inode.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  41. {
  42. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  43. int ptrs = uspi->s_apb;
  44. int ptrs_bits = uspi->s_apbshift;
  45. const long direct_blocks = UFS_NDADDR,
  46. indirect_blocks = ptrs,
  47. double_blocks = (1 << (ptrs_bits * 2));
  48. int n = 0;
  49. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  50. if (i_block < 0) {
  51. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  52. } else if (i_block < direct_blocks) {
  53. offsets[n++] = i_block;
  54. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  55. offsets[n++] = UFS_IND_BLOCK;
  56. offsets[n++] = i_block;
  57. } else if ((i_block -= indirect_blocks) < double_blocks) {
  58. offsets[n++] = UFS_DIND_BLOCK;
  59. offsets[n++] = i_block >> ptrs_bits;
  60. offsets[n++] = i_block & (ptrs - 1);
  61. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  62. offsets[n++] = UFS_TIND_BLOCK;
  63. offsets[n++] = i_block >> (ptrs_bits * 2);
  64. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  65. offsets[n++] = i_block & (ptrs - 1);
  66. } else {
  67. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  68. }
  69. return n;
  70. }
  71. /*
  72. * Returns the location of the fragment from
  73. * the begining of the filesystem.
  74. */
  75. u64 ufs_frag_map(struct inode *inode, sector_t frag)
  76. {
  77. struct ufs_inode_info *ufsi = UFS_I(inode);
  78. struct super_block *sb = inode->i_sb;
  79. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  80. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  81. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  82. sector_t offsets[4], *p;
  83. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  84. u64 ret = 0L;
  85. __fs32 block;
  86. __fs64 u2_block = 0L;
  87. unsigned flags = UFS_SB(sb)->s_flags;
  88. u64 temp = 0L;
  89. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  90. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",uspi->s_fpbshift,uspi->s_apbmask,mask);
  91. if (depth == 0)
  92. return 0;
  93. p = offsets;
  94. lock_kernel();
  95. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  96. goto ufs2;
  97. block = ufsi->i_u1.i_data[*p++];
  98. if (!block)
  99. goto out;
  100. while (--depth) {
  101. struct buffer_head *bh;
  102. sector_t n = *p++;
  103. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  104. if (!bh)
  105. goto out;
  106. block = ((__fs32 *) bh->b_data)[n & mask];
  107. brelse (bh);
  108. if (!block)
  109. goto out;
  110. }
  111. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  112. goto out;
  113. ufs2:
  114. u2_block = ufsi->i_u1.u2_i_data[*p++];
  115. if (!u2_block)
  116. goto out;
  117. while (--depth) {
  118. struct buffer_head *bh;
  119. sector_t n = *p++;
  120. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  121. bh = sb_bread(sb, temp +(u64) (n>>shift));
  122. if (!bh)
  123. goto out;
  124. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  125. brelse(bh);
  126. if (!u2_block)
  127. goto out;
  128. }
  129. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  130. ret = temp + (u64) (frag & uspi->s_fpbmask);
  131. out:
  132. unlock_kernel();
  133. return ret;
  134. }
  135. static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
  136. {
  137. lock_buffer(bh);
  138. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  139. set_buffer_uptodate(bh);
  140. mark_buffer_dirty(bh);
  141. unlock_buffer(bh);
  142. if (IS_SYNC(inode))
  143. sync_dirty_buffer(bh);
  144. }
  145. static struct buffer_head *
  146. ufs_clear_frags(struct inode *inode, sector_t beg,
  147. unsigned int n)
  148. {
  149. struct buffer_head *res, *bh;
  150. sector_t end = beg + n;
  151. res = sb_getblk(inode->i_sb, beg);
  152. ufs_clear_frag(inode, res);
  153. for (++beg; beg < end; ++beg) {
  154. bh = sb_getblk(inode->i_sb, beg);
  155. ufs_clear_frag(inode, bh);
  156. }
  157. return res;
  158. }
  159. /**
  160. * ufs_inode_getfrag() - allocate new fragment(s)
  161. * @inode - pointer to inode
  162. * @fragment - number of `fragment' which hold pointer
  163. * to new allocated fragment(s)
  164. * @new_fragment - number of new allocated fragment(s)
  165. * @required - how many fragment(s) we require
  166. * @err - we set it if something wrong
  167. * @phys - pointer to where we save physical number of new allocated fragments,
  168. * NULL if we allocate not data(indirect blocks for example).
  169. * @new - we set it if we allocate new block
  170. * @locked_page - for ufs_new_fragments()
  171. */
  172. static struct buffer_head *
  173. ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
  174. sector_t new_fragment, unsigned int required, int *err,
  175. long *phys, int *new, struct page *locked_page)
  176. {
  177. struct ufs_inode_info *ufsi = UFS_I(inode);
  178. struct super_block *sb = inode->i_sb;
  179. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  180. struct buffer_head * result;
  181. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  182. unsigned tmp, goal;
  183. __fs32 * p, * p2;
  184. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
  185. "metadata %d\n", inode->i_ino, fragment,
  186. (unsigned long long)new_fragment, required, !phys);
  187. /* TODO : to be done for write support
  188. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  189. goto ufs2;
  190. */
  191. block = ufs_fragstoblks (fragment);
  192. blockoff = ufs_fragnum (fragment);
  193. p = ufsi->i_u1.i_data + block;
  194. goal = 0;
  195. repeat:
  196. tmp = fs32_to_cpu(sb, *p);
  197. lastfrag = ufsi->i_lastfrag;
  198. if (tmp && fragment < lastfrag) {
  199. if (!phys) {
  200. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  201. if (tmp == fs32_to_cpu(sb, *p)) {
  202. UFSD("EXIT, result %u\n", tmp + blockoff);
  203. return result;
  204. }
  205. brelse (result);
  206. goto repeat;
  207. } else {
  208. *phys = tmp + blockoff;
  209. return NULL;
  210. }
  211. }
  212. lastblock = ufs_fragstoblks (lastfrag);
  213. lastblockoff = ufs_fragnum (lastfrag);
  214. /*
  215. * We will extend file into new block beyond last allocated block
  216. */
  217. if (lastblock < block) {
  218. /*
  219. * We must reallocate last allocated block
  220. */
  221. if (lastblockoff) {
  222. p2 = ufsi->i_u1.i_data + lastblock;
  223. tmp = ufs_new_fragments (inode, p2, lastfrag,
  224. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  225. err, locked_page);
  226. if (!tmp) {
  227. if (lastfrag != ufsi->i_lastfrag)
  228. goto repeat;
  229. else
  230. return NULL;
  231. }
  232. lastfrag = ufsi->i_lastfrag;
  233. }
  234. goal = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]) + uspi->s_fpb;
  235. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  236. goal, required + blockoff,
  237. err, locked_page);
  238. }
  239. /*
  240. * We will extend last allocated block
  241. */
  242. else if (lastblock == block) {
  243. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  244. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  245. err, locked_page);
  246. }
  247. /*
  248. * We will allocate new block before last allocated block
  249. */
  250. else /* (lastblock > block) */ {
  251. if (lastblock && (tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock-1])))
  252. goal = tmp + uspi->s_fpb;
  253. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  254. goal, uspi->s_fpb, err, locked_page);
  255. }
  256. if (!tmp) {
  257. if ((!blockoff && *p) ||
  258. (blockoff && lastfrag != ufsi->i_lastfrag))
  259. goto repeat;
  260. *err = -ENOSPC;
  261. return NULL;
  262. }
  263. if (!phys) {
  264. result = ufs_clear_frags(inode, tmp + blockoff, required);
  265. } else {
  266. *phys = tmp + blockoff;
  267. result = NULL;
  268. *err = 0;
  269. *new = 1;
  270. }
  271. inode->i_ctime = CURRENT_TIME_SEC;
  272. if (IS_SYNC(inode))
  273. ufs_sync_inode (inode);
  274. mark_inode_dirty(inode);
  275. UFSD("EXIT, result %u\n", tmp + blockoff);
  276. return result;
  277. /* This part : To be implemented ....
  278. Required only for writing, not required for READ-ONLY.
  279. ufs2:
  280. u2_block = ufs_fragstoblks(fragment);
  281. u2_blockoff = ufs_fragnum(fragment);
  282. p = ufsi->i_u1.u2_i_data + block;
  283. goal = 0;
  284. repeat2:
  285. tmp = fs32_to_cpu(sb, *p);
  286. lastfrag = ufsi->i_lastfrag;
  287. */
  288. }
  289. /**
  290. * ufs_inode_getblock() - allocate new block
  291. * @inode - pointer to inode
  292. * @bh - pointer to block which hold "pointer" to new allocated block
  293. * @fragment - number of `fragment' which hold pointer
  294. * to new allocated block
  295. * @new_fragment - number of new allocated fragment
  296. * (block will hold this fragment and also uspi->s_fpb-1)
  297. * @err - see ufs_inode_getfrag()
  298. * @phys - see ufs_inode_getfrag()
  299. * @new - see ufs_inode_getfrag()
  300. * @locked_page - see ufs_inode_getfrag()
  301. */
  302. static struct buffer_head *
  303. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  304. unsigned int fragment, sector_t new_fragment, int *err,
  305. long *phys, int *new, struct page *locked_page)
  306. {
  307. struct super_block *sb = inode->i_sb;
  308. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  309. struct buffer_head * result;
  310. unsigned tmp, goal, block, blockoff;
  311. __fs32 * p;
  312. block = ufs_fragstoblks (fragment);
  313. blockoff = ufs_fragnum (fragment);
  314. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
  315. inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
  316. result = NULL;
  317. if (!bh)
  318. goto out;
  319. if (!buffer_uptodate(bh)) {
  320. ll_rw_block (READ, 1, &bh);
  321. wait_on_buffer (bh);
  322. if (!buffer_uptodate(bh))
  323. goto out;
  324. }
  325. p = (__fs32 *) bh->b_data + block;
  326. repeat:
  327. tmp = fs32_to_cpu(sb, *p);
  328. if (tmp) {
  329. if (!phys) {
  330. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  331. if (tmp == fs32_to_cpu(sb, *p))
  332. goto out;
  333. brelse (result);
  334. goto repeat;
  335. } else {
  336. *phys = tmp + blockoff;
  337. goto out;
  338. }
  339. }
  340. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1]) + uspi->s_fpb))
  341. goal = tmp + uspi->s_fpb;
  342. else
  343. goal = bh->b_blocknr + uspi->s_fpb;
  344. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  345. uspi->s_fpb, err, locked_page);
  346. if (!tmp) {
  347. if (fs32_to_cpu(sb, *p))
  348. goto repeat;
  349. goto out;
  350. }
  351. if (!phys) {
  352. result = ufs_clear_frags(inode, tmp + blockoff, uspi->s_fpb);
  353. } else {
  354. *phys = tmp + blockoff;
  355. *new = 1;
  356. }
  357. mark_buffer_dirty(bh);
  358. if (IS_SYNC(inode))
  359. sync_dirty_buffer(bh);
  360. inode->i_ctime = CURRENT_TIME_SEC;
  361. mark_inode_dirty(inode);
  362. UFSD("result %u\n", tmp + blockoff);
  363. out:
  364. brelse (bh);
  365. UFSD("EXIT\n");
  366. return result;
  367. }
  368. /**
  369. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  370. * readpage, writepage and so on
  371. */
  372. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  373. {
  374. struct super_block * sb = inode->i_sb;
  375. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  376. struct buffer_head * bh;
  377. int ret, err, new;
  378. unsigned long ptr,phys;
  379. u64 phys64 = 0;
  380. if (!create) {
  381. phys64 = ufs_frag_map(inode, fragment);
  382. UFSD("phys64 = %llu \n",phys64);
  383. if (phys64)
  384. map_bh(bh_result, sb, phys64);
  385. return 0;
  386. }
  387. /* This code entered only while writing ....? */
  388. err = -EIO;
  389. new = 0;
  390. ret = 0;
  391. bh = NULL;
  392. lock_kernel();
  393. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  394. if (fragment < 0)
  395. goto abort_negative;
  396. if (fragment >
  397. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  398. << uspi->s_fpbshift))
  399. goto abort_too_big;
  400. err = 0;
  401. ptr = fragment;
  402. /*
  403. * ok, these macros clean the logic up a bit and make
  404. * it much more readable:
  405. */
  406. #define GET_INODE_DATABLOCK(x) \
  407. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
  408. #define GET_INODE_PTR(x) \
  409. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
  410. #define GET_INDIRECT_DATABLOCK(x) \
  411. ufs_inode_getblock(inode, bh, x, fragment, \
  412. &err, &phys, &new, bh_result->b_page);
  413. #define GET_INDIRECT_PTR(x) \
  414. ufs_inode_getblock(inode, bh, x, fragment, \
  415. &err, NULL, NULL, bh_result->b_page);
  416. if (ptr < UFS_NDIR_FRAGMENT) {
  417. bh = GET_INODE_DATABLOCK(ptr);
  418. goto out;
  419. }
  420. ptr -= UFS_NDIR_FRAGMENT;
  421. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  422. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  423. goto get_indirect;
  424. }
  425. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  426. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  427. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  428. goto get_double;
  429. }
  430. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  431. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  432. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  433. get_double:
  434. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  435. get_indirect:
  436. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  437. #undef GET_INODE_DATABLOCK
  438. #undef GET_INODE_PTR
  439. #undef GET_INDIRECT_DATABLOCK
  440. #undef GET_INDIRECT_PTR
  441. out:
  442. if (err)
  443. goto abort;
  444. if (new)
  445. set_buffer_new(bh_result);
  446. map_bh(bh_result, sb, phys);
  447. abort:
  448. unlock_kernel();
  449. return err;
  450. abort_negative:
  451. ufs_warning(sb, "ufs_get_block", "block < 0");
  452. goto abort;
  453. abort_too_big:
  454. ufs_warning(sb, "ufs_get_block", "block > big");
  455. goto abort;
  456. }
  457. struct buffer_head *ufs_getfrag(struct inode *inode, unsigned int fragment,
  458. int create, int *err)
  459. {
  460. struct buffer_head dummy;
  461. int error;
  462. dummy.b_state = 0;
  463. dummy.b_blocknr = -1000;
  464. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  465. *err = error;
  466. if (!error && buffer_mapped(&dummy)) {
  467. struct buffer_head *bh;
  468. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  469. if (buffer_new(&dummy)) {
  470. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  471. set_buffer_uptodate(bh);
  472. mark_buffer_dirty(bh);
  473. }
  474. return bh;
  475. }
  476. return NULL;
  477. }
  478. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  479. int create, int * err)
  480. {
  481. struct buffer_head * bh;
  482. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  483. bh = ufs_getfrag (inode, fragment, create, err);
  484. if (!bh || buffer_uptodate(bh))
  485. return bh;
  486. ll_rw_block (READ, 1, &bh);
  487. wait_on_buffer (bh);
  488. if (buffer_uptodate(bh))
  489. return bh;
  490. brelse (bh);
  491. *err = -EIO;
  492. return NULL;
  493. }
  494. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  495. {
  496. return block_write_full_page(page,ufs_getfrag_block,wbc);
  497. }
  498. static int ufs_readpage(struct file *file, struct page *page)
  499. {
  500. return block_read_full_page(page,ufs_getfrag_block);
  501. }
  502. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  503. {
  504. return block_prepare_write(page,from,to,ufs_getfrag_block);
  505. }
  506. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  507. {
  508. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  509. }
  510. struct address_space_operations ufs_aops = {
  511. .readpage = ufs_readpage,
  512. .writepage = ufs_writepage,
  513. .sync_page = block_sync_page,
  514. .prepare_write = ufs_prepare_write,
  515. .commit_write = generic_commit_write,
  516. .bmap = ufs_bmap
  517. };
  518. static void ufs_set_inode_ops(struct inode *inode)
  519. {
  520. if (S_ISREG(inode->i_mode)) {
  521. inode->i_op = &ufs_file_inode_operations;
  522. inode->i_fop = &ufs_file_operations;
  523. inode->i_mapping->a_ops = &ufs_aops;
  524. } else if (S_ISDIR(inode->i_mode)) {
  525. inode->i_op = &ufs_dir_inode_operations;
  526. inode->i_fop = &ufs_dir_operations;
  527. inode->i_mapping->a_ops = &ufs_aops;
  528. } else if (S_ISLNK(inode->i_mode)) {
  529. if (!inode->i_blocks)
  530. inode->i_op = &ufs_fast_symlink_inode_operations;
  531. else {
  532. inode->i_op = &page_symlink_inode_operations;
  533. inode->i_mapping->a_ops = &ufs_aops;
  534. }
  535. } else
  536. init_special_inode(inode, inode->i_mode,
  537. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  538. }
  539. void ufs_read_inode (struct inode * inode)
  540. {
  541. struct ufs_inode_info *ufsi = UFS_I(inode);
  542. struct super_block * sb;
  543. struct ufs_sb_private_info * uspi;
  544. struct ufs_inode * ufs_inode;
  545. struct ufs2_inode *ufs2_inode;
  546. struct buffer_head * bh;
  547. mode_t mode;
  548. unsigned i;
  549. unsigned flags;
  550. UFSD("ENTER, ino %lu\n", inode->i_ino);
  551. sb = inode->i_sb;
  552. uspi = UFS_SB(sb)->s_uspi;
  553. flags = UFS_SB(sb)->s_flags;
  554. if (inode->i_ino < UFS_ROOTINO ||
  555. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  556. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  557. goto bad_inode;
  558. }
  559. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  560. if (!bh) {
  561. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  562. goto bad_inode;
  563. }
  564. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  565. goto ufs2_inode;
  566. ufs_inode = (struct ufs_inode *) (bh->b_data + sizeof(struct ufs_inode) * ufs_inotofsbo(inode->i_ino));
  567. /*
  568. * Copy data to the in-core inode.
  569. */
  570. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  571. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  572. if (inode->i_nlink == 0)
  573. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  574. /*
  575. * Linux now has 32-bit uid and gid, so we can support EFT.
  576. */
  577. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  578. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  579. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  580. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  581. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  582. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  583. inode->i_mtime.tv_nsec = 0;
  584. inode->i_atime.tv_nsec = 0;
  585. inode->i_ctime.tv_nsec = 0;
  586. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  587. inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat) */
  588. inode->i_version++;
  589. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  590. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  591. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  592. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  593. ufsi->i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  594. ufsi->i_dir_start_lookup = 0;
  595. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  596. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  597. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  598. } else {
  599. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  600. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  601. }
  602. ufsi->i_osync = 0;
  603. ufs_set_inode_ops(inode);
  604. brelse (bh);
  605. UFSD("EXIT\n");
  606. return;
  607. bad_inode:
  608. make_bad_inode(inode);
  609. return;
  610. ufs2_inode :
  611. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  612. ufs2_inode = (struct ufs2_inode *)(bh->b_data + sizeof(struct ufs2_inode) * ufs_inotofsbo(inode->i_ino));
  613. /*
  614. * Copy data to the in-core inode.
  615. */
  616. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  617. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  618. if (inode->i_nlink == 0)
  619. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  620. /*
  621. * Linux now has 32-bit uid and gid, so we can support EFT.
  622. */
  623. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  624. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  625. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  626. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  627. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  628. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  629. inode->i_mtime.tv_nsec = 0;
  630. inode->i_atime.tv_nsec = 0;
  631. inode->i_ctime.tv_nsec = 0;
  632. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  633. inode->i_blksize = PAGE_SIZE; /*This is the optimal IO size(for stat)*/
  634. inode->i_version++;
  635. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  636. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  637. /*
  638. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  639. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  640. */
  641. ufsi->i_lastfrag= (inode->i_size + uspi->s_fsize- 1) >> uspi->s_fshift;
  642. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  643. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  644. ufsi->i_u1.u2_i_data[i] =
  645. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  646. }
  647. else {
  648. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  649. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  650. }
  651. ufsi->i_osync = 0;
  652. ufs_set_inode_ops(inode);
  653. brelse(bh);
  654. UFSD("EXIT\n");
  655. return;
  656. }
  657. static int ufs_update_inode(struct inode * inode, int do_sync)
  658. {
  659. struct ufs_inode_info *ufsi = UFS_I(inode);
  660. struct super_block * sb;
  661. struct ufs_sb_private_info * uspi;
  662. struct buffer_head * bh;
  663. struct ufs_inode * ufs_inode;
  664. unsigned i;
  665. unsigned flags;
  666. UFSD("ENTER, ino %lu\n", inode->i_ino);
  667. sb = inode->i_sb;
  668. uspi = UFS_SB(sb)->s_uspi;
  669. flags = UFS_SB(sb)->s_flags;
  670. if (inode->i_ino < UFS_ROOTINO ||
  671. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  672. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  673. return -1;
  674. }
  675. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  676. if (!bh) {
  677. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  678. return -1;
  679. }
  680. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  681. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  682. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  683. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  684. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  685. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  686. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  687. ufs_inode->ui_atime.tv_usec = 0;
  688. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  689. ufs_inode->ui_ctime.tv_usec = 0;
  690. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  691. ufs_inode->ui_mtime.tv_usec = 0;
  692. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  693. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  694. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  695. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  696. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  697. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  698. }
  699. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  700. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  701. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  702. } else if (inode->i_blocks) {
  703. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  704. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  705. }
  706. else {
  707. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  708. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  709. }
  710. if (!inode->i_nlink)
  711. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  712. mark_buffer_dirty(bh);
  713. if (do_sync)
  714. sync_dirty_buffer(bh);
  715. brelse (bh);
  716. UFSD("EXIT\n");
  717. return 0;
  718. }
  719. int ufs_write_inode (struct inode * inode, int wait)
  720. {
  721. int ret;
  722. lock_kernel();
  723. ret = ufs_update_inode (inode, wait);
  724. unlock_kernel();
  725. return ret;
  726. }
  727. int ufs_sync_inode (struct inode *inode)
  728. {
  729. return ufs_update_inode (inode, 1);
  730. }
  731. void ufs_delete_inode (struct inode * inode)
  732. {
  733. truncate_inode_pages(&inode->i_data, 0);
  734. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  735. lock_kernel();
  736. mark_inode_dirty(inode);
  737. ufs_update_inode(inode, IS_SYNC(inode));
  738. inode->i_size = 0;
  739. if (inode->i_blocks)
  740. ufs_truncate (inode);
  741. ufs_free_inode (inode);
  742. unlock_kernel();
  743. }