue_list);
  2171. INIT_HLIST_NODE(&cic->cic_list);
  2172. cic->dtor = cfq_free_io_context;
  2173. cic->exit = cfq_exit_io_context;
  2174. elv_ioc_count_inc(cfq_ioc_count);
  2175. }
  2176. return cic;
  2177. }
  2178. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2179. {
  2180. struct task_struct *tsk = current;
  2181. int ioprio_class;
  2182. if (!cfq_cfqq_prio_changed(cfqq))
  2183. return;
  2184. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2185. switch (ioprio_class) {
  2186. default:
  2187. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2188. case IOPRIO_CLASS_NONE:
  2189. /*
  2190. * no prio set, inherit CPU scheduling settings
  2191. */
  2192. cfqq->ioprio = task_nice_ioprio(tsk);
  2193. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2194. break;
  2195. case IOPRIO_CLASS_RT:
  2196. cfqq->ioprio = task_ioprio(ioc);
  2197. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2198. break;
  2199. case IOPRIO_CLASS_BE:
  2200. cfqq->ioprio = task_ioprio(ioc);
  2201. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2202. break;
  2203. case IOPRIO_CLASS_IDLE:
  2204. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2205. cfqq->ioprio = 7;
  2206. cfq_clear_cfqq_idle_window(cfqq);
  2207. break;
  2208. }
  2209. /*
  2210. * keep track of original prio settings in case we have to temporarily
  2211. * elevate the priority of this queue
  2212. */
  2213. cfqq->org_ioprio = cfqq->ioprio;
  2214. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2215. cfq_clear_cfqq_prio_changed(cfqq);
  2216. }
  2217. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2218. {
  2219. struct cfq_data *cfqd = cic->key;
  2220. struct cfq_queue *cfqq;
  2221. unsigned long flags;
  2222. if (unlikely(!cfqd))
  2223. return;
  2224. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2225. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2226. if (cfqq) {
  2227. struct cfq_queue *new_cfqq;
  2228. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2229. GFP_ATOMIC);
  2230. if (new_cfqq) {
  2231. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2232. cfq_put_queue(cfqq);
  2233. }
  2234. }
  2235. cfqq = cic->cfqq[BLK_RW_SYNC];
  2236. if (cfqq)
  2237. cfq_mark_cfqq_prio_changed(cfqq);
  2238. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2239. }
  2240. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2241. {
  2242. call_for_each_cic(ioc, changed_ioprio);
  2243. ioc->ioprio_changed = 0;
  2244. }
  2245. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2246. pid_t pid, bool is_sync)
  2247. {
  2248. RB_CLEAR_NODE(&cfqq->rb_node);
  2249. RB_CLEAR_NODE(&cfqq->p_node);
  2250. INIT_LIST_HEAD(&cfqq->fifo);
  2251. atomic_set(&cfqq->ref, 0);
  2252. cfqq->cfqd = cfqd;
  2253. cfq_mark_cfqq_prio_changed(cfqq);
  2254. if (is_sync) {
  2255. if (!cfq_class_idle(cfqq))
  2256. cfq_mark_cfqq_idle_window(cfqq);
  2257. cfq_mark_cfqq_sync(cfqq);
  2258. }
  2259. cfqq->pid = pid;
  2260. }
  2261. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2262. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2263. {
  2264. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2265. struct cfq_data *cfqd = cic->key;
  2266. unsigned long flags;
  2267. struct request_queue *q;
  2268. if (unlikely(!cfqd))
  2269. return;
  2270. q = cfqd->queue;
  2271. spin_lock_irqsave(q->queue_lock, flags);
  2272. if (sync_cfqq) {
  2273. /*
  2274. * Drop reference to sync queue. A new sync queue will be
  2275. * assigned in new group upon arrival of a fresh request.
  2276. */
  2277. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2278. cic_set_cfqq(cic, NULL, 1);
  2279. cfq_put_queue(sync_cfqq);
  2280. }
  2281. spin_unlock_irqrestore(q->queue_lock, flags);
  2282. }
  2283. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2284. {
  2285. call_for_each_cic(ioc, changed_cgroup);
  2286. ioc->cgroup_changed = 0;
  2287. }
  2288. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2289. static struct cfq_queue *
  2290. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2291. struct io_context *ioc, gfp_t gfp_mask)
  2292. {
  2293. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2294. struct cfq_io_context *cic;
  2295. struct cfq_group *cfqg;
  2296. retry:
  2297. cfqg = cfq_get_cfqg(cfqd, 1);
  2298. cic = cfq_cic_lookup(cfqd, ioc);
  2299. /* cic always exists here */
  2300. cfqq = cic_to_cfqq(cic, is_sync);
  2301. /*
  2302. * Always try a new alloc if we fell back to the OOM cfqq
  2303. * originally, since it should just be a temporary situation.
  2304. */
  2305. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2306. cfqq = NULL;
  2307. if (new_cfqq) {
  2308. cfqq = new_cfqq;
  2309. new_cfqq = NULL;
  2310. } else if (gfp_mask & __GFP_WAIT) {
  2311. spin_unlock_irq(cfqd->queue->queue_lock);
  2312. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2313. gfp_mask | __GFP_ZERO,
  2314. cfqd->queue->node);
  2315. spin_lock_irq(cfqd->queue->queue_lock);
  2316. if (new_cfqq)
  2317. goto retry;
  2318. } else {
  2319. cfqq = kmem_cache_alloc_node(cfq_pool,
  2320. gfp_mask | __GFP_ZERO,
  2321. cfqd->queue->node);
  2322. }
  2323. if (cfqq) {
  2324. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2325. cfq_init_prio_data(cfqq, ioc);
  2326. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2327. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2328. } else
  2329. cfqq = &cfqd->oom_cfqq;
  2330. }
  2331. if (new_cfqq)
  2332. kmem_cache_free(cfq_pool, new_cfqq);
  2333. return cfqq;
  2334. }
  2335. static struct cfq_queue **
  2336. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2337. {
  2338. switch (ioprio_class) {
  2339. case IOPRIO_CLASS_RT:
  2340. return &cfqd->async_cfqq[0][ioprio];
  2341. case IOPRIO_CLASS_BE:
  2342. return &cfqd->async_cfqq[1][ioprio];
  2343. case IOPRIO_CLASS_IDLE:
  2344. return &cfqd->async_idle_cfqq;
  2345. default:
  2346. BUG();
  2347. }
  2348. }
  2349. static struct cfq_queue *
  2350. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2351. gfp_t gfp_mask)
  2352. {
  2353. const int ioprio = task_ioprio(ioc);
  2354. const int ioprio_class = task_ioprio_class(ioc);
  2355. struct cfq_queue **async_cfqq = NULL;
  2356. struct cfq_queue *cfqq = NULL;
  2357. if (!is_sync) {
  2358. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2359. cfqq = *async_cfqq;
  2360. }
  2361. if (!cfqq)
  2362. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2363. /*
  2364. * pin the queue now that it's allocated, scheduler exit will prune it
  2365. */
  2366. if (!is_sync && !(*async_cfqq)) {
  2367. atomic_inc(&cfqq->ref);
  2368. *async_cfqq = cfqq;
  2369. }
  2370. atomic_inc(&cfqq->ref);
  2371. return cfqq;
  2372. }
  2373. /*
  2374. * We drop cfq io contexts lazily, so we may find a dead one.
  2375. */
  2376. static void
  2377. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2378. struct cfq_io_context *cic)
  2379. {
  2380. unsigned long flags;
  2381. WARN_ON(!list_empty(&cic->queue_list));
  2382. spin_lock_irqsave(&ioc->lock, flags);
  2383. BUG_ON(ioc->ioc_data == cic);
  2384. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2385. hlist_del_rcu(&cic->cic_list);
  2386. spin_unlock_irqrestore(&ioc->lock, flags);
  2387. cfq_cic_free(cic);
  2388. }
  2389. static struct cfq_io_context *
  2390. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2391. {
  2392. struct cfq_io_context *cic;
  2393. unsigned long flags;
  2394. void *k;
  2395. if (unlikely(!ioc))
  2396. return NULL;
  2397. rcu_read_lock();
  2398. /*
  2399. * we maintain a last-hit cache, to avoid browsing over the tree
  2400. */
  2401. cic = rcu_dereference(ioc->ioc_data);
  2402. if (cic && cic->key == cfqd) {
  2403. rcu_read_unlock();
  2404. return cic;
  2405. }
  2406. do {
  2407. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2408. rcu_read_unlock();
  2409. if (!cic)
  2410. break;
  2411. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2412. k = cic->key;
  2413. if (unlikely(!k)) {
  2414. cfq_drop_dead_cic(cfqd, ioc, cic);
  2415. rcu_read_lock();
  2416. continue;
  2417. }
  2418. spin_lock_irqsave(&ioc->lock, flags);
  2419. rcu_assign_pointer(ioc->ioc_data, cic);
  2420. spin_unlock_irqrestore(&ioc->lock, flags);
  2421. break;
  2422. } while (1);
  2423. return cic;
  2424. }
  2425. /*
  2426. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2427. * the process specific cfq io context when entered from the block layer.
  2428. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2429. */
  2430. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2431. struct cfq_io_context *cic, gfp_t gfp_mask)
  2432. {
  2433. unsigned long flags;
  2434. int ret;
  2435. ret = radix_tree_preload(gfp_mask);
  2436. if (!ret) {
  2437. cic->ioc = ioc;
  2438. cic->key = cfqd;
  2439. spin_lock_irqsave(&ioc->lock, flags);
  2440. ret = radix_tree_insert(&ioc->radix_root,
  2441. (unsigned long) cfqd, cic);
  2442. if (!ret)
  2443. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2444. spin_unlock_irqrestore(&ioc->lock, flags);
  2445. radix_tree_preload_end();
  2446. if (!ret) {
  2447. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2448. list_add(&cic->queue_list, &cfqd->cic_list);
  2449. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2450. }
  2451. }
  2452. if (ret)
  2453. printk(KERN_ERR "cfq: cic link failed!\n");
  2454. return ret;
  2455. }
  2456. /*
  2457. * Setup general io context and cfq io context. There can be several cfq
  2458. * io contexts per general io context, if this process is doing io to more
  2459. * than one device managed by cfq.
  2460. */
  2461. static struct cfq_io_context *
  2462. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2463. {
  2464. struct io_context *ioc = NULL;
  2465. struct cfq_io_context *cic;
  2466. might_sleep_if(gfp_mask & __GFP_WAIT);
  2467. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2468. if (!ioc)
  2469. return NULL;
  2470. cic = cfq_cic_lookup(cfqd, ioc);
  2471. if (cic)
  2472. goto out;
  2473. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2474. if (cic == NULL)
  2475. goto err;
  2476. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2477. goto err_free;
  2478. out:
  2479. smp_read_barrier_depends();
  2480. if (unlikely(ioc->ioprio_changed))
  2481. cfq_ioc_set_ioprio(ioc);
  2482. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2483. if (unlikely(ioc->cgroup_changed))
  2484. cfq_ioc_set_cgroup(ioc);
  2485. #endif
  2486. return cic;
  2487. err_free:
  2488. cfq_cic_free(cic);
  2489. err:
  2490. put_io_context(ioc);
  2491. return NULL;
  2492. }
  2493. static void
  2494. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2495. {
  2496. unsigned long elapsed = jiffies - cic->last_end_request;
  2497. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2498. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2499. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2500. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2501. }
  2502. static void
  2503. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2504. struct request *rq)
  2505. {
  2506. sector_t sdist;
  2507. u64 total;
  2508. if (!cfqq->last_request_pos)
  2509. sdist = 0;
  2510. else if (cfqq->last_request_pos < blk_rq_pos(rq))
  2511. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2512. else
  2513. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2514. /*
  2515. * Don't allow the seek distance to get too large from the
  2516. * odd fragment, pagein, etc
  2517. */
  2518. if (cfqq->seek_samples <= 60) /* second&third seek */
  2519. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
  2520. else
  2521. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
  2522. cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
  2523. cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
  2524. total = cfqq->seek_total + (cfqq->seek_samples/2);
  2525. do_div(total, cfqq->seek_samples);
  2526. cfqq->seek_mean = (sector_t)total;
  2527. }
  2528. /*
  2529. * Disable idle window if the process thinks too long or seeks so much that
  2530. * it doesn't matter
  2531. */
  2532. static void
  2533. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2534. struct cfq_io_context *cic)
  2535. {
  2536. int old_idle, enable_idle;
  2537. /*
  2538. * Don't idle for async or idle io prio class
  2539. */
  2540. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2541. return;
  2542. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2543. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2544. cfq_mark_cfqq_deep(cfqq);
  2545. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2546. (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
  2547. && CFQQ_SEEKY(cfqq)))
  2548. enable_idle = 0;
  2549. else if (sample_valid(cic->ttime_samples)) {
  2550. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2551. enable_idle = 0;
  2552. else
  2553. enable_idle = 1;
  2554. }
  2555. if (old_idle != enable_idle) {
  2556. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2557. if (enable_idle)
  2558. cfq_mark_cfqq_idle_window(cfqq);
  2559. else
  2560. cfq_clear_cfqq_idle_window(cfqq);
  2561. }
  2562. }
  2563. /*
  2564. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2565. * no or if we aren't sure, a 1 will cause a preempt.
  2566. */
  2567. static bool
  2568. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2569. struct request *rq)
  2570. {
  2571. struct cfq_queue *cfqq;
  2572. cfqq = cfqd->active_queue;
  2573. if (!cfqq)
  2574. return false;
  2575. if (cfq_class_idle(new_cfqq))
  2576. return false;
  2577. if (cfq_class_idle(cfqq))
  2578. return true;
  2579. /*
  2580. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2581. */
  2582. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2583. return false;
  2584. /*
  2585. * if the new request is sync, but the currently running queue is
  2586. * not, let the sync request have priority.
  2587. */
  2588. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2589. return true;
  2590. if (new_cfqq->cfqg != cfqq->cfqg)
  2591. return false;
  2592. if (cfq_slice_used(cfqq))
  2593. return true;
  2594. /* Allow preemption only if we are idling on sync-noidle tree */
  2595. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2596. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2597. new_cfqq->service_tree->count == 2 &&
  2598. RB_EMPTY_ROOT(&cfqq->sort_list))
  2599. return true;
  2600. /*
  2601. * So both queues are sync. Let the new request get disk time if
  2602. * it's a metadata request and the current queue is doing regular IO.
  2603. */
  2604. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2605. return true;
  2606. /*
  2607. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2608. */
  2609. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2610. return true;
  2611. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2612. return false;
  2613. /*
  2614. * if this request is as-good as one we would expect from the
  2615. * current cfqq, let it preempt
  2616. */
  2617. if (cfq_rq_close(cfqd, cfqq, rq, true))
  2618. return true;
  2619. return false;
  2620. }
  2621. /*
  2622. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2623. * let it have half of its nominal slice.
  2624. */
  2625. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2626. {
  2627. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2628. cfq_slice_expired(cfqd, 1);
  2629. /*
  2630. * Put the new queue at the front of the of the current list,
  2631. * so we know that it will be selected next.
  2632. */
  2633. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2634. cfq_service_tree_add(cfqd, cfqq, 1);
  2635. cfqq->slice_end = 0;
  2636. cfq_mark_cfqq_slice_new(cfqq);
  2637. }
  2638. /*
  2639. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2640. * something we should do about it
  2641. */
  2642. static void
  2643. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2644. struct request *rq)
  2645. {
  2646. struct cfq_io_context *cic = RQ_CIC(rq);
  2647. cfqd->rq_queued++;
  2648. if (rq_is_meta(rq))
  2649. cfqq->meta_pending++;
  2650. cfq_update_io_thinktime(cfqd, cic);
  2651. cfq_update_io_seektime(cfqd, cfqq, rq);
  2652. cfq_update_idle_window(cfqd, cfqq, cic);
  2653. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2654. if (cfqq == cfqd->active_queue) {
  2655. /*
  2656. * Remember that we saw a request from this process, but
  2657. * don't start queuing just yet. Otherwise we risk seeing lots
  2658. * of tiny requests, because we disrupt the normal plugging
  2659. * and merging. If the request is already larger than a single
  2660. * page, let it rip immediately. For that case we assume that
  2661. * merging is already done. Ditto for a busy system that
  2662. * has other work pending, don't risk delaying until the
  2663. * idle timer unplug to continue working.
  2664. */
  2665. if (cfq_cfqq_wait_request(cfqq)) {
  2666. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2667. cfqd->busy_queues > 1) {
  2668. del_timer(&cfqd->idle_slice_timer);
  2669. cfq_clear_cfqq_wait_request(cfqq);
  2670. __blk_run_queue(cfqd->queue);
  2671. } else
  2672. cfq_mark_cfqq_must_dispatch(cfqq);
  2673. }
  2674. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2675. /*
  2676. * not the active queue - expire current slice if it is
  2677. * idle and has expired it's mean thinktime or this new queue
  2678. * has some old slice time left and is of higher priority or
  2679. * this new queue is RT and the current one is BE
  2680. */
  2681. cfq_preempt_queue(cfqd, cfqq);
  2682. __blk_run_queue(cfqd->queue);
  2683. }
  2684. }
  2685. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2686. {
  2687. struct cfq_data *cfqd = q->elevator->elevator_data;
  2688. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2689. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2690. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2691. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2692. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2693. cfq_add_rq_rb(rq);
  2694. cfq_rq_enqueued(cfqd, cfqq, rq);
  2695. }
  2696. /*
  2697. * Update hw_tag based on peak queue depth over 50 samples under
  2698. * sufficient load.
  2699. */
  2700. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2701. {
  2702. struct cfq_queue *cfqq = cfqd->active_queue;
  2703. if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
  2704. cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
  2705. if (cfqd->hw_tag == 1)
  2706. return;
  2707. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2708. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2709. return;
  2710. /*
  2711. * If active queue hasn't enough requests and can idle, cfq might not
  2712. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2713. * case
  2714. */
  2715. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2716. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2717. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2718. return;
  2719. if (cfqd->hw_tag_samples++ < 50)
  2720. return;
  2721. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2722. cfqd->hw_tag = 1;
  2723. else
  2724. cfqd->hw_tag = 0;
  2725. }
  2726. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2727. {
  2728. struct cfq_io_context *cic = cfqd->active_cic;
  2729. /* If there are other queues in the group, don't wait */
  2730. if (cfqq->cfqg->nr_cfqq > 1)
  2731. return false;
  2732. if (cfq_slice_used(cfqq))
  2733. return true;
  2734. /* if slice left is less than think time, wait busy */
  2735. if (cic && sample_valid(cic->ttime_samples)
  2736. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2737. return true;
  2738. /*
  2739. * If think times is less than a jiffy than ttime_mean=0 and above
  2740. * will not be true. It might happen that slice has not expired yet
  2741. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2742. * case where think time is less than a jiffy, mark the queue wait
  2743. * busy if only 1 jiffy is left in the slice.
  2744. */
  2745. if (cfqq->slice_end - jiffies == 1)
  2746. return true;
  2747. return false;
  2748. }
  2749. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2750. {
  2751. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2752. struct cfq_data *cfqd = cfqq->cfqd;
  2753. const int sync = rq_is_sync(rq);
  2754. unsigned long now;
  2755. now = jiffies;
  2756. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2757. cfq_update_hw_tag(cfqd);
  2758. WARN_ON(!cfqd->rq_in_driver[sync]);
  2759. WARN_ON(!cfqq->dispatched);
  2760. cfqd->rq_in_driver[sync]--;
  2761. cfqq->dispatched--;
  2762. if (cfq_cfqq_sync(cfqq))
  2763. cfqd->sync_flight--;
  2764. if (sync) {
  2765. RQ_CIC(rq)->last_end_request = now;
  2766. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2767. cfqd->last_delayed_sync = now;
  2768. }
  2769. /*
  2770. * If this is the active queue, check if it needs to be expired,
  2771. * or if we want to idle in case it has no pending requests.
  2772. */
  2773. if (cfqd->active_queue == cfqq) {
  2774. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2775. if (cfq_cfqq_slice_new(cfqq)) {
  2776. cfq_set_prio_slice(cfqd, cfqq);
  2777. cfq_clear_cfqq_slice_new(cfqq);
  2778. }
  2779. /*
  2780. * Should we wait for next request to come in before we expire
  2781. * the queue.
  2782. */
  2783. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2784. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2785. cfq_mark_cfqq_wait_busy(cfqq);
  2786. }
  2787. /*
  2788. * Idling is not enabled on:
  2789. * - expired queues
  2790. * - idle-priority queues
  2791. * - async queues
  2792. * - queues with still some requests queued
  2793. * - when there is a close cooperator
  2794. */
  2795. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2796. cfq_slice_expired(cfqd, 1);
  2797. else if (sync && cfqq_empty &&
  2798. !cfq_close_cooperator(cfqd, cfqq)) {
  2799. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2800. /*
  2801. * Idling is enabled for SYNC_WORKLOAD.
  2802. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2803. * only if we processed at least one !rq_noidle request
  2804. */
  2805. if (cfqd->serving_type == SYNC_WORKLOAD
  2806. || cfqd->noidle_tree_requires_idle
  2807. || cfqq->cfqg->nr_cfqq == 1)
  2808. cfq_arm_slice_timer(cfqd);
  2809. }
  2810. }
  2811. if (!rq_in_driver(cfqd))
  2812. cfq_schedule_dispatch(cfqd);
  2813. }
  2814. /*
  2815. * we temporarily boost lower priority queues if they are holding fs exclusive
  2816. * resources. they are boosted to normal prio (CLASS_BE/4)
  2817. */
  2818. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2819. {
  2820. if (has_fs_excl()) {
  2821. /*
  2822. * boost idle prio on transactions that would lock out other
  2823. * users of the filesystem
  2824. */
  2825. if (cfq_class_idle(cfqq))
  2826. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2827. if (cfqq->ioprio > IOPRIO_NORM)
  2828. cfqq->ioprio = IOPRIO_NORM;
  2829. } else {
  2830. /*
  2831. * unboost the queue (if needed)
  2832. */
  2833. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2834. cfqq->ioprio = cfqq->org_ioprio;
  2835. }
  2836. }
  2837. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2838. {
  2839. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2840. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2841. return ELV_MQUEUE_MUST;
  2842. }
  2843. return ELV_MQUEUE_MAY;
  2844. }
  2845. static int cfq_may_queue(struct request_queue *q, int rw)
  2846. {
  2847. struct cfq_data *cfqd = q->elevator->elevator_data;
  2848. struct task_struct *tsk = current;
  2849. struct cfq_io_context *cic;
  2850. struct cfq_queue *cfqq;
  2851. /*
  2852. * don't force setup of a queue from here, as a call to may_queue
  2853. * does not necessarily imply that a request actually will be queued.
  2854. * so just lookup a possibly existing queue, or return 'may queue'
  2855. * if that fails
  2856. */
  2857. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2858. if (!cic)
  2859. return ELV_MQUEUE_MAY;
  2860. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2861. if (cfqq) {
  2862. cfq_init_prio_data(cfqq, cic->ioc);
  2863. cfq_prio_boost(cfqq);
  2864. return __cfq_may_queue(cfqq);
  2865. }
  2866. return ELV_MQUEUE_MAY;
  2867. }
  2868. /*
  2869. * queue lock held here
  2870. */
  2871. static void cfq_put_request(struct request *rq)
  2872. {
  2873. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2874. if (cfqq) {
  2875. const int rw = rq_data_dir(rq);
  2876. BUG_ON(!cfqq->allocated[rw]);
  2877. cfqq->allocated[rw]--;
  2878. put_io_context(RQ_CIC(rq)->ioc);
  2879. rq->elevator_private = NULL;
  2880. rq->elevator_private2 = NULL;
  2881. cfq_put_queue(cfqq);
  2882. }
  2883. }
  2884. static struct cfq_queue *
  2885. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2886. struct cfq_queue *cfqq)
  2887. {
  2888. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2889. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2890. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2891. cfq_put_queue(cfqq);
  2892. return cic_to_cfqq(cic, 1);
  2893. }
  2894. /*
  2895. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2896. * was the last process referring to said cfqq.
  2897. */
  2898. static struct cfq_queue *
  2899. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2900. {
  2901. if (cfqq_process_refs(cfqq) == 1) {
  2902. cfqq->pid = current->pid;
  2903. cfq_clear_cfqq_coop(cfqq);
  2904. cfq_clear_cfqq_split_coop(cfqq);
  2905. return cfqq;
  2906. }
  2907. cic_set_cfqq(cic, NULL, 1);
  2908. cfq_put_queue(cfqq);
  2909. return NULL;
  2910. }
  2911. /*
  2912. * Allocate cfq data structures associated with this request.
  2913. */
  2914. static int
  2915. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2916. {
  2917. struct cfq_data *cfqd = q->elevator->elevator_data;
  2918. struct cfq_io_context *cic;
  2919. const int rw = rq_data_dir(rq);
  2920. const bool is_sync = rq_is_sync(rq);
  2921. struct cfq_queue *cfqq;
  2922. unsigned long flags;
  2923. might_sleep_if(gfp_mask & __GFP_WAIT);
  2924. cic = cfq_get_io_context(cfqd, gfp_mask);
  2925. spin_lock_irqsave(q->queue_lock, flags);
  2926. if (!cic)
  2927. goto queue_fail;
  2928. new_queue:
  2929. cfqq = cic_to_cfqq(cic, is_sync);
  2930. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2931. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2932. cic_set_cfqq(cic, cfqq, is_sync);
  2933. } else {
  2934. /*
  2935. * If the queue was seeky for too long, break it apart.
  2936. */
  2937. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2938. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2939. cfqq = split_cfqq(cic, cfqq);
  2940. if (!cfqq)
  2941. goto new_queue;
  2942. }
  2943. /*
  2944. * Check to see if this queue is scheduled to merge with
  2945. * another, closely cooperating queue. The merging of
  2946. * queues happens here as it must be done in process context.
  2947. * The reference on new_cfqq was taken in merge_cfqqs.
  2948. */
  2949. if (cfqq->new_cfqq)
  2950. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2951. }
  2952. cfqq->allocated[rw]++;
  2953. atomic_inc(&cfqq->ref);
  2954. spin_unlock_irqrestore(q->queue_lock, flags);
  2955. rq->elevator_private = cic;
  2956. rq->elevator_private2 = cfqq;
  2957. return 0;
  2958. queue_fail:
  2959. if (cic)
  2960. put_io_context(cic->ioc);
  2961. cfq_schedule_dispatch(cfqd);
  2962. spin_unlock_irqrestore(q->queue_lock, flags);
  2963. cfq_log(cfqd, "set_request fail");
  2964. return 1;
  2965. }
  2966. static void cfq_kick_queue(struct work_struct *work)
  2967. {
  2968. struct cfq_data *cfqd =
  2969. container_of(work, struct cfq_data, unplug_work);
  2970. struct request_queue *q = cfqd->queue;
  2971. spin_lock_irq(q->queue_lock);
  2972. __blk_run_queue(cfqd->queue);
  2973. spin_unlock_irq(q->queue_lock);
  2974. }
  2975. /*
  2976. * Timer running if the active_queue is currently idling inside its time slice
  2977. */
  2978. static void cfq_idle_slice_timer(unsigned long data)
  2979. {
  2980. struct cfq_data *cfqd = (struct cfq_data *) data;
  2981. struct cfq_queue *cfqq;
  2982. unsigned long flags;
  2983. int timed_out = 1;
  2984. cfq_log(cfqd, "idle timer fired");
  2985. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2986. cfqq = cfqd->active_queue;
  2987. if (cfqq) {
  2988. timed_out = 0;
  2989. /*
  2990. * We saw a request before the queue expired, let it through
  2991. */
  2992. if (cfq_cfqq_must_dispatch(cfqq))
  2993. goto out_kick;
  2994. /*
  2995. * expired
  2996. */
  2997. if (cfq_slice_used(cfqq))
  2998. goto expire;
  2999. /*
  3000. * only expire and reinvoke request handler, if there are
  3001. * other queues with pending requests
  3002. */
  3003. if (!cfqd->busy_queues)
  3004. goto out_cont;
  3005. /*
  3006. * not expired and it has a request pending, let it dispatch
  3007. */
  3008. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3009. goto out_kick;
  3010. /*
  3011. * Queue depth flag is reset only when the idle didn't succeed
  3012. */
  3013. cfq_clear_cfqq_deep(cfqq);
  3014. }
  3015. expire:
  3016. cfq_slice_expired(cfqd, timed_out);
  3017. out_kick:
  3018. cfq_schedule_dispatch(cfqd);
  3019. out_cont:
  3020. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3021. }
  3022. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3023. {
  3024. del_timer_sync(&cfqd->idle_slice_timer);
  3025. cancel_work_sync(&cfqd->unplug_work);
  3026. }
  3027. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3028. {
  3029. int i;
  3030. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3031. if (cfqd->async_cfqq[0][i])
  3032. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3033. if (cfqd->async_cfqq[1][i])
  3034. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3035. }
  3036. if (cfqd->async_idle_cfqq)
  3037. cfq_put_queue(cfqd->async_idle_cfqq);
  3038. }
  3039. static void cfq_cfqd_free(struct rcu_head *head)
  3040. {
  3041. kfree(container_of(head, struct cfq_data, rcu));
  3042. }
  3043. static void cfq_exit_queue(struct elevator_queue *e)
  3044. {
  3045. struct cfq_data *cfqd = e->elevator_data;
  3046. struct request_queue *q = cfqd->queue;
  3047. cfq_shutdown_timer_wq(cfqd);
  3048. spin_lock_irq(q->queue_lock);
  3049. if (cfqd->active_queue)
  3050. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3051. while (!list_empty(&cfqd->cic_list)) {
  3052. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3053. struct cfq_io_context,
  3054. queue_list);
  3055. __cfq_exit_single_io_context(cfqd, cic);
  3056. }
  3057. cfq_put_async_queues(cfqd);
  3058. cfq_release_cfq_groups(cfqd);
  3059. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3060. spin_unlock_irq(q->queue_lock);
  3061. cfq_shutdown_timer_wq(cfqd);
  3062. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3063. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3064. }
  3065. static void *cfq_init_queue(struct request_queue *q)
  3066. {
  3067. struct cfq_data *cfqd;
  3068. int i, j;
  3069. struct cfq_group *cfqg;
  3070. struct cfq_rb_root *st;
  3071. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3072. if (!cfqd)
  3073. return NULL;
  3074. /* Init root service tree */
  3075. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3076. /* Init root group */
  3077. cfqg = &cfqd->root_group;
  3078. for_each_cfqg_st(cfqg, i, j, st)
  3079. *st = CFQ_RB_ROOT;
  3080. RB_CLEAR_NODE(&cfqg->rb_node);
  3081. /* Give preference to root group over other groups */
  3082. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3083. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3084. /*
  3085. * Take a reference to root group which we never drop. This is just
  3086. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3087. */
  3088. atomic_set(&cfqg->ref, 1);
  3089. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3090. 0);
  3091. #endif
  3092. /*
  3093. * Not strictly needed (since RB_ROOT just clears the node and we
  3094. * zeroed cfqd on alloc), but better be safe in case someone decides
  3095. * to add magic to the rb code
  3096. */
  3097. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3098. cfqd->prio_trees[i] = RB_ROOT;
  3099. /*
  3100. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3101. * Grab a permanent reference to it, so that the normal code flow
  3102. * will not attempt to free it.
  3103. */
  3104. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3105. atomic_inc(&cfqd->oom_cfqq.ref);
  3106. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3107. INIT_LIST_HEAD(&cfqd->cic_list);
  3108. cfqd->queue = q;
  3109. init_timer(&cfqd->idle_slice_timer);
  3110. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3111. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3112. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3113. cfqd->cfq_quantum = cfq_quantum;
  3114. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3115. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3116. cfqd->cfq_back_max = cfq_back_max;
  3117. cfqd->cfq_back_penalty = cfq_back_penalty;
  3118. cfqd->cfq_slice[0] = cfq_slice_async;
  3119. cfqd->cfq_slice[1] = cfq_slice_sync;
  3120. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3121. cfqd->cfq_slice_idle = cfq_slice_idle;
  3122. cfqd->cfq_latency = 1;
  3123. cfqd->cfq_group_isolation = 0;
  3124. cfqd->hw_tag = -1;
  3125. /*
  3126. * we optimistically start assuming sync ops weren't delayed in last
  3127. * second, in order to have larger depth for async operations.
  3128. */
  3129. cfqd->last_delayed_sync = jiffies - HZ;
  3130. INIT_RCU_HEAD(&cfqd->rcu);
  3131. return cfqd;
  3132. }
  3133. static void cfq_slab_kill(void)
  3134. {
  3135. /*
  3136. * Caller already ensured that pending RCU callbacks are completed,
  3137. * so we should have no busy allocations at this point.
  3138. */
  3139. if (cfq_pool)
  3140. kmem_cache_destroy(cfq_pool);
  3141. if (cfq_ioc_pool)
  3142. kmem_cache_destroy(cfq_ioc_pool);
  3143. }
  3144. static int __init cfq_slab_setup(void)
  3145. {
  3146. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3147. if (!cfq_pool)
  3148. goto fail;
  3149. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3150. if (!cfq_ioc_pool)
  3151. goto fail;
  3152. return 0;
  3153. fail:
  3154. cfq_slab_kill();
  3155. return -ENOMEM;
  3156. }
  3157. /*
  3158. * sysfs parts below -->
  3159. */
  3160. static ssize_t
  3161. cfq_var_show(unsigned int var, char *page)
  3162. {
  3163. return sprintf(page, "%d\n", var);
  3164. }
  3165. static ssize_t
  3166. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3167. {
  3168. char *p = (char *) page;
  3169. *var = simple_strtoul(p, &p, 10);
  3170. return count;
  3171. }
  3172. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3173. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3174. { \
  3175. struct cfq_data *cfqd = e->elevator_data; \
  3176. unsigned int __data = __VAR; \
  3177. if (__CONV) \
  3178. __data = jiffies_to_msecs(__data); \
  3179. return cfq_var_show(__data, (page)); \
  3180. }
  3181. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3182. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3183. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3184. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3185. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3186. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3187. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3188. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3189. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3190. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3191. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3192. #undef SHOW_FUNCTION
  3193. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3194. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3195. { \
  3196. struct cfq_data *cfqd = e->elevator_data; \
  3197. unsigned int __data; \
  3198. int ret = cfq_var_store(&__data, (page), count); \
  3199. if (__data < (MIN)) \
  3200. __data = (MIN); \
  3201. else if (__data > (MAX)) \
  3202. __data = (MAX); \
  3203. if (__CONV) \
  3204. *(__PTR) = msecs_to_jiffies(__data); \
  3205. else \
  3206. *(__PTR) = __data; \
  3207. return ret; \
  3208. }
  3209. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3210. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3211. UINT_MAX, 1);
  3212. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3213. UINT_MAX, 1);
  3214. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3215. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3216. UINT_MAX, 0);
  3217. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3218. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3219. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3220. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3221. UINT_MAX, 0);
  3222. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3223. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3224. #undef STORE_FUNCTION
  3225. #define CFQ_ATTR(name) \
  3226. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3227. static struct elv_fs_entry cfq_attrs[] = {
  3228. CFQ_ATTR(quantum),
  3229. CFQ_ATTR(fifo_expire_sync),
  3230. CFQ_ATTR(fifo_expire_async),
  3231. CFQ_ATTR(back_seek_max),
  3232. CFQ_ATTR(back_seek_penalty),
  3233. CFQ_ATTR(slice_sync),
  3234. CFQ_ATTR(slice_async),
  3235. CFQ_ATTR(slice_async_rq),
  3236. CFQ_ATTR(slice_idle),
  3237. CFQ_ATTR(low_latency),
  3238. CFQ_ATTR(group_isolation),
  3239. __ATTR_NULL
  3240. };
  3241. static struct elevator_type iosched_cfq = {
  3242. .ops = {
  3243. .elevator_merge_fn = cfq_merge,
  3244. .elevator_merged_fn = cfq_merged_request,
  3245. .elevator_merge_req_fn = cfq_merged_requests,
  3246. .elevator_allow_merge_fn = cfq_allow_merge,
  3247. .elevator_dispatch_fn = cfq_dispatch_requests,
  3248. .elevator_add_req_fn = cfq_insert_request,
  3249. .elevator_activate_req_fn = cfq_activate_request,
  3250. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3251. .elevator_queue_empty_fn = cfq_queue_empty,
  3252. .elevator_completed_req_fn = cfq_completed_request,
  3253. .elevator_former_req_fn = elv_rb_former_request,
  3254. .elevator_latter_req_fn = elv_rb_latter_request,
  3255. .elevator_set_req_fn = cfq_set_request,
  3256. .elevator_put_req_fn = cfq_put_request,
  3257. .elevator_may_queue_fn = cfq_may_queue,
  3258. .elevator_init_fn = cfq_init_queue,
  3259. .elevator_exit_fn = cfq_exit_queue,
  3260. .trim = cfq_free_io_context,
  3261. },
  3262. .elevator_attrs = cfq_attrs,
  3263. .elevator_name = "cfq",
  3264. .elevator_owner = THIS_MODULE,
  3265. };
  3266. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3267. static struct blkio_policy_type blkio_policy_cfq = {
  3268. .ops = {
  3269. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3270. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3271. },
  3272. };
  3273. #else
  3274. static struct blkio_policy_type blkio_policy_cfq;
  3275. #endif
  3276. static int __init cfq_init(void)
  3277. {
  3278. /*
  3279. * could be 0 on HZ < 1000 setups
  3280. */
  3281. if (!cfq_slice_async)
  3282. cfq_slice_async = 1;
  3283. if (!cfq_slice_idle)
  3284. cfq_slice_idle = 1;
  3285. if (cfq_slab_setup())
  3286. return -ENOMEM;
  3287. elv_register(&iosched_cfq);
  3288. blkio_policy_register(&blkio_policy_cfq);
  3289. return 0;
  3290. }
  3291. static void __exit cfq_exit(void)
  3292. {
  3293. DECLARE_COMPLETION_ONSTACK(all_gone);
  3294. blkio_policy_unregister(&blkio_policy_cfq);
  3295. elv_unregister(&iosched_cfq);
  3296. ioc_gone = &all_gone;
  3297. /* ioc_gone's update must be visible before reading ioc_count */
  3298. smp_wmb();
  3299. /*
  3300. * this also protects us from entering cfq_slab_kill() with
  3301. * pending RCU callbacks
  3302. */
  3303. if (elv_ioc_count_read(cfq_ioc_count))
  3304. wait_for_completion(&all_gone);
  3305. cfq_slab_kill();
  3306. }
  3307. module_init(cfq_init);
  3308. module_exit(cfq_exit);
  3309. MODULE_AUTHOR("Jens Axboe");
  3310. MODULE_LICENSE("GPL");
  3311. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");