dm.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-bio-list.h"
  9. #include "dm-uevent.h"
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/mutex.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/blkpg.h>
  15. #include <linux/bio.h>
  16. #include <linux/buffer_head.h>
  17. #include <linux/mempool.h>
  18. #include <linux/slab.h>
  19. #include <linux/idr.h>
  20. #include <linux/hdreg.h>
  21. #include <linux/blktrace_api.h>
  22. #include <trace/block.h>
  23. #define DM_MSG_PREFIX "core"
  24. static const char *_name = DM_NAME;
  25. static unsigned int major = 0;
  26. static unsigned int _major = 0;
  27. static DEFINE_SPINLOCK(_minor_lock);
  28. /*
  29. * For bio-based dm.
  30. * One of these is allocated per bio.
  31. */
  32. struct dm_io {
  33. struct mapped_device *md;
  34. int error;
  35. atomic_t io_count;
  36. struct bio *bio;
  37. unsigned long start_time;
  38. };
  39. /*
  40. * For bio-based dm.
  41. * One of these is allocated per target within a bio. Hopefully
  42. * this will be simplified out one day.
  43. */
  44. struct dm_target_io {
  45. struct dm_io *io;
  46. struct dm_target *ti;
  47. union map_info info;
  48. };
  49. DEFINE_TRACE(block_bio_complete);
  50. /*
  51. * For request-based dm.
  52. * One of these is allocated per request.
  53. */
  54. struct dm_rq_target_io {
  55. struct mapped_device *md;
  56. struct dm_target *ti;
  57. struct request *orig, clone;
  58. int error;
  59. union map_info info;
  60. };
  61. /*
  62. * For request-based dm.
  63. * One of these is allocated per bio.
  64. */
  65. struct dm_rq_clone_bio_info {
  66. struct bio *orig;
  67. struct request *rq;
  68. };
  69. union map_info *dm_get_mapinfo(struct bio *bio)
  70. {
  71. if (bio && bio->bi_private)
  72. return &((struct dm_target_io *)bio->bi_private)->info;
  73. return NULL;
  74. }
  75. #define MINOR_ALLOCED ((void *)-1)
  76. /*
  77. * Bits for the md->flags field.
  78. */
  79. #define DMF_BLOCK_IO 0
  80. #define DMF_SUSPENDED 1
  81. #define DMF_FROZEN 2
  82. #define DMF_FREEING 3
  83. #define DMF_DELETING 4
  84. #define DMF_NOFLUSH_SUSPENDING 5
  85. /*
  86. * Work processed by per-device workqueue.
  87. */
  88. struct mapped_device {
  89. struct rw_semaphore io_lock;
  90. struct mutex suspend_lock;
  91. rwlock_t map_lock;
  92. atomic_t holders;
  93. atomic_t open_count;
  94. unsigned long flags;
  95. struct request_queue *queue;
  96. struct gendisk *disk;
  97. char name[16];
  98. void *interface_ptr;
  99. /*
  100. * A list of ios that arrived while we were suspended.
  101. */
  102. atomic_t pending;
  103. wait_queue_head_t wait;
  104. struct work_struct work;
  105. struct bio_list deferred;
  106. spinlock_t deferred_lock;
  107. /*
  108. * Processing queue (flush/barriers)
  109. */
  110. struct workqueue_struct *wq;
  111. /*
  112. * The current mapping.
  113. */
  114. struct dm_table *map;
  115. /*
  116. * io objects are allocated from here.
  117. */
  118. mempool_t *io_pool;
  119. mempool_t *tio_pool;
  120. struct bio_set *bs;
  121. /*
  122. * Event handling.
  123. */
  124. atomic_t event_nr;
  125. wait_queue_head_t eventq;
  126. atomic_t uevent_seq;
  127. struct list_head uevent_list;
  128. spinlock_t uevent_lock; /* Protect access to uevent_list */
  129. /*
  130. * freeze/thaw support require holding onto a super block
  131. */
  132. struct super_block *frozen_sb;
  133. struct block_device *suspended_bdev;
  134. /* forced geometry settings */
  135. struct hd_geometry geometry;
  136. /* sysfs handle */
  137. struct kobject kobj;
  138. };
  139. #define MIN_IOS 256
  140. static struct kmem_cache *_io_cache;
  141. static struct kmem_cache *_tio_cache;
  142. static struct kmem_cache *_rq_tio_cache;
  143. static struct kmem_cache *_rq_bio_info_cache;
  144. static int __init local_init(void)
  145. {
  146. int r = -ENOMEM;
  147. /* allocate a slab for the dm_ios */
  148. _io_cache = KMEM_CACHE(dm_io, 0);
  149. if (!_io_cache)
  150. return r;
  151. /* allocate a slab for the target ios */
  152. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  153. if (!_tio_cache)
  154. goto out_free_io_cache;
  155. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  156. if (!_rq_tio_cache)
  157. goto out_free_tio_cache;
  158. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  159. if (!_rq_bio_info_cache)
  160. goto out_free_rq_tio_cache;
  161. r = dm_uevent_init();
  162. if (r)
  163. goto out_free_rq_bio_info_cache;
  164. _major = major;
  165. r = register_blkdev(_major, _name);
  166. if (r < 0)
  167. goto out_uevent_exit;
  168. if (!_major)
  169. _major = r;
  170. return 0;
  171. out_uevent_exit:
  172. dm_uevent_exit();
  173. out_free_rq_bio_info_cache:
  174. kmem_cache_destroy(_rq_bio_info_cache);
  175. out_free_rq_tio_cache:
  176. kmem_cache_destroy(_rq_tio_cache);
  177. out_free_tio_cache:
  178. kmem_cache_destroy(_tio_cache);
  179. out_free_io_cache:
  180. kmem_cache_destroy(_io_cache);
  181. return r;
  182. }
  183. static void local_exit(void)
  184. {
  185. kmem_cache_destroy(_rq_bio_info_cache);
  186. kmem_cache_destroy(_rq_tio_cache);
  187. kmem_cache_destroy(_tio_cache);
  188. kmem_cache_destroy(_io_cache);
  189. unregister_blkdev(_major, _name);
  190. dm_uevent_exit();
  191. _major = 0;
  192. DMINFO("cleaned up");
  193. }
  194. static int (*_inits[])(void) __initdata = {
  195. local_init,
  196. dm_target_init,
  197. dm_linear_init,
  198. dm_stripe_init,
  199. dm_kcopyd_init,
  200. dm_interface_init,
  201. };
  202. static void (*_exits[])(void) = {
  203. local_exit,
  204. dm_target_exit,
  205. dm_linear_exit,
  206. dm_stripe_exit,
  207. dm_kcopyd_exit,
  208. dm_interface_exit,
  209. };
  210. static int __init dm_init(void)
  211. {
  212. const int count = ARRAY_SIZE(_inits);
  213. int r, i;
  214. for (i = 0; i < count; i++) {
  215. r = _inits[i]();
  216. if (r)
  217. goto bad;
  218. }
  219. return 0;
  220. bad:
  221. while (i--)
  222. _exits[i]();
  223. return r;
  224. }
  225. static void __exit dm_exit(void)
  226. {
  227. int i = ARRAY_SIZE(_exits);
  228. while (i--)
  229. _exits[i]();
  230. }
  231. /*
  232. * Block device functions
  233. */
  234. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  235. {
  236. struct mapped_device *md;
  237. spin_lock(&_minor_lock);
  238. md = bdev->bd_disk->private_data;
  239. if (!md)
  240. goto out;
  241. if (test_bit(DMF_FREEING, &md->flags) ||
  242. test_bit(DMF_DELETING, &md->flags)) {
  243. md = NULL;
  244. goto out;
  245. }
  246. dm_get(md);
  247. atomic_inc(&md->open_count);
  248. out:
  249. spin_unlock(&_minor_lock);
  250. return md ? 0 : -ENXIO;
  251. }
  252. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  253. {
  254. struct mapped_device *md = disk->private_data;
  255. atomic_dec(&md->open_count);
  256. dm_put(md);
  257. return 0;
  258. }
  259. int dm_open_count(struct mapped_device *md)
  260. {
  261. return atomic_read(&md->open_count);
  262. }
  263. /*
  264. * Guarantees nothing is using the device before it's deleted.
  265. */
  266. int dm_lock_for_deletion(struct mapped_device *md)
  267. {
  268. int r = 0;
  269. spin_lock(&_minor_lock);
  270. if (dm_open_count(md))
  271. r = -EBUSY;
  272. else
  273. set_bit(DMF_DELETING, &md->flags);
  274. spin_unlock(&_minor_lock);
  275. return r;
  276. }
  277. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  278. {
  279. struct mapped_device *md = bdev->bd_disk->private_data;
  280. return dm_get_geometry(md, geo);
  281. }
  282. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  283. unsigned int cmd, unsigned long arg)
  284. {
  285. struct mapped_device *md = bdev->bd_disk->private_data;
  286. struct dm_table *map = dm_get_table(md);
  287. struct dm_target *tgt;
  288. int r = -ENOTTY;
  289. if (!map || !dm_table_get_size(map))
  290. goto out;
  291. /* We only support devices that have a single target */
  292. if (dm_table_get_num_targets(map) != 1)
  293. goto out;
  294. tgt = dm_table_get_target(map, 0);
  295. if (dm_suspended(md)) {
  296. r = -EAGAIN;
  297. goto out;
  298. }
  299. if (tgt->type->ioctl)
  300. r = tgt->type->ioctl(tgt, cmd, arg);
  301. out:
  302. dm_table_put(map);
  303. return r;
  304. }
  305. static struct dm_io *alloc_io(struct mapped_device *md)
  306. {
  307. return mempool_alloc(md->io_pool, GFP_NOIO);
  308. }
  309. static void free_io(struct mapped_device *md, struct dm_io *io)
  310. {
  311. mempool_free(io, md->io_pool);
  312. }
  313. static struct dm_target_io *alloc_tio(struct mapped_device *md)
  314. {
  315. return mempool_alloc(md->tio_pool, GFP_NOIO);
  316. }
  317. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  318. {
  319. mempool_free(tio, md->tio_pool);
  320. }
  321. static void start_io_acct(struct dm_io *io)
  322. {
  323. struct mapped_device *md = io->md;
  324. int cpu;
  325. io->start_time = jiffies;
  326. cpu = part_stat_lock();
  327. part_round_stats(cpu, &dm_disk(md)->part0);
  328. part_stat_unlock();
  329. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  330. }
  331. static void end_io_acct(struct dm_io *io)
  332. {
  333. struct mapped_device *md = io->md;
  334. struct bio *bio = io->bio;
  335. unsigned long duration = jiffies - io->start_time;
  336. int pending, cpu;
  337. int rw = bio_data_dir(bio);
  338. cpu = part_stat_lock();
  339. part_round_stats(cpu, &dm_disk(md)->part0);
  340. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  341. part_stat_unlock();
  342. dm_disk(md)->part0.in_flight = pending =
  343. atomic_dec_return(&md->pending);
  344. /* nudge anyone waiting on suspend queue */
  345. if (!pending)
  346. wake_up(&md->wait);
  347. }
  348. /*
  349. * Add the bio to the list of deferred io.
  350. */
  351. static int queue_io(struct mapped_device *md, struct bio *bio)
  352. {
  353. down_write(&md->io_lock);
  354. if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
  355. up_write(&md->io_lock);
  356. return 1;
  357. }
  358. spin_lock_irq(&md->deferred_lock);
  359. bio_list_add(&md->deferred, bio);
  360. spin_unlock_irq(&md->deferred_lock);
  361. up_write(&md->io_lock);
  362. return 0; /* deferred successfully */
  363. }
  364. /*
  365. * Everyone (including functions in this file), should use this
  366. * function to access the md->map field, and make sure they call
  367. * dm_table_put() when finished.
  368. */
  369. struct dm_table *dm_get_table(struct mapped_device *md)
  370. {
  371. struct dm_table *t;
  372. read_lock(&md->map_lock);
  373. t = md->map;
  374. if (t)
  375. dm_table_get(t);
  376. read_unlock(&md->map_lock);
  377. return t;
  378. }
  379. /*
  380. * Get the geometry associated with a dm device
  381. */
  382. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  383. {
  384. *geo = md->geometry;
  385. return 0;
  386. }
  387. /*
  388. * Set the geometry of a device.
  389. */
  390. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  391. {
  392. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  393. if (geo->start > sz) {
  394. DMWARN("Start sector is beyond the geometry limits.");
  395. return -EINVAL;
  396. }
  397. md->geometry = *geo;
  398. return 0;
  399. }
  400. /*-----------------------------------------------------------------
  401. * CRUD START:
  402. * A more elegant soln is in the works that uses the queue
  403. * merge fn, unfortunately there are a couple of changes to
  404. * the block layer that I want to make for this. So in the
  405. * interests of getting something for people to use I give
  406. * you this clearly demarcated crap.
  407. *---------------------------------------------------------------*/
  408. static int __noflush_suspending(struct mapped_device *md)
  409. {
  410. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  411. }
  412. /*
  413. * Decrements the number of outstanding ios that a bio has been
  414. * cloned into, completing the original io if necc.
  415. */
  416. static void dec_pending(struct dm_io *io, int error)
  417. {
  418. unsigned long flags;
  419. int io_error;
  420. struct bio *bio;
  421. struct mapped_device *md = io->md;
  422. /* Push-back supersedes any I/O errors */
  423. if (error && !(io->error > 0 && __noflush_suspending(md)))
  424. io->error = error;
  425. if (atomic_dec_and_test(&io->io_count)) {
  426. if (io->error == DM_ENDIO_REQUEUE) {
  427. /*
  428. * Target requested pushing back the I/O.
  429. */
  430. spin_lock_irqsave(&md->deferred_lock, flags);
  431. if (__noflush_suspending(md))
  432. bio_list_add(&md->deferred, io->bio);
  433. else
  434. /* noflush suspend was interrupted. */
  435. io->error = -EIO;
  436. spin_unlock_irqrestore(&md->deferred_lock, flags);
  437. }
  438. end_io_acct(io);
  439. io_error = io->error;
  440. bio = io->bio;
  441. free_io(md, io);
  442. if (io_error != DM_ENDIO_REQUEUE) {
  443. trace_block_bio_complete(md->queue, bio);
  444. bio_endio(bio, io_error);
  445. }
  446. }
  447. }
  448. static void clone_endio(struct bio *bio, int error)
  449. {
  450. int r = 0;
  451. struct dm_target_io *tio = bio->bi_private;
  452. struct dm_io *io = tio->io;
  453. struct mapped_device *md = tio->io->md;
  454. dm_endio_fn endio = tio->ti->type->end_io;
  455. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  456. error = -EIO;
  457. if (endio) {
  458. r = endio(tio->ti, bio, error, &tio->info);
  459. if (r < 0 || r == DM_ENDIO_REQUEUE)
  460. /*
  461. * error and requeue request are handled
  462. * in dec_pending().
  463. */
  464. error = r;
  465. else if (r == DM_ENDIO_INCOMPLETE)
  466. /* The target will handle the io */
  467. return;
  468. else if (r) {
  469. DMWARN("unimplemented target endio return value: %d", r);
  470. BUG();
  471. }
  472. }
  473. /*
  474. * Store md for cleanup instead of tio which is about to get freed.
  475. */
  476. bio->bi_private = md->bs;
  477. free_tio(md, tio);
  478. bio_put(bio);
  479. dec_pending(io, error);
  480. }
  481. static sector_t max_io_len(struct mapped_device *md,
  482. sector_t sector, struct dm_target *ti)
  483. {
  484. sector_t offset = sector - ti->begin;
  485. sector_t len = ti->len - offset;
  486. /*
  487. * Does the target need to split even further ?
  488. */
  489. if (ti->split_io) {
  490. sector_t boundary;
  491. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  492. - offset;
  493. if (len > boundary)
  494. len = boundary;
  495. }
  496. return len;
  497. }
  498. static void __map_bio(struct dm_target *ti, struct bio *clone,
  499. struct dm_target_io *tio)
  500. {
  501. int r;
  502. sector_t sector;
  503. struct mapped_device *md;
  504. /*
  505. * Sanity checks.
  506. */
  507. BUG_ON(!clone->bi_size);
  508. clone->bi_end_io = clone_endio;
  509. clone->bi_private = tio;
  510. /*
  511. * Map the clone. If r == 0 we don't need to do
  512. * anything, the target has assumed ownership of
  513. * this io.
  514. */
  515. atomic_inc(&tio->io->io_count);
  516. sector = clone->bi_sector;
  517. r = ti->type->map(ti, clone, &tio->info);
  518. if (r == DM_MAPIO_REMAPPED) {
  519. /* the bio has been remapped so dispatch it */
  520. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  521. tio->io->bio->bi_bdev->bd_dev,
  522. clone->bi_sector, sector);
  523. generic_make_request(clone);
  524. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  525. /* error the io and bail out, or requeue it if needed */
  526. md = tio->io->md;
  527. dec_pending(tio->io, r);
  528. /*
  529. * Store bio_set for cleanup.
  530. */
  531. clone->bi_private = md->bs;
  532. bio_put(clone);
  533. free_tio(md, tio);
  534. } else if (r) {
  535. DMWARN("unimplemented target map return value: %d", r);
  536. BUG();
  537. }
  538. }
  539. struct clone_info {
  540. struct mapped_device *md;
  541. struct dm_table *map;
  542. struct bio *bio;
  543. struct dm_io *io;
  544. sector_t sector;
  545. sector_t sector_count;
  546. unsigned short idx;
  547. };
  548. static void dm_bio_destructor(struct bio *bio)
  549. {
  550. struct bio_set *bs = bio->bi_private;
  551. bio_free(bio, bs);
  552. }
  553. /*
  554. * Creates a little bio that is just does part of a bvec.
  555. */
  556. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  557. unsigned short idx, unsigned int offset,
  558. unsigned int len, struct bio_set *bs)
  559. {
  560. struct bio *clone;
  561. struct bio_vec *bv = bio->bi_io_vec + idx;
  562. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  563. clone->bi_destructor = dm_bio_destructor;
  564. *clone->bi_io_vec = *bv;
  565. clone->bi_sector = sector;
  566. clone->bi_bdev = bio->bi_bdev;
  567. clone->bi_rw = bio->bi_rw;
  568. clone->bi_vcnt = 1;
  569. clone->bi_size = to_bytes(len);
  570. clone->bi_io_vec->bv_offset = offset;
  571. clone->bi_io_vec->bv_len = clone->bi_size;
  572. clone->bi_flags |= 1 << BIO_CLONED;
  573. return clone;
  574. }
  575. /*
  576. * Creates a bio that consists of range of complete bvecs.
  577. */
  578. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  579. unsigned short idx, unsigned short bv_count,
  580. unsigned int len, struct bio_set *bs)
  581. {
  582. struct bio *clone;
  583. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  584. __bio_clone(clone, bio);
  585. clone->bi_destructor = dm_bio_destructor;
  586. clone->bi_sector = sector;
  587. clone->bi_idx = idx;
  588. clone->bi_vcnt = idx + bv_count;
  589. clone->bi_size = to_bytes(len);
  590. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  591. return clone;
  592. }
  593. static int __clone_and_map(struct clone_info *ci)
  594. {
  595. struct bio *clone, *bio = ci->bio;
  596. struct dm_target *ti;
  597. sector_t len = 0, max;
  598. struct dm_target_io *tio;
  599. ti = dm_table_find_target(ci->map, ci->sector);
  600. if (!dm_target_is_valid(ti))
  601. return -EIO;
  602. max = max_io_len(ci->md, ci->sector, ti);
  603. /*
  604. * Allocate a target io object.
  605. */
  606. tio = alloc_tio(ci->md);
  607. tio->io = ci->io;
  608. tio->ti = ti;
  609. memset(&tio->info, 0, sizeof(tio->info));
  610. if (ci->sector_count <= max) {
  611. /*
  612. * Optimise for the simple case where we can do all of
  613. * the remaining io with a single clone.
  614. */
  615. clone = clone_bio(bio, ci->sector, ci->idx,
  616. bio->bi_vcnt - ci->idx, ci->sector_count,
  617. ci->md->bs);
  618. __map_bio(ti, clone, tio);
  619. ci->sector_count = 0;
  620. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  621. /*
  622. * There are some bvecs that don't span targets.
  623. * Do as many of these as possible.
  624. */
  625. int i;
  626. sector_t remaining = max;
  627. sector_t bv_len;
  628. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  629. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  630. if (bv_len > remaining)
  631. break;
  632. remaining -= bv_len;
  633. len += bv_len;
  634. }
  635. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  636. ci->md->bs);
  637. __map_bio(ti, clone, tio);
  638. ci->sector += len;
  639. ci->sector_count -= len;
  640. ci->idx = i;
  641. } else {
  642. /*
  643. * Handle a bvec that must be split between two or more targets.
  644. */
  645. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  646. sector_t remaining = to_sector(bv->bv_len);
  647. unsigned int offset = 0;
  648. do {
  649. if (offset) {
  650. ti = dm_table_find_target(ci->map, ci->sector);
  651. if (!dm_target_is_valid(ti))
  652. return -EIO;
  653. max = max_io_len(ci->md, ci->sector, ti);
  654. tio = alloc_tio(ci->md);
  655. tio->io = ci->io;
  656. tio->ti = ti;
  657. memset(&tio->info, 0, sizeof(tio->info));
  658. }
  659. len = min(remaining, max);
  660. clone = split_bvec(bio, ci->sector, ci->idx,
  661. bv->bv_offset + offset, len,
  662. ci->md->bs);
  663. __map_bio(ti, clone, tio);
  664. ci->sector += len;
  665. ci->sector_count -= len;
  666. offset += to_bytes(len);
  667. } while (remaining -= len);
  668. ci->idx++;
  669. }
  670. return 0;
  671. }
  672. /*
  673. * Split the bio into several clones and submit it to targets.
  674. */
  675. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  676. {
  677. struct clone_info ci;
  678. int error = 0;
  679. ci.map = dm_get_table(md);
  680. if (unlikely(!ci.map)) {
  681. bio_io_error(bio);
  682. return;
  683. }
  684. if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
  685. dm_table_put(ci.map);
  686. bio_endio(bio, -EOPNOTSUPP);
  687. return;
  688. }
  689. ci.md = md;
  690. ci.bio = bio;
  691. ci.io = alloc_io(md);
  692. ci.io->error = 0;
  693. atomic_set(&ci.io->io_count, 1);
  694. ci.io->bio = bio;
  695. ci.io->md = md;
  696. ci.sector = bio->bi_sector;
  697. ci.sector_count = bio_sectors(bio);
  698. ci.idx = bio->bi_idx;
  699. start_io_acct(ci.io);
  700. while (ci.sector_count && !error)
  701. error = __clone_and_map(&ci);
  702. /* drop the extra reference count */
  703. dec_pending(ci.io, error);
  704. dm_table_put(ci.map);
  705. }
  706. /*-----------------------------------------------------------------
  707. * CRUD END
  708. *---------------------------------------------------------------*/
  709. static int dm_merge_bvec(struct request_queue *q,
  710. struct bvec_merge_data *bvm,
  711. struct bio_vec *biovec)
  712. {
  713. struct mapped_device *md = q->queuedata;
  714. struct dm_table *map = dm_get_table(md);
  715. struct dm_target *ti;
  716. sector_t max_sectors;
  717. int max_size = 0;
  718. if (unlikely(!map))
  719. goto out;
  720. ti = dm_table_find_target(map, bvm->bi_sector);
  721. if (!dm_target_is_valid(ti))
  722. goto out_table;
  723. /*
  724. * Find maximum amount of I/O that won't need splitting
  725. */
  726. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  727. (sector_t) BIO_MAX_SECTORS);
  728. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  729. if (max_size < 0)
  730. max_size = 0;
  731. /*
  732. * merge_bvec_fn() returns number of bytes
  733. * it can accept at this offset
  734. * max is precomputed maximal io size
  735. */
  736. if (max_size && ti->type->merge)
  737. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  738. out_table:
  739. dm_table_put(map);
  740. out:
  741. /*
  742. * Always allow an entire first page
  743. */
  744. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  745. max_size = biovec->bv_len;
  746. return max_size;
  747. }
  748. /*
  749. * The request function that just remaps the bio built up by
  750. * dm_merge_bvec.
  751. */
  752. static int dm_request(struct request_queue *q, struct bio *bio)
  753. {
  754. int r = -EIO;
  755. int rw = bio_data_dir(bio);
  756. struct mapped_device *md = q->queuedata;
  757. int cpu;
  758. down_read(&md->io_lock);
  759. cpu = part_stat_lock();
  760. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  761. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  762. part_stat_unlock();
  763. /*
  764. * If we're suspended we have to queue
  765. * this io for later.
  766. */
  767. while (test_bit(DMF_BLOCK_IO, &md->flags)) {
  768. up_read(&md->io_lock);
  769. if (bio_rw(bio) != READA)
  770. r = queue_io(md, bio);
  771. if (r <= 0)
  772. goto out_req;
  773. /*
  774. * We're in a while loop, because someone could suspend
  775. * before we get to the following read lock.
  776. */
  777. down_read(&md->io_lock);
  778. }
  779. __split_and_process_bio(md, bio);
  780. up_read(&md->io_lock);
  781. return 0;
  782. out_req:
  783. if (r < 0)
  784. bio_io_error(bio);
  785. return 0;
  786. }
  787. static void dm_unplug_all(struct request_queue *q)
  788. {
  789. struct mapped_device *md = q->queuedata;
  790. struct dm_table *map = dm_get_table(md);
  791. if (map) {
  792. dm_table_unplug_all(map);
  793. dm_table_put(map);
  794. }
  795. }
  796. static int dm_any_congested(void *congested_data, int bdi_bits)
  797. {
  798. int r = bdi_bits;
  799. struct mapped_device *md = congested_data;
  800. struct dm_table *map;
  801. if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
  802. map = dm_get_table(md);
  803. if (map) {
  804. r = dm_table_any_congested(map, bdi_bits);
  805. dm_table_put(map);
  806. }
  807. }
  808. return r;
  809. }
  810. /*-----------------------------------------------------------------
  811. * An IDR is used to keep track of allocated minor numbers.
  812. *---------------------------------------------------------------*/
  813. static DEFINE_IDR(_minor_idr);
  814. static void free_minor(int minor)
  815. {
  816. spin_lock(&_minor_lock);
  817. idr_remove(&_minor_idr, minor);
  818. spin_unlock(&_minor_lock);
  819. }
  820. /*
  821. * See if the device with a specific minor # is free.
  822. */
  823. static int specific_minor(int minor)
  824. {
  825. int r, m;
  826. if (minor >= (1 << MINORBITS))
  827. return -EINVAL;
  828. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  829. if (!r)
  830. return -ENOMEM;
  831. spin_lock(&_minor_lock);
  832. if (idr_find(&_minor_idr, minor)) {
  833. r = -EBUSY;
  834. goto out;
  835. }
  836. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  837. if (r)
  838. goto out;
  839. if (m != minor) {
  840. idr_remove(&_minor_idr, m);
  841. r = -EBUSY;
  842. goto out;
  843. }
  844. out:
  845. spin_unlock(&_minor_lock);
  846. return r;
  847. }
  848. static int next_free_minor(int *minor)
  849. {
  850. int r, m;
  851. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  852. if (!r)
  853. return -ENOMEM;
  854. spin_lock(&_minor_lock);
  855. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  856. if (r)
  857. goto out;
  858. if (m >= (1 << MINORBITS)) {
  859. idr_remove(&_minor_idr, m);
  860. r = -ENOSPC;
  861. goto out;
  862. }
  863. *minor = m;
  864. out:
  865. spin_unlock(&_minor_lock);
  866. return r;
  867. }
  868. static struct block_device_operations dm_blk_dops;
  869. static void dm_wq_work(struct work_struct *work);
  870. /*
  871. * Allocate and initialise a blank device with a given minor.
  872. */
  873. static struct mapped_device *alloc_dev(int minor)
  874. {
  875. int r;
  876. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  877. void *old_md;
  878. if (!md) {
  879. DMWARN("unable to allocate device, out of memory.");
  880. return NULL;
  881. }
  882. if (!try_module_get(THIS_MODULE))
  883. goto bad_module_get;
  884. /* get a minor number for the dev */
  885. if (minor == DM_ANY_MINOR)
  886. r = next_free_minor(&minor);
  887. else
  888. r = specific_minor(minor);
  889. if (r < 0)
  890. goto bad_minor;
  891. init_rwsem(&md->io_lock);
  892. mutex_init(&md->suspend_lock);
  893. spin_lock_init(&md->deferred_lock);
  894. rwlock_init(&md->map_lock);
  895. atomic_set(&md->holders, 1);
  896. atomic_set(&md->open_count, 0);
  897. atomic_set(&md->event_nr, 0);
  898. atomic_set(&md->uevent_seq, 0);
  899. INIT_LIST_HEAD(&md->uevent_list);
  900. spin_lock_init(&md->uevent_lock);
  901. md->queue = blk_alloc_queue(GFP_KERNEL);
  902. if (!md->queue)
  903. goto bad_queue;
  904. md->queue->queuedata = md;
  905. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  906. md->queue->backing_dev_info.congested_data = md;
  907. blk_queue_make_request(md->queue, dm_request);
  908. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  909. md->queue->unplug_fn = dm_unplug_all;
  910. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  911. md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
  912. if (!md->io_pool)
  913. goto bad_io_pool;
  914. md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
  915. if (!md->tio_pool)
  916. goto bad_tio_pool;
  917. md->bs = bioset_create(16, 0);
  918. if (!md->bs)
  919. goto bad_no_bioset;
  920. md->disk = alloc_disk(1);
  921. if (!md->disk)
  922. goto bad_disk;
  923. atomic_set(&md->pending, 0);
  924. init_waitqueue_head(&md->wait);
  925. INIT_WORK(&md->work, dm_wq_work);
  926. init_waitqueue_head(&md->eventq);
  927. md->disk->major = _major;
  928. md->disk->first_minor = minor;
  929. md->disk->fops = &dm_blk_dops;
  930. md->disk->queue = md->queue;
  931. md->disk->private_data = md;
  932. sprintf(md->disk->disk_name, "dm-%d", minor);
  933. add_disk(md->disk);
  934. format_dev_t(md->name, MKDEV(_major, minor));
  935. md->wq = create_singlethread_workqueue("kdmflush");
  936. if (!md->wq)
  937. goto bad_thread;
  938. /* Populate the mapping, nobody knows we exist yet */
  939. spin_lock(&_minor_lock);
  940. old_md = idr_replace(&_minor_idr, md, minor);
  941. spin_unlock(&_minor_lock);
  942. BUG_ON(old_md != MINOR_ALLOCED);
  943. return md;
  944. bad_thread:
  945. put_disk(md->disk);
  946. bad_disk:
  947. bioset_free(md->bs);
  948. bad_no_bioset:
  949. mempool_destroy(md->tio_pool);
  950. bad_tio_pool:
  951. mempool_destroy(md->io_pool);
  952. bad_io_pool:
  953. blk_cleanup_queue(md->queue);
  954. bad_queue:
  955. free_minor(minor);
  956. bad_minor:
  957. module_put(THIS_MODULE);
  958. bad_module_get:
  959. kfree(md);
  960. return NULL;
  961. }
  962. static void unlock_fs(struct mapped_device *md);
  963. static void free_dev(struct mapped_device *md)
  964. {
  965. int minor = MINOR(disk_devt(md->disk));
  966. if (md->suspended_bdev) {
  967. unlock_fs(md);
  968. bdput(md->suspended_bdev);
  969. }
  970. destroy_workqueue(md->wq);
  971. mempool_destroy(md->tio_pool);
  972. mempool_destroy(md->io_pool);
  973. bioset_free(md->bs);
  974. del_gendisk(md->disk);
  975. free_minor(minor);
  976. spin_lock(&_minor_lock);
  977. md->disk->private_data = NULL;
  978. spin_unlock(&_minor_lock);
  979. put_disk(md->disk);
  980. blk_cleanup_queue(md->queue);
  981. module_put(THIS_MODULE);
  982. kfree(md);
  983. }
  984. /*
  985. * Bind a table to the device.
  986. */
  987. static void event_callback(void *context)
  988. {
  989. unsigned long flags;
  990. LIST_HEAD(uevents);
  991. struct mapped_device *md = (struct mapped_device *) context;
  992. spin_lock_irqsave(&md->uevent_lock, flags);
  993. list_splice_init(&md->uevent_list, &uevents);
  994. spin_unlock_irqrestore(&md->uevent_lock, flags);
  995. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  996. atomic_inc(&md->event_nr);
  997. wake_up(&md->eventq);
  998. }
  999. static void __set_size(struct mapped_device *md, sector_t size)
  1000. {
  1001. set_capacity(md->disk, size);
  1002. mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
  1003. i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1004. mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
  1005. }
  1006. static int __bind(struct mapped_device *md, struct dm_table *t)
  1007. {
  1008. struct request_queue *q = md->queue;
  1009. sector_t size;
  1010. size = dm_table_get_size(t);
  1011. /*
  1012. * Wipe any geometry if the size of the table changed.
  1013. */
  1014. if (size != get_capacity(md->disk))
  1015. memset(&md->geometry, 0, sizeof(md->geometry));
  1016. if (md->suspended_bdev)
  1017. __set_size(md, size);
  1018. if (!size) {
  1019. dm_table_destroy(t);
  1020. return 0;
  1021. }
  1022. dm_table_event_callback(t, event_callback, md);
  1023. write_lock(&md->map_lock);
  1024. md->map = t;
  1025. dm_table_set_restrictions(t, q);
  1026. write_unlock(&md->map_lock);
  1027. return 0;
  1028. }
  1029. static void __unbind(struct mapped_device *md)
  1030. {
  1031. struct dm_table *map = md->map;
  1032. if (!map)
  1033. return;
  1034. dm_table_event_callback(map, NULL, NULL);
  1035. write_lock(&md->map_lock);
  1036. md->map = NULL;
  1037. write_unlock(&md->map_lock);
  1038. dm_table_destroy(map);
  1039. }
  1040. /*
  1041. * Constructor for a new device.
  1042. */
  1043. int dm_create(int minor, struct mapped_device **result)
  1044. {
  1045. struct mapped_device *md;
  1046. md = alloc_dev(minor);
  1047. if (!md)
  1048. return -ENXIO;
  1049. dm_sysfs_init(md);
  1050. *result = md;
  1051. return 0;
  1052. }
  1053. static struct mapped_device *dm_find_md(dev_t dev)
  1054. {
  1055. struct mapped_device *md;
  1056. unsigned minor = MINOR(dev);
  1057. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1058. return NULL;
  1059. spin_lock(&_minor_lock);
  1060. md = idr_find(&_minor_idr, minor);
  1061. if (md && (md == MINOR_ALLOCED ||
  1062. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1063. test_bit(DMF_FREEING, &md->flags))) {
  1064. md = NULL;
  1065. goto out;
  1066. }
  1067. out:
  1068. spin_unlock(&_minor_lock);
  1069. return md;
  1070. }
  1071. struct mapped_device *dm_get_md(dev_t dev)
  1072. {
  1073. struct mapped_device *md = dm_find_md(dev);
  1074. if (md)
  1075. dm_get(md);
  1076. return md;
  1077. }
  1078. void *dm_get_mdptr(struct mapped_device *md)
  1079. {
  1080. return md->interface_ptr;
  1081. }
  1082. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1083. {
  1084. md->interface_ptr = ptr;
  1085. }
  1086. void dm_get(struct mapped_device *md)
  1087. {
  1088. atomic_inc(&md->holders);
  1089. }
  1090. const char *dm_device_name(struct mapped_device *md)
  1091. {
  1092. return md->name;
  1093. }
  1094. EXPORT_SYMBOL_GPL(dm_device_name);
  1095. void dm_put(struct mapped_device *md)
  1096. {
  1097. struct dm_table *map;
  1098. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1099. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1100. map = dm_get_table(md);
  1101. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1102. MINOR(disk_devt(dm_disk(md))));
  1103. set_bit(DMF_FREEING, &md->flags);
  1104. spin_unlock(&_minor_lock);
  1105. if (!dm_suspended(md)) {
  1106. dm_table_presuspend_targets(map);
  1107. dm_table_postsuspend_targets(map);
  1108. }
  1109. dm_sysfs_exit(md);
  1110. dm_table_put(map);
  1111. __unbind(md);
  1112. free_dev(md);
  1113. }
  1114. }
  1115. EXPORT_SYMBOL_GPL(dm_put);
  1116. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1117. {
  1118. int r = 0;
  1119. while (1) {
  1120. set_current_state(interruptible);
  1121. smp_mb();
  1122. if (!atomic_read(&md->pending))
  1123. break;
  1124. if (interruptible == TASK_INTERRUPTIBLE &&
  1125. signal_pending(current)) {
  1126. r = -EINTR;
  1127. break;
  1128. }
  1129. io_schedule();
  1130. }
  1131. set_current_state(TASK_RUNNING);
  1132. return r;
  1133. }
  1134. /*
  1135. * Process the deferred bios
  1136. */
  1137. static void dm_wq_work(struct work_struct *work)
  1138. {
  1139. struct mapped_device *md = container_of(work, struct mapped_device,
  1140. work);
  1141. struct bio *c;
  1142. down_write(&md->io_lock);
  1143. next_bio:
  1144. spin_lock_irq(&md->deferred_lock);
  1145. c = bio_list_pop(&md->deferred);
  1146. spin_unlock_irq(&md->deferred_lock);
  1147. if (c) {
  1148. __split_and_process_bio(md, c);
  1149. goto next_bio;
  1150. }
  1151. clear_bit(DMF_BLOCK_IO, &md->flags);
  1152. up_write(&md->io_lock);
  1153. }
  1154. static void dm_queue_flush(struct mapped_device *md)
  1155. {
  1156. queue_work(md->wq, &md->work);
  1157. flush_workqueue(md->wq);
  1158. }
  1159. /*
  1160. * Swap in a new table (destroying old one).
  1161. */
  1162. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1163. {
  1164. int r = -EINVAL;
  1165. mutex_lock(&md->suspend_lock);
  1166. /* device must be suspended */
  1167. if (!dm_suspended(md))
  1168. goto out;
  1169. /* without bdev, the device size cannot be changed */
  1170. if (!md->suspended_bdev)
  1171. if (get_capacity(md->disk) != dm_table_get_size(table))
  1172. goto out;
  1173. __unbind(md);
  1174. r = __bind(md, table);
  1175. out:
  1176. mutex_unlock(&md->suspend_lock);
  1177. return r;
  1178. }
  1179. /*
  1180. * Functions to lock and unlock any filesystem running on the
  1181. * device.
  1182. */
  1183. static int lock_fs(struct mapped_device *md)
  1184. {
  1185. int r;
  1186. WARN_ON(md->frozen_sb);
  1187. md->frozen_sb = freeze_bdev(md->suspended_bdev);
  1188. if (IS_ERR(md->frozen_sb)) {
  1189. r = PTR_ERR(md->frozen_sb);
  1190. md->frozen_sb = NULL;
  1191. return r;
  1192. }
  1193. set_bit(DMF_FROZEN, &md->flags);
  1194. /* don't bdput right now, we don't want the bdev
  1195. * to go away while it is locked.
  1196. */
  1197. return 0;
  1198. }
  1199. static void unlock_fs(struct mapped_device *md)
  1200. {
  1201. if (!test_bit(DMF_FROZEN, &md->flags))
  1202. return;
  1203. thaw_bdev(md->suspended_bdev, md->frozen_sb);
  1204. md->frozen_sb = NULL;
  1205. clear_bit(DMF_FROZEN, &md->flags);
  1206. }
  1207. /*
  1208. * We need to be able to change a mapping table under a mounted
  1209. * filesystem. For example we might want to move some data in
  1210. * the background. Before the table can be swapped with
  1211. * dm_bind_table, dm_suspend must be called to flush any in
  1212. * flight bios and ensure that any further io gets deferred.
  1213. */
  1214. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1215. {
  1216. struct dm_table *map = NULL;
  1217. DECLARE_WAITQUEUE(wait, current);
  1218. int r = 0;
  1219. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1220. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1221. mutex_lock(&md->suspend_lock);
  1222. if (dm_suspended(md)) {
  1223. r = -EINVAL;
  1224. goto out_unlock;
  1225. }
  1226. map = dm_get_table(md);
  1227. /*
  1228. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1229. * This flag is cleared before dm_suspend returns.
  1230. */
  1231. if (noflush)
  1232. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1233. /* This does not get reverted if there's an error later. */
  1234. dm_table_presuspend_targets(map);
  1235. /* bdget() can stall if the pending I/Os are not flushed */
  1236. if (!noflush) {
  1237. md->suspended_bdev = bdget_disk(md->disk, 0);
  1238. if (!md->suspended_bdev) {
  1239. DMWARN("bdget failed in dm_suspend");
  1240. r = -ENOMEM;
  1241. goto out;
  1242. }
  1243. /*
  1244. * Flush I/O to the device. noflush supersedes do_lockfs,
  1245. * because lock_fs() needs to flush I/Os.
  1246. */
  1247. if (do_lockfs) {
  1248. r = lock_fs(md);
  1249. if (r)
  1250. goto out;
  1251. }
  1252. }
  1253. /*
  1254. * First we set the BLOCK_IO flag so no more ios will be mapped.
  1255. */
  1256. down_write(&md->io_lock);
  1257. set_bit(DMF_BLOCK_IO, &md->flags);
  1258. add_wait_queue(&md->wait, &wait);
  1259. up_write(&md->io_lock);
  1260. /* unplug */
  1261. if (map)
  1262. dm_table_unplug_all(map);
  1263. /*
  1264. * Wait for the already-mapped ios to complete.
  1265. */
  1266. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  1267. down_write(&md->io_lock);
  1268. remove_wait_queue(&md->wait, &wait);
  1269. if (noflush)
  1270. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1271. up_write(&md->io_lock);
  1272. /* were we interrupted ? */
  1273. if (r < 0) {
  1274. dm_queue_flush(md);
  1275. unlock_fs(md);
  1276. goto out; /* pushback list is already flushed, so skip flush */
  1277. }
  1278. dm_table_postsuspend_targets(map);
  1279. set_bit(DMF_SUSPENDED, &md->flags);
  1280. out:
  1281. if (r && md->suspended_bdev) {
  1282. bdput(md->suspended_bdev);
  1283. md->suspended_bdev = NULL;
  1284. }
  1285. dm_table_put(map);
  1286. out_unlock:
  1287. mutex_unlock(&md->suspend_lock);
  1288. return r;
  1289. }
  1290. int dm_resume(struct mapped_device *md)
  1291. {
  1292. int r = -EINVAL;
  1293. struct dm_table *map = NULL;
  1294. mutex_lock(&md->suspend_lock);
  1295. if (!dm_suspended(md))
  1296. goto out;
  1297. map = dm_get_table(md);
  1298. if (!map || !dm_table_get_size(map))
  1299. goto out;
  1300. r = dm_table_resume_targets(map);
  1301. if (r)
  1302. goto out;
  1303. dm_queue_flush(md);
  1304. unlock_fs(md);
  1305. if (md->suspended_bdev) {
  1306. bdput(md->suspended_bdev);
  1307. md->suspended_bdev = NULL;
  1308. }
  1309. clear_bit(DMF_SUSPENDED, &md->flags);
  1310. dm_table_unplug_all(map);
  1311. dm_kobject_uevent(md);
  1312. r = 0;
  1313. out:
  1314. dm_table_put(map);
  1315. mutex_unlock(&md->suspend_lock);
  1316. return r;
  1317. }
  1318. /*-----------------------------------------------------------------
  1319. * Event notification.
  1320. *---------------------------------------------------------------*/
  1321. void dm_kobject_uevent(struct mapped_device *md)
  1322. {
  1323. kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
  1324. }
  1325. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1326. {
  1327. return atomic_add_return(1, &md->uevent_seq);
  1328. }
  1329. uint32_t dm_get_event_nr(struct mapped_device *md)
  1330. {
  1331. return atomic_read(&md->event_nr);
  1332. }
  1333. int dm_wait_event(struct mapped_device *md, int event_nr)
  1334. {
  1335. return wait_event_interruptible(md->eventq,
  1336. (event_nr != atomic_read(&md->event_nr)));
  1337. }
  1338. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1339. {
  1340. unsigned long flags;
  1341. spin_lock_irqsave(&md->uevent_lock, flags);
  1342. list_add(elist, &md->uevent_list);
  1343. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1344. }
  1345. /*
  1346. * The gendisk is only valid as long as you have a reference
  1347. * count on 'md'.
  1348. */
  1349. struct gendisk *dm_disk(struct mapped_device *md)
  1350. {
  1351. return md->disk;
  1352. }
  1353. struct kobject *dm_kobject(struct mapped_device *md)
  1354. {
  1355. return &md->kobj;
  1356. }
  1357. /*
  1358. * struct mapped_device should not be exported outside of dm.c
  1359. * so use this check to verify that kobj is part of md structure
  1360. */
  1361. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  1362. {
  1363. struct mapped_device *md;
  1364. md = container_of(kobj, struct mapped_device, kobj);
  1365. if (&md->kobj != kobj)
  1366. return NULL;
  1367. dm_get(md);
  1368. return md;
  1369. }
  1370. int dm_suspended(struct mapped_device *md)
  1371. {
  1372. return test_bit(DMF_SUSPENDED, &md->flags);
  1373. }
  1374. int dm_noflush_suspending(struct dm_target *ti)
  1375. {
  1376. struct mapped_device *md = dm_table_get_md(ti->table);
  1377. int r = __noflush_suspending(md);
  1378. dm_put(md);
  1379. return r;
  1380. }
  1381. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  1382. static struct block_device_operations dm_blk_dops = {
  1383. .open = dm_blk_open,
  1384. .release = dm_blk_close,
  1385. .ioctl = dm_blk_ioctl,
  1386. .getgeo = dm_blk_getgeo,
  1387. .owner = THIS_MODULE
  1388. };
  1389. EXPORT_SYMBOL(dm_get_mapinfo);
  1390. /*
  1391. * module hooks
  1392. */
  1393. module_init(dm_init);
  1394. module_exit(dm_exit);
  1395. module_param(major, uint, 0);
  1396. MODULE_PARM_DESC(major, "The major number of the device mapper");
  1397. MODULE_DESCRIPTION(DM_NAME " driver");
  1398. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  1399. MODULE_LICENSE("GPL");