dm-thin.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772
  1. /*
  2. * Copyright (C) 2011 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include <linux/device-mapper.h>
  8. #include <linux/dm-io.h>
  9. #include <linux/dm-kcopyd.h>
  10. #include <linux/list.h>
  11. #include <linux/init.h>
  12. #include <linux/module.h>
  13. #include <linux/slab.h>
  14. #define DM_MSG_PREFIX "thin"
  15. /*
  16. * Tunable constants
  17. */
  18. #define ENDIO_HOOK_POOL_SIZE 10240
  19. #define DEFERRED_SET_SIZE 64
  20. #define MAPPING_POOL_SIZE 1024
  21. #define PRISON_CELLS 1024
  22. #define COMMIT_PERIOD HZ
  23. /*
  24. * The block size of the device holding pool data must be
  25. * between 64KB and 1GB.
  26. */
  27. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  28. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  29. /*
  30. * Device id is restricted to 24 bits.
  31. */
  32. #define MAX_DEV_ID ((1 << 24) - 1)
  33. /*
  34. * How do we handle breaking sharing of data blocks?
  35. * =================================================
  36. *
  37. * We use a standard copy-on-write btree to store the mappings for the
  38. * devices (note I'm talking about copy-on-write of the metadata here, not
  39. * the data). When you take an internal snapshot you clone the root node
  40. * of the origin btree. After this there is no concept of an origin or a
  41. * snapshot. They are just two device trees that happen to point to the
  42. * same data blocks.
  43. *
  44. * When we get a write in we decide if it's to a shared data block using
  45. * some timestamp magic. If it is, we have to break sharing.
  46. *
  47. * Let's say we write to a shared block in what was the origin. The
  48. * steps are:
  49. *
  50. * i) plug io further to this physical block. (see bio_prison code).
  51. *
  52. * ii) quiesce any read io to that shared data block. Obviously
  53. * including all devices that share this block. (see deferred_set code)
  54. *
  55. * iii) copy the data block to a newly allocate block. This step can be
  56. * missed out if the io covers the block. (schedule_copy).
  57. *
  58. * iv) insert the new mapping into the origin's btree
  59. * (process_prepared_mapping). This act of inserting breaks some
  60. * sharing of btree nodes between the two devices. Breaking sharing only
  61. * effects the btree of that specific device. Btrees for the other
  62. * devices that share the block never change. The btree for the origin
  63. * device as it was after the last commit is untouched, ie. we're using
  64. * persistent data structures in the functional programming sense.
  65. *
  66. * v) unplug io to this physical block, including the io that triggered
  67. * the breaking of sharing.
  68. *
  69. * Steps (ii) and (iii) occur in parallel.
  70. *
  71. * The metadata _doesn't_ need to be committed before the io continues. We
  72. * get away with this because the io is always written to a _new_ block.
  73. * If there's a crash, then:
  74. *
  75. * - The origin mapping will point to the old origin block (the shared
  76. * one). This will contain the data as it was before the io that triggered
  77. * the breaking of sharing came in.
  78. *
  79. * - The snap mapping still points to the old block. As it would after
  80. * the commit.
  81. *
  82. * The downside of this scheme is the timestamp magic isn't perfect, and
  83. * will continue to think that data block in the snapshot device is shared
  84. * even after the write to the origin has broken sharing. I suspect data
  85. * blocks will typically be shared by many different devices, so we're
  86. * breaking sharing n + 1 times, rather than n, where n is the number of
  87. * devices that reference this data block. At the moment I think the
  88. * benefits far, far outweigh the disadvantages.
  89. */
  90. /*----------------------------------------------------------------*/
  91. /*
  92. * Sometimes we can't deal with a bio straight away. We put them in prison
  93. * where they can't cause any mischief. Bios are put in a cell identified
  94. * by a key, multiple bios can be in the same cell. When the cell is
  95. * subsequently unlocked the bios become available.
  96. */
  97. struct bio_prison;
  98. struct cell_key {
  99. int virtual;
  100. dm_thin_id dev;
  101. dm_block_t block;
  102. };
  103. struct cell {
  104. struct hlist_node list;
  105. struct bio_prison *prison;
  106. struct cell_key key;
  107. struct bio *holder;
  108. struct bio_list bios;
  109. };
  110. struct bio_prison {
  111. spinlock_t lock;
  112. mempool_t *cell_pool;
  113. unsigned nr_buckets;
  114. unsigned hash_mask;
  115. struct hlist_head *cells;
  116. };
  117. static uint32_t calc_nr_buckets(unsigned nr_cells)
  118. {
  119. uint32_t n = 128;
  120. nr_cells /= 4;
  121. nr_cells = min(nr_cells, 8192u);
  122. while (n < nr_cells)
  123. n <<= 1;
  124. return n;
  125. }
  126. /*
  127. * @nr_cells should be the number of cells you want in use _concurrently_.
  128. * Don't confuse it with the number of distinct keys.
  129. */
  130. static struct bio_prison *prison_create(unsigned nr_cells)
  131. {
  132. unsigned i;
  133. uint32_t nr_buckets = calc_nr_buckets(nr_cells);
  134. size_t len = sizeof(struct bio_prison) +
  135. (sizeof(struct hlist_head) * nr_buckets);
  136. struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
  137. if (!prison)
  138. return NULL;
  139. spin_lock_init(&prison->lock);
  140. prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
  141. sizeof(struct cell));
  142. if (!prison->cell_pool) {
  143. kfree(prison);
  144. return NULL;
  145. }
  146. prison->nr_buckets = nr_buckets;
  147. prison->hash_mask = nr_buckets - 1;
  148. prison->cells = (struct hlist_head *) (prison + 1);
  149. for (i = 0; i < nr_buckets; i++)
  150. INIT_HLIST_HEAD(prison->cells + i);
  151. return prison;
  152. }
  153. static void prison_destroy(struct bio_prison *prison)
  154. {
  155. mempool_destroy(prison->cell_pool);
  156. kfree(prison);
  157. }
  158. static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
  159. {
  160. const unsigned long BIG_PRIME = 4294967291UL;
  161. uint64_t hash = key->block * BIG_PRIME;
  162. return (uint32_t) (hash & prison->hash_mask);
  163. }
  164. static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
  165. {
  166. return (lhs->virtual == rhs->virtual) &&
  167. (lhs->dev == rhs->dev) &&
  168. (lhs->block == rhs->block);
  169. }
  170. static struct cell *__search_bucket(struct hlist_head *bucket,
  171. struct cell_key *key)
  172. {
  173. struct cell *cell;
  174. struct hlist_node *tmp;
  175. hlist_for_each_entry(cell, tmp, bucket, list)
  176. if (keys_equal(&cell->key, key))
  177. return cell;
  178. return NULL;
  179. }
  180. /*
  181. * This may block if a new cell needs allocating. You must ensure that
  182. * cells will be unlocked even if the calling thread is blocked.
  183. *
  184. * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
  185. */
  186. static int bio_detain(struct bio_prison *prison, struct cell_key *key,
  187. struct bio *inmate, struct cell **ref)
  188. {
  189. int r = 1;
  190. unsigned long flags;
  191. uint32_t hash = hash_key(prison, key);
  192. struct cell *cell, *cell2;
  193. BUG_ON(hash > prison->nr_buckets);
  194. spin_lock_irqsave(&prison->lock, flags);
  195. cell = __search_bucket(prison->cells + hash, key);
  196. if (cell) {
  197. bio_list_add(&cell->bios, inmate);
  198. goto out;
  199. }
  200. /*
  201. * Allocate a new cell
  202. */
  203. spin_unlock_irqrestore(&prison->lock, flags);
  204. cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
  205. spin_lock_irqsave(&prison->lock, flags);
  206. /*
  207. * We've been unlocked, so we have to double check that
  208. * nobody else has inserted this cell in the meantime.
  209. */
  210. cell = __search_bucket(prison->cells + hash, key);
  211. if (cell) {
  212. mempool_free(cell2, prison->cell_pool);
  213. bio_list_add(&cell->bios, inmate);
  214. goto out;
  215. }
  216. /*
  217. * Use new cell.
  218. */
  219. cell = cell2;
  220. cell->prison = prison;
  221. memcpy(&cell->key, key, sizeof(cell->key));
  222. cell->holder = inmate;
  223. bio_list_init(&cell->bios);
  224. hlist_add_head(&cell->list, prison->cells + hash);
  225. r = 0;
  226. out:
  227. spin_unlock_irqrestore(&prison->lock, flags);
  228. *ref = cell;
  229. return r;
  230. }
  231. /*
  232. * @inmates must have been initialised prior to this call
  233. */
  234. static void __cell_release(struct cell *cell, struct bio_list *inmates)
  235. {
  236. struct bio_prison *prison = cell->prison;
  237. hlist_del(&cell->list);
  238. if (inmates) {
  239. bio_list_add(inmates, cell->holder);
  240. bio_list_merge(inmates, &cell->bios);
  241. }
  242. mempool_free(cell, prison->cell_pool);
  243. }
  244. static void cell_release(struct cell *cell, struct bio_list *bios)
  245. {
  246. unsigned long flags;
  247. struct bio_prison *prison = cell->prison;
  248. spin_lock_irqsave(&prison->lock, flags);
  249. __cell_release(cell, bios);
  250. spin_unlock_irqrestore(&prison->lock, flags);
  251. }
  252. /*
  253. * There are a couple of places where we put a bio into a cell briefly
  254. * before taking it out again. In these situations we know that no other
  255. * bio may be in the cell. This function releases the cell, and also does
  256. * a sanity check.
  257. */
  258. static void __cell_release_singleton(struct cell *cell, struct bio *bio)
  259. {
  260. BUG_ON(cell->holder != bio);
  261. BUG_ON(!bio_list_empty(&cell->bios));
  262. __cell_release(cell, NULL);
  263. }
  264. static void cell_release_singleton(struct cell *cell, struct bio *bio)
  265. {
  266. unsigned long flags;
  267. struct bio_prison *prison = cell->prison;
  268. spin_lock_irqsave(&prison->lock, flags);
  269. __cell_release_singleton(cell, bio);
  270. spin_unlock_irqrestore(&prison->lock, flags);
  271. }
  272. /*
  273. * Sometimes we don't want the holder, just the additional bios.
  274. */
  275. static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
  276. {
  277. struct bio_prison *prison = cell->prison;
  278. hlist_del(&cell->list);
  279. bio_list_merge(inmates, &cell->bios);
  280. mempool_free(cell, prison->cell_pool);
  281. }
  282. static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
  283. {
  284. unsigned long flags;
  285. struct bio_prison *prison = cell->prison;
  286. spin_lock_irqsave(&prison->lock, flags);
  287. __cell_release_no_holder(cell, inmates);
  288. spin_unlock_irqrestore(&prison->lock, flags);
  289. }
  290. static void cell_error(struct cell *cell)
  291. {
  292. struct bio_prison *prison = cell->prison;
  293. struct bio_list bios;
  294. struct bio *bio;
  295. unsigned long flags;
  296. bio_list_init(&bios);
  297. spin_lock_irqsave(&prison->lock, flags);
  298. __cell_release(cell, &bios);
  299. spin_unlock_irqrestore(&prison->lock, flags);
  300. while ((bio = bio_list_pop(&bios)))
  301. bio_io_error(bio);
  302. }
  303. /*----------------------------------------------------------------*/
  304. /*
  305. * We use the deferred set to keep track of pending reads to shared blocks.
  306. * We do this to ensure the new mapping caused by a write isn't performed
  307. * until these prior reads have completed. Otherwise the insertion of the
  308. * new mapping could free the old block that the read bios are mapped to.
  309. */
  310. struct deferred_set;
  311. struct deferred_entry {
  312. struct deferred_set *ds;
  313. unsigned count;
  314. struct list_head work_items;
  315. };
  316. struct deferred_set {
  317. spinlock_t lock;
  318. unsigned current_entry;
  319. unsigned sweeper;
  320. struct deferred_entry entries[DEFERRED_SET_SIZE];
  321. };
  322. static void ds_init(struct deferred_set *ds)
  323. {
  324. int i;
  325. spin_lock_init(&ds->lock);
  326. ds->current_entry = 0;
  327. ds->sweeper = 0;
  328. for (i = 0; i < DEFERRED_SET_SIZE; i++) {
  329. ds->entries[i].ds = ds;
  330. ds->entries[i].count = 0;
  331. INIT_LIST_HEAD(&ds->entries[i].work_items);
  332. }
  333. }
  334. static struct deferred_entry *ds_inc(struct deferred_set *ds)
  335. {
  336. unsigned long flags;
  337. struct deferred_entry *entry;
  338. spin_lock_irqsave(&ds->lock, flags);
  339. entry = ds->entries + ds->current_entry;
  340. entry->count++;
  341. spin_unlock_irqrestore(&ds->lock, flags);
  342. return entry;
  343. }
  344. static unsigned ds_next(unsigned index)
  345. {
  346. return (index + 1) % DEFERRED_SET_SIZE;
  347. }
  348. static void __sweep(struct deferred_set *ds, struct list_head *head)
  349. {
  350. while ((ds->sweeper != ds->current_entry) &&
  351. !ds->entries[ds->sweeper].count) {
  352. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  353. ds->sweeper = ds_next(ds->sweeper);
  354. }
  355. if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
  356. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  357. }
  358. static void ds_dec(struct deferred_entry *entry, struct list_head *head)
  359. {
  360. unsigned long flags;
  361. spin_lock_irqsave(&entry->ds->lock, flags);
  362. BUG_ON(!entry->count);
  363. --entry->count;
  364. __sweep(entry->ds, head);
  365. spin_unlock_irqrestore(&entry->ds->lock, flags);
  366. }
  367. /*
  368. * Returns 1 if deferred or 0 if no pending items to delay job.
  369. */
  370. static int ds_add_work(struct deferred_set *ds, struct list_head *work)
  371. {
  372. int r = 1;
  373. unsigned long flags;
  374. unsigned next_entry;
  375. spin_lock_irqsave(&ds->lock, flags);
  376. if ((ds->sweeper == ds->current_entry) &&
  377. !ds->entries[ds->current_entry].count)
  378. r = 0;
  379. else {
  380. list_add(work, &ds->entries[ds->current_entry].work_items);
  381. next_entry = ds_next(ds->current_entry);
  382. if (!ds->entries[next_entry].count)
  383. ds->current_entry = next_entry;
  384. }
  385. spin_unlock_irqrestore(&ds->lock, flags);
  386. return r;
  387. }
  388. /*----------------------------------------------------------------*/
  389. /*
  390. * Key building.
  391. */
  392. static void build_data_key(struct dm_thin_device *td,
  393. dm_block_t b, struct cell_key *key)
  394. {
  395. key->virtual = 0;
  396. key->dev = dm_thin_dev_id(td);
  397. key->block = b;
  398. }
  399. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  400. struct cell_key *key)
  401. {
  402. key->virtual = 1;
  403. key->dev = dm_thin_dev_id(td);
  404. key->block = b;
  405. }
  406. /*----------------------------------------------------------------*/
  407. /*
  408. * A pool device ties together a metadata device and a data device. It
  409. * also provides the interface for creating and destroying internal
  410. * devices.
  411. */
  412. struct new_mapping;
  413. struct pool_features {
  414. unsigned zero_new_blocks:1;
  415. unsigned discard_enabled:1;
  416. unsigned discard_passdown:1;
  417. };
  418. struct pool {
  419. struct list_head list;
  420. struct dm_target *ti; /* Only set if a pool target is bound */
  421. struct mapped_device *pool_md;
  422. struct block_device *md_dev;
  423. struct dm_pool_metadata *pmd;
  424. uint32_t sectors_per_block;
  425. unsigned block_shift;
  426. dm_block_t offset_mask;
  427. dm_block_t low_water_blocks;
  428. struct pool_features pf;
  429. unsigned low_water_triggered:1; /* A dm event has been sent */
  430. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  431. struct bio_prison *prison;
  432. struct dm_kcopyd_client *copier;
  433. struct workqueue_struct *wq;
  434. struct work_struct worker;
  435. struct delayed_work waker;
  436. unsigned ref_count;
  437. unsigned long last_commit_jiffies;
  438. spinlock_t lock;
  439. struct bio_list deferred_bios;
  440. struct bio_list deferred_flush_bios;
  441. struct list_head prepared_mappings;
  442. struct list_head prepared_discards;
  443. struct bio_list retry_on_resume_list;
  444. struct deferred_set shared_read_ds;
  445. struct deferred_set all_io_ds;
  446. struct new_mapping *next_mapping;
  447. mempool_t *mapping_pool;
  448. mempool_t *endio_hook_pool;
  449. };
  450. /*
  451. * Target context for a pool.
  452. */
  453. struct pool_c {
  454. struct dm_target *ti;
  455. struct pool *pool;
  456. struct dm_dev *data_dev;
  457. struct dm_dev *metadata_dev;
  458. struct dm_target_callbacks callbacks;
  459. dm_block_t low_water_blocks;
  460. struct pool_features pf;
  461. };
  462. /*
  463. * Target context for a thin.
  464. */
  465. struct thin_c {
  466. struct dm_dev *pool_dev;
  467. struct dm_dev *origin_dev;
  468. dm_thin_id dev_id;
  469. struct pool *pool;
  470. struct dm_thin_device *td;
  471. };
  472. /*----------------------------------------------------------------*/
  473. /*
  474. * A global list of pools that uses a struct mapped_device as a key.
  475. */
  476. static struct dm_thin_pool_table {
  477. struct mutex mutex;
  478. struct list_head pools;
  479. } dm_thin_pool_table;
  480. static void pool_table_init(void)
  481. {
  482. mutex_init(&dm_thin_pool_table.mutex);
  483. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  484. }
  485. static void __pool_table_insert(struct pool *pool)
  486. {
  487. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  488. list_add(&pool->list, &dm_thin_pool_table.pools);
  489. }
  490. static void __pool_table_remove(struct pool *pool)
  491. {
  492. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  493. list_del(&pool->list);
  494. }
  495. static struct pool *__pool_table_lookup(struct mapped_device *md)
  496. {
  497. struct pool *pool = NULL, *tmp;
  498. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  499. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  500. if (tmp->pool_md == md) {
  501. pool = tmp;
  502. break;
  503. }
  504. }
  505. return pool;
  506. }
  507. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  508. {
  509. struct pool *pool = NULL, *tmp;
  510. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  511. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  512. if (tmp->md_dev == md_dev) {
  513. pool = tmp;
  514. break;
  515. }
  516. }
  517. return pool;
  518. }
  519. /*----------------------------------------------------------------*/
  520. struct endio_hook {
  521. struct thin_c *tc;
  522. struct deferred_entry *shared_read_entry;
  523. struct deferred_entry *all_io_entry;
  524. struct new_mapping *overwrite_mapping;
  525. };
  526. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  527. {
  528. struct bio *bio;
  529. struct bio_list bios;
  530. bio_list_init(&bios);
  531. bio_list_merge(&bios, master);
  532. bio_list_init(master);
  533. while ((bio = bio_list_pop(&bios))) {
  534. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  535. if (h->tc == tc)
  536. bio_endio(bio, DM_ENDIO_REQUEUE);
  537. else
  538. bio_list_add(master, bio);
  539. }
  540. }
  541. static void requeue_io(struct thin_c *tc)
  542. {
  543. struct pool *pool = tc->pool;
  544. unsigned long flags;
  545. spin_lock_irqsave(&pool->lock, flags);
  546. __requeue_bio_list(tc, &pool->deferred_bios);
  547. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  548. spin_unlock_irqrestore(&pool->lock, flags);
  549. }
  550. /*
  551. * This section of code contains the logic for processing a thin device's IO.
  552. * Much of the code depends on pool object resources (lists, workqueues, etc)
  553. * but most is exclusively called from the thin target rather than the thin-pool
  554. * target.
  555. */
  556. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  557. {
  558. return bio->bi_sector >> tc->pool->block_shift;
  559. }
  560. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  561. {
  562. struct pool *pool = tc->pool;
  563. bio->bi_bdev = tc->pool_dev->bdev;
  564. bio->bi_sector = (block << pool->block_shift) +
  565. (bio->bi_sector & pool->offset_mask);
  566. }
  567. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  568. {
  569. bio->bi_bdev = tc->origin_dev->bdev;
  570. }
  571. static void issue(struct thin_c *tc, struct bio *bio)
  572. {
  573. struct pool *pool = tc->pool;
  574. unsigned long flags;
  575. /*
  576. * Batch together any FUA/FLUSH bios we find and then issue
  577. * a single commit for them in process_deferred_bios().
  578. */
  579. if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
  580. spin_lock_irqsave(&pool->lock, flags);
  581. bio_list_add(&pool->deferred_flush_bios, bio);
  582. spin_unlock_irqrestore(&pool->lock, flags);
  583. } else
  584. generic_make_request(bio);
  585. }
  586. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  587. {
  588. remap_to_origin(tc, bio);
  589. issue(tc, bio);
  590. }
  591. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  592. dm_block_t block)
  593. {
  594. remap(tc, bio, block);
  595. issue(tc, bio);
  596. }
  597. /*
  598. * wake_worker() is used when new work is queued and when pool_resume is
  599. * ready to continue deferred IO processing.
  600. */
  601. static void wake_worker(struct pool *pool)
  602. {
  603. queue_work(pool->wq, &pool->worker);
  604. }
  605. /*----------------------------------------------------------------*/
  606. /*
  607. * Bio endio functions.
  608. */
  609. struct new_mapping {
  610. struct list_head list;
  611. unsigned quiesced:1;
  612. unsigned prepared:1;
  613. unsigned pass_discard:1;
  614. struct thin_c *tc;
  615. dm_block_t virt_block;
  616. dm_block_t data_block;
  617. struct cell *cell, *cell2;
  618. int err;
  619. /*
  620. * If the bio covers the whole area of a block then we can avoid
  621. * zeroing or copying. Instead this bio is hooked. The bio will
  622. * still be in the cell, so care has to be taken to avoid issuing
  623. * the bio twice.
  624. */
  625. struct bio *bio;
  626. bio_end_io_t *saved_bi_end_io;
  627. };
  628. static void __maybe_add_mapping(struct new_mapping *m)
  629. {
  630. struct pool *pool = m->tc->pool;
  631. if (m->quiesced && m->prepared) {
  632. list_add(&m->list, &pool->prepared_mappings);
  633. wake_worker(pool);
  634. }
  635. }
  636. static void copy_complete(int read_err, unsigned long write_err, void *context)
  637. {
  638. unsigned long flags;
  639. struct new_mapping *m = context;
  640. struct pool *pool = m->tc->pool;
  641. m->err = read_err || write_err ? -EIO : 0;
  642. spin_lock_irqsave(&pool->lock, flags);
  643. m->prepared = 1;
  644. __maybe_add_mapping(m);
  645. spin_unlock_irqrestore(&pool->lock, flags);
  646. }
  647. static void overwrite_endio(struct bio *bio, int err)
  648. {
  649. unsigned long flags;
  650. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  651. struct new_mapping *m = h->overwrite_mapping;
  652. struct pool *pool = m->tc->pool;
  653. m->err = err;
  654. spin_lock_irqsave(&pool->lock, flags);
  655. m->prepared = 1;
  656. __maybe_add_mapping(m);
  657. spin_unlock_irqrestore(&pool->lock, flags);
  658. }
  659. /*----------------------------------------------------------------*/
  660. /*
  661. * Workqueue.
  662. */
  663. /*
  664. * Prepared mapping jobs.
  665. */
  666. /*
  667. * This sends the bios in the cell back to the deferred_bios list.
  668. */
  669. static void cell_defer(struct thin_c *tc, struct cell *cell,
  670. dm_block_t data_block)
  671. {
  672. struct pool *pool = tc->pool;
  673. unsigned long flags;
  674. spin_lock_irqsave(&pool->lock, flags);
  675. cell_release(cell, &pool->deferred_bios);
  676. spin_unlock_irqrestore(&tc->pool->lock, flags);
  677. wake_worker(pool);
  678. }
  679. /*
  680. * Same as cell_defer above, except it omits one particular detainee,
  681. * a write bio that covers the block and has already been processed.
  682. */
  683. static void cell_defer_except(struct thin_c *tc, struct cell *cell)
  684. {
  685. struct bio_list bios;
  686. struct pool *pool = tc->pool;
  687. unsigned long flags;
  688. bio_list_init(&bios);
  689. spin_lock_irqsave(&pool->lock, flags);
  690. cell_release_no_holder(cell, &pool->deferred_bios);
  691. spin_unlock_irqrestore(&pool->lock, flags);
  692. wake_worker(pool);
  693. }
  694. static void process_prepared_mapping(struct new_mapping *m)
  695. {
  696. struct thin_c *tc = m->tc;
  697. struct bio *bio;
  698. int r;
  699. bio = m->bio;
  700. if (bio)
  701. bio->bi_end_io = m->saved_bi_end_io;
  702. if (m->err) {
  703. cell_error(m->cell);
  704. return;
  705. }
  706. /*
  707. * Commit the prepared block into the mapping btree.
  708. * Any I/O for this block arriving after this point will get
  709. * remapped to it directly.
  710. */
  711. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  712. if (r) {
  713. DMERR("dm_thin_insert_block() failed");
  714. cell_error(m->cell);
  715. return;
  716. }
  717. /*
  718. * Release any bios held while the block was being provisioned.
  719. * If we are processing a write bio that completely covers the block,
  720. * we already processed it so can ignore it now when processing
  721. * the bios in the cell.
  722. */
  723. if (bio) {
  724. cell_defer_except(tc, m->cell);
  725. bio_endio(bio, 0);
  726. } else
  727. cell_defer(tc, m->cell, m->data_block);
  728. list_del(&m->list);
  729. mempool_free(m, tc->pool->mapping_pool);
  730. }
  731. static void process_prepared_discard(struct new_mapping *m)
  732. {
  733. int r;
  734. struct thin_c *tc = m->tc;
  735. r = dm_thin_remove_block(tc->td, m->virt_block);
  736. if (r)
  737. DMERR("dm_thin_remove_block() failed");
  738. /*
  739. * Pass the discard down to the underlying device?
  740. */
  741. if (m->pass_discard)
  742. remap_and_issue(tc, m->bio, m->data_block);
  743. else
  744. bio_endio(m->bio, 0);
  745. cell_defer_except(tc, m->cell);
  746. cell_defer_except(tc, m->cell2);
  747. mempool_free(m, tc->pool->mapping_pool);
  748. }
  749. static void process_prepared(struct pool *pool, struct list_head *head,
  750. void (*fn)(struct new_mapping *))
  751. {
  752. unsigned long flags;
  753. struct list_head maps;
  754. struct new_mapping *m, *tmp;
  755. INIT_LIST_HEAD(&maps);
  756. spin_lock_irqsave(&pool->lock, flags);
  757. list_splice_init(head, &maps);
  758. spin_unlock_irqrestore(&pool->lock, flags);
  759. list_for_each_entry_safe(m, tmp, &maps, list)
  760. fn(m);
  761. }
  762. /*
  763. * Deferred bio jobs.
  764. */
  765. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  766. {
  767. return !(bio->bi_sector & pool->offset_mask) &&
  768. (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
  769. }
  770. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  771. {
  772. return (bio_data_dir(bio) == WRITE) &&
  773. io_overlaps_block(pool, bio);
  774. }
  775. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  776. bio_end_io_t *fn)
  777. {
  778. *save = bio->bi_end_io;
  779. bio->bi_end_io = fn;
  780. }
  781. static int ensure_next_mapping(struct pool *pool)
  782. {
  783. if (pool->next_mapping)
  784. return 0;
  785. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  786. return pool->next_mapping ? 0 : -ENOMEM;
  787. }
  788. static struct new_mapping *get_next_mapping(struct pool *pool)
  789. {
  790. struct new_mapping *r = pool->next_mapping;
  791. BUG_ON(!pool->next_mapping);
  792. pool->next_mapping = NULL;
  793. return r;
  794. }
  795. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  796. struct dm_dev *origin, dm_block_t data_origin,
  797. dm_block_t data_dest,
  798. struct cell *cell, struct bio *bio)
  799. {
  800. int r;
  801. struct pool *pool = tc->pool;
  802. struct new_mapping *m = get_next_mapping(pool);
  803. INIT_LIST_HEAD(&m->list);
  804. m->quiesced = 0;
  805. m->prepared = 0;
  806. m->tc = tc;
  807. m->virt_block = virt_block;
  808. m->data_block = data_dest;
  809. m->cell = cell;
  810. m->err = 0;
  811. m->bio = NULL;
  812. if (!ds_add_work(&pool->shared_read_ds, &m->list))
  813. m->quiesced = 1;
  814. /*
  815. * IO to pool_dev remaps to the pool target's data_dev.
  816. *
  817. * If the whole block of data is being overwritten, we can issue the
  818. * bio immediately. Otherwise we use kcopyd to clone the data first.
  819. */
  820. if (io_overwrites_block(pool, bio)) {
  821. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  822. h->overwrite_mapping = m;
  823. m->bio = bio;
  824. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  825. remap_and_issue(tc, bio, data_dest);
  826. } else {
  827. struct dm_io_region from, to;
  828. from.bdev = origin->bdev;
  829. from.sector = data_origin * pool->sectors_per_block;
  830. from.count = pool->sectors_per_block;
  831. to.bdev = tc->pool_dev->bdev;
  832. to.sector = data_dest * pool->sectors_per_block;
  833. to.count = pool->sectors_per_block;
  834. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  835. 0, copy_complete, m);
  836. if (r < 0) {
  837. mempool_free(m, pool->mapping_pool);
  838. DMERR("dm_kcopyd_copy() failed");
  839. cell_error(cell);
  840. }
  841. }
  842. }
  843. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  844. dm_block_t data_origin, dm_block_t data_dest,
  845. struct cell *cell, struct bio *bio)
  846. {
  847. schedule_copy(tc, virt_block, tc->pool_dev,
  848. data_origin, data_dest, cell, bio);
  849. }
  850. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  851. dm_block_t data_dest,
  852. struct cell *cell, struct bio *bio)
  853. {
  854. schedule_copy(tc, virt_block, tc->origin_dev,
  855. virt_block, data_dest, cell, bio);
  856. }
  857. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  858. dm_block_t data_block, struct cell *cell,
  859. struct bio *bio)
  860. {
  861. struct pool *pool = tc->pool;
  862. struct new_mapping *m = get_next_mapping(pool);
  863. INIT_LIST_HEAD(&m->list);
  864. m->quiesced = 1;
  865. m->prepared = 0;
  866. m->tc = tc;
  867. m->virt_block = virt_block;
  868. m->data_block = data_block;
  869. m->cell = cell;
  870. m->err = 0;
  871. m->bio = NULL;
  872. /*
  873. * If the whole block of data is being overwritten or we are not
  874. * zeroing pre-existing data, we can issue the bio immediately.
  875. * Otherwise we use kcopyd to zero the data first.
  876. */
  877. if (!pool->pf.zero_new_blocks)
  878. process_prepared_mapping(m);
  879. else if (io_overwrites_block(pool, bio)) {
  880. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  881. h->overwrite_mapping = m;
  882. m->bio = bio;
  883. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  884. remap_and_issue(tc, bio, data_block);
  885. } else {
  886. int r;
  887. struct dm_io_region to;
  888. to.bdev = tc->pool_dev->bdev;
  889. to.sector = data_block * pool->sectors_per_block;
  890. to.count = pool->sectors_per_block;
  891. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  892. if (r < 0) {
  893. mempool_free(m, pool->mapping_pool);
  894. DMERR("dm_kcopyd_zero() failed");
  895. cell_error(cell);
  896. }
  897. }
  898. }
  899. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  900. {
  901. int r;
  902. dm_block_t free_blocks;
  903. unsigned long flags;
  904. struct pool *pool = tc->pool;
  905. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  906. if (r)
  907. return r;
  908. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  909. DMWARN("%s: reached low water mark, sending event.",
  910. dm_device_name(pool->pool_md));
  911. spin_lock_irqsave(&pool->lock, flags);
  912. pool->low_water_triggered = 1;
  913. spin_unlock_irqrestore(&pool->lock, flags);
  914. dm_table_event(pool->ti->table);
  915. }
  916. if (!free_blocks) {
  917. if (pool->no_free_space)
  918. return -ENOSPC;
  919. else {
  920. /*
  921. * Try to commit to see if that will free up some
  922. * more space.
  923. */
  924. r = dm_pool_commit_metadata(pool->pmd);
  925. if (r) {
  926. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  927. __func__, r);
  928. return r;
  929. }
  930. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  931. if (r)
  932. return r;
  933. /*
  934. * If we still have no space we set a flag to avoid
  935. * doing all this checking and return -ENOSPC.
  936. */
  937. if (!free_blocks) {
  938. DMWARN("%s: no free space available.",
  939. dm_device_name(pool->pool_md));
  940. spin_lock_irqsave(&pool->lock, flags);
  941. pool->no_free_space = 1;
  942. spin_unlock_irqrestore(&pool->lock, flags);
  943. return -ENOSPC;
  944. }
  945. }
  946. }
  947. r = dm_pool_alloc_data_block(pool->pmd, result);
  948. if (r)
  949. return r;
  950. return 0;
  951. }
  952. /*
  953. * If we have run out of space, queue bios until the device is
  954. * resumed, presumably after having been reloaded with more space.
  955. */
  956. static void retry_on_resume(struct bio *bio)
  957. {
  958. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  959. struct thin_c *tc = h->tc;
  960. struct pool *pool = tc->pool;
  961. unsigned long flags;
  962. spin_lock_irqsave(&pool->lock, flags);
  963. bio_list_add(&pool->retry_on_resume_list, bio);
  964. spin_unlock_irqrestore(&pool->lock, flags);
  965. }
  966. static void no_space(struct cell *cell)
  967. {
  968. struct bio *bio;
  969. struct bio_list bios;
  970. bio_list_init(&bios);
  971. cell_release(cell, &bios);
  972. while ((bio = bio_list_pop(&bios)))
  973. retry_on_resume(bio);
  974. }
  975. static void process_discard(struct thin_c *tc, struct bio *bio)
  976. {
  977. int r;
  978. unsigned long flags;
  979. struct pool *pool = tc->pool;
  980. struct cell *cell, *cell2;
  981. struct cell_key key, key2;
  982. dm_block_t block = get_bio_block(tc, bio);
  983. struct dm_thin_lookup_result lookup_result;
  984. struct new_mapping *m;
  985. build_virtual_key(tc->td, block, &key);
  986. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  987. return;
  988. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  989. switch (r) {
  990. case 0:
  991. /*
  992. * Check nobody is fiddling with this pool block. This can
  993. * happen if someone's in the process of breaking sharing
  994. * on this block.
  995. */
  996. build_data_key(tc->td, lookup_result.block, &key2);
  997. if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  998. cell_release_singleton(cell, bio);
  999. break;
  1000. }
  1001. if (io_overlaps_block(pool, bio)) {
  1002. /*
  1003. * IO may still be going to the destination block. We must
  1004. * quiesce before we can do the removal.
  1005. */
  1006. m = get_next_mapping(pool);
  1007. m->tc = tc;
  1008. m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
  1009. m->virt_block = block;
  1010. m->data_block = lookup_result.block;
  1011. m->cell = cell;
  1012. m->cell2 = cell2;
  1013. m->err = 0;
  1014. m->bio = bio;
  1015. if (!ds_add_work(&pool->all_io_ds, &m->list)) {
  1016. spin_lock_irqsave(&pool->lock, flags);
  1017. list_add(&m->list, &pool->prepared_discards);
  1018. spin_unlock_irqrestore(&pool->lock, flags);
  1019. wake_worker(pool);
  1020. }
  1021. } else {
  1022. /*
  1023. * This path is hit if people are ignoring
  1024. * limits->discard_granularity. It ignores any
  1025. * part of the discard that is in a subsequent
  1026. * block.
  1027. */
  1028. sector_t offset = bio->bi_sector - (block << pool->block_shift);
  1029. unsigned remaining = (pool->sectors_per_block - offset) << 9;
  1030. bio->bi_size = min(bio->bi_size, remaining);
  1031. cell_release_singleton(cell, bio);
  1032. cell_release_singleton(cell2, bio);
  1033. remap_and_issue(tc, bio, lookup_result.block);
  1034. }
  1035. break;
  1036. case -ENODATA:
  1037. /*
  1038. * It isn't provisioned, just forget it.
  1039. */
  1040. cell_release_singleton(cell, bio);
  1041. bio_endio(bio, 0);
  1042. break;
  1043. default:
  1044. DMERR("discard: find block unexpectedly returned %d", r);
  1045. cell_release_singleton(cell, bio);
  1046. bio_io_error(bio);
  1047. break;
  1048. }
  1049. }
  1050. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1051. struct cell_key *key,
  1052. struct dm_thin_lookup_result *lookup_result,
  1053. struct cell *cell)
  1054. {
  1055. int r;
  1056. dm_block_t data_block;
  1057. r = alloc_data_block(tc, &data_block);
  1058. switch (r) {
  1059. case 0:
  1060. schedule_internal_copy(tc, block, lookup_result->block,
  1061. data_block, cell, bio);
  1062. break;
  1063. case -ENOSPC:
  1064. no_space(cell);
  1065. break;
  1066. default:
  1067. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1068. cell_error(cell);
  1069. break;
  1070. }
  1071. }
  1072. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  1073. dm_block_t block,
  1074. struct dm_thin_lookup_result *lookup_result)
  1075. {
  1076. struct cell *cell;
  1077. struct pool *pool = tc->pool;
  1078. struct cell_key key;
  1079. /*
  1080. * If cell is already occupied, then sharing is already in the process
  1081. * of being broken so we have nothing further to do here.
  1082. */
  1083. build_data_key(tc->td, lookup_result->block, &key);
  1084. if (bio_detain(pool->prison, &key, bio, &cell))
  1085. return;
  1086. if (bio_data_dir(bio) == WRITE)
  1087. break_sharing(tc, bio, block, &key, lookup_result, cell);
  1088. else {
  1089. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1090. h->shared_read_entry = ds_inc(&pool->shared_read_ds);
  1091. cell_release_singleton(cell, bio);
  1092. remap_and_issue(tc, bio, lookup_result->block);
  1093. }
  1094. }
  1095. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1096. struct cell *cell)
  1097. {
  1098. int r;
  1099. dm_block_t data_block;
  1100. /*
  1101. * Remap empty bios (flushes) immediately, without provisioning.
  1102. */
  1103. if (!bio->bi_size) {
  1104. cell_release_singleton(cell, bio);
  1105. remap_and_issue(tc, bio, 0);
  1106. return;
  1107. }
  1108. /*
  1109. * Fill read bios with zeroes and complete them immediately.
  1110. */
  1111. if (bio_data_dir(bio) == READ) {
  1112. zero_fill_bio(bio);
  1113. cell_release_singleton(cell, bio);
  1114. bio_endio(bio, 0);
  1115. return;
  1116. }
  1117. r = alloc_data_block(tc, &data_block);
  1118. switch (r) {
  1119. case 0:
  1120. if (tc->origin_dev)
  1121. schedule_external_copy(tc, block, data_block, cell, bio);
  1122. else
  1123. schedule_zero(tc, block, data_block, cell, bio);
  1124. break;
  1125. case -ENOSPC:
  1126. no_space(cell);
  1127. break;
  1128. default:
  1129. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1130. cell_error(cell);
  1131. break;
  1132. }
  1133. }
  1134. static void process_bio(struct thin_c *tc, struct bio *bio)
  1135. {
  1136. int r;
  1137. dm_block_t block = get_bio_block(tc, bio);
  1138. struct cell *cell;
  1139. struct cell_key key;
  1140. struct dm_thin_lookup_result lookup_result;
  1141. /*
  1142. * If cell is already occupied, then the block is already
  1143. * being provisioned so we have nothing further to do here.
  1144. */
  1145. build_virtual_key(tc->td, block, &key);
  1146. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  1147. return;
  1148. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1149. switch (r) {
  1150. case 0:
  1151. /*
  1152. * We can release this cell now. This thread is the only
  1153. * one that puts bios into a cell, and we know there were
  1154. * no preceding bios.
  1155. */
  1156. /*
  1157. * TODO: this will probably have to change when discard goes
  1158. * back in.
  1159. */
  1160. cell_release_singleton(cell, bio);
  1161. if (lookup_result.shared)
  1162. process_shared_bio(tc, bio, block, &lookup_result);
  1163. else
  1164. remap_and_issue(tc, bio, lookup_result.block);
  1165. break;
  1166. case -ENODATA:
  1167. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  1168. cell_release_singleton(cell, bio);
  1169. remap_to_origin_and_issue(tc, bio);
  1170. } else
  1171. provision_block(tc, bio, block, cell);
  1172. break;
  1173. default:
  1174. DMERR("dm_thin_find_block() failed, error = %d", r);
  1175. cell_release_singleton(cell, bio);
  1176. bio_io_error(bio);
  1177. break;
  1178. }
  1179. }
  1180. static int need_commit_due_to_time(struct pool *pool)
  1181. {
  1182. return jiffies < pool->last_commit_jiffies ||
  1183. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1184. }
  1185. static void process_deferred_bios(struct pool *pool)
  1186. {
  1187. unsigned long flags;
  1188. struct bio *bio;
  1189. struct bio_list bios;
  1190. int r;
  1191. bio_list_init(&bios);
  1192. spin_lock_irqsave(&pool->lock, flags);
  1193. bio_list_merge(&bios, &pool->deferred_bios);
  1194. bio_list_init(&pool->deferred_bios);
  1195. spin_unlock_irqrestore(&pool->lock, flags);
  1196. while ((bio = bio_list_pop(&bios))) {
  1197. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1198. struct thin_c *tc = h->tc;
  1199. /*
  1200. * If we've got no free new_mapping structs, and processing
  1201. * this bio might require one, we pause until there are some
  1202. * prepared mappings to process.
  1203. */
  1204. if (ensure_next_mapping(pool)) {
  1205. spin_lock_irqsave(&pool->lock, flags);
  1206. bio_list_merge(&pool->deferred_bios, &bios);
  1207. spin_unlock_irqrestore(&pool->lock, flags);
  1208. break;
  1209. }
  1210. if (bio->bi_rw & REQ_DISCARD)
  1211. process_discard(tc, bio);
  1212. else
  1213. process_bio(tc, bio);
  1214. }
  1215. /*
  1216. * If there are any deferred flush bios, we must commit
  1217. * the metadata before issuing them.
  1218. */
  1219. bio_list_init(&bios);
  1220. spin_lock_irqsave(&pool->lock, flags);
  1221. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1222. bio_list_init(&pool->deferred_flush_bios);
  1223. spin_unlock_irqrestore(&pool->lock, flags);
  1224. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1225. return;
  1226. r = dm_pool_commit_metadata(pool->pmd);
  1227. if (r) {
  1228. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1229. __func__, r);
  1230. while ((bio = bio_list_pop(&bios)))
  1231. bio_io_error(bio);
  1232. return;
  1233. }
  1234. pool->last_commit_jiffies = jiffies;
  1235. while ((bio = bio_list_pop(&bios)))
  1236. generic_make_request(bio);
  1237. }
  1238. static void do_worker(struct work_struct *ws)
  1239. {
  1240. struct pool *pool = container_of(ws, struct pool, worker);
  1241. process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
  1242. process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
  1243. process_deferred_bios(pool);
  1244. }
  1245. /*
  1246. * We want to commit periodically so that not too much
  1247. * unwritten data builds up.
  1248. */
  1249. static void do_waker(struct work_struct *ws)
  1250. {
  1251. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1252. wake_worker(pool);
  1253. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1254. }
  1255. /*----------------------------------------------------------------*/
  1256. /*
  1257. * Mapping functions.
  1258. */
  1259. /*
  1260. * Called only while mapping a thin bio to hand it over to the workqueue.
  1261. */
  1262. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1263. {
  1264. unsigned long flags;
  1265. struct pool *pool = tc->pool;
  1266. spin_lock_irqsave(&pool->lock, flags);
  1267. bio_list_add(&pool->deferred_bios, bio);
  1268. spin_unlock_irqrestore(&pool->lock, flags);
  1269. wake_worker(pool);
  1270. }
  1271. static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1272. {
  1273. struct pool *pool = tc->pool;
  1274. struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
  1275. h->tc = tc;
  1276. h->shared_read_entry = NULL;
  1277. h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
  1278. h->overwrite_mapping = NULL;
  1279. return h;
  1280. }
  1281. /*
  1282. * Non-blocking function called from the thin target's map function.
  1283. */
  1284. static int thin_bio_map(struct dm_target *ti, struct bio *bio,
  1285. union map_info *map_context)
  1286. {
  1287. int r;
  1288. struct thin_c *tc = ti->private;
  1289. dm_block_t block = get_bio_block(tc, bio);
  1290. struct dm_thin_device *td = tc->td;
  1291. struct dm_thin_lookup_result result;
  1292. map_context->ptr = thin_hook_bio(tc, bio);
  1293. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1294. thin_defer_bio(tc, bio);
  1295. return DM_MAPIO_SUBMITTED;
  1296. }
  1297. r = dm_thin_find_block(td, block, 0, &result);
  1298. /*
  1299. * Note that we defer readahead too.
  1300. */
  1301. switch (r) {
  1302. case 0:
  1303. if (unlikely(result.shared)) {
  1304. /*
  1305. * We have a race condition here between the
  1306. * result.shared value returned by the lookup and
  1307. * snapshot creation, which may cause new
  1308. * sharing.
  1309. *
  1310. * To avoid this always quiesce the origin before
  1311. * taking the snap. You want to do this anyway to
  1312. * ensure a consistent application view
  1313. * (i.e. lockfs).
  1314. *
  1315. * More distant ancestors are irrelevant. The
  1316. * shared flag will be set in their case.
  1317. */
  1318. thin_defer_bio(tc, bio);
  1319. r = DM_MAPIO_SUBMITTED;
  1320. } else {
  1321. remap(tc, bio, result.block);
  1322. r = DM_MAPIO_REMAPPED;
  1323. }
  1324. break;
  1325. case -ENODATA:
  1326. /*
  1327. * In future, the failed dm_thin_find_block above could
  1328. * provide the hint to load the metadata into cache.
  1329. */
  1330. case -EWOULDBLOCK:
  1331. thin_defer_bio(tc, bio);
  1332. r = DM_MAPIO_SUBMITTED;
  1333. break;
  1334. }
  1335. return r;
  1336. }
  1337. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1338. {
  1339. int r;
  1340. unsigned long flags;
  1341. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1342. spin_lock_irqsave(&pt->pool->lock, flags);
  1343. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1344. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1345. if (!r) {
  1346. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1347. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1348. }
  1349. return r;
  1350. }
  1351. static void __requeue_bios(struct pool *pool)
  1352. {
  1353. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1354. bio_list_init(&pool->retry_on_resume_list);
  1355. }
  1356. /*----------------------------------------------------------------
  1357. * Binding of control targets to a pool object
  1358. *--------------------------------------------------------------*/
  1359. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1360. {
  1361. struct pool_c *pt = ti->private;
  1362. pool->ti = ti;
  1363. pool->low_water_blocks = pt->low_water_blocks;
  1364. pool->pf = pt->pf;
  1365. return 0;
  1366. }
  1367. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1368. {
  1369. if (pool->ti == ti)
  1370. pool->ti = NULL;
  1371. }
  1372. /*----------------------------------------------------------------
  1373. * Pool creation
  1374. *--------------------------------------------------------------*/
  1375. /* Initialize pool features. */
  1376. static void pool_features_init(struct pool_features *pf)
  1377. {
  1378. pf->zero_new_blocks = 1;
  1379. pf->discard_enabled = 1;
  1380. pf->discard_passdown = 1;
  1381. }
  1382. static void __pool_destroy(struct pool *pool)
  1383. {
  1384. __pool_table_remove(pool);
  1385. if (dm_pool_metadata_close(pool->pmd) < 0)
  1386. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1387. prison_destroy(pool->prison);
  1388. dm_kcopyd_client_destroy(pool->copier);
  1389. if (pool->wq)
  1390. destroy_workqueue(pool->wq);
  1391. if (pool->next_mapping)
  1392. mempool_free(pool->next_mapping, pool->mapping_pool);
  1393. mempool_destroy(pool->mapping_pool);
  1394. mempool_destroy(pool->endio_hook_pool);
  1395. kfree(pool);
  1396. }
  1397. static struct pool *pool_create(struct mapped_device *pool_md,
  1398. struct block_device *metadata_dev,
  1399. unsigned long block_size, char **error)
  1400. {
  1401. int r;
  1402. void *err_p;
  1403. struct pool *pool;
  1404. struct dm_pool_metadata *pmd;
  1405. pmd = dm_pool_metadata_open(metadata_dev, block_size);
  1406. if (IS_ERR(pmd)) {
  1407. *error = "Error creating metadata object";
  1408. return (struct pool *)pmd;
  1409. }
  1410. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1411. if (!pool) {
  1412. *error = "Error allocating memory for pool";
  1413. err_p = ERR_PTR(-ENOMEM);
  1414. goto bad_pool;
  1415. }
  1416. pool->pmd = pmd;
  1417. pool->sectors_per_block = block_size;
  1418. pool->block_shift = ffs(block_size) - 1;
  1419. pool->offset_mask = block_size - 1;
  1420. pool->low_water_blocks = 0;
  1421. pool_features_init(&pool->pf);
  1422. pool->prison = prison_create(PRISON_CELLS);
  1423. if (!pool->prison) {
  1424. *error = "Error creating pool's bio prison";
  1425. err_p = ERR_PTR(-ENOMEM);
  1426. goto bad_prison;
  1427. }
  1428. pool->copier = dm_kcopyd_client_create();
  1429. if (IS_ERR(pool->copier)) {
  1430. r = PTR_ERR(pool->copier);
  1431. *error = "Error creating pool's kcopyd client";
  1432. err_p = ERR_PTR(r);
  1433. goto bad_kcopyd_client;
  1434. }
  1435. /*
  1436. * Create singlethreaded workqueue that will service all devices
  1437. * that use this metadata.
  1438. */
  1439. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1440. if (!pool->wq) {
  1441. *error = "Error creating pool's workqueue";
  1442. err_p = ERR_PTR(-ENOMEM);
  1443. goto bad_wq;
  1444. }
  1445. INIT_WORK(&pool->worker, do_worker);
  1446. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1447. spin_lock_init(&pool->lock);
  1448. bio_list_init(&pool->deferred_bios);
  1449. bio_list_init(&pool->deferred_flush_bios);
  1450. INIT_LIST_HEAD(&pool->prepared_mappings);
  1451. INIT_LIST_HEAD(&pool->prepared_discards);
  1452. pool->low_water_triggered = 0;
  1453. pool->no_free_space = 0;
  1454. bio_list_init(&pool->retry_on_resume_list);
  1455. ds_init(&pool->shared_read_ds);
  1456. ds_init(&pool->all_io_ds);
  1457. pool->next_mapping = NULL;
  1458. pool->mapping_pool =
  1459. mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
  1460. if (!pool->mapping_pool) {
  1461. *error = "Error creating pool's mapping mempool";
  1462. err_p = ERR_PTR(-ENOMEM);
  1463. goto bad_mapping_pool;
  1464. }
  1465. pool->endio_hook_pool =
  1466. mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
  1467. if (!pool->endio_hook_pool) {
  1468. *error = "Error creating pool's endio_hook mempool";
  1469. err_p = ERR_PTR(-ENOMEM);
  1470. goto bad_endio_hook_pool;
  1471. }
  1472. pool->ref_count = 1;
  1473. pool->last_commit_jiffies = jiffies;
  1474. pool->pool_md = pool_md;
  1475. pool->md_dev = metadata_dev;
  1476. __pool_table_insert(pool);
  1477. return pool;
  1478. bad_endio_hook_pool:
  1479. mempool_destroy(pool->mapping_pool);
  1480. bad_mapping_pool:
  1481. destroy_workqueue(pool->wq);
  1482. bad_wq:
  1483. dm_kcopyd_client_destroy(pool->copier);
  1484. bad_kcopyd_client:
  1485. prison_destroy(pool->prison);
  1486. bad_prison:
  1487. kfree(pool);
  1488. bad_pool:
  1489. if (dm_pool_metadata_close(pmd))
  1490. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1491. return err_p;
  1492. }
  1493. static void __pool_inc(struct pool *pool)
  1494. {
  1495. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1496. pool->ref_count++;
  1497. }
  1498. static void __pool_dec(struct pool *pool)
  1499. {
  1500. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1501. BUG_ON(!pool->ref_count);
  1502. if (!--pool->ref_count)
  1503. __pool_destroy(pool);
  1504. }
  1505. static struct pool *__pool_find(struct mapped_device *pool_md,
  1506. struct block_device *metadata_dev,
  1507. unsigned long block_size, char **error,
  1508. int *created)
  1509. {
  1510. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1511. if (pool) {
  1512. if (pool->pool_md != pool_md)
  1513. return ERR_PTR(-EBUSY);
  1514. __pool_inc(pool);
  1515. } else {
  1516. pool = __pool_table_lookup(pool_md);
  1517. if (pool) {
  1518. if (pool->md_dev != metadata_dev)
  1519. return ERR_PTR(-EINVAL);
  1520. __pool_inc(pool);
  1521. } else {
  1522. pool = pool_create(pool_md, metadata_dev, block_size, error);
  1523. *created = 1;
  1524. }
  1525. }
  1526. return pool;
  1527. }
  1528. /*----------------------------------------------------------------
  1529. * Pool target methods
  1530. *--------------------------------------------------------------*/
  1531. static void pool_dtr(struct dm_target *ti)
  1532. {
  1533. struct pool_c *pt = ti->private;
  1534. mutex_lock(&dm_thin_pool_table.mutex);
  1535. unbind_control_target(pt->pool, ti);
  1536. __pool_dec(pt->pool);
  1537. dm_put_device(ti, pt->metadata_dev);
  1538. dm_put_device(ti, pt->data_dev);
  1539. kfree(pt);
  1540. mutex_unlock(&dm_thin_pool_table.mutex);
  1541. }
  1542. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1543. struct dm_target *ti)
  1544. {
  1545. int r;
  1546. unsigned argc;
  1547. const char *arg_name;
  1548. static struct dm_arg _args[] = {
  1549. {0, 3, "Invalid number of pool feature arguments"},
  1550. };
  1551. /*
  1552. * No feature arguments supplied.
  1553. */
  1554. if (!as->argc)
  1555. return 0;
  1556. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1557. if (r)
  1558. return -EINVAL;
  1559. while (argc && !r) {
  1560. arg_name = dm_shift_arg(as);
  1561. argc--;
  1562. if (!strcasecmp(arg_name, "skip_block_zeroing")) {
  1563. pf->zero_new_blocks = 0;
  1564. continue;
  1565. } else if (!strcasecmp(arg_name, "ignore_discard")) {
  1566. pf->discard_enabled = 0;
  1567. continue;
  1568. } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
  1569. pf->discard_passdown = 0;
  1570. continue;
  1571. }
  1572. ti->error = "Unrecognised pool feature requested";
  1573. r = -EINVAL;
  1574. }
  1575. return r;
  1576. }
  1577. /*
  1578. * thin-pool <metadata dev> <data dev>
  1579. * <data block size (sectors)>
  1580. * <low water mark (blocks)>
  1581. * [<#feature args> [<arg>]*]
  1582. *
  1583. * Optional feature arguments are:
  1584. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1585. * ignore_discard: disable discard
  1586. * no_discard_passdown: don't pass discards down to the data device
  1587. */
  1588. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1589. {
  1590. int r, pool_created = 0;
  1591. struct pool_c *pt;
  1592. struct pool *pool;
  1593. struct pool_features pf;
  1594. struct dm_arg_set as;
  1595. struct dm_dev *data_dev;
  1596. unsigned long block_size;
  1597. dm_block_t low_water_blocks;
  1598. struct dm_dev *metadata_dev;
  1599. sector_t metadata_dev_size;
  1600. char b[BDEVNAME_SIZE];
  1601. /*
  1602. * FIXME Remove validation from scope of lock.
  1603. */
  1604. mutex_lock(&dm_thin_pool_table.mutex);
  1605. if (argc < 4) {
  1606. ti->error = "Invalid argument count";
  1607. r = -EINVAL;
  1608. goto out_unlock;
  1609. }
  1610. as.argc = argc;
  1611. as.argv = argv;
  1612. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1613. if (r) {
  1614. ti->error = "Error opening metadata block device";
  1615. goto out_unlock;
  1616. }
  1617. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1618. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1619. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1620. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1621. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1622. if (r) {
  1623. ti->error = "Error getting data device";
  1624. goto out_metadata;
  1625. }
  1626. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1627. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1628. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1629. !is_power_of_2(block_size)) {
  1630. ti->error = "Invalid block size";
  1631. r = -EINVAL;
  1632. goto out;
  1633. }
  1634. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1635. ti->error = "Invalid low water mark";
  1636. r = -EINVAL;
  1637. goto out;
  1638. }
  1639. /*
  1640. * Set default pool features.
  1641. */
  1642. pool_features_init(&pf);
  1643. dm_consume_args(&as, 4);
  1644. r = parse_pool_features(&as, &pf, ti);
  1645. if (r)
  1646. goto out;
  1647. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1648. if (!pt) {
  1649. r = -ENOMEM;
  1650. goto out;
  1651. }
  1652. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1653. block_size, &ti->error, &pool_created);
  1654. if (IS_ERR(pool)) {
  1655. r = PTR_ERR(pool);
  1656. goto out_free_pt;
  1657. }
  1658. /*
  1659. * 'pool_created' reflects whether this is the first table load.
  1660. * Top level discard support is not allowed to be changed after
  1661. * initial load. This would require a pool reload to trigger thin
  1662. * device changes.
  1663. */
  1664. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1665. ti->error = "Discard support cannot be disabled once enabled";
  1666. r = -EINVAL;
  1667. goto out_flags_changed;
  1668. }
  1669. /*
  1670. * If discard_passdown was enabled verify that the data device
  1671. * supports discards. Disable discard_passdown if not; otherwise
  1672. * -EOPNOTSUPP will be returned.
  1673. */
  1674. if (pf.discard_passdown) {
  1675. struct request_queue *q = bdev_get_queue(data_dev->bdev);
  1676. if (!q || !blk_queue_discard(q)) {
  1677. DMWARN("Discard unsupported by data device: Disabling discard passdown.");
  1678. pf.discard_passdown = 0;
  1679. }
  1680. }
  1681. pt->pool = pool;
  1682. pt->ti = ti;
  1683. pt->metadata_dev = metadata_dev;
  1684. pt->data_dev = data_dev;
  1685. pt->low_water_blocks = low_water_blocks;
  1686. pt->pf = pf;
  1687. ti->num_flush_requests = 1;
  1688. /*
  1689. * Only need to enable discards if the pool should pass
  1690. * them down to the data device. The thin device's discard
  1691. * processing will cause mappings to be removed from the btree.
  1692. */
  1693. if (pf.discard_enabled && pf.discard_passdown) {
  1694. ti->num_discard_requests = 1;
  1695. /*
  1696. * Setting 'discards_supported' circumvents the normal
  1697. * stacking of discard limits (this keeps the pool and
  1698. * thin devices' discard limits consistent).
  1699. */
  1700. ti->discards_supported = 1;
  1701. }
  1702. ti->private = pt;
  1703. pt->callbacks.congested_fn = pool_is_congested;
  1704. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1705. mutex_unlock(&dm_thin_pool_table.mutex);
  1706. return 0;
  1707. out_flags_changed:
  1708. __pool_dec(pool);
  1709. out_free_pt:
  1710. kfree(pt);
  1711. out:
  1712. dm_put_device(ti, data_dev);
  1713. out_metadata:
  1714. dm_put_device(ti, metadata_dev);
  1715. out_unlock:
  1716. mutex_unlock(&dm_thin_pool_table.mutex);
  1717. return r;
  1718. }
  1719. static int pool_map(struct dm_target *ti, struct bio *bio,
  1720. union map_info *map_context)
  1721. {
  1722. int r;
  1723. struct pool_c *pt = ti->private;
  1724. struct pool *pool = pt->pool;
  1725. unsigned long flags;
  1726. /*
  1727. * As this is a singleton target, ti->begin is always zero.
  1728. */
  1729. spin_lock_irqsave(&pool->lock, flags);
  1730. bio->bi_bdev = pt->data_dev->bdev;
  1731. r = DM_MAPIO_REMAPPED;
  1732. spin_unlock_irqrestore(&pool->lock, flags);
  1733. return r;
  1734. }
  1735. /*
  1736. * Retrieves the number of blocks of the data device from
  1737. * the superblock and compares it to the actual device size,
  1738. * thus resizing the data device in case it has grown.
  1739. *
  1740. * This both copes with opening preallocated data devices in the ctr
  1741. * being followed by a resume
  1742. * -and-
  1743. * calling the resume method individually after userspace has
  1744. * grown the data device in reaction to a table event.
  1745. */
  1746. static int pool_preresume(struct dm_target *ti)
  1747. {
  1748. int r;
  1749. struct pool_c *pt = ti->private;
  1750. struct pool *pool = pt->pool;
  1751. dm_block_t data_size, sb_data_size;
  1752. /*
  1753. * Take control of the pool object.
  1754. */
  1755. r = bind_control_target(pool, ti);
  1756. if (r)
  1757. return r;
  1758. data_size = ti->len >> pool->block_shift;
  1759. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1760. if (r) {
  1761. DMERR("failed to retrieve data device size");
  1762. return r;
  1763. }
  1764. if (data_size < sb_data_size) {
  1765. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1766. data_size, sb_data_size);
  1767. return -EINVAL;
  1768. } else if (data_size > sb_data_size) {
  1769. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1770. if (r) {
  1771. DMERR("failed to resize data device");
  1772. return r;
  1773. }
  1774. r = dm_pool_commit_metadata(pool->pmd);
  1775. if (r) {
  1776. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1777. __func__, r);
  1778. return r;
  1779. }
  1780. }
  1781. return 0;
  1782. }
  1783. static void pool_resume(struct dm_target *ti)
  1784. {
  1785. struct pool_c *pt = ti->private;
  1786. struct pool *pool = pt->pool;
  1787. unsigned long flags;
  1788. spin_lock_irqsave(&pool->lock, flags);
  1789. pool->low_water_triggered = 0;
  1790. pool->no_free_space = 0;
  1791. __requeue_bios(pool);
  1792. spin_unlock_irqrestore(&pool->lock, flags);
  1793. do_waker(&pool->waker.work);
  1794. }
  1795. static void pool_postsuspend(struct dm_target *ti)
  1796. {
  1797. int r;
  1798. struct pool_c *pt = ti->private;
  1799. struct pool *pool = pt->pool;
  1800. cancel_delayed_work(&pool->waker);
  1801. flush_workqueue(pool->wq);
  1802. r = dm_pool_commit_metadata(pool->pmd);
  1803. if (r < 0) {
  1804. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1805. __func__, r);
  1806. /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
  1807. }
  1808. }
  1809. static int check_arg_count(unsigned argc, unsigned args_required)
  1810. {
  1811. if (argc != args_required) {
  1812. DMWARN("Message received with %u arguments instead of %u.",
  1813. argc, args_required);
  1814. return -EINVAL;
  1815. }
  1816. return 0;
  1817. }
  1818. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1819. {
  1820. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1821. *dev_id <= MAX_DEV_ID)
  1822. return 0;
  1823. if (warning)
  1824. DMWARN("Message received with invalid device id: %s", arg);
  1825. return -EINVAL;
  1826. }
  1827. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1828. {
  1829. dm_thin_id dev_id;
  1830. int r;
  1831. r = check_arg_count(argc, 2);
  1832. if (r)
  1833. return r;
  1834. r = read_dev_id(argv[1], &dev_id, 1);
  1835. if (r)
  1836. return r;
  1837. r = dm_pool_create_thin(pool->pmd, dev_id);
  1838. if (r) {
  1839. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1840. argv[1]);
  1841. return r;
  1842. }
  1843. return 0;
  1844. }
  1845. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1846. {
  1847. dm_thin_id dev_id;
  1848. dm_thin_id origin_dev_id;
  1849. int r;
  1850. r = check_arg_count(argc, 3);
  1851. if (r)
  1852. return r;
  1853. r = read_dev_id(argv[1], &dev_id, 1);
  1854. if (r)
  1855. return r;
  1856. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1857. if (r)
  1858. return r;
  1859. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1860. if (r) {
  1861. DMWARN("Creation of new snapshot %s of device %s failed.",
  1862. argv[1], argv[2]);
  1863. return r;
  1864. }
  1865. return 0;
  1866. }
  1867. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1868. {
  1869. dm_thin_id dev_id;
  1870. int r;
  1871. r = check_arg_count(argc, 2);
  1872. if (r)
  1873. return r;
  1874. r = read_dev_id(argv[1], &dev_id, 1);
  1875. if (r)
  1876. return r;
  1877. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1878. if (r)
  1879. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1880. return r;
  1881. }
  1882. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1883. {
  1884. dm_thin_id old_id, new_id;
  1885. int r;
  1886. r = check_arg_count(argc, 3);
  1887. if (r)
  1888. return r;
  1889. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1890. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1891. return -EINVAL;
  1892. }
  1893. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1894. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1895. return -EINVAL;
  1896. }
  1897. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1898. if (r) {
  1899. DMWARN("Failed to change transaction id from %s to %s.",
  1900. argv[1], argv[2]);
  1901. return r;
  1902. }
  1903. return 0;
  1904. }
  1905. /*
  1906. * Messages supported:
  1907. * create_thin <dev_id>
  1908. * create_snap <dev_id> <origin_id>
  1909. * delete <dev_id>
  1910. * trim <dev_id> <new_size_in_sectors>
  1911. * set_transaction_id <current_trans_id> <new_trans_id>
  1912. */
  1913. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1914. {
  1915. int r = -EINVAL;
  1916. struct pool_c *pt = ti->private;
  1917. struct pool *pool = pt->pool;
  1918. if (!strcasecmp(argv[0], "create_thin"))
  1919. r = process_create_thin_mesg(argc, argv, pool);
  1920. else if (!strcasecmp(argv[0], "create_snap"))
  1921. r = process_create_snap_mesg(argc, argv, pool);
  1922. else if (!strcasecmp(argv[0], "delete"))
  1923. r = process_delete_mesg(argc, argv, pool);
  1924. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1925. r = process_set_transaction_id_mesg(argc, argv, pool);
  1926. else
  1927. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1928. if (!r) {
  1929. r = dm_pool_commit_metadata(pool->pmd);
  1930. if (r)
  1931. DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
  1932. argv[0], r);
  1933. }
  1934. return r;
  1935. }
  1936. /*
  1937. * Status line is:
  1938. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1939. * <used data sectors>/<total data sectors> <held metadata root>
  1940. */
  1941. static int pool_status(struct dm_target *ti, status_type_t type,
  1942. char *result, unsigned maxlen)
  1943. {
  1944. int r, count;
  1945. unsigned sz = 0;
  1946. uint64_t transaction_id;
  1947. dm_block_t nr_free_blocks_data;
  1948. dm_block_t nr_free_blocks_metadata;
  1949. dm_block_t nr_blocks_data;
  1950. dm_block_t nr_blocks_metadata;
  1951. dm_block_t held_root;
  1952. char buf[BDEVNAME_SIZE];
  1953. char buf2[BDEVNAME_SIZE];
  1954. struct pool_c *pt = ti->private;
  1955. struct pool *pool = pt->pool;
  1956. switch (type) {
  1957. case STATUSTYPE_INFO:
  1958. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  1959. &transaction_id);
  1960. if (r)
  1961. return r;
  1962. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  1963. &nr_free_blocks_metadata);
  1964. if (r)
  1965. return r;
  1966. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1967. if (r)
  1968. return r;
  1969. r = dm_pool_get_free_block_count(pool->pmd,
  1970. &nr_free_blocks_data);
  1971. if (r)
  1972. return r;
  1973. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1974. if (r)
  1975. return r;
  1976. r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
  1977. if (r)
  1978. return r;
  1979. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1980. (unsigned long long)transaction_id,
  1981. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1982. (unsigned long long)nr_blocks_metadata,
  1983. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1984. (unsigned long long)nr_blocks_data);
  1985. if (held_root)
  1986. DMEMIT("%llu", held_root);
  1987. else
  1988. DMEMIT("-");
  1989. break;
  1990. case STATUSTYPE_TABLE:
  1991. DMEMIT("%s %s %lu %llu ",
  1992. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1993. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1994. (unsigned long)pool->sectors_per_block,
  1995. (unsigned long long)pt->low_water_blocks);
  1996. count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
  1997. !pool->pf.discard_passdown;
  1998. DMEMIT("%u ", count);
  1999. if (!pool->pf.zero_new_blocks)
  2000. DMEMIT("skip_block_zeroing ");
  2001. if (!pool->pf.discard_enabled)
  2002. DMEMIT("ignore_discard ");
  2003. if (!pool->pf.discard_passdown)
  2004. DMEMIT("no_discard_passdown ");
  2005. break;
  2006. }
  2007. return 0;
  2008. }
  2009. static int pool_iterate_devices(struct dm_target *ti,
  2010. iterate_devices_callout_fn fn, void *data)
  2011. {
  2012. struct pool_c *pt = ti->private;
  2013. return fn(ti, pt->data_dev, 0, ti->len, data);
  2014. }
  2015. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2016. struct bio_vec *biovec, int max_size)
  2017. {
  2018. struct pool_c *pt = ti->private;
  2019. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2020. if (!q->merge_bvec_fn)
  2021. return max_size;
  2022. bvm->bi_bdev = pt->data_dev->bdev;
  2023. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2024. }
  2025. static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
  2026. {
  2027. /*
  2028. * FIXME: these limits may be incompatible with the pool's data device
  2029. */
  2030. limits->max_discard_sectors = pool->sectors_per_block;
  2031. /*
  2032. * This is just a hint, and not enforced. We have to cope with
  2033. * bios that overlap 2 blocks.
  2034. */
  2035. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2036. limits->discard_zeroes_data = pool->pf.zero_new_blocks;
  2037. }
  2038. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2039. {
  2040. struct pool_c *pt = ti->private;
  2041. struct pool *pool = pt->pool;
  2042. blk_limits_io_min(limits, 0);
  2043. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2044. if (pool->pf.discard_enabled)
  2045. set_discard_limits(pool, limits);
  2046. }
  2047. static struct target_type pool_target = {
  2048. .name = "thin-pool",
  2049. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2050. DM_TARGET_IMMUTABLE,
  2051. .version = {1, 1, 0},
  2052. .module = THIS_MODULE,
  2053. .ctr = pool_ctr,
  2054. .dtr = pool_dtr,
  2055. .map = pool_map,
  2056. .postsuspend = pool_postsuspend,
  2057. .preresume = pool_preresume,
  2058. .resume = pool_resume,
  2059. .message = pool_message,
  2060. .status = pool_status,
  2061. .merge = pool_merge,
  2062. .iterate_devices = pool_iterate_devices,
  2063. .io_hints = pool_io_hints,
  2064. };
  2065. /*----------------------------------------------------------------
  2066. * Thin target methods
  2067. *--------------------------------------------------------------*/
  2068. static void thin_dtr(struct dm_target *ti)
  2069. {
  2070. struct thin_c *tc = ti->private;
  2071. mutex_lock(&dm_thin_pool_table.mutex);
  2072. __pool_dec(tc->pool);
  2073. dm_pool_close_thin_device(tc->td);
  2074. dm_put_device(ti, tc->pool_dev);
  2075. if (tc->origin_dev)
  2076. dm_put_device(ti, tc->origin_dev);
  2077. kfree(tc);
  2078. mutex_unlock(&dm_thin_pool_table.mutex);
  2079. }
  2080. /*
  2081. * Thin target parameters:
  2082. *
  2083. * <pool_dev> <dev_id> [origin_dev]
  2084. *
  2085. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2086. * dev_id: the internal device identifier
  2087. * origin_dev: a device external to the pool that should act as the origin
  2088. *
  2089. * If the pool device has discards disabled, they get disabled for the thin
  2090. * device as well.
  2091. */
  2092. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2093. {
  2094. int r;
  2095. struct thin_c *tc;
  2096. struct dm_dev *pool_dev, *origin_dev;
  2097. struct mapped_device *pool_md;
  2098. mutex_lock(&dm_thin_pool_table.mutex);
  2099. if (argc != 2 && argc != 3) {
  2100. ti->error = "Invalid argument count";
  2101. r = -EINVAL;
  2102. goto out_unlock;
  2103. }
  2104. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2105. if (!tc) {
  2106. ti->error = "Out of memory";
  2107. r = -ENOMEM;
  2108. goto out_unlock;
  2109. }
  2110. if (argc == 3) {
  2111. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2112. if (r) {
  2113. ti->error = "Error opening origin device";
  2114. goto bad_origin_dev;
  2115. }
  2116. tc->origin_dev = origin_dev;
  2117. }
  2118. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2119. if (r) {
  2120. ti->error = "Error opening pool device";
  2121. goto bad_pool_dev;
  2122. }
  2123. tc->pool_dev = pool_dev;
  2124. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2125. ti->error = "Invalid device id";
  2126. r = -EINVAL;
  2127. goto bad_common;
  2128. }
  2129. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2130. if (!pool_md) {
  2131. ti->error = "Couldn't get pool mapped device";
  2132. r = -EINVAL;
  2133. goto bad_common;
  2134. }
  2135. tc->pool = __pool_table_lookup(pool_md);
  2136. if (!tc->pool) {
  2137. ti->error = "Couldn't find pool object";
  2138. r = -EINVAL;
  2139. goto bad_pool_lookup;
  2140. }
  2141. __pool_inc(tc->pool);
  2142. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2143. if (r) {
  2144. ti->error = "Couldn't open thin internal device";
  2145. goto bad_thin_open;
  2146. }
  2147. ti->split_io = tc->pool->sectors_per_block;
  2148. ti->num_flush_requests = 1;
  2149. /* In case the pool supports discards, pass them on. */
  2150. if (tc->pool->pf.discard_enabled) {
  2151. ti->discards_supported = 1;
  2152. ti->num_discard_requests = 1;
  2153. }
  2154. dm_put(pool_md);
  2155. mutex_unlock(&dm_thin_pool_table.mutex);
  2156. return 0;
  2157. bad_thin_open:
  2158. __pool_dec(tc->pool);
  2159. bad_pool_lookup:
  2160. dm_put(pool_md);
  2161. bad_common:
  2162. dm_put_device(ti, tc->pool_dev);
  2163. bad_pool_dev:
  2164. if (tc->origin_dev)
  2165. dm_put_device(ti, tc->origin_dev);
  2166. bad_origin_dev:
  2167. kfree(tc);
  2168. out_unlock:
  2169. mutex_unlock(&dm_thin_pool_table.mutex);
  2170. return r;
  2171. }
  2172. static int thin_map(struct dm_target *ti, struct bio *bio,
  2173. union map_info *map_context)
  2174. {
  2175. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2176. return thin_bio_map(ti, bio, map_context);
  2177. }
  2178. static int thin_endio(struct dm_target *ti,
  2179. struct bio *bio, int err,
  2180. union map_info *map_context)
  2181. {
  2182. unsigned long flags;
  2183. struct endio_hook *h = map_context->ptr;
  2184. struct list_head work;
  2185. struct new_mapping *m, *tmp;
  2186. struct pool *pool = h->tc->pool;
  2187. if (h->shared_read_entry) {
  2188. INIT_LIST_HEAD(&work);
  2189. ds_dec(h->shared_read_entry, &work);
  2190. spin_lock_irqsave(&pool->lock, flags);
  2191. list_for_each_entry_safe(m, tmp, &work, list) {
  2192. list_del(&m->list);
  2193. m->quiesced = 1;
  2194. __maybe_add_mapping(m);
  2195. }
  2196. spin_unlock_irqrestore(&pool->lock, flags);
  2197. }
  2198. if (h->all_io_entry) {
  2199. INIT_LIST_HEAD(&work);
  2200. ds_dec(h->all_io_entry, &work);
  2201. spin_lock_irqsave(&pool->lock, flags);
  2202. list_for_each_entry_safe(m, tmp, &work, list)
  2203. list_add(&m->list, &pool->prepared_discards);
  2204. spin_unlock_irqrestore(&pool->lock, flags);
  2205. }
  2206. mempool_free(h, pool->endio_hook_pool);
  2207. return 0;
  2208. }
  2209. static void thin_postsuspend(struct dm_target *ti)
  2210. {
  2211. if (dm_noflush_suspending(ti))
  2212. requeue_io((struct thin_c *)ti->private);
  2213. }
  2214. /*
  2215. * <nr mapped sectors> <highest mapped sector>
  2216. */
  2217. static int thin_status(struct dm_target *ti, status_type_t type,
  2218. char *result, unsigned maxlen)
  2219. {
  2220. int r;
  2221. ssize_t sz = 0;
  2222. dm_block_t mapped, highest;
  2223. char buf[BDEVNAME_SIZE];
  2224. struct thin_c *tc = ti->private;
  2225. if (!tc->td)
  2226. DMEMIT("-");
  2227. else {
  2228. switch (type) {
  2229. case STATUSTYPE_INFO:
  2230. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2231. if (r)
  2232. return r;
  2233. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2234. if (r < 0)
  2235. return r;
  2236. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2237. if (r)
  2238. DMEMIT("%llu", ((highest + 1) *
  2239. tc->pool->sectors_per_block) - 1);
  2240. else
  2241. DMEMIT("-");
  2242. break;
  2243. case STATUSTYPE_TABLE:
  2244. DMEMIT("%s %lu",
  2245. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2246. (unsigned long) tc->dev_id);
  2247. if (tc->origin_dev)
  2248. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2249. break;
  2250. }
  2251. }
  2252. return 0;
  2253. }
  2254. static int thin_iterate_devices(struct dm_target *ti,
  2255. iterate_devices_callout_fn fn, void *data)
  2256. {
  2257. dm_block_t blocks;
  2258. struct thin_c *tc = ti->private;
  2259. /*
  2260. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2261. * we follow a more convoluted path through to the pool's target.
  2262. */
  2263. if (!tc->pool->ti)
  2264. return 0; /* nothing is bound */
  2265. blocks = tc->pool->ti->len >> tc->pool->block_shift;
  2266. if (blocks)
  2267. return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
  2268. return 0;
  2269. }
  2270. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2271. {
  2272. struct thin_c *tc = ti->private;
  2273. struct pool *pool = tc->pool;
  2274. blk_limits_io_min(limits, 0);
  2275. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2276. set_discard_limits(pool, limits);
  2277. }
  2278. static struct target_type thin_target = {
  2279. .name = "thin",
  2280. .version = {1, 1, 0},
  2281. .module = THIS_MODULE,
  2282. .ctr = thin_ctr,
  2283. .dtr = thin_dtr,
  2284. .map = thin_map,
  2285. .end_io = thin_endio,
  2286. .postsuspend = thin_postsuspend,
  2287. .status = thin_status,
  2288. .iterate_devices = thin_iterate_devices,
  2289. .io_hints = thin_io_hints,
  2290. };
  2291. /*----------------------------------------------------------------*/
  2292. static int __init dm_thin_init(void)
  2293. {
  2294. int r;
  2295. pool_table_init();
  2296. r = dm_register_target(&thin_target);
  2297. if (r)
  2298. return r;
  2299. r = dm_register_target(&pool_target);
  2300. if (r)
  2301. dm_unregister_target(&thin_target);
  2302. return r;
  2303. }
  2304. static void dm_thin_exit(void)
  2305. {
  2306. dm_unregister_target(&thin_target);
  2307. dm_unregister_target(&pool_target);
  2308. }
  2309. module_init(dm_thin_init);
  2310. module_exit(dm_thin_exit);
  2311. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2312. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2313. MODULE_LICENSE("GPL");