mmci.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. /*
  2. * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
  3. *
  4. * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
  5. * Copyright (C) 2010 ST-Ericsson SA
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/device.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/slab.h>
  19. #include <linux/delay.h>
  20. #include <linux/err.h>
  21. #include <linux/highmem.h>
  22. #include <linux/log2.h>
  23. #include <linux/mmc/pm.h>
  24. #include <linux/mmc/host.h>
  25. #include <linux/mmc/card.h>
  26. #include <linux/amba/bus.h>
  27. #include <linux/clk.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/gpio.h>
  30. #include <linux/of_gpio.h>
  31. #include <linux/regulator/consumer.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/amba/mmci.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/types.h>
  37. #include <linux/pinctrl/consumer.h>
  38. #include <asm/div64.h>
  39. #include <asm/io.h>
  40. #include <asm/sizes.h>
  41. #include "mmci.h"
  42. #define DRIVER_NAME "mmci-pl18x"
  43. static unsigned int fmax = 515633;
  44. /**
  45. * struct variant_data - MMCI variant-specific quirks
  46. * @clkreg: default value for MCICLOCK register
  47. * @clkreg_enable: enable value for MMCICLOCK register
  48. * @datalength_bits: number of bits in the MMCIDATALENGTH register
  49. * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  50. * is asserted (likewise for RX)
  51. * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  52. * is asserted (likewise for RX)
  53. * @sdio: variant supports SDIO
  54. * @st_clkdiv: true if using a ST-specific clock divider algorithm
  55. * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  56. * @pwrreg_powerup: power up value for MMCIPOWER register
  57. * @signal_direction: input/out direction of bus signals can be indicated
  58. * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  59. */
  60. struct variant_data {
  61. unsigned int clkreg;
  62. unsigned int clkreg_enable;
  63. unsigned int datalength_bits;
  64. unsigned int fifosize;
  65. unsigned int fifohalfsize;
  66. bool sdio;
  67. bool st_clkdiv;
  68. bool blksz_datactrl16;
  69. u32 pwrreg_powerup;
  70. bool signal_direction;
  71. bool pwrreg_clkgate;
  72. };
  73. static struct variant_data variant_arm = {
  74. .fifosize = 16 * 4,
  75. .fifohalfsize = 8 * 4,
  76. .datalength_bits = 16,
  77. .pwrreg_powerup = MCI_PWR_UP,
  78. };
  79. static struct variant_data variant_arm_extended_fifo = {
  80. .fifosize = 128 * 4,
  81. .fifohalfsize = 64 * 4,
  82. .datalength_bits = 16,
  83. .pwrreg_powerup = MCI_PWR_UP,
  84. };
  85. static struct variant_data variant_arm_extended_fifo_hwfc = {
  86. .fifosize = 128 * 4,
  87. .fifohalfsize = 64 * 4,
  88. .clkreg_enable = MCI_ARM_HWFCEN,
  89. .datalength_bits = 16,
  90. .pwrreg_powerup = MCI_PWR_UP,
  91. };
  92. static struct variant_data variant_u300 = {
  93. .fifosize = 16 * 4,
  94. .fifohalfsize = 8 * 4,
  95. .clkreg_enable = MCI_ST_U300_HWFCEN,
  96. .datalength_bits = 16,
  97. .sdio = true,
  98. .pwrreg_powerup = MCI_PWR_ON,
  99. .signal_direction = true,
  100. .pwrreg_clkgate = true,
  101. };
  102. static struct variant_data variant_nomadik = {
  103. .fifosize = 16 * 4,
  104. .fifohalfsize = 8 * 4,
  105. .clkreg = MCI_CLK_ENABLE,
  106. .datalength_bits = 24,
  107. .sdio = true,
  108. .st_clkdiv = true,
  109. .pwrreg_powerup = MCI_PWR_ON,
  110. .signal_direction = true,
  111. .pwrreg_clkgate = true,
  112. };
  113. static struct variant_data variant_ux500 = {
  114. .fifosize = 30 * 4,
  115. .fifohalfsize = 8 * 4,
  116. .clkreg = MCI_CLK_ENABLE,
  117. .clkreg_enable = MCI_ST_UX500_HWFCEN,
  118. .datalength_bits = 24,
  119. .sdio = true,
  120. .st_clkdiv = true,
  121. .pwrreg_powerup = MCI_PWR_ON,
  122. .signal_direction = true,
  123. .pwrreg_clkgate = true,
  124. };
  125. static struct variant_data variant_ux500v2 = {
  126. .fifosize = 30 * 4,
  127. .fifohalfsize = 8 * 4,
  128. .clkreg = MCI_CLK_ENABLE,
  129. .clkreg_enable = MCI_ST_UX500_HWFCEN,
  130. .datalength_bits = 24,
  131. .sdio = true,
  132. .st_clkdiv = true,
  133. .blksz_datactrl16 = true,
  134. .pwrreg_powerup = MCI_PWR_ON,
  135. .signal_direction = true,
  136. .pwrreg_clkgate = true,
  137. };
  138. /*
  139. * Validate mmc prerequisites
  140. */
  141. static int mmci_validate_data(struct mmci_host *host,
  142. struct mmc_data *data)
  143. {
  144. if (!data)
  145. return 0;
  146. if (!is_power_of_2(data->blksz)) {
  147. dev_err(mmc_dev(host->mmc),
  148. "unsupported block size (%d bytes)\n", data->blksz);
  149. return -EINVAL;
  150. }
  151. return 0;
  152. }
  153. /*
  154. * This must be called with host->lock held
  155. */
  156. static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
  157. {
  158. if (host->clk_reg != clk) {
  159. host->clk_reg = clk;
  160. writel(clk, host->base + MMCICLOCK);
  161. }
  162. }
  163. /*
  164. * This must be called with host->lock held
  165. */
  166. static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
  167. {
  168. if (host->pwr_reg != pwr) {
  169. host->pwr_reg = pwr;
  170. writel(pwr, host->base + MMCIPOWER);
  171. }
  172. }
  173. /*
  174. * This must be called with host->lock held
  175. */
  176. static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
  177. {
  178. struct variant_data *variant = host->variant;
  179. u32 clk = variant->clkreg;
  180. /* Make sure cclk reflects the current calculated clock */
  181. host->cclk = 0;
  182. if (desired) {
  183. if (desired >= host->mclk) {
  184. clk = MCI_CLK_BYPASS;
  185. if (variant->st_clkdiv)
  186. clk |= MCI_ST_UX500_NEG_EDGE;
  187. host->cclk = host->mclk;
  188. } else if (variant->st_clkdiv) {
  189. /*
  190. * DB8500 TRM says f = mclk / (clkdiv + 2)
  191. * => clkdiv = (mclk / f) - 2
  192. * Round the divider up so we don't exceed the max
  193. * frequency
  194. */
  195. clk = DIV_ROUND_UP(host->mclk, desired) - 2;
  196. if (clk >= 256)
  197. clk = 255;
  198. host->cclk = host->mclk / (clk + 2);
  199. } else {
  200. /*
  201. * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
  202. * => clkdiv = mclk / (2 * f) - 1
  203. */
  204. clk = host->mclk / (2 * desired) - 1;
  205. if (clk >= 256)
  206. clk = 255;
  207. host->cclk = host->mclk / (2 * (clk + 1));
  208. }
  209. clk |= variant->clkreg_enable;
  210. clk |= MCI_CLK_ENABLE;
  211. /* This hasn't proven to be worthwhile */
  212. /* clk |= MCI_CLK_PWRSAVE; */
  213. }
  214. /* Set actual clock for debug */
  215. host->mmc->actual_clock = host->cclk;
  216. if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
  217. clk |= MCI_4BIT_BUS;
  218. if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
  219. clk |= MCI_ST_8BIT_BUS;
  220. if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
  221. clk |= MCI_ST_UX500_NEG_EDGE;
  222. mmci_write_clkreg(host, clk);
  223. }
  224. static void
  225. mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
  226. {
  227. writel(0, host->base + MMCICOMMAND);
  228. BUG_ON(host->data);
  229. host->mrq = NULL;
  230. host->cmd = NULL;
  231. mmc_request_done(host->mmc, mrq);
  232. pm_runtime_mark_last_busy(mmc_dev(host->mmc));
  233. pm_runtime_put_autosuspend(mmc_dev(host->mmc));
  234. }
  235. static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
  236. {
  237. void __iomem *base = host->base;
  238. if (host->singleirq) {
  239. unsigned int mask0 = readl(base + MMCIMASK0);
  240. mask0 &= ~MCI_IRQ1MASK;
  241. mask0 |= mask;
  242. writel(mask0, base + MMCIMASK0);
  243. }
  244. writel(mask, base + MMCIMASK1);
  245. }
  246. static void mmci_stop_data(struct mmci_host *host)
  247. {
  248. writel(0, host->base + MMCIDATACTRL);
  249. mmci_set_mask1(host, 0);
  250. host->data = NULL;
  251. }
  252. static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
  253. {
  254. unsigned int flags = SG_MITER_ATOMIC;
  255. if (data->flags & MMC_DATA_READ)
  256. flags |= SG_MITER_TO_SG;
  257. else
  258. flags |= SG_MITER_FROM_SG;
  259. sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
  260. }
  261. /*
  262. * All the DMA operation mode stuff goes inside this ifdef.
  263. * This assumes that you have a generic DMA device interface,
  264. * no custom DMA interfaces are supported.
  265. */
  266. #ifdef CONFIG_DMA_ENGINE
  267. static void mmci_dma_setup(struct mmci_host *host)
  268. {
  269. struct mmci_platform_data *plat = host->plat;
  270. const char *rxname, *txname;
  271. dma_cap_mask_t mask;
  272. if (!plat || !plat->dma_filter) {
  273. dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
  274. return;
  275. }
  276. /* initialize pre request cookie */
  277. host->next_data.cookie = 1;
  278. /* Try to acquire a generic DMA engine slave channel */
  279. dma_cap_zero(mask);
  280. dma_cap_set(DMA_SLAVE, mask);
  281. /*
  282. * If only an RX channel is specified, the driver will
  283. * attempt to use it bidirectionally, however if it is
  284. * is specified but cannot be located, DMA will be disabled.
  285. */
  286. if (plat->dma_rx_param) {
  287. host->dma_rx_channel = dma_request_channel(mask,
  288. plat->dma_filter,
  289. plat->dma_rx_param);
  290. /* E.g if no DMA hardware is present */
  291. if (!host->dma_rx_channel)
  292. dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
  293. }
  294. if (plat->dma_tx_param) {
  295. host->dma_tx_channel = dma_request_channel(mask,
  296. plat->dma_filter,
  297. plat->dma_tx_param);
  298. if (!host->dma_tx_channel)
  299. dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
  300. } else {
  301. host->dma_tx_channel = host->dma_rx_channel;
  302. }
  303. if (host->dma_rx_channel)
  304. rxname = dma_chan_name(host->dma_rx_channel);
  305. else
  306. rxname = "none";
  307. if (host->dma_tx_channel)
  308. txname = dma_chan_name(host->dma_tx_channel);
  309. else
  310. txname = "none";
  311. dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
  312. rxname, txname);
  313. /*
  314. * Limit the maximum segment size in any SG entry according to
  315. * the parameters of the DMA engine device.
  316. */
  317. if (host->dma_tx_channel) {
  318. struct device *dev = host->dma_tx_channel->device->dev;
  319. unsigned int max_seg_size = dma_get_max_seg_size(dev);
  320. if (max_seg_size < host->mmc->max_seg_size)
  321. host->mmc->max_seg_size = max_seg_size;
  322. }
  323. if (host->dma_rx_channel) {
  324. struct device *dev = host->dma_rx_channel->device->dev;
  325. unsigned int max_seg_size = dma_get_max_seg_size(dev);
  326. if (max_seg_size < host->mmc->max_seg_size)
  327. host->mmc->max_seg_size = max_seg_size;
  328. }
  329. }
  330. /*
  331. * This is used in or so inline it
  332. * so it can be discarded.
  333. */
  334. static inline void mmci_dma_release(struct mmci_host *host)
  335. {
  336. struct mmci_platform_data *plat = host->plat;
  337. if (host->dma_rx_channel)
  338. dma_release_channel(host->dma_rx_channel);
  339. if (host->dma_tx_channel && plat->dma_tx_param)
  340. dma_release_channel(host->dma_tx_channel);
  341. host->dma_rx_channel = host->dma_tx_channel = NULL;
  342. }
  343. static void mmci_dma_data_error(struct mmci_host *host)
  344. {
  345. dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
  346. dmaengine_terminate_all(host->dma_current);
  347. host->dma_current = NULL;
  348. host->dma_desc_current = NULL;
  349. host->data->host_cookie = 0;
  350. }
  351. static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
  352. {
  353. struct dma_chan *chan;
  354. enum dma_data_direction dir;
  355. if (data->flags & MMC_DATA_READ) {
  356. dir = DMA_FROM_DEVICE;
  357. chan = host->dma_rx_channel;
  358. } else {
  359. dir = DMA_TO_DEVICE;
  360. chan = host->dma_tx_channel;
  361. }
  362. dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
  363. }
  364. static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
  365. {
  366. u32 status;
  367. int i;
  368. /* Wait up to 1ms for the DMA to complete */
  369. for (i = 0; ; i++) {
  370. status = readl(host->base + MMCISTATUS);
  371. if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
  372. break;
  373. udelay(10);
  374. }
  375. /*
  376. * Check to see whether we still have some data left in the FIFO -
  377. * this catches DMA controllers which are unable to monitor the
  378. * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
  379. * contiguous buffers. On TX, we'll get a FIFO underrun error.
  380. */
  381. if (status & MCI_RXDATAAVLBLMASK) {
  382. mmci_dma_data_error(host);
  383. if (!data->error)
  384. data->error = -EIO;
  385. }
  386. if (!data->host_cookie)
  387. mmci_dma_unmap(host, data);
  388. /*
  389. * Use of DMA with scatter-gather is impossible.
  390. * Give up with DMA and switch back to PIO mode.
  391. */
  392. if (status & MCI_RXDATAAVLBLMASK) {
  393. dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
  394. mmci_dma_release(host);
  395. }
  396. host->dma_current = NULL;
  397. host->dma_desc_current = NULL;
  398. }
  399. /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
  400. static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
  401. struct dma_chan **dma_chan,
  402. struct dma_async_tx_descriptor **dma_desc)
  403. {
  404. struct variant_data *variant = host->variant;
  405. struct dma_slave_config conf = {
  406. .src_addr = host->phybase + MMCIFIFO,
  407. .dst_addr = host->phybase + MMCIFIFO,
  408. .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
  409. .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
  410. .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
  411. .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
  412. .device_fc = false,
  413. };
  414. struct dma_chan *chan;
  415. struct dma_device *device;
  416. struct dma_async_tx_descriptor *desc;
  417. enum dma_data_direction buffer_dirn;
  418. int nr_sg;
  419. if (data->flags & MMC_DATA_READ) {
  420. conf.direction = DMA_DEV_TO_MEM;
  421. buffer_dirn = DMA_FROM_DEVICE;
  422. chan = host->dma_rx_channel;
  423. } else {
  424. conf.direction = DMA_MEM_TO_DEV;
  425. buffer_dirn = DMA_TO_DEVICE;
  426. chan = host->dma_tx_channel;
  427. }
  428. /* If there's no DMA channel, fall back to PIO */
  429. if (!chan)
  430. return -EINVAL;
  431. /* If less than or equal to the fifo size, don't bother with DMA */
  432. if (data->blksz * data->blocks <= variant->fifosize)
  433. return -EINVAL;
  434. device = chan->device;
  435. nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
  436. if (nr_sg == 0)
  437. return -EINVAL;
  438. dmaengine_slave_config(chan, &conf);
  439. desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
  440. conf.direction, DMA_CTRL_ACK);
  441. if (!desc)
  442. goto unmap_exit;
  443. *dma_chan = chan;
  444. *dma_desc = desc;
  445. return 0;
  446. unmap_exit:
  447. dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
  448. return -ENOMEM;
  449. }
  450. static inline int mmci_dma_prep_data(struct mmci_host *host,
  451. struct mmc_data *data)
  452. {
  453. /* Check if next job is already prepared. */
  454. if (host->dma_current && host->dma_desc_current)
  455. return 0;
  456. /* No job were prepared thus do it now. */
  457. return __mmci_dma_prep_data(host, data, &host->dma_current,
  458. &host->dma_desc_current);
  459. }
  460. static inline int mmci_dma_prep_next(struct mmci_host *host,
  461. struct mmc_data *data)
  462. {
  463. struct mmci_host_next *nd = &host->next_data;
  464. return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
  465. }
  466. static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
  467. {
  468. int ret;
  469. struct mmc_data *data = host->data;
  470. ret = mmci_dma_prep_data(host, host->data);
  471. if (ret)
  472. return ret;
  473. /* Okay, go for it. */
  474. dev_vdbg(mmc_dev(host->mmc),
  475. "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
  476. data->sg_len, data->blksz, data->blocks, data->flags);
  477. dmaengine_submit(host->dma_desc_current);
  478. dma_async_issue_pending(host->dma_current);
  479. datactrl |= MCI_DPSM_DMAENABLE;
  480. /* Trigger the DMA transfer */
  481. writel(datactrl, host->base + MMCIDATACTRL);
  482. /*
  483. * Let the MMCI say when the data is ended and it's time
  484. * to fire next DMA request. When that happens, MMCI will
  485. * call mmci_data_end()
  486. */
  487. writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
  488. host->base + MMCIMASK0);
  489. return 0;
  490. }
  491. static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
  492. {
  493. struct mmci_host_next *next = &host->next_data;
  494. WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
  495. WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
  496. host->dma_desc_current = next->dma_desc;
  497. host->dma_current = next->dma_chan;
  498. next->dma_desc = NULL;
  499. next->dma_chan = NULL;
  500. }
  501. static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
  502. bool is_first_req)
  503. {
  504. struct mmci_host *host = mmc_priv(mmc);
  505. struct mmc_data *data = mrq->data;
  506. struct mmci_host_next *nd = &host->next_data;
  507. if (!data)
  508. return;
  509. BUG_ON(data->host_cookie);
  510. if (mmci_validate_data(host, data))
  511. return;
  512. if (!mmci_dma_prep_next(host, data))
  513. data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
  514. }
  515. static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
  516. int err)
  517. {
  518. struct mmci_host *host = mmc_priv(mmc);
  519. struct mmc_data *data = mrq->data;
  520. if (!data || !data->host_cookie)
  521. return;
  522. mmci_dma_unmap(host, data);
  523. if (err) {
  524. struct mmci_host_next *next = &host->next_data;
  525. struct dma_chan *chan;
  526. if (data->flags & MMC_DATA_READ)
  527. chan = host->dma_rx_channel;
  528. else
  529. chan = host->dma_tx_channel;
  530. dmaengine_terminate_all(chan);
  531. next->dma_desc = NULL;
  532. next->dma_chan = NULL;
  533. }
  534. }
  535. #else
  536. /* Blank functions if the DMA engine is not available */
  537. static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
  538. {
  539. }
  540. static inline void mmci_dma_setup(struct mmci_host *host)
  541. {
  542. }
  543. static inline void mmci_dma_release(struct mmci_host *host)
  544. {
  545. }
  546. static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
  547. {
  548. }
  549. static inline void mmci_dma_finalize(struct mmci_host *host,
  550. struct mmc_data *data)
  551. {
  552. }
  553. static inline void mmci_dma_data_error(struct mmci_host *host)
  554. {
  555. }
  556. static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
  557. {
  558. return -ENOSYS;
  559. }
  560. #define mmci_pre_request NULL
  561. #define mmci_post_request NULL
  562. #endif
  563. static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
  564. {
  565. struct variant_data *variant = host->variant;
  566. unsigned int datactrl, timeout, irqmask;
  567. unsigned long long clks;
  568. void __iomem *base;
  569. int blksz_bits;
  570. dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
  571. data->blksz, data->blocks, data->flags);
  572. host->data = data;
  573. host->size = data->blksz * data->blocks;
  574. data->bytes_xfered = 0;
  575. clks = (unsigned long long)data->timeout_ns * host->cclk;
  576. do_div(clks, 1000000000UL);
  577. timeout = data->timeout_clks + (unsigned int)clks;
  578. base = host->base;
  579. writel(timeout, base + MMCIDATATIMER);
  580. writel(host->size, base + MMCIDATALENGTH);
  581. blksz_bits = ffs(data->blksz) - 1;
  582. BUG_ON(1 << blksz_bits != data->blksz);
  583. if (variant->blksz_datactrl16)
  584. datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
  585. else
  586. datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
  587. if (data->flags & MMC_DATA_READ)
  588. datactrl |= MCI_DPSM_DIRECTION;
  589. /* The ST Micro variants has a special bit to enable SDIO */
  590. if (variant->sdio && host->mmc->card)
  591. if (mmc_card_sdio(host->mmc->card)) {
  592. /*
  593. * The ST Micro variants has a special bit
  594. * to enable SDIO.
  595. */
  596. u32 clk;
  597. datactrl |= MCI_ST_DPSM_SDIOEN;
  598. /*
  599. * The ST Micro variant for SDIO small write transfers
  600. * needs to have clock H/W flow control disabled,
  601. * otherwise the transfer will not start. The threshold
  602. * depends on the rate of MCLK.
  603. */
  604. if (data->flags & MMC_DATA_WRITE &&
  605. (host->size < 8 ||
  606. (host->size <= 8 && host->mclk > 50000000)))
  607. clk = host->clk_reg & ~variant->clkreg_enable;
  608. else
  609. clk = host->clk_reg | variant->clkreg_enable;
  610. mmci_write_clkreg(host, clk);
  611. }
  612. if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
  613. datactrl |= MCI_ST_DPSM_DDRMODE;
  614. /*
  615. * Attempt to use DMA operation mode, if this
  616. * should fail, fall back to PIO mode
  617. */
  618. if (!mmci_dma_start_data(host, datactrl))
  619. return;
  620. /* IRQ mode, map the SG list for CPU reading/writing */
  621. mmci_init_sg(host, data);
  622. if (data->flags & MMC_DATA_READ) {
  623. irqmask = MCI_RXFIFOHALFFULLMASK;
  624. /*
  625. * If we have less than the fifo 'half-full' threshold to
  626. * transfer, trigger a PIO interrupt as soon as any data
  627. * is available.
  628. */
  629. if (host->size < variant->fifohalfsize)
  630. irqmask |= MCI_RXDATAAVLBLMASK;
  631. } else {
  632. /*
  633. * We don't actually need to include "FIFO empty" here
  634. * since its implicit in "FIFO half empty".
  635. */
  636. irqmask = MCI_TXFIFOHALFEMPTYMASK;
  637. }
  638. writel(datactrl, base + MMCIDATACTRL);
  639. writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
  640. mmci_set_mask1(host, irqmask);
  641. }
  642. static void
  643. mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
  644. {
  645. void __iomem *base = host->base;
  646. dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
  647. cmd->opcode, cmd->arg, cmd->flags);
  648. if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
  649. writel(0, base + MMCICOMMAND);
  650. udelay(1);
  651. }
  652. c |= cmd->opcode | MCI_CPSM_ENABLE;
  653. if (cmd->flags & MMC_RSP_PRESENT) {
  654. if (cmd->flags & MMC_RSP_136)
  655. c |= MCI_CPSM_LONGRSP;
  656. c |= MCI_CPSM_RESPONSE;
  657. }
  658. if (/*interrupt*/0)
  659. c |= MCI_CPSM_INTERRUPT;
  660. host->cmd = cmd;
  661. writel(cmd->arg, base + MMCIARGUMENT);
  662. writel(c, base + MMCICOMMAND);
  663. }
  664. static void
  665. mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
  666. unsigned int status)
  667. {
  668. /* First check for errors */
  669. if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
  670. MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
  671. u32 remain, success;
  672. /* Terminate the DMA transfer */
  673. if (dma_inprogress(host)) {
  674. mmci_dma_data_error(host);
  675. mmci_dma_unmap(host, data);
  676. }
  677. /*
  678. * Calculate how far we are into the transfer. Note that
  679. * the data counter gives the number of bytes transferred
  680. * on the MMC bus, not on the host side. On reads, this
  681. * can be as much as a FIFO-worth of data ahead. This
  682. * matters for FIFO overruns only.
  683. */
  684. remain = readl(host->base + MMCIDATACNT);
  685. success = data->blksz * data->blocks - remain;
  686. dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
  687. status, success);
  688. if (status & MCI_DATACRCFAIL) {
  689. /* Last block was not successful */
  690. success -= 1;
  691. data->error = -EILSEQ;
  692. } else if (status & MCI_DATATIMEOUT) {
  693. data->error = -ETIMEDOUT;
  694. } else if (status & MCI_STARTBITERR) {
  695. data->error = -ECOMM;
  696. } else if (status & MCI_TXUNDERRUN) {
  697. data->error = -EIO;
  698. } else if (status & MCI_RXOVERRUN) {
  699. if (success > host->variant->fifosize)
  700. success -= host->variant->fifosize;
  701. else
  702. success = 0;
  703. data->error = -EIO;
  704. }
  705. data->bytes_xfered = round_down(success, data->blksz);
  706. }
  707. if (status & MCI_DATABLOCKEND)
  708. dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
  709. if (status & MCI_DATAEND || data->error) {
  710. if (dma_inprogress(host))
  711. mmci_dma_finalize(host, data);
  712. mmci_stop_data(host);
  713. if (!data->error)
  714. /* The error clause is handled above, success! */
  715. data->bytes_xfered = data->blksz * data->blocks;
  716. if (!data->stop || host->mrq->sbc) {
  717. mmci_request_end(host, data->mrq);
  718. } else {
  719. mmci_start_command(host, data->stop, 0);
  720. }
  721. }
  722. }
  723. static void
  724. mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
  725. unsigned int status)
  726. {
  727. void __iomem *base = host->base;
  728. bool sbc = (cmd == host->mrq->sbc);
  729. host->cmd = NULL;
  730. if (status & MCI_CMDTIMEOUT) {
  731. cmd->error = -ETIMEDOUT;
  732. } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
  733. cmd->error = -EILSEQ;
  734. } else {
  735. cmd->resp[0] = readl(base + MMCIRESPONSE0);
  736. cmd->resp[1] = readl(base + MMCIRESPONSE1);
  737. cmd->resp[2] = readl(base + MMCIRESPONSE2);
  738. cmd->resp[3] = readl(base + MMCIRESPONSE3);
  739. }
  740. if ((!sbc && !cmd->data) || cmd->error) {
  741. if (host->data) {
  742. /* Terminate the DMA transfer */
  743. if (dma_inprogress(host)) {
  744. mmci_dma_data_error(host);
  745. mmci_dma_unmap(host, host->data);
  746. }
  747. mmci_stop_data(host);
  748. }
  749. mmci_request_end(host, host->mrq);
  750. } else if (sbc) {
  751. mmci_start_command(host, host->mrq->cmd, 0);
  752. } else if (!(cmd->data->flags & MMC_DATA_READ)) {
  753. mmci_start_data(host, cmd->data);
  754. }
  755. }
  756. static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
  757. {
  758. void __iomem *base = host->base;
  759. char *ptr = buffer;
  760. u32 status;
  761. int host_remain = host->size;
  762. do {
  763. int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
  764. if (count > remain)
  765. count = remain;
  766. if (count <= 0)
  767. break;
  768. /*
  769. * SDIO especially may want to send something that is
  770. * not divisible by 4 (as opposed to card sectors
  771. * etc). Therefore make sure to always read the last bytes
  772. * while only doing full 32-bit reads towards the FIFO.
  773. */
  774. if (unlikely(count & 0x3)) {
  775. if (count < 4) {
  776. unsigned char buf[4];
  777. ioread32_rep(base + MMCIFIFO, buf, 1);
  778. memcpy(ptr, buf, count);
  779. } else {
  780. ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
  781. count &= ~0x3;
  782. }
  783. } else {
  784. ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
  785. }
  786. ptr += count;
  787. remain -= count;
  788. host_remain -= count;
  789. if (remain == 0)
  790. break;
  791. status = readl(base + MMCISTATUS);
  792. } while (status & MCI_RXDATAAVLBL);
  793. return ptr - buffer;
  794. }
  795. static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
  796. {
  797. struct variant_data *variant = host->variant;
  798. void __iomem *base = host->base;
  799. char *ptr = buffer;
  800. do {
  801. unsigned int count, maxcnt;
  802. maxcnt = status & MCI_TXFIFOEMPTY ?
  803. variant->fifosize : variant->fifohalfsize;
  804. count = min(remain, maxcnt);
  805. /*
  806. * SDIO especially may want to send something that is
  807. * not divisible by 4 (as opposed to card sectors
  808. * etc), and the FIFO only accept full 32-bit writes.
  809. * So compensate by adding +3 on the count, a single
  810. * byte become a 32bit write, 7 bytes will be two
  811. * 32bit writes etc.
  812. */
  813. iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
  814. ptr += count;
  815. remain -= count;
  816. if (remain == 0)
  817. break;
  818. status = readl(base + MMCISTATUS);
  819. } while (status & MCI_TXFIFOHALFEMPTY);
  820. return ptr - buffer;
  821. }
  822. /*
  823. * PIO data transfer IRQ handler.
  824. */
  825. static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
  826. {
  827. struct mmci_host *host = dev_id;
  828. struct sg_mapping_iter *sg_miter = &host->sg_miter;
  829. struct variant_data *variant = host->variant;
  830. void __iomem *base = host->base;
  831. unsigned long flags;
  832. u32 status;
  833. status = readl(base + MMCISTATUS);
  834. dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
  835. local_irq_save(flags);
  836. do {
  837. unsigned int remain, len;
  838. char *buffer;
  839. /*
  840. * For write, we only need to test the half-empty flag
  841. * here - if the FIFO is completely empty, then by
  842. * definition it is more than half empty.
  843. *
  844. * For read, check for data available.
  845. */
  846. if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
  847. break;
  848. if (!sg_miter_next(sg_miter))
  849. break;
  850. buffer = sg_miter->addr;
  851. remain = sg_miter->length;
  852. len = 0;
  853. if (status & MCI_RXACTIVE)
  854. len = mmci_pio_read(host, buffer, remain);
  855. if (status & MCI_TXACTIVE)
  856. len = mmci_pio_write(host, buffer, remain, status);
  857. sg_miter->consumed = len;
  858. host->size -= len;
  859. remain -= len;
  860. if (remain)
  861. break;
  862. status = readl(base + MMCISTATUS);
  863. } while (1);
  864. sg_miter_stop(sg_miter);
  865. local_irq_restore(flags);
  866. /*
  867. * If we have less than the fifo 'half-full' threshold to transfer,
  868. * trigger a PIO interrupt as soon as any data is available.
  869. */
  870. if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
  871. mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
  872. /*
  873. * If we run out of data, disable the data IRQs; this
  874. * prevents a race where the FIFO becomes empty before
  875. * the chip itself has disabled the data path, and
  876. * stops us racing with our data end IRQ.
  877. */
  878. if (host->size == 0) {
  879. mmci_set_mask1(host, 0);
  880. writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
  881. }
  882. return IRQ_HANDLED;
  883. }
  884. /*
  885. * Handle completion of command and data transfers.
  886. */
  887. static irqreturn_t mmci_irq(int irq, void *dev_id)
  888. {
  889. struct mmci_host *host = dev_id;
  890. u32 status;
  891. int ret = 0;
  892. spin_lock(&host->lock);
  893. do {
  894. struct mmc_command *cmd;
  895. struct mmc_data *data;
  896. status = readl(host->base + MMCISTATUS);
  897. if (host->singleirq) {
  898. if (status & readl(host->base + MMCIMASK1))
  899. mmci_pio_irq(irq, dev_id);
  900. status &= ~MCI_IRQ1MASK;
  901. }
  902. status &= readl(host->base + MMCIMASK0);
  903. writel(status, host->base + MMCICLEAR);
  904. dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
  905. data = host->data;
  906. if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
  907. MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
  908. MCI_DATABLOCKEND) && data)
  909. mmci_data_irq(host, data, status);
  910. cmd = host->cmd;
  911. if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
  912. mmci_cmd_irq(host, cmd, status);
  913. ret = 1;
  914. } while (status);
  915. spin_unlock(&host->lock);
  916. return IRQ_RETVAL(ret);
  917. }
  918. static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
  919. {
  920. struct mmci_host *host = mmc_priv(mmc);
  921. unsigned long flags;
  922. WARN_ON(host->mrq != NULL);
  923. mrq->cmd->error = mmci_validate_data(host, mrq->data);
  924. if (mrq->cmd->error) {
  925. mmc_request_done(mmc, mrq);
  926. return;
  927. }
  928. pm_runtime_get_sync(mmc_dev(mmc));
  929. spin_lock_irqsave(&host->lock, flags);
  930. host->mrq = mrq;
  931. if (mrq->data)
  932. mmci_get_next_data(host, mrq->data);
  933. if (mrq->data && mrq->data->flags & MMC_DATA_READ)
  934. mmci_start_data(host, mrq->data);
  935. if (mrq->sbc)
  936. mmci_start_command(host, mrq->sbc, 0);
  937. else
  938. mmci_start_command(host, mrq->cmd, 0);
  939. spin_unlock_irqrestore(&host->lock, flags);
  940. }
  941. static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  942. {
  943. struct mmci_host *host = mmc_priv(mmc);
  944. struct variant_data *variant = host->variant;
  945. u32 pwr = 0;
  946. unsigned long flags;
  947. int ret;
  948. pm_runtime_get_sync(mmc_dev(mmc));
  949. if (host->plat->ios_handler &&
  950. host->plat->ios_handler(mmc_dev(mmc), ios))
  951. dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
  952. switch (ios->power_mode) {
  953. case MMC_POWER_OFF:
  954. if (!IS_ERR(mmc->supply.vmmc))
  955. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
  956. if (!IS_ERR(mmc->supply.vqmmc) &&
  957. regulator_is_enabled(mmc->supply.vqmmc))
  958. regulator_disable(mmc->supply.vqmmc);
  959. break;
  960. case MMC_POWER_UP:
  961. if (!IS_ERR(mmc->supply.vmmc))
  962. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
  963. /*
  964. * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
  965. * and instead uses MCI_PWR_ON so apply whatever value is
  966. * configured in the variant data.
  967. */
  968. pwr |= variant->pwrreg_powerup;
  969. break;
  970. case MMC_POWER_ON:
  971. if (!IS_ERR(mmc->supply.vqmmc) &&
  972. !regulator_is_enabled(mmc->supply.vqmmc)) {
  973. ret = regulator_enable(mmc->supply.vqmmc);
  974. if (ret < 0)
  975. dev_err(mmc_dev(mmc),
  976. "failed to enable vqmmc regulator\n");
  977. }
  978. pwr |= MCI_PWR_ON;
  979. break;
  980. }
  981. if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
  982. /*
  983. * The ST Micro variant has some additional bits
  984. * indicating signal direction for the signals in
  985. * the SD/MMC bus and feedback-clock usage.
  986. */
  987. pwr |= host->plat->sigdir;
  988. if (ios->bus_width == MMC_BUS_WIDTH_4)
  989. pwr &= ~MCI_ST_DATA74DIREN;
  990. else if (ios->bus_width == MMC_BUS_WIDTH_1)
  991. pwr &= (~MCI_ST_DATA74DIREN &
  992. ~MCI_ST_DATA31DIREN &
  993. ~MCI_ST_DATA2DIREN);
  994. }
  995. if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
  996. if (host->hw_designer != AMBA_VENDOR_ST)
  997. pwr |= MCI_ROD;
  998. else {
  999. /*
  1000. * The ST Micro variant use the ROD bit for something
  1001. * else and only has OD (Open Drain).
  1002. */
  1003. pwr |= MCI_OD;
  1004. }
  1005. }
  1006. /*
  1007. * If clock = 0 and the variant requires the MMCIPOWER to be used for
  1008. * gating the clock, the MCI_PWR_ON bit is cleared.
  1009. */
  1010. if (!ios->clock && variant->pwrreg_clkgate)
  1011. pwr &= ~MCI_PWR_ON;
  1012. spin_lock_irqsave(&host->lock, flags);
  1013. mmci_set_clkreg(host, ios->clock);
  1014. mmci_write_pwrreg(host, pwr);
  1015. spin_unlock_irqrestore(&host->lock, flags);
  1016. pm_runtime_mark_last_busy(mmc_dev(mmc));
  1017. pm_runtime_put_autosuspend(mmc_dev(mmc));
  1018. }
  1019. static int mmci_get_ro(struct mmc_host *mmc)
  1020. {
  1021. struct mmci_host *host = mmc_priv(mmc);
  1022. if (host->gpio_wp == -ENOSYS)
  1023. return -ENOSYS;
  1024. return gpio_get_value_cansleep(host->gpio_wp);
  1025. }
  1026. static int mmci_get_cd(struct mmc_host *mmc)
  1027. {
  1028. struct mmci_host *host = mmc_priv(mmc);
  1029. struct mmci_platform_data *plat = host->plat;
  1030. unsigned int status;
  1031. if (host->gpio_cd == -ENOSYS) {
  1032. if (!plat->status)
  1033. return 1; /* Assume always present */
  1034. status = plat->status(mmc_dev(host->mmc));
  1035. } else
  1036. status = !!gpio_get_value_cansleep(host->gpio_cd)
  1037. ^ plat->cd_invert;
  1038. /*
  1039. * Use positive logic throughout - status is zero for no card,
  1040. * non-zero for card inserted.
  1041. */
  1042. return status;
  1043. }
  1044. static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
  1045. {
  1046. struct mmci_host *host = dev_id;
  1047. mmc_detect_change(host->mmc, msecs_to_jiffies(500));
  1048. return IRQ_HANDLED;
  1049. }
  1050. static const struct mmc_host_ops mmci_ops = {
  1051. .request = mmci_request,
  1052. .pre_req = mmci_pre_request,
  1053. .post_req = mmci_post_request,
  1054. .set_ios = mmci_set_ios,
  1055. .get_ro = mmci_get_ro,
  1056. .get_cd = mmci_get_cd,
  1057. };
  1058. #ifdef CONFIG_OF
  1059. static void mmci_dt_populate_generic_pdata(struct device_node *np,
  1060. struct mmci_platform_data *pdata)
  1061. {
  1062. int bus_width = 0;
  1063. pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
  1064. pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
  1065. if (of_get_property(np, "cd-inverted", NULL))
  1066. pdata->cd_invert = true;
  1067. else
  1068. pdata->cd_invert = false;
  1069. of_property_read_u32(np, "max-frequency", &pdata->f_max);
  1070. if (!pdata->f_max)
  1071. pr_warn("%s has no 'max-frequency' property\n", np->full_name);
  1072. if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
  1073. pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
  1074. if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
  1075. pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
  1076. of_property_read_u32(np, "bus-width", &bus_width);
  1077. switch (bus_width) {
  1078. case 0 :
  1079. /* No bus-width supplied. */
  1080. break;
  1081. case 4 :
  1082. pdata->capabilities |= MMC_CAP_4_BIT_DATA;
  1083. break;
  1084. case 8 :
  1085. pdata->capabilities |= MMC_CAP_8_BIT_DATA;
  1086. break;
  1087. default :
  1088. pr_warn("%s: Unsupported bus width\n", np->full_name);
  1089. }
  1090. }
  1091. #else
  1092. static void mmci_dt_populate_generic_pdata(struct device_node *np,
  1093. struct mmci_platform_data *pdata)
  1094. {
  1095. return;
  1096. }
  1097. #endif
  1098. static int mmci_probe(struct amba_device *dev,
  1099. const struct amba_id *id)
  1100. {
  1101. struct mmci_platform_data *plat = dev->dev.platform_data;
  1102. struct device_node *np = dev->dev.of_node;
  1103. struct variant_data *variant = id->data;
  1104. struct mmci_host *host;
  1105. struct mmc_host *mmc;
  1106. int ret;
  1107. /* Must have platform data or Device Tree. */
  1108. if (!plat && !np) {
  1109. dev_err(&dev->dev, "No plat data or DT found\n");
  1110. return -EINVAL;
  1111. }
  1112. if (!plat) {
  1113. plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
  1114. if (!plat)
  1115. return -ENOMEM;
  1116. }
  1117. if (np)
  1118. mmci_dt_populate_generic_pdata(np, plat);
  1119. ret = amba_request_regions(dev, DRIVER_NAME);
  1120. if (ret)
  1121. goto out;
  1122. mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
  1123. if (!mmc) {
  1124. ret = -ENOMEM;
  1125. goto rel_regions;
  1126. }
  1127. host = mmc_priv(mmc);
  1128. host->mmc = mmc;
  1129. host->gpio_wp = -ENOSYS;
  1130. host->gpio_cd = -ENOSYS;
  1131. host->gpio_cd_irq = -1;
  1132. host->hw_designer = amba_manf(dev);
  1133. host->hw_revision = amba_rev(dev);
  1134. dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
  1135. dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
  1136. host->clk = devm_clk_get(&dev->dev, NULL);
  1137. if (IS_ERR(host->clk)) {
  1138. ret = PTR_ERR(host->clk);
  1139. goto host_free;
  1140. }
  1141. ret = clk_prepare_enable(host->clk);
  1142. if (ret)
  1143. goto host_free;
  1144. host->plat = plat;
  1145. host->variant = variant;
  1146. host->mclk = clk_get_rate(host->clk);
  1147. /*
  1148. * According to the spec, mclk is max 100 MHz,
  1149. * so we try to adjust the clock down to this,
  1150. * (if possible).
  1151. */
  1152. if (host->mclk > 100000000) {
  1153. ret = clk_set_rate(host->clk, 100000000);
  1154. if (ret < 0)
  1155. goto clk_disable;
  1156. host->mclk = clk_get_rate(host->clk);
  1157. dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
  1158. host->mclk);
  1159. }
  1160. host->phybase = dev->res.start;
  1161. host->base = ioremap(dev->res.start, resource_size(&dev->res));
  1162. if (!host->base) {
  1163. ret = -ENOMEM;
  1164. goto clk_disable;
  1165. }
  1166. mmc->ops = &mmci_ops;
  1167. /*
  1168. * The ARM and ST versions of the block have slightly different
  1169. * clock divider equations which means that the minimum divider
  1170. * differs too.
  1171. */
  1172. if (variant->st_clkdiv)
  1173. mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
  1174. else
  1175. mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
  1176. /*
  1177. * If the platform data supplies a maximum operating
  1178. * frequency, this takes precedence. Else, we fall back
  1179. * to using the module parameter, which has a (low)
  1180. * default value in case it is not specified. Either
  1181. * value must not exceed the clock rate into the block,
  1182. * of course.
  1183. */
  1184. if (plat->f_max)
  1185. mmc->f_max = min(host->mclk, plat->f_max);
  1186. else
  1187. mmc->f_max = min(host->mclk, fmax);
  1188. dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
  1189. host->pinctrl = devm_pinctrl_get(&dev->dev);
  1190. if (IS_ERR(host->pinctrl)) {
  1191. ret = PTR_ERR(host->pinctrl);
  1192. goto clk_disable;
  1193. }
  1194. host->pins_default = pinctrl_lookup_state(host->pinctrl,
  1195. PINCTRL_STATE_DEFAULT);
  1196. /* enable pins to be muxed in and configured */
  1197. if (!IS_ERR(host->pins_default)) {
  1198. ret = pinctrl_select_state(host->pinctrl, host->pins_default);
  1199. if (ret)
  1200. dev_warn(&dev->dev, "could not set default pins\n");
  1201. } else
  1202. dev_warn(&dev->dev, "could not get default pinstate\n");
  1203. /* Get regulators and the supported OCR mask */
  1204. mmc_regulator_get_supply(mmc);
  1205. if (!mmc->ocr_avail)
  1206. mmc->ocr_avail = plat->ocr_mask;
  1207. else if (plat->ocr_mask)
  1208. dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
  1209. mmc->caps = plat->capabilities;
  1210. mmc->caps2 = plat->capabilities2;
  1211. /* We support these PM capabilities. */
  1212. mmc->pm_caps = MMC_PM_KEEP_POWER;
  1213. /*
  1214. * We can do SGIO
  1215. */
  1216. mmc->max_segs = NR_SG;
  1217. /*
  1218. * Since only a certain number of bits are valid in the data length
  1219. * register, we must ensure that we don't exceed 2^num-1 bytes in a
  1220. * single request.
  1221. */
  1222. mmc->max_req_size = (1 << variant->datalength_bits) - 1;
  1223. /*
  1224. * Set the maximum segment size. Since we aren't doing DMA
  1225. * (yet) we are only limited by the data length register.
  1226. */
  1227. mmc->max_seg_size = mmc->max_req_size;
  1228. /*
  1229. * Block size can be up to 2048 bytes, but must be a power of two.
  1230. */
  1231. mmc->max_blk_size = 1 << 11;
  1232. /*
  1233. * Limit the number of blocks transferred so that we don't overflow
  1234. * the maximum request size.
  1235. */
  1236. mmc->max_blk_count = mmc->max_req_size >> 11;
  1237. spin_lock_init(&host->lock);
  1238. writel(0, host->base + MMCIMASK0);
  1239. writel(0, host->base + MMCIMASK1);
  1240. writel(0xfff, host->base + MMCICLEAR);
  1241. if (plat->gpio_cd == -EPROBE_DEFER) {
  1242. ret = -EPROBE_DEFER;
  1243. goto err_gpio_cd;
  1244. }
  1245. if (gpio_is_valid(plat->gpio_cd)) {
  1246. ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
  1247. if (ret == 0)
  1248. ret = gpio_direction_input(plat->gpio_cd);
  1249. if (ret == 0)
  1250. host->gpio_cd = plat->gpio_cd;
  1251. else if (ret != -ENOSYS)
  1252. goto err_gpio_cd;
  1253. /*
  1254. * A gpio pin that will detect cards when inserted and removed
  1255. * will most likely want to trigger on the edges if it is
  1256. * 0 when ejected and 1 when inserted (or mutatis mutandis
  1257. * for the inverted case) so we request triggers on both
  1258. * edges.
  1259. */
  1260. ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
  1261. mmci_cd_irq,
  1262. IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
  1263. DRIVER_NAME " (cd)", host);
  1264. if (ret >= 0)
  1265. host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
  1266. }
  1267. if (plat->gpio_wp == -EPROBE_DEFER) {
  1268. ret = -EPROBE_DEFER;
  1269. goto err_gpio_wp;
  1270. }
  1271. if (gpio_is_valid(plat->gpio_wp)) {
  1272. ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
  1273. if (ret == 0)
  1274. ret = gpio_direction_input(plat->gpio_wp);
  1275. if (ret == 0)
  1276. host->gpio_wp = plat->gpio_wp;
  1277. else if (ret != -ENOSYS)
  1278. goto err_gpio_wp;
  1279. }
  1280. if ((host->plat->status || host->gpio_cd != -ENOSYS)
  1281. && host->gpio_cd_irq < 0)
  1282. mmc->caps |= MMC_CAP_NEEDS_POLL;
  1283. ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
  1284. if (ret)
  1285. goto unmap;
  1286. if (!dev->irq[1])
  1287. host->singleirq = true;
  1288. else {
  1289. ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
  1290. DRIVER_NAME " (pio)", host);
  1291. if (ret)
  1292. goto irq0_free;
  1293. }
  1294. writel(MCI_IRQENABLE, host->base + MMCIMASK0);
  1295. amba_set_drvdata(dev, mmc);
  1296. dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
  1297. mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
  1298. amba_rev(dev), (unsigned long long)dev->res.start,
  1299. dev->irq[0], dev->irq[1]);
  1300. mmci_dma_setup(host);
  1301. pm_runtime_set_autosuspend_delay(&dev->dev, 50);
  1302. pm_runtime_use_autosuspend(&dev->dev);
  1303. pm_runtime_put(&dev->dev);
  1304. mmc_add_host(mmc);
  1305. return 0;
  1306. irq0_free:
  1307. free_irq(dev->irq[0], host);
  1308. unmap:
  1309. if (host->gpio_wp != -ENOSYS)
  1310. gpio_free(host->gpio_wp);
  1311. err_gpio_wp:
  1312. if (host->gpio_cd_irq >= 0)
  1313. free_irq(host->gpio_cd_irq, host);
  1314. if (host->gpio_cd != -ENOSYS)
  1315. gpio_free(host->gpio_cd);
  1316. err_gpio_cd:
  1317. iounmap(host->base);
  1318. clk_disable:
  1319. clk_disable_unprepare(host->clk);
  1320. host_free:
  1321. mmc_free_host(mmc);
  1322. rel_regions:
  1323. amba_release_regions(dev);
  1324. out:
  1325. return ret;
  1326. }
  1327. static int mmci_remove(struct amba_device *dev)
  1328. {
  1329. struct mmc_host *mmc = amba_get_drvdata(dev);
  1330. amba_set_drvdata(dev, NULL);
  1331. if (mmc) {
  1332. struct mmci_host *host = mmc_priv(mmc);
  1333. /*
  1334. * Undo pm_runtime_put() in probe. We use the _sync
  1335. * version here so that we can access the primecell.
  1336. */
  1337. pm_runtime_get_sync(&dev->dev);
  1338. mmc_remove_host(mmc);
  1339. writel(0, host->base + MMCIMASK0);
  1340. writel(0, host->base + MMCIMASK1);
  1341. writel(0, host->base + MMCICOMMAND);
  1342. writel(0, host->base + MMCIDATACTRL);
  1343. mmci_dma_release(host);
  1344. free_irq(dev->irq[0], host);
  1345. if (!host->singleirq)
  1346. free_irq(dev->irq[1], host);
  1347. if (host->gpio_wp != -ENOSYS)
  1348. gpio_free(host->gpio_wp);
  1349. if (host->gpio_cd_irq >= 0)
  1350. free_irq(host->gpio_cd_irq, host);
  1351. if (host->gpio_cd != -ENOSYS)
  1352. gpio_free(host->gpio_cd);
  1353. iounmap(host->base);
  1354. clk_disable_unprepare(host->clk);
  1355. mmc_free_host(mmc);
  1356. amba_release_regions(dev);
  1357. }
  1358. return 0;
  1359. }
  1360. #ifdef CONFIG_SUSPEND
  1361. static int mmci_suspend(struct device *dev)
  1362. {
  1363. struct amba_device *adev = to_amba_device(dev);
  1364. struct mmc_host *mmc = amba_get_drvdata(adev);
  1365. int ret = 0;
  1366. if (mmc) {
  1367. struct mmci_host *host = mmc_priv(mmc);
  1368. ret = mmc_suspend_host(mmc);
  1369. if (ret == 0) {
  1370. pm_runtime_get_sync(dev);
  1371. writel(0, host->base + MMCIMASK0);
  1372. }
  1373. }
  1374. return ret;
  1375. }
  1376. static int mmci_resume(struct device *dev)
  1377. {
  1378. struct amba_device *adev = to_amba_device(dev);
  1379. struct mmc_host *mmc = amba_get_drvdata(adev);
  1380. int ret = 0;
  1381. if (mmc) {
  1382. struct mmci_host *host = mmc_priv(mmc);
  1383. writel(MCI_IRQENABLE, host->base + MMCIMASK0);
  1384. pm_runtime_put(dev);
  1385. ret = mmc_resume_host(mmc);
  1386. }
  1387. return ret;
  1388. }
  1389. #endif
  1390. #ifdef CONFIG_PM_RUNTIME
  1391. static int mmci_runtime_suspend(struct device *dev)
  1392. {
  1393. struct amba_device *adev = to_amba_device(dev);
  1394. struct mmc_host *mmc = amba_get_drvdata(adev);
  1395. if (mmc) {
  1396. struct mmci_host *host = mmc_priv(mmc);
  1397. clk_disable_unprepare(host->clk);
  1398. }
  1399. return 0;
  1400. }
  1401. static int mmci_runtime_resume(struct device *dev)
  1402. {
  1403. struct amba_device *adev = to_amba_device(dev);
  1404. struct mmc_host *mmc = amba_get_drvdata(adev);
  1405. if (mmc) {
  1406. struct mmci_host *host = mmc_priv(mmc);
  1407. clk_prepare_enable(host->clk);
  1408. }
  1409. return 0;
  1410. }
  1411. #endif
  1412. static const struct dev_pm_ops mmci_dev_pm_ops = {
  1413. SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
  1414. SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
  1415. };
  1416. static struct amba_id mmci_ids[] = {
  1417. {
  1418. .id = 0x00041180,
  1419. .mask = 0xff0fffff,
  1420. .data = &variant_arm,
  1421. },
  1422. {
  1423. .id = 0x01041180,
  1424. .mask = 0xff0fffff,
  1425. .data = &variant_arm_extended_fifo,
  1426. },
  1427. {
  1428. .id = 0x02041180,
  1429. .mask = 0xff0fffff,
  1430. .data = &variant_arm_extended_fifo_hwfc,
  1431. },
  1432. {
  1433. .id = 0x00041181,
  1434. .mask = 0x000fffff,
  1435. .data = &variant_arm,
  1436. },
  1437. /* ST Micro variants */
  1438. {
  1439. .id = 0x00180180,
  1440. .mask = 0x00ffffff,
  1441. .data = &variant_u300,
  1442. },
  1443. {
  1444. .id = 0x10180180,
  1445. .mask = 0xf0ffffff,
  1446. .data = &variant_nomadik,
  1447. },
  1448. {
  1449. .id = 0x00280180,
  1450. .mask = 0x00ffffff,
  1451. .data = &variant_u300,
  1452. },
  1453. {
  1454. .id = 0x00480180,
  1455. .mask = 0xf0ffffff,
  1456. .data = &variant_ux500,
  1457. },
  1458. {
  1459. .id = 0x10480180,
  1460. .mask = 0xf0ffffff,
  1461. .data = &variant_ux500v2,
  1462. },
  1463. { 0, 0 },
  1464. };
  1465. MODULE_DEVICE_TABLE(amba, mmci_ids);
  1466. static struct amba_driver mmci_driver = {
  1467. .drv = {
  1468. .name = DRIVER_NAME,
  1469. .pm = &mmci_dev_pm_ops,
  1470. },
  1471. .probe = mmci_probe,
  1472. .remove = mmci_remove,
  1473. .id_table = mmci_ids,
  1474. };
  1475. module_amba_driver(mmci_driver);
  1476. module_param(fmax, uint, 0444);
  1477. MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
  1478. MODULE_LICENSE("GPL");